| Infrastructure · Water · Environment · Buildings       855 Route 146         Suite 210       Clifton Park         New York 12065       New York 12065                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| To:Copies:Tel 518 250 7300Ms. Ruth CurleyCharles Trione, Lockheed MartinFax 518 250 7301NYSDEC, Remedial Bureau BJames Zigmont, CDMFax 518 250 7301625 Broadway, 12 <sup>th</sup> FloorPeter Milionis, ARCADISFax 518 250 7301Albany, NY 12233Greg Rys, NYSDOHDale Truskett, Lockheed MartinKay Armstrong, Armstrong & Assoc.Virginia Robbins, BS&KRichard Zigenfus, ConMedFile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
| From:     Date:       Lisa Collins     March 29, 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |
| Subject:ARCADIS Project No.:2011 Annual Groundwater Collection andNJ001039.0001Treatment System Operation, Maintenance &Monitoring Report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
| We are sending you:          Image: Mark Separate Cover Via                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| □       Shop Drawings       □       Plans       □       Specifications       □       Change Order         □       Prints       □       Samples       □       Copy of Letter       □       Reports         □       Other:       CD       □       C       □       C       □       □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
| Copies Date Description Act                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ion* |
| 1       3/29/12       2011 Annual Groundwater Collections and Treatment System Operation,<br>Maintenance and Monitoring Report, Former Lockheed Martin French Road<br>Facility, Utica, New York       A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S    |
| Action*         A Approved       CR         AN Approved As Noted       F         F       File         AS As Requested       FA         Other:       Other:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |
| Mailing Method         U.S. Postal Service 1 <sup>st</sup> Class       Courier/Hand Delivery       FedEx Priority Overnight       FedEx 2-Day Delivery         Certified/Registered Mail       United Parcel Service (UPS)       FedEx Standard Overnight       FedEx Economy         Other:       Other:       Other       Image: Control of the context of th | ′ery |
| Comments:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |



Imagine the result

LOCKHEED MARTIN

### 2011 Annual Groundwater Collection and Treatment System Operation, Maintenance, and Monitoring Report

Former Lockheed Martin French Road Facility Utica, New York

March 2012

T. Carigun

Todd Carignan Project Engineer

Sanstri

Jeffrey Bonsteel Associate Project Manager

ti Milionia

Peter Milionis, P.G. Project Manager

Moh Mohiuddin, Ph.D., P.E., BCEE Principal Engineer/Engineer of Record NY PE License #074527-1

2011 Annual Groundwater Collection and Treatment System Operation, Maintenance, and Monitoring Report

Former Lockheed Martin French Road Facility, Utica, New York

Prepared for: Lockheed Martin Corporation

Prepared by: ARCADIS of New York, Inc. 855 Route 146 Suite 210 Clifton Park New York 12065 Tel 518.4518.250.7300 Fax 518.250.7301

Our Ref.: NJ001039.0001

Date: March 2012

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

### **Table of Contents**

| Ac | ronyms |                                                     | iii |
|----|--------|-----------------------------------------------------|-----|
| 1. | Introd | luction                                             | 1   |
|    | 1.1    | System Upgrades                                     | 1   |
| 2. | Grour  | ndwater Collection and Treatment System Description | 2   |
|    | 2.1    | Major System Components                             | 2   |
| 3. | 2011   | Remedial Operational Objectives                     | 4   |
| 4. | Opera  | tion and Maintenance Activities                     | 5   |
|    | 4.1    | Daily Routine System Inspections                    | 5   |
|    | 4.2    | Monthly Routine System Inspections                  | 5   |
|    | 4.3    | Quarterly System O&M and Inspections                | 7   |
|    | 4.4    | Non-Routine Operation and Maintenance Activities    | 7   |
|    | 4.5    | Alarm Conditions and System Modifications           | 9   |
| 5. | Analy  | tical Monitoring Activities                         | 10  |
|    | 5.1    | System-Effluent Monitoring                          | 10  |
|    | 5.2    | System-Influent Monitoring                          | 11  |
|    | 5.3    | Stormwater Monitoring                               | 12  |
| 6. | Syste  | m Performance Results                               | 12  |
|    | 6.1    | Groundwater Recovery/Extracted Liquid Flowrate      | 13  |
|    | 6.2    | Air Stripper Performance                            | 13  |
|    | 6.3    | Air Stripper Emissions                              | 13  |
|    | 6.4    | Water Treatment Chemical Monitoring                 | 14  |
|    | 6.5    | Stormwater Monitoring                               | 14  |
|    | 6.6    | Groundwater Elevation Measurements                  | 15  |
| 7. | 2012 ( | Goals and Recommendations                           | 15  |
|    | 7.1    | Goals                                               | 15  |
|    | 7.2    | Recommendations                                     | 16  |



### **Table of Contents**

### 8. References

### Tables

| 1          | Groundwater Collection and Treatment System Operation Summary                      |
|------------|------------------------------------------------------------------------------------|
| 2          | Groundwater Collection and Treatment System Effluent Analytical Sampling Results   |
| 3          | Groundwater Collection and Treatment System Influent<br>Groundwater Concentrations |
| 4          | Stormwater Analytical Sampling Results                                             |
| 5          | Groundwater Collection and Treatment System Flowrates                              |
| 6          | Vapor Phase Analytical Sampling Results                                            |
| 7          | Summary of Estimated Air Stripper Emissions                                        |
| 8          | Water Treatment Chemical Consumption Summary                                       |
| 9          | Groundwater Elevation Measurements                                                 |
| Figures    |                                                                                    |
| 1          | Site Location Map                                                                  |
| 2          | Site Plan and Groundwater Collection and Treatment System Layout                   |
| Appendices |                                                                                    |
| А          | Record Drawings                                                                    |

B Monthly O&M ChecklistsC Alarm-Response Log Sheets

### 18



### Acronyms

### Acronyms

| 05                                          |                                                                                                                                                                                                          |
|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| СВ                                          | catch-basin                                                                                                                                                                                              |
| cfm                                         | cubic feet per minute                                                                                                                                                                                    |
| CO                                          | "Order on Consent"                                                                                                                                                                                       |
| CVOCs                                       | chlorinated volatile organic compounds                                                                                                                                                                   |
| DAR                                         | Division of Air Resources                                                                                                                                                                                |
| ft                                          | feet                                                                                                                                                                                                     |
| GCTS                                        | groundwater collection and treatment system                                                                                                                                                              |
| gpm                                         | gallons per minute                                                                                                                                                                                       |
| HDPE                                        | high-density polyethylene                                                                                                                                                                                |
| HOA                                         | hand-off-auto                                                                                                                                                                                            |
| hp                                          | horsepower                                                                                                                                                                                               |
| in                                          | inch                                                                                                                                                                                                     |
| In. W.C.                                    | inches of water column                                                                                                                                                                                   |
| lb                                          | pounds                                                                                                                                                                                                   |
| MH                                          | manhole                                                                                                                                                                                                  |
| NYSDEC                                      | New York State Department of Environmental Conservation                                                                                                                                                  |
| NYSDOH                                      | New York State Department of Health                                                                                                                                                                      |
| O&M                                         | operations and maintenance                                                                                                                                                                               |
| OM&M                                        | operation, maintenance, and monitoring                                                                                                                                                                   |
| PLC                                         | programmable logic controller                                                                                                                                                                            |
| PVC                                         | polyvinyl chloride                                                                                                                                                                                       |
| QAPP                                        | Quality Assurance Project Plan                                                                                                                                                                           |
| RCP                                         | Reinforced-concrete pipe                                                                                                                                                                                 |
| RL                                          |                                                                                                                                                                                                          |
| I KE                                        | reporting limits                                                                                                                                                                                         |
| SCFM                                        | reporting limits<br>standard cubic feet per minute                                                                                                                                                       |
|                                             |                                                                                                                                                                                                          |
| SCFM                                        | standard cubic feet per minute                                                                                                                                                                           |
| SCFM<br>SCH                                 | standard cubic feet per minute<br>schedule                                                                                                                                                               |
| SCFM<br>SCH<br>SOP                          | standard cubic feet per minute<br>schedule<br>standard operating procedure                                                                                                                               |
| SCFM<br>SCH<br>SOP<br>SPDES                 | standard cubic feet per minute<br>schedule<br>standard operating procedure<br>State Pollutant Discharge Elimination System                                                                               |
| SCFM<br>SCH<br>SOP<br>SPDES<br>USEPA        | standard cubic feet per minute<br>schedule<br>standard operating procedure<br>State Pollutant Discharge Elimination System<br>United States Environmental Protection Agency                              |
| SCFM<br>SCH<br>SOP<br>SPDES<br>USEPA<br>VOA | standard cubic feet per minute<br>schedule<br>standard operating procedure<br>State Pollutant Discharge Elimination System<br>United States Environmental Protection Agency<br>volatile organic analysis |

This page intentionally left blank

2011 Annual Groundwater Collection and Treatment System Operation, Maintenance, and Monitoring Report

Former Lockheed Martin French Road Facility, Utica, New York

### 1. Introduction

This Groundwater Collection and Treatment System Operation, Maintenance, and Monitoring Report was prepared by ARCADIS for Lockheed Martin Corporation (Lockheed Martin), in accordance with the DRAFT Site Management Plan for the Solvent Dock Area (ARCADIS 2009) at the Former Lockheed Martin French Road Facility (herein referred to as the "site") in Utica, New York (Figure 1). All work was performed in accordance with the October 3, 2008 "Order on Consent" (CO 6-20080321-5) issued by the New York State Department of Environmental Conservation (NYSDEC). This report summarizes the operation, maintenance, and monitoring (OM&M) of the groundwater collection and treatment system (GCTS) between January 1 - December 31, 2011. The data summary includes a review of influent and effluent system sampling, analysis of key operating parameters (e.g. flow rates, pressures, system run-time, and maintenance activities), and any modifications and recommendations related to continued system operation and monitoring.

### 1.1 System Upgrades

In March 2011, Lockheed Martin finished implementing upgrades to the GCTS, in accordance with the NYSDEC-approved *Groundwater Collection and Treatment System 100% Design Work Plan* (ARCADIS 2010). As part of these upgrades, the following major GCTS modifications were made:

- A third manhole, MH-3 was installed;
- The existing air stripper was replaced with a new and more efficient model;
- Vapor phase carbon treatment was installed post the new air stripper unit;
- The control system and logic were upgraded in relation to the equipment modifications noted above; and
- Water treatment chemical (WTC) was integrated into the system in order to control mineral deposits, most notably calcium carbonate and manganese.

Remedial operation and progress achieved by ARCADIS during this reporting period are summarized in the following sections.



Former Lockheed Martin French Road Facility, Utica, New York

### 2. Groundwater Collection and Treatment System Description

The GCTS is designed to collect groundwater contaminated with chlorinated volatile organic compounds (CVOCs) from the former Solvent Dock Area and former northernperimeter ditch area and transport it to a treatment building where the VOCs are removed by a low-profile air stripper. Following treatment, groundwater is discharged via gravity to the local municipal storm drain under a NYSDEC "State Pollutant Discharge Elimination System" (SPDES) permit (permit No. NY-0121894). The system is designed to operate automatically and requires only periodic inspections and maintenance. An automated system operation log is sent daily via e-mail to the project engineer to verify operation. A more detailed explanation of the GCTS appears below.

Groundwater in the former Solvent Dock area (MH-2 and MH-3) and former northernperimeter ditch area (MH-1) is captured by separate perforated-pipelines and flows via gravity to collection manholes. Groundwater is then pumped (batch mode) from each manhole through subsurface double walled pipelines to the GCTS building for treatment before being discharged to the local municipal stormwater collection system. The groundwater is treated with a low-profile air stripper, which removes the dissolved-phase CVOCs.

During air stripping, contaminated water enters the air stripper at the top and ambient air enters from the bottom. The groundwater flows over four trays in series where CVOCs are transferred from the aqueous phase (i.e., water) to the vapor phase (i.e., counter-current air stream). The air stream (off-gas) is treated using granular activated carbon before discharge to the atmosphere. A GCTS site plan is illustrated in Figure 2, and the GCTS process and instrumentation diagram record drawing showing sampling locations is provided in Appendix A.

### 2.1 Major System Components

Major components of the system are as follows:

- MH-1: 6-ft diameter and 13-ft deep pre-cast concrete pumping-manhole equipped with the following components:
  - Two  $\frac{3}{4}$  horsepower (hp) submersible pumps;
  - Five associated float-switches;
  - o 2-in/4-in diameter double walled HDPE discharge-piping; and



Former Lockheed Martin French Road Facility, Utica, New York

- Gravity Collection Drain 670 feet (ft) of 8-inch (in) diameter perforated high-density polyethylene (HDPE) pipe installed in a 4–6-ft deep, stone-filled collection trench located parallel to the former northern-perimeter ditch.
- MH-2: 6-ft diameter and 18-ft deep pre-cast concrete pumping-manhole equipped with the following components:
  - Two  $\frac{3}{4}$  hp submersible pumps;
  - Five associated float-switches;
  - o 2-in/4-in diameter double wall HDPE discharge piping; and
  - Gravity Collection Drain 70 ft of 6-in diameter perforated HDPE-pipe installed in a 16-ft deep, stone-filled collection trench located adjacent to the former Solvent Dock area;
- MH-3: 6-ft diameter and 17-ft deep pre-cast concrete pumping-manhole equipped with the following components:
  - Two  $\frac{3}{4}$  hp submersible pumps;
  - Five associated float-switches;
  - o 2-in/4-in diameter double wall HDPE discharge piping; and
  - Gravity Collection Drain 70 ft of 6-in diameter perforated HDPE-pipe installed in a 16-ft deep, stone-filled collection trench located adjacent to the facility stormwater drainage line within the former Solvent Dock area.
- Pre-Engineering Metal Building: A 24-ft 8-in by 20-ft pre-engineered metal treatment-building set on a concrete foundation and slab equipped with a secondary containment- dike and floor sump;
- Programmable Logic Controller (PLC) and motor control panels for the air stripper, duct heater, and manhole pumps;
- Air Stripper: Low profile, stainless steel air stripper rated for a maximum flowrate of 120 gallons per minute (gpm);
- Liquid Phase Discharge: 60-ft of 4-in diameter schedule (SCH)-40 polyvinyl chloride (PVC) gravity-discharge pipe from the air stripper effluent to the local municipal stormwater collection and drainage system [30-in diameter reinforced-concrete pipe (RCP)];



Former Lockheed Martin French Road Facility, Utica, New York

- Duct Heater: Inline duct heater rated at 600 standard cubic feet per minute (SCFM);
- Vapor Phase Treatment Vessels: 2-1000 pound (lb) activated carbon vessels that discharge the treated air stripper off-gas through an exhaust-duct made of PVC (interior) and stainless steel (exterior) that extends approximately 28-ft above the ground surface; and
- Chemical Feed System: Aries Chemical sequestering agent 2908 is injected into the influent groundwater stream for mineral deposit control using a LMI chemical feed pump model AA941-353 BI, equipped with a LMI Digi-Pulse Meter model FM-200 rated for 0.05-5.0 ml/stroke. [Note: Approval for the WTC was received from NYSDEC on April 13, 2011. Usage of the WTC began on April 20, 2011.]

Record drawings for the GCTS are included in Appendix A. System components are described in more detail in the *Operational, Maintenance, and Monitoring Manual* (ARCADIS 2011).

### 3. 2011 Remedial Operational Objectives

The GCTS' overall remedial goal is to reduce the potential for groundwater contaminated with CVOCs to infiltrate the facility's storm drainage system (Figure 2) before its contents eventually discharge to Nail Creek. The GCTS' operational objectives are to:

- Maintain and operate the system continuously without significant downtime;
- Demonstrate the GCTS' effectiveness in preventing infiltration of CVOC contaminated groundwater into the site facility's storm drain;
- Demonstrate that the air stripper is removing CVOCs from the influent groundwater streams before being discharged into the local county storm drain system, in compliance with the site's SPDES permit;
- Demonstrate that vapor phase discharge from the air stripper complies with NYSDEC Division of Air Resources (DAR-1); and
- Achieve the site specific goal of 95 percent (%) mass removal of target VOCs (i.e., TCE and daughter products including 1, 2-DCE) in the system vapor effluent.

2011 Annual Groundwater Collection and Treatment System Operation, Maintenance, and Monitoring Report

Former Lockheed Martin French Road Facility, Utica, New York

### 4. Operation and Maintenance Activities

The GCTS operated nearly continuously between January 1 - December 31, 2011 (run time was approximately 88%, or 348 of 365 days), with minor scheduled routine maintenance and/or operational interruptions due to system alarm conditions. It should be noted that the planned implementation of the system upgrades during the January and February reporting periods resulted in most of the system down time for the 2011 reporting period. The cumulative run time for the second, third, and fourth quarters was approximately 97%.

The system was inspected either by physical site inspections, remote computer monitoring, and/or via review of the daily system operation e-mails during the reporting period. System operating-parameters are recorded during monthly site inspections and compliance sampling events. The GCTS operational summary is provided in Table 1.

### 4.1 Daily Routine System Inspections

Daily remote system monitoring of the system was performed during 2011. Monitoring included review of the daily system operational e-mails to confirm that the system was operational, that all system variables were within their allowable ranges, and that no alarm conditions were present.

### 4.2 Monthly Routine System Inspections

This section summarizes the activities completed during the operations and maintenance (O&M) monthly site visits. These activities were recorded on the "Monthly O&M Checklists" (attached as Appendix B).

### Air Stripper:

- Observe the air stripper for any visible leaks;
- Clean air stripper aeration trays and sump (as required);
- Observe the blower for proper operation;
- Inspect the air stripper trays via the glass door and record and noted deposits; and



Former Lockheed Martin French Road Facility, Utica, New York

- Record the gauge pressure and level readings on the log sheet for the following:
  - Air stripper sump;
  - $\circ\,$  Differential pressure across the air stripper trays; and
  - Air stripper-sump water level.

### Flow Meters:

- Observe the flow meters to ensure they are operating properly and cleaned them, as necessary; and
- Record the monthly and permanent totalizer readings.

### Vapor Phase Equipment:

- Inspect the duct heater for proper operation;
- Record pre-duct heater and carbon vessel temperatures;
- Inspect the carbon vessels for any signs of leaks; and
- Record pressures before the lead vessel, and between the lead and lag vessels.

### Control Panels:

- Test hand-off-auto (HOA) switches for proper operation; and
- Test power and pump-run lights.

### Water Treatment Chemical:

- Inspect chemical feed pump and associated tubing for any signs of leaks;
- Record and date remaining chemical level in drum on a monthly basis; and
- Track chemical consumption and dosing rates on a monthly basis.

### Pumping Manhole Inspections:

- Check the HDPE double-walled pipe for flow entering the manhole from the outer containment pipe, which could indicate a discharge pipe leak;
- Check the floats to ensure they are hanging properly and unobstructed;



Former Lockheed Martin French Road Facility, Utica, New York

- Observe groundwater in the manhole for any unusual odors, water clarity, etc; and
- If the pump(s) are running, listen for unusual sounds and inspect the discharge piping in the manhole for leaks.

### Miscellaneous O&M:

- Observe all treatment-building piping for signs of leaks;
- Exercise MH-1, MH-2, and MH-3 influent ball valves to clean any mineral deposits in order to maintain full operational range of the valve;
- Check the building unit heaters and thermostats, adjust as necessary; and
- Inspect all health and safety related equipment and replace as necessary.

### 4.3 Quarterly System O&M and Inspections

This section describes activities completed during the O&M quarterly critical device testing. These activities were recorded on the "Monthly/Quarterly O&M Checklists" (attached as Appendix B). The system was temporarily turned on and off for several hours, per event in February, April, July, and October 2011 to perform critical-device testing. These devices were tested for proper operation as described in the *OM&M Manual* (ARCADIS 2011) standard operating procedures (SOPs). Below is summary of each event:

- February 2011 All critical devices were calibrated and tested during the startup and shakedown of the system. Each device was successfully brought into operation. Specific details of device testing results and date completed can be found in the *Remediation System Startup Checklist* – Operational *Readiness Review* (ARCADIS 2011).
- April 4 and 5, 2011 All critical devices passed.
- July 7 and 8, 2011 All critical devices passed.
- October 7, 2011 All critical devices passed.

### 4.4 Non-Routine Operation and Maintenance Activities

The following non-routine system O&M activities were performed between January 1 and December 31, 2011:

- An oily substance was identified on the water surface within manhole MH-2 during the monthly site inspection on March 22, 2011. Upon making this observation, ARCADIS notified Lockheed Martin and NYSDEC, and temporarily turned off the pumps in the manhole in order to investigate the source. ARCADIS collected a sample of the oily substance on March 23, 2011 and submitted the sample to TestAmerica Laboratories for a petroleum fingerprint analysis. The analytical results indicated that the sample was a close match to generic motor oil, indicating that the source was most likely attributed to the manhole pump non-contact cooling oil. The source of the oil was later confirmed when one of the original pumps ("pump B) oil fill/drain plug was found partially deteriorated and no oil was present in pump (i.e. the total volume of oil had leaked out into manhole). The MH-2, Pump B replacement pump was reinstalled on April 20, 2011. In addition, the manhole and system components within MH-2 were pressure washed to remove any residual oil. The oil/water mixture was then removed from the manhole and disposed of offsite in accordance with Lockheed Martin and regulatory policies and procedures.
- As a result of the MH-2 Pump B failure, a replacement pump for the MH-1 Pump B was also installed on April 20, 2011 as a preventative measure because this pump was equipped with the same type of oil plug that had failed in the other pump.
- On June 24, 2011, fouling of the chemical feed injection port was identified. The fouling consisted of the WTC solidifying in discharge tubing and the injection port. The injection port and adjacent tubing were cleaned and reinstalled. Additionally, the low chemical feed flow set point was modified from 8 to 50 cycles in order to minimize nuisance alarms.
- On November 26, 2011, the MH-2 Pump A was found to be recirculating water back into the manhole through Pump B due to a faulty check valve. The check valve was removed, cleaned, and replaced on December 8, 2011.
- On December 15, 2011, an intrinsically safe relay switch for MH-1's low float switch was found to be faulty. This was replaced on December 29, 2011.

Several changes to critical device set points were made during the 2011 reporting period as a result of the new system installation. The latest set points (i.e. operational and alarm) have been documented in the OM&M Plan, revised Tables (ARCADIS 2012).

#### 2011 Annual Groundwater Collection and Treatment System Operation, Maintenance, and Monitoring Report

Former Lockheed Martin French Road Facility, Utica, New York

2011 Annual Groundwater Collection and Treatment System Operation, Maintenance, and Monitoring Report

Former Lockheed Martin French Road Facility, Utica, New York

#### 4.5 Alarm Conditions and System Modifications

Several fatal alarm conditions occurred between January 1 - December 31, 2011. The cause of each system alarm and corresponding corrective action are summarized in Table 1. Alarm logs and response sheets are provided in Appendix C. Below is a summary of fatal alarms and corrective actions including and system modifications that were made during the reporting period:

- On January 31 through February 19, and March 14 through March 26, 2011, during the initial operational period of the new upgraded system, several low (Process 32) and high (Process 42) air stripper sump alarms were observed. As a corrective action, several adjustments were made to the air stripper blower damper setting and liquid phase gravity discharge stack height.
- On February 8, 2011 (during the startup and shakedown period) high precarbon temperature alarm (Process 46) was observed following any automatic system shutdown. A time delay was placed in the PLC so that the duct heater shutoff 2 minutes prior to the blower in order to remove most of the residual heat from the duct heater.
- On February 24 and 26, 2011, a low pre-carbon temperature alarm (Process 47) was observed. The corrective action for this condition included reprogramming the PLC so that the duct heater shut off concurrently with the blower, and modified the programming to ignore the alarm condition when the system was not actively processing water.
- On June 11 and July 9, 2011 power outages occurred. The system was restarted after a physical inspection in both instances.
- As a result of the power outages on June 11 and July 9, 2011, low pre-carbon temperature alarms (Process 47) were observed on June 12 and July 12, 2011, respectively. These alarm conditions were the result of the duct heater losing power and required a local reset at its main control panel.
- On November 21, 2011, the PLC reset to manual and the site configuration file (i.e. line logic and operational set points) was found to be corrupted. The PLC was reconfigured with the latest backup site configuration file, and the system was restarted on November 23, 2011. The PLC manufacturer indicated that the most likely cause of the faulty PLC was linked back to an interrupted remote re-configuration of the PLC that occurred the week prior.
- On December 8, 11, and 13, 2011, high pre-carbon temperature alarms (Process 46) were observed. Following a review of the data logger files and



Former Lockheed Martin French Road Facility, Utica, New York

physical inspections of the duct heater and temperature transmitters, no apparent causes of the alarms could be determined. As a result, the high alarm set point was increased from 105 to 110 F. The system was restarted and monitored remotely for normal and safe operation.

- On December 14, 2011, a high air flowrate alarm (Process 45) was observed. A possible cause for the alarm condition was due to possible drifting of the flow transmitter and/or moisture on the Pitot tube. As a result of the alarm condition a high alarm set point was increased from 1000 to 1100 cubic feet per minute (cfm).
- Several non-fatal alarms were observed during the 2011 reporting period, including failed daily fax logs and low flow meter flows, these non-fatal alarms and the associated corrective actions (if applicable) are documented in Appendix C.

### 5. Analytical Monitoring Activities

This section summarizes the monthly GCTS compliance sampling and monitoring activities completed during the reporting period.

### 5.1 System-Effluent Monitoring

The treatment system discharges to an Oneida County storm drain under the terms of an SPDES permit (permit No. NY-0121894). As required by the SPDES permit, effluent grab-water samples were collected monthly from the treatment system. One effluent grab-sample was collected monthly from the treatment-system-effluent sampling-port SP-100 (designated by NYSDEC as "Outfall #2"), located on the 4-in diameter air stripper liquid phase effluent line. The location of sampling port SP-100 is shown on drawing M-1 in Appendix A.

Samples were collected in 40-millimeter volatile organic analysis (VOA) vials supplied by a New York State Department of Health (NYSDOH)-certified laboratory. The sampling protocol for the effluent sample is included in the *Site-Specific Quality Assurance Project Plan* (QAPP) (ARCADIS 2009b). The samples were shipped on the day of collection via overnight delivery to TestAmerica Laboratories, Inc. in Amherst, New York. One laboratory trip-blank accompanied each water sample. All samples were analyzed for VOCs by United States Environmental Protection Agency (USEPA) Method 8260. The SPDES permit also requires monthly collection and analysis of a grab sample for pH. The pH is measured locally using a site-dedicated pH meter.



Former Lockheed Martin French Road Facility, Utica, New York

The system-effluent samples contained no detectable concentrations of VOCs above their respective laboratory reporting limits (RL) (as shown in Table 2) during the entire reporting period, with the exception of the February 2011 sample. This sample exhibited a concentration of 0.47  $\mu$ g/L of trichloroethene. Although detected above laboratory RLs, this detection was significantly below the SPDES effluent limit of 10  $\mu$ g/L.

The SPDES permit limits the systems effluent average daily discharge flow (over the course of a monthly reporting period) to 45 gpm. Effluent flow did not exceed this average during the reporting period. In addition, the pH recorded during the 2011 reporting period ranged from 6.9 to 8.2 standard units, and remained within the SPDES effluent limits of 6.5 to 8.5 standard units.

### 5.2 System-Influent Monitoring

Influent-water samples were collected as part of quarterly monitoring activities in February, April, July, and October 2011. Influent samples were collected from each influent-line (MH-1, MH-2, and MH-3) sampling-tap on the 2-in diameter influent lines before the influent water entered the air stripper. The sampling protocol and delivery method followed were identical to those for the SPDES compliance sampling.

The primary site-related CVOCs detected for MH-1 were:

- 1,1-Dichloroethane (4.20 μg/L in February, 2.7 μg/L in April, 8.5 μg/L in July, and 5.9 μg/L in October);
- cis-1,2-Diclhoroethene (30 μg/L in February, 19 μg/L in April, 43 μg/L in July, and 33 μg/L in October);
- Tetrachloroethene (23 μg/L in February, 18 μg/L in April, 26 μg/L in July, and 19 μg/L in October); and
- Trichloroethene (57 μg/L in February, 27 μg/L in April, 57 μg/L in July, and 29 μg/L in October).

The primary site-related CVOCs detected for MH-2 were:

1,1-Dichloroethane (1.9 μg/L in February, 3.5 μg/L in July, 2.6 μg/L, and 3 μg/L in October);



Former Lockheed Martin French Road Facility, Utica, New York

- cis-1,2-Diclhoroethene (7.6 μg/L in February, 12 μg/L in July, and 16 μg/L in October);
- Tetrachloroethene (2.6 μg/L in February, 2.8 μg/L in July, and 3.6 μg/L in October); and
- Trichloroethene (4.6 μg/L in February, 7.7 μg/L in July, and 7.5 μg/L in October).

The primary site-related CVOCs detected for MH-3 were:

- cis-1,2-Diclhoroethene (3.7 μg/L in January, 2.3 μg/L in February, 3.5 μg/L in April, 3.8 μg/L in July, and 3.1 μg/L in October);
- Tetrachloroethene (1.2 μg/L in January, 1.1 μg/L in February, 12 μg/L in April, 21 μg/L in July, and 23 μg/L in October); and
- Trichloroethene (4.2 μg/L in January, 5.6 μg/L in February, 9 μg/L in April, 19 μg/L in July, and 13 μg/L in October).

System influent analytical sampling results are summarized in Table 3.

### 5.3 Stormwater Monitoring

As outlined in the *Operational, Maintenance, and Monitoring Manual* (ARCADIS 2011), quarterly stormwater samples were collected from 3 catch basin (CB) locations at the site (identified as CB-1, CB-2, and CB-3; as shown on Figure 2). The quarterly stormwater samples contained no detectable concentrations of VOCs above their respective laboratory RLs (as shown in Table 4), with the exception of the April 2011 sample from stormwater sampling location CB-3. This sample exhibited a concentration of tetrachloroethene (0.51  $\mu$ g/L). Although detected above laboratory RLs, these detections were below the applicable SPDES effluent limitations.

### 6. System Performance Results

Operational data collected during monthly system-operation inspections are summarized in the following sections.

#### 2011 Annual Groundwater Collection and Treatment System Operation, Maintenance, and Monitoring Report

Former Lockheed Martin French Road Facility, Utica, New York

### 6.1 Groundwater Recovery/Extracted Liquid Flowrate

The groundwater recovery/extraction-liquid flowrates for the 2011 reporting period are summarized in Table 5. These data include the average and cumulative recovered-groundwater and manhole-pump run-times. Total extracted-groundwater flow readings were collected from the totalizing flow-meters FT 101 (MH-1), FT 102 (MH-2) and FT 103 (MH-3). The average monthly system groundwater extraction flowrates from January - December 2011 are included in Table 5. The total flow recorded for manhole MH-1 was approximately 3,244,140 gallons, with a corresponding average recovery rate of 6.5 gpm. The total flow recorded for manhole MH-2 was approximately 561,515 gallons, with a corresponding average recovery rate of 1.1 gpm. The total flow recorded for manhole MH-3 was approximately 1,355,108 gallons, with a corresponding average recovery rate of 2.7 gpm. The resulting total annual flow for the GCTS was approximately 5,176,015 gallons of groundwater. The total flows recorded correspond to an average recovery rate of approximately 10.4 gpm over the entire 2011 reporting period.

### 6.2 Air Stripper Performance

The air stripper vapor flowrate was calculated using the differential pressure (postcarbon vessels) recorded during each monthly sampling event which is converted to volumetric flowrate using a transmitter. The vapor flowrate ranged from 583 to 784 standard cubic feet per minute (scfm) during the 2011 reporting period. These flow ranges correspond to a weighted average of approximately 672 cfm over the entire 2011 reporting period. The air stripper sump pressures ranged from 25 to 29 inches of water column (in.W.C.) during the 2011 reporting period. Monthly air stripper performance data are summarized in Table 5.

### 6.3 Air Stripper Emissions

The GCTS removed an estimated 21.3 lbs of total VOCs from groundwater during the 2011 reporting period. This value was calculated from the quarterly pre-carbon vapor analytical data and the average monthly air stripper effluent vapor flowrate. Quarterly estimated mass removal rate data are summarized in Table 6.

VOC removal efficiency of the carbon vessels was tracked throughout the 2011 reporting period. Both cumulative and target VOC percent removal was calculated by comparing the quarterly vapor influent, mid-carbon, and post-carbon analytical results. As noted in Section 3.0, the site specific goal for vapor phase treatment is a 95% mass



removal of target VOCs. Both the mid-carbon and effluent percent removals for target VOCs were calculated at 100% for the first three quarters of reporting period. A reduction in mass removal (88%) was calculated for the fourth quarter sampling event...

The VOC concentrations emitted in the air stripper (pre-carbon, mid-carbon, and postcarbon) were below the allowable annual-guideline concentration (AGC) values (as provided in NYSDEC DAR 1 tables) for each detectable compound. Short-term guideline concentration (SGC) values are not applicable as performance samples are only collected quarterly. Individual VOCs emitted and their estimated maximum allowable-mass flow-concentrations, as per NYSDEC DAR 1 guidance, are shown in Table 7.

### 6.4 Water Treatment Chemical Monitoring

As required under the terms of an SPDES permit (permit no. NY0121894), the volume WTC discharged on an annual basis is reported to NYSDEC in the December Monthly Discharge Monitoring Report. The total amount of WTC (i.e., Sequestering Agent - Aries 2908) discharged through the site Outfall 002 during the 2011 reporting was approximately 604 lbs. The total amount of WTC discharged corresponds to an average dosing rate of 17.6 ppm over the entire 2011 reporting period. Monthly WTC consumption, dosing rates, and date of recording are summarized in Table 8.

### 6.5 Stormwater Monitoring

As presented in Section 5.3, the quarterly stormwater samples contained no detectable concentrations of VOCs above their respective laboratory RLs (as shown in Table 4), with the exception of the April 2011 sample from stormwater sampling location CB-3. This sample exhibited a concentration of tetrachloroethene (0.51  $\mu$ g/L). Although detected above laboratory RLs, this detection was below the applicable SPDES effluent limitations.

The general absence of constituents detected in the stormwater samples collected at the site continues to indicate that the GCTS is operating as designed and preventing the migration of impacted groundwater into the stormwater system at the locations sampled.

#### 2011 Annual Groundwater Collection and Treatment System Operation, Maintenance, and Monitoring Report

Former Lockheed Martin French Road Facility, Utica, New York

#### 6.6 Groundwater Elevation Measurements

Groundwater elevation measurements are collected from site monitoring wells and piezometers as part of the quarterly O&M program. Groundwater elevations for the reporting period are included on Table 9.

As noted in previous reports for the site (including the *Corrective Measures Study Report*, ARCADIS, 2009a), the complexity of the groundwater elevations, due to the presence of the GCTS as well as the facility building, utility corridors, and natural conditions, makes contouring groundwater elevations difficult and inconclusive. However, based on the review of current elevation measurements, operation of the treatment system continues to maintain control of movement of groundwater and modified the direction of groundwater flow in select areas of the site.

### 7. 2012 Goals and Recommendations

The information presented in this report indicates that the systems will continue to operate as designed and outlined within the NYSDEC approved *Groundwater Collection and Treatment System 100% Design Work Plan* (ARCADIS 2010), and *Operational, Maintenance, and Monitoring Manual* (ARCADIS 2011). The recommendations and action items planned for during the 2012 reporting period are described in the sections below.

### 7.1 Goals

The GCTS 2011 remedial and operational goals will be unchanged from those noted in section 3.0. The operational data to be collected includes:

- Quarterly influent-water samples will be collected during the first monthly sampling event of each quarter (i.e., January, April, July, and October);
- Quarterly groundwater-elevation measurements will be collected at all accessible site monitoring-wells and piezometers;
- Quarterly storm-water samples will be collected from the pipe running beneath the manufacturing building and traversing east towards the public storm-drain pipe. These samples will be collected at catch-basin (CB) locations CB-1, CB-2, and CB-3. Samples will be analyzed for VOCs by USEPA Method 8260 and

#### 2011 Annual Groundwater Collection and Treatment System Operation, Maintenance, and Monitoring Report

Former Lockheed Martin French Road Facility, Utica, New York



Former Lockheed Martin French Road Facility, Utica, New York

collected and submitted to the laboratory in accordance with procedures outlined in the QAPP;

- Monthly effluent SPDES compliance samples, including tracking the WTC dosing rates;
- Continued demonstration that VOCs concentrations in the GCTS air stripper exhaust (i.e., post-carbon) remain below the NYSDEC DAR 1 guidance values before being discharged to the atmosphere;
- Continued to track the carbon performance in order to maintain the minimum 95% removal goal for target VOCs in the vapor effluent; and
- Daily review of GCTS operation email logs and prompt response to system alarms.

### 7.2 Recommendations

The following recommendations and action items are planned for implementation during the next reporting period (January–December 2012):

- Continued operation of the GCTS;
- Continued system compliance sampling, including monitoring the pH of the system effluent;
- Continued preventive maintenance and failure-mode-effects analyses to improve system reliability;
- Perform a carbon changeout in the first quarter of 2012, in response to the noted reduction in carbon efficiency during the fourth quarter of 2011;
- Perform the Whole Effluent Toxicity (WET) testing on the system effluent in response to the NYSDEC letter, dated January 11, 2012, and modify the SPDES permit appropriately;
- Review current SPDES flow and pH limits, and make a determination on whether adjustments to the permit should be requested based on the 2011 data;



Former Lockheed Martin French Road Facility, Utica, New York

- Develop a standard operating procedure (SOP) for confined entry's performed during any non-routine manhole maintenance activity;
- Conduct an Arc Flash study of the GCTS electrical system; and
- Modification of the OM&M Manual as needed to include new system enhancements/modifications.



Former Lockheed Martin French Road Facility, Utica, New York

### 8. References

- ARCADIS. 2012. Revised Tables of the Groundwater Collection and Treatment System Operations, Maintenance, and Monitoring Manual, Solvent Dock Area. January.
- ARCADIS. 2011. Remediation System Startup Checklist Operational Readiness Review. April.
- ARCADIS. 2011. Groundwater Collection and Treatment System Operations, Maintenance, and Monitoring Manual, Solvent Dock Area. March.
- ARCADIS. 2010. Groundwater Collection and Treatment System 100% Design Work Plan, Solvent Dock Area. February.
- ARCADIS. 2009a. Corrective Measures Study Report. March.
- ARCADIS. 2009b. Quality Assurance Project Plan. August.
- ARCADIS. 2009c. DRAFT Site Management Plan. October.
- ARCADIS. 2008. Solvent Dock Area and West Lot Site Health and Safety Plan. November.
- New York State Department of Environmental Conservation (NYSDEC). 1998. Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values. June.

NYSDEC. 2008. Order on Consent Index Number CO 6-20080321-5. October 3.

Tables

### Table 1. Groundwater Collection and Treatment System Operation Summary, Former Lockheed Martin French Road Facility, Utica, NY.

| Data                      |                                         | Date/Time                              |                     | Process          | Description                                                         | Suspected Cause of Alarm                                                                                                                                                                      | Corrective Action                                                                                                                                            |
|---------------------------|-----------------------------------------|----------------------------------------|---------------------|------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Date<br>June 1996         | Shutdown                                | Online                                 | Off (days)          | Process          | -                                                                   | Suspected Cause of Alarm<br>s not been included in this table.                                                                                                                                | Corrective Action                                                                                                                                            |
| 1/17/2009                 | 1/17/09 8:25                            | 1/17/09 9:34                           | 0.05                | 45               | High/low air temperature.                                           | Low ambient air temperature.                                                                                                                                                                  | Adjusted low temperature alarm setting from 40 to 32 F to account for                                                                                        |
| 8/3/2009                  | 7/31/09 9:58                            | 8/3/09 14:38                           | 3.2                 | 40               | Wall louver fault.                                                  | Power outage due to inclement weather.                                                                                                                                                        | low ambient temperature.<br>Restart system and observe proper operation following storm event.                                                               |
| 9/4/2009                  | 9/1/09 15:09                            | 9/4/09 12:47<br>Days Offline           | 2.9<br>Days Online  | NA<br>% Run Time | Power outage                                                        | Power outage due to inclement weather.                                                                                                                                                        | Restart system and observe proper operation following storm event.                                                                                           |
| 2009 % Run 1              | Time Summary                            | 6.1                                    | 357.86              | 98%              |                                                                     |                                                                                                                                                                                               |                                                                                                                                                              |
| 1/25/2010                 | 1/25/10 17:53                           | 1/27/10 7:57                           | 1.6                 | 46/Other         | Low Air Flow/System PLC left in manual mode accidentally            | Blower influent damper/tray and/or demister pad fouled                                                                                                                                        | Adjust blower damper/Restart system remotely                                                                                                                 |
| 3/2/2010                  | 3/2/10 17:55                            | 3/3/10 11:31                           | 0.7                 | 42               | High level air stripper sump.                                       | Blower influent damper in need of adjustment following air stripper tray cleaning.                                                                                                            | Damper adjusted to allow more air flow.                                                                                                                      |
| 4/7/2010<br>4/15/2010     | 4/7/10 12:00<br>4/15/10 8:00            | 4/7/10 18:00<br>4/15/10 19:30          | 0.3<br>0.5          | NA<br>NA         | Quarterly System Testing<br>Annual Stripper Cleaning                | NA                                                                                                                                                                                            | NA<br>NA                                                                                                                                                     |
| 4/13/2010                 | 4/22/10 6:20                            | 4/22/10 11:08                          | 0.2                 | 42               | High Air Stripper Sump Level                                        | Low back pressure due to recent stripper cleaning which                                                                                                                                       |                                                                                                                                                              |
|                           |                                         |                                        |                     |                  | •                                                                   | results in gravity discharge issues.<br>Low back pressure due to recent stripper cleaning which                                                                                               |                                                                                                                                                              |
| 4/25/2010                 | 4/25/10 19:08                           | 4/26/10 9:39                           | 0.6                 | 42               | High Air Stripper Sump Level                                        | results in gravity discharge issues.<br>Low back pressure due to recent stripper cleaning which                                                                                               | Adjust blower damper to increase air flow/sump pressure.                                                                                                     |
| 4/27/2010                 | 4/27/10 8:53                            | 4/27/10 14:58                          | 0.3                 | 42               | High Air Stripper Sump Level                                        | results in gravity discharge issues.                                                                                                                                                          | Adjust blower damper to increase air flow/sump pressure.                                                                                                     |
| 4/29/2010                 | 4/29/10 16:35                           | 4/30/10 7:41                           | 0.6                 | 42               | High Air Stripper Sump Level                                        | Low back pressure due to recent stripper cleaning which results in gravity discharge issues.                                                                                                  | Adjust blower damper to increase air flow/sump pressure.                                                                                                     |
| 5/28/2010                 | 5/28/10 16:35                           | 5/31/10 9:40                           | 2.7                 | NA               | Power outage                                                        | Power outage due to inclement weather. Electric meter damaged as a result.                                                                                                                    | Inspect system, temporarily bypass faulty E-meter, perform critical devic inspection, restart system and monitor for proper operation.                       |
| 6/1/2010                  | 6/1/10 14:42                            | 6/2/10 8:55                            | 0.8                 | 42               | High Air Stripper Sump Level                                        | Low back pressure due to recent stripper cleaning which results in gravity discharge issues.                                                                                                  | Adjust blower damper to increase air flow/sump pressure.                                                                                                     |
| 7/12/2010                 | 7/12/10 16:00                           | 7/16/10 14:31                          | 3.9                 | 0                | MH-1 offline for testing phase, air stripper left in auto with MH-2 | NA                                                                                                                                                                                            | NA                                                                                                                                                           |
| 7/12/2010                 | 7/12/10 10:00                           | 7/10/10 14:51                          | 3.9                 | 0                | online.                                                             |                                                                                                                                                                                               |                                                                                                                                                              |
| 11/2/2010                 | 11/2/10 22:22                           | 11/3/10 13:45                          | 0.6                 | 41               | High Pressure in Air Stripper<br>Sump.                              | Blower damper adjustment.                                                                                                                                                                     | Adjust air stripper blower damper.                                                                                                                           |
| 11/10/2010<br>11/11/2010  | 11/10/10 11:42<br>11/11/10 9:52         | 11/10/10 20:23<br>11/11/10 16:21       | 0.4                 | 48<br>48         | Manual system shutdown/LOTO<br>Manual system shutdown/LOTO          | Implementing GCTS system upgrades.<br>Implementing GCTS system upgrades.                                                                                                                      | Restart system after completing work.<br>Restart system after completing work.                                                                               |
| 11/11/2010                | 11/11/10 16:37                          | 11/11/10 18:49                         | 0.1                 | 41               | High Pressure in Air Stripper<br>Sump.                              | Blower damper adjustment.                                                                                                                                                                     | Adjust air stripper blower damper.                                                                                                                           |
| 11/11/2010                | 11/11/10 19:18                          | 11/12/10 9:08                          | 0.6                 | 41               | High Pressure in Air Stripper                                       | Blower damper adjustment.                                                                                                                                                                     | Adjust air stripper blower damper.                                                                                                                           |
|                           |                                         |                                        |                     |                  | Sump.<br>High Pressure in Air Stripper                              |                                                                                                                                                                                               |                                                                                                                                                              |
| 11/12/2010                | 11/12/10 9:18                           | 11/12/10 12:43                         | 0.1                 | 41               | Sump.<br>High Pressure in Air Stripper                              | Blower damper adjustment.                                                                                                                                                                     | Adjust air stripper blower damper.                                                                                                                           |
| 11/12/2010                | 11/12/10 12:55                          | 11/12/10 13:04                         | 0.0                 | 41               | Sump.                                                               | Fouled air stripper trays.                                                                                                                                                                    | Clean air stripper trays and adjust air stripper blower damper.                                                                                              |
| 11/18/2010<br>11/19/2010  | 11/18/10 10:23<br>11/19/10 9:44         | 11/18/10 19:22                         | 0.4                 | 48               | Manual system shutdown/LOTO<br>Wall louver damper motor fault.      | Implementing GCTS system upgrades.<br>Power failure due to a system shutdown for system                                                                                                       | Restart system after completing work.<br>Restart system after inspection.                                                                                    |
|                           |                                         |                                        |                     |                  | Air Stripper taken permanently                                      | inspection during construction phase.                                                                                                                                                         |                                                                                                                                                              |
| 11/29/2010 <sup>(3)</sup> | 11/29/10 12:53                          | 12/31/10 23:59<br>Days Offline         | 23.5<br>Days Online | NA<br>% Run Time | offline.                                                            | Implementing GCTS system upgrades.                                                                                                                                                            | Install temporary air stripper.                                                                                                                              |
| 2010 % Run 1              | Time Summary                            | 38.4                                   | 326.6               | 89%              |                                                                     |                                                                                                                                                                                               |                                                                                                                                                              |
| 1/1/2011 <sup>(4)</sup>   | 1/1/11 0:00                             | 1/24/11 23:59                          | 22.7                | NA               | Air Stripper taken permanently offline.                             | Implementing GCTS system upgrades.                                                                                                                                                            | Periodically operated system.                                                                                                                                |
| 1/31/2011<br>2/2/2011     | 1/31/11 4:30<br>2/2/11 7:09             | 1/31/11 16:02<br>2/2/11 11:21          | 0.5<br>0.2          | 32<br>42         | Low Air Stripper Sump Level<br>High Air Stripper Sump Level         | Narrow sump elevation operating range.                                                                                                                                                        | Restarted system remotely.<br>Adjusted blower damper and/or liquid effluent pipe elevation.                                                                  |
| 2/8/2011                  | 2/8/11 2:53                             | 2/8/11 8:52                            | 0.2                 | 42               | High Air Stripper Sump Level                                        | Narrow sump elevation operating range.<br>Narrow sump elevation operating range.                                                                                                              | Adjusted blower damper and/or liquid effluent pipe elevation.                                                                                                |
| 2/8/2011                  | 2/8/11 13:59                            | 2/8/11 19:11                           | 0.2                 | 46               | High Pre-Carbon Temperature                                         | Residual heat in duct heater raising pre-carbon temperature following blower/duct heater shutdown.                                                                                            | Modified programming so that duct heater shuts off 2 minutes prior to blower.                                                                                |
| 2/8/2011                  | 2/8/11 19:51                            | 2/9/11 8:17                            | 0.5                 | 32               | Low Air Stripper Sump Level                                         | Narrow sump elevation operating range.                                                                                                                                                        | Adjusted blower damper and/or liquid effluent pipe elevation.                                                                                                |
| 2/11/2011<br>2/13/2011    | 2/11/11 5:06<br>2/13/11 18:01           | 2/11/11 11:46<br>2/17/11 16:03         | 0.3 3.9             | 32<br>32         | Low Air Stripper Sump Level<br>Low Air Stripper Sump Level          | Narrow sump elevation operating range.<br>Narrow sump elevation operating range.                                                                                                              | Adjusted blower damper and/or liquid effluent pipe elevation.<br>Adjusted blower damper and/or liquid effluent pipe elevation.                               |
| 2/19/2011                 | 2/19/11 10:31                           | 2/21/11 9:42                           | 2.0                 | 32               | Low Air Stripper Sump Level                                         | Narrow sump elevation operating range.<br>Following end-cycle of manhole pumpdown and 10                                                                                                      | Adjusted blower damper and/or liquid effluent pipe elevation.                                                                                                |
| 2/24/2011                 | 2/24/11 0:08                            | 2/24/11 8:47                           | 0.4                 | 47               | Low Pre-Carbon Temperature                                          | minute continuation of blower operation, air stream<br>generated by blower with duct heater off causing pre-<br>carbon temperature to drop.                                                   | Restart system.                                                                                                                                              |
| 2/26/2011                 | 2/26/11 3:23                            | 2/26/11 10:58                          | 0.3                 | 47               | Low Pre-Carbon Temperature                                          | Following end-cycle of manhole pumpdown and 10<br>minute continuation of blower operation, air stream<br>generated by blower with duct heater off causing pre-<br>carbon temperature to drop. | Restart system.                                                                                                                                              |
| 2/26/2011                 | 2/26/11 13:46                           | 2/28/11 10:22                          | 1.9                 | 47               | Low Pre-Carbon Temperature                                          | Following end-cycle of manhole pumpdown and 10<br>minute continuation of blower operation, air stream<br>generated by blower with duct heater off causing pre-                                | Modified programming so that duct heater shuts off in parallel with<br>blower and pre-carbon temperature alarms are ignored when blower is<br>not operating. |
| 3/14/2011                 | 3/14/11 0:33                            | 3/14/11 10:31                          | 0.4                 | 32               | Low Air Stripper Sump Level                                         | carbon temperature to drop.<br>Narrow sump elevation operating range.                                                                                                                         | Adjusted blower damper and/or liquid effluent pipe elevation.                                                                                                |
| 3/14/2011<br>3/20/2011    | 3/14/11 23:53<br>3/20/11 7:16           | 3/15/11 9:14<br>3/20/11 12:35          | 0.4                 | 32<br>32         | Low Air Stripper Sump Level<br>Low Air Stripper Sump Level          | Narrow sump elevation operating range.<br>Narrow sump elevation operating range.                                                                                                              | Adjusted blower damper and/or liquid effluent pipe elevation.<br>Adjusted blower damper and/or liquid effluent pipe elevation.                               |
| 3/23/2011                 | 3/23/11 6:47                            | 3/23/11 11:42                          | 0.2                 | 42               | High Air Stripper Sump Level                                        | Narrow sump elevation operating range.                                                                                                                                                        | Adjusted blower damper and/or liquid effluent pipe elevation.                                                                                                |
| 3/26/2011                 | 3/26/11 3:21                            | 3/26/11 9:37                           | 0.3                 | 32               | Low Air Stripper Sump Level                                         | Narrow sump elevation operating range.                                                                                                                                                        | Adjusted blower damper and/or liquid effluent pipe elevation.<br>Adjusted blower damper and/or liquid effluent pipe elevation. Will replace                  |
| 3/26/2011 6/11/2011       | 3/26/11 21:38                           | 3/29/11 9:52<br>6/12/11 11:40          | 2.5                 | 32<br>NA         | Low Air Stripper Sump Level Power outage                            | Narrow sump elevation operating range.<br>Power outage due to inclement weather.                                                                                                              | existing high level sensor with tethered float to allow wider operating range in sump.<br>Restart system after inspection.                                   |
| 6/12/2011                 | 6/12/11 23:00                           | 6/13/11 7:15                           | 0.3                 | 47               | Low Pre-Carbon Temperature                                          | Duct heater requires local reset following power outage therefore not operating.                                                                                                              | Low temperature setpoint temporarily lowered until local restart could be initiated on 6/13/11.                                                              |
| 7/9/2011                  | 7/9/11 6:58                             | 7/11/11 8:56                           | 2.1                 | NA               | Power outage                                                        | Power outage.                                                                                                                                                                                 | Restart system.                                                                                                                                              |
| 7/12/2011                 | 7/12/11 22:13                           | 7/13/11 12:53                          | 0.6                 | 47               | Low Pre-Carbon Temperature                                          | Duct heater requires local reset following power outage                                                                                                                                       | Duct heater locally reset.                                                                                                                                   |
| ., 12/2011                | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ., , , , , , , , , , , , , , , , , , , | 0.0                 | -TI              | PLC Reset to "Manual" for                                           | therefore not operating.<br>System reset automatically, exact cause unknown.                                                                                                                  |                                                                                                                                                              |
| 11/21/2011                | 11/21/11 16:23                          | 11/23/11 12:00                         | 1.8                 | NA               |                                                                     | Suspect cause due to bad remote system<br>reconfiguration due to faulty/interuped remote<br>connection.                                                                                       | Log into the system remotely and reconfigures the PLC with the latest GCTS File #17.                                                                         |
| 12/8/2011                 | 12/8/11 10:06                           | 12/9/11 21:00                          | 1.5                 | 46               | High Pre-Carbon Temperature                                         | Unknown                                                                                                                                                                                       | Monitor system and temperatures remotely.                                                                                                                    |
| 12/11/2011                | 12/11/11 20:06                          | 12/11/11 20:13                         | 0.0                 | 46               | High Pre-Carbon Temperature                                         | Unknown                                                                                                                                                                                       | Review datalogger file/site inspection to verify transmitter readings versus field gauge.                                                                    |
| 12/14/2011                | 12/12/11 1:17                           | 12/12/11 9:49                          | 0.4                 | 45               | High Air Flowrate                                                   | Potential drifting associated with transmitter calibration.                                                                                                                                   | Adjust high flow alarm setpoint                                                                                                                              |
| 12/13/2011                | 12/13/11 3:50                           | 12/13/11 8:06                          | 0.2                 | 46               | High Pre-Carbon Temperature                                         | Potential drifting associated with transmitter calibration.                                                                                                                                   | Adjust high temperature alarm setpoint                                                                                                                       |
| 2011 % Run 1              | Time Summary                            | Days Offline                           | Days Online         | % Run Time       |                                                                     |                                                                                                                                                                                               |                                                                                                                                                              |
|                           | 1/1/11 - 1/24/11 <sup>(4)</sup>         | 22.7                                   | 1.3                 | 5%               |                                                                     |                                                                                                                                                                                               |                                                                                                                                                              |
| 2011 First Quarter        | 1/25/11 - 3/31/11                       | 14.3                                   | 50.7                | 78%              | 4                                                                   |                                                                                                                                                                                               |                                                                                                                                                              |
| 2011 Seco                 | First Quarter Total<br>ond Quarter      | 37.1<br>1.1                            | 51.9<br>89.9        | 58%<br>99%       | 1                                                                   |                                                                                                                                                                                               |                                                                                                                                                              |
|                           | rd Quarter<br>rth Quarter               | 2.7                                    | 89.3                | 97%<br>96%       | -                                                                   |                                                                                                                                                                                               |                                                                                                                                                              |
|                           | rth Quarter<br>nt Month                 | 3.8<br>2.0                             | 88.2<br>29.0        | 96%<br>94%       | 1                                                                   |                                                                                                                                                                                               |                                                                                                                                                              |
|                           |                                         |                                        |                     |                  |                                                                     |                                                                                                                                                                                               |                                                                                                                                                              |

### Note:

1. Table does not include brief (less than 3 hours [0.1 days]) system shutdowns for routine operation and maintenance activities.

2. Table does not include non-fatal alarms (i.e. low liquid flow, low air flow, etc) observed during the reporting period.

3. Between 11/29/10 and 12/31/10, temporary system was operational approximately 10 hours (7AM to 5PM) per weekday excluding 12/24/10, 12/30/10, and 12/31/10. System offline for nights and weekends due to lack of safety controls/interlocks and freezing weather conditions.

4. Between 1/1/11 and 1/24/11, the upgraded system was operated on the following dates: 1/13, 1/14, 1/17, 1/18 and 1/20. An average daily run time of 6 hours has been estimated for those dates.

Table 2. Groundwater Collection and Treatment System Effluent Analytical Sampling Results, Former Lockheed Martin French Road Facility, Utica, NY.

| Volatile Organic <sup>(1)</sup><br>Compounds (µg/L) | SPDES Effluent<br>Limitations (ug/L) | 1/8/2009 | 2/5/2009 | 3/4/2009 | 4/1/2009 | 5/5/2009 | 6/2/2009 | 7/1/2009 | 8/14/2009 | 9/4/2009 | 10/9/2009 | 11/4/2009 | 12/11/2009 | 1/12/2010 | 2/3/2010 | 3/3/2010 | 4/7/2010 | 5/5/2010            | 6/3/2010 | 7/8/2010 | 8/5/2010 | 9/7/2010 | 10/6/2010 | 11/10/2010 | 12/22/2010 | 1/28/2011 | 2/23/2011 | 3/22/2011 | 4/5/2011 | 5/12/2011 | 6/2/2011 | 7/7/2011 | 8/11/2011 | 9/8/2011 | 10/11/2011 | 11/1/2011 | 12/1/2011 |
|-----------------------------------------------------|--------------------------------------|----------|----------|----------|----------|----------|----------|----------|-----------|----------|-----------|-----------|------------|-----------|----------|----------|----------|---------------------|----------|----------|----------|----------|-----------|------------|------------|-----------|-----------|-----------|----------|-----------|----------|----------|-----------|----------|------------|-----------|-----------|
| 1,1,1-Trichloroethane                               | 10                                   | < 1.0    | < 0.40   | < 0.40   | < 0.40   | < 0.40   | < 0.40   | < 0.40   | < 0.40    | < 0.40   | < 0.40    | < 0.40    | < 0.40     | < 0.40    | < 0.40   | < 0.40   | < 0.40   | < 0.40              | < 0.40   | < 0.82   | < 0.82   | < 0.82   | < 0.82    | < 0.82     | < 0.82     | < 0.82    | < 0.82    | < 0.82    | < 0.82   | < 0.82    | < 0.82   | < 0.82   | < 0.82    | < 0.82   | < 0.82     | < 0.82    | < 0.82    |
| 1,1-Dichloroethane                                  | 10                                   | < 1.0    | < 0.75   | < 0.75   | < 0.75   | < 0.75   | < 0.75   | < 0.75   | < 0.75    | < 0.75   | < 0.75    | < 0.75    | < 0.75     | < 0.75    | < 0.75   | < 0.75   | < 0.75   | < 0.75              | < 0.75   | < 0.75   | < 0.75   | < 0.75   | < 0.75    | < 0.75     | < 0.75     | < 0.38    | < 0.38    | < 0.38    | < 0.38   | < 0.38    | < 0.38   | < 0.38   | < 0.38    | < 0.38   | < 0.38     | < 0.38    | < 0.38    |
| 1,2-Dichlorobenzene                                 | 10                                   | < 1.0    | < 0.50   | < 0.50   | < 0.50   | < 0.50   | < 0.50   | < 0.50   | < 0.50    | < 0.50   | < 0.50    | < 0.50    | < 0.50     | < 0.50    | < 0.50   | < 0.50   | < 0.50   | < 0.50              | < 0.50   | < 0.79   | < 0.79   | < 0.79   | < 0.79    | < 0.79     | < 0.79     | < 0.79    | < 0.79    | < 0.79    | < 0.79   | < 0.79    | < 0.79   | < 0.79   | < 0.79    | < 0.79   | < 0.79     | < 0.79    | < 0.79    |
| 1,3-Dichlorobenzene                                 | -                                    | < 1.0    | < 0.40   | < 0.40   | < 0.40   | < 0.40   | < 0.40   | < 0.40   | < 0.40    | < 0.40   | < 0.40    | < 0.40    | < 0.40     | < 0.40    | < 0.40   | < 0.40   | < 0.40   | < 0.40              | < 0.40   | < 0.78   | < 0.78   | < 0.78   | < 0.78    | < 0.78     | < 0.78     | < 0.78    | < 0.78    | < 0.78    | < 0.78   | < 0.78    | < 0.78   | < 0.78   | < 0.78    | < 0.78   | < 0.78     | < 0.78    | < 0.78    |
| 1,4-Dichlorobenzene                                 | -                                    | < 1.0    | < 0.40   | < 0.40   | < 0.40   | < 0.40   | < 0.40   | < 0.40   | < 0.40    | < 0.40   | < 0.40    | < 0.40    | < 0.40     | < 0.40    | < 0.40   | < 0.40   | < 0.40   | < 0.40              | < 0.40   | < 0.84   | < 0.84   | < 0.84   | < 0.84    | < 0.84     | < 0.84     | < 0.84    | < 0.84    | < 0.84    | < 0.84   | < 0.84    | < 0.84   | < 0.84   | < 0.84    | < 0.84   | < 0.84     | < 0.84    | < 0.84    |
| Benzene                                             | -                                    | < 1.0    | < 0.40   | < 0.40   | < 0.40   | < 0.40   | < 0.40   | < 0.40   | < 0.41    | < 0.41   | < 0.41    | < 0.41    | < 0.41     | < 0.41    | < 0.41   | < 0.41   | < 0.41   | < 0.41              | < 0.41   | < 0.41   | < 0.41   | < 0.41   | < 0.41    | < 0.41     | < 0.41     | < 0.41    | < 0.41    | < 0.41    | < 0.41   | < 0.41    | < 0.41   | < 0.41   | < 0.41    | < 0.41   | < 0.41     | < 0.41    | < 0.41    |
| Chlorobenzene                                       | -                                    | < 1.0    | < 0.40   | < 0.40   | < 0.40   | < 0.40   | < 0.40   | < 0.40   | < 0.40    | < 0.40   | < 0.40    | < 0.40    | < 0.40     | < 0.40    | < 0.40   | < 0.40   | < 0.40   | < 0.40              | < 0.40   | < 0.75   | < 0.75   | < 0.75   | < 0.75    | < 0.75     | < 0.75     | < 0.75    | < 0.75    | < 0.75    | < 0.75   | < 0.75    | < 0.75   | < 0.75   | < 0.75    | < 0.75   | < 0.75     | < 0.75    | < 0.75    |
| Chloroethane                                        | 10                                   | < 1.0    | < 0.40   | < 0.40   | < 0.40   | < 0.40   | < 0.40   | < 0.40   | < 0.40    | < 0.40   | < 0.40    | < 0.40    | < 0.40     | < 0.40    | < 0.40   | < 0.40   | < 0.40   | < 0.40              | < 0.40   | < 0.40   | < 0.40   | < 0.40   | < 0.40    | < 0.40     | < 0.40     | < 0.32    | < 0.32    | < 0.32    | < 0.32   | < 0.32    | < 0.32   | < 0.32   | < 0.32    | < 0.32   | < 0.32     | < 0.32    | < 0.32    |
| cis-1,2-Dichloroethene                              | 10                                   | < 1.0    | < 0.40   | < 0.40   | < 0.40   | < 0.40   | < 0.40   | < 0.40   | < 0.40    | < 0.40   | < 0.40    | < 0.40    | < 0.40     | < 0.40    | < 0.40   | < 0.40   | < 0.40   | < 0.40              | < 0.40   | < 0.81   | < 0.81   | < 0.81   | < 0.81    | < 0.81     | < 0.81     | < 0.81    | < 0.81    | < 0.81    | < 0.81   | < 0.81    | < 0.81   | < 0.81   | < 0.81    | < 0.81   | < 0.81     | < 0.81    | < 0.81    |
| Ethylbenzene                                        | 5                                    | < 1.0    | < 0.40   | < 0.40   | < 0.40   | < 0.40   | < 0.40   | < 0.40   | < 0.40    | < 0.40   | < 0.40    | < 0.40    | < 0.40     | < 0.40    | < 0.40   | < 0.40   | < 0.40   | < 0.40              | < 0.40   | < 0.74   | < 0.74   | < 0.74   | < 0.74    | < 0.74     | < 0.74     | < 0.74    | < 0.74    | < 0.74    | < 0.74   | < 0.74    | < 0.74   | < 0.74   | < 0.74    | < 0.74   | < 0.74     | < 0.74    | < 0.74    |
| m-Xylene & p-Xylene                                 | -                                    | < 2.0    | < 1.0    | < 1.0    | < 1.0    | < 1.0    | < 1.0    | < 1.0    | < 1.0     | < 1.0    | < 1.0     | < 1.0     | < 1.0      | < 1.0     | < 1.0    | < 1.0    | < 1.0    | < 1.0               | < 1.0    | < 1.0    | < 1.0    | < 1.0    | < 1.0     | < 1.0      | < 1.0      | < 1.0     | < 1.0     | < 1.0     | < 1.0    | < 1.0     | < 1.1    | < 1.0    | < 1.0     | < 1.0    | < 1.0      | < 1.0     | < 1.0     |
| o-Xylene                                            | -                                    | < 1.0    | < 0.40   | < 0.40   | < 0.40   | < 0.40   | < 0.40   | < 0.40   | < 0.40    | < 0.40   | < 0.40    | < 0.40    | < 0.40     | < 0.40    | < 0.40   | < 0.40   | < 0.40   | < 0.40              | < 0.40   | < 0.76   | < 0.76   | < 0.76   | < 0.76    | < 0.76     | < 0.76     | < 0.76    | < 0.76    | < 0.76    | < 0.76   | < 0.76    | < 0.76   | < 0.76   | < 0.76    | < 0.76   | < 0.76     | < 0.76    | < 0.76    |
| Tetrachloroethene                                   | 10                                   | < 1.0    | < 0.40   | < 0.40   | < 0.40   | < 0.40   | < 0.40   | < 0.40   | < 0.40    | < 0.40   | < 0.40    | < 0.40    | < 0.40     | < 0.40    | < 0.40   | < 0.40   | < 0.40   | < 0.40              | < 0.40   | < 0.40   | < 0.40   | < 0.40   | < 0.40    | < 0.40     | < 0.40     | < 0.36    | < 0.36    | < 0.36    | < 0.36   | < 0.36    | < 0.36   | < 0.36   | < 0.36    | < 0.36   | < 0.36     | < 0.36    | < 0.36    |
| Toluene                                             | 5                                    | < 1.0    | < 0.60   | < 0.60   | < 0.60   | < 0.60   | < 0.60   | < 0.60   | < 0.60    | < 0.60   | < 0.60    | < 0.60    | < 0.60     | < 0.60    | < 0.60   | < 0.60   | < 0.60   | < 0.60              | < 0.60   | < 0.60   | < 0.60   | < 0.60   | < 0.60    | < 0.60     | < 0.60     | < 0.51    | < 0.51    | < 0.51    | < 0.51   | < 0.51    | < 0.51   | < 0.51   | < 0.51    | < 0.51   | < 0.51     | < 0.51    | < 0.51    |
| trans-1,2-Dichloroethene                            | 10                                   | < 1.0    | < 0.40   | < 0.40   | < 0.40   | < 0.40   | < 0.40   | < 0.40   | < 0.42    | < 0.42   | < 0.42    | < 0.42    | < 0.42     | < 0.42    | < 0.42   | < 0.42   | < 0.42   | < 0.42              | < 0.42   | < 0.90   | < 0.90   | < 0.90   | < 0.90    | < 0.90     | < 0.90     | < 0.90    | < 0.90    | < 0.90    | < 0.90   | < 0.90    | < 0.90   | < 0.90   | < 0.90    | < 0.90   | < 0.90     | < 0.90    | < 0.90    |
| Trichloroethene                                     | 10                                   | < 1.0    | < 0.40   | < 0.40   | < 0.40   | < 0.40   | < 0.40   | < 0.40   | < 0.46    | < 0.46   | < 0.46    | < 0.46    | < 0.46     | < 0.46    | < 0.46   | < 0.46   | < 0.46   | 0.69                | < 0.46   | < 0.46   | < 0.46   | < 0.46   | < 0.46    | < 0.46     | < 0.46     | < 0.46    | 0.47      | < 0.46    | < 0.46   | < 0.46    | < 0.46   | < 0.46   | < 0.46    | < 0.46   | < 0.46     | < 0.46    | < 0.46    |
| Vinyl Chloride                                      | 10                                   | < 1.0    | < 1.0    | < 1.0    | < 1.0    | < 1.0    | < 1.0    | < 1.0    | < 1.0     | < 1.0    | < 1.0     | < 1.0     | < 1.0      | < 1.0     | < 1.0    | < 1.0    | < 1.0    | < 1.0               | < 1.0    | < 1.0    | < 1.0    | < 1.0    | < 1.0     | < 1.0      | < 1.0      | < 1.0     | < 1.0     | < 1.0     | < 1.0    | < 1.0     | < 1.0    | < 1.0    | < 1.0     | < 1.0    | < 1.0      | < 1.0     | < 1.0     |
| Xylenes, total                                      | 15                                   | < 3.0    | < 1.0    | < 1.0    | < 1.0    | < 1.0    | < 1.0    | < 1.0    | < 1.0     | < 1.0    | < 1.0     | < 1.0     | < 1.0      | < 1.0     | < 1.0    | < 1.0    | < 1.0    | < 1.0               | < 1.0    | < 1.0    | < 1.0    | < 1.0    | < 1.0     | < 1.0      | < 1.0      | < 1.0     | < 1.0     | < 1.0     | < 1.0    | < 1.0     | < 1.0    | < 1.0    | < 1.0     | < 1.0    | < 1.0      | < 1.0     | < 1.0     |
| pH (S.U.) <sup>(2)</sup>                            | 8.5                                  | 8.36     | 7.31     | 7.10     | 7.47     | 7.61     | 7.43     | 7.00     | 7.08      | 7.84     | 7.07      | 7.04      | 7.13       | 8.13      | 8.51     | 8.51     | 8.53     | 8.62 <sup>(4)</sup> | 7.19     | 8.5      | 8.1      | 8.3      | 7.8       | 8.1        | 8.0        | 8.1       | 8.2       | 8.1       | 8.1      | 6.9       | 6.8      | 8.1      | 8.2       | 7.9      | 7.8        | 7.8       | 7.7       |
| Oil & Grease (mg/L) <sup>(3)</sup>                  | -                                    | NS       | NS       | NS       | NS       | NS       | < 5.0    | 2.5 J    | < 5.0     | NS       | NS        | NS        | NS         | NS        | NS       | NS       | NS       | NS                  | NS       | NS       | NS       | NS       | NS        | NS         | NS         | NS        | NS        | NS        | NS       | NS        | NS       | NS       | NS        | NS       | NS         | NS        | NS        |

Notes:

1. Analyzed using United States Environmental Protection Agency (USEPA) Method 8260.

2. Analyzed in field.

3. Analyzed using United States Environmental Protection Agency (USEPA) Method 1664 A.

4. Several pH measurements were collected in May 2010, ranging from 7.83 to 8.62.

BOLD indicates detected concentrations.

Definitions:

< - less than laboratory detection limit listed

- No Standard

NS - Not Sampled For

mg/L - milligrams per liter

S.U. - Standard Units µg/L - micrograms per liter

Table 3. Groundwater Collection and Treatment System Influent Groundwater Concentrations, Former Lockheed Martin French Road Facility, Utica, NY.

| Volatile Organic <sup>(1)</sup> |          |           |          |          |           | MH-1       |           |          |          |            |          |           |          |          |           | MH-2       |           |                         |          |            |           |           | MH-3     |          |            |
|---------------------------------|----------|-----------|----------|----------|-----------|------------|-----------|----------|----------|------------|----------|-----------|----------|----------|-----------|------------|-----------|-------------------------|----------|------------|-----------|-----------|----------|----------|------------|
| Compounds (µg/L)                | 2/4/2009 | 1/12/2010 | 4/7/2010 | 7/8/2010 | 10/6/2010 | 12/22/2010 | 2/23/2011 | 4/5/2011 | 7/7/2011 | 10/11/2011 | 2/4/2009 | 1/12/2010 | 4/7/2010 | 7/8/2010 | 10/6/2010 | 12/22/2010 | 2/23/2011 | 4/5/2011 <sup>(2)</sup> | 7/7/2011 | 10/11/2011 | 1/28/2011 | 2/23/2011 | 4/5/2011 | 7/7/2011 | 10/11/2011 |
| 1,1,1-Trichloroethane           | < 1.0    | < 0.40    | < 0.40   | < 0.82   | < 0.82    | < 0.82     | < 0.82    | < 0.82   | < 0.82   | < 0.82     | < 1.0    | < 0.40    | < 0.40   | < 0.82   | < 0.82    | < 0.82     | < 0.82    | -                       | < 0.82   | < 0.82     | < 0.82    | < 0.82    | < 0.82   | < 0.82   | < 0.82     |
| 1,1-Dichloroethane              | 8.4      | 9         | 6        | 6        | 6.2       | 3.6        | 4.2       | 2.7      | 8.5      | 5.9        | 1.6      | 11        | 2        | 2.4      | 2.6       | 1.9        | 1.5       | -                       | 3.5      | 3          | < 0.38    | < 0.38    | < 0.38   | < 0.38   | < 0.38     |
| 1,2-Dichlorobenzene             | < 1.0    | < 0.50    | < 0.50   | < 0.79   | < 0.79    | < 0.79     | < 0.79    | < 0.79   | < 0.79   | < 0.79     | < 1.0    | < 0.50    | < 0.50   | < 0.79   | < 0.79    | < 0.79     | < 0.79    | -                       | < 0.79   | < 0.79     | < 0.79    | < 0.79    | < 0.79   | < 0.79   | < 0.79     |
| 1,3-Dichlorobenzene             | < 1.0    | < 0.40    | < 0.40   | < 0.78   | < 0.78    | < 0.78     | < 0.78    | < 0.78   | < 0.78   | < 0.78     | < 1.0    | < 0.40    | < 0.40   | < 0.78   | < 0.78    | < 0.78     | < 0.78    | -                       | < 0.78   | < 0.78     | < 0.78    | < 0.78    | < 0.78   | < 0.78   | < 0.78     |
| 1,4-Dichlorobenzene             | < 1.0    | < 0.40    | < 0.40   | < 0.84   | < 0.84    | < 0.84     | < 0.84    | < 0.84   | < 0.84   | < 0.84     | < 1.0    | < 0.40    | < 0.40   | < 0.84   | < 0.84    | < 0.84     | < 0.84    | -                       | < 0.84   | < 0.84     | < 0.84    | < 0.84    | < 0.84   | < 0.84   | < 0.84     |
| Benzene                         | < 1.0    | < 0.41    | < 0.41   | < 0.41   | < 0.41    | < 0.41     | < 0.41    | < 0.41   | < 0.41   | < 0.41     | < 1.0    | < 0.41    | < 0.41   | < 0.41   | < 0.41    | < 0.41     | < 0.41    | -                       | < 0.41   | < 0.41     | < 0.41    | < 0.41    | < 0.41   | < 0.41   | < 0.41     |
| Chlorobenzene                   | < 1.0    | < 0.40    | < 0.40   | < 0.75   | < 0.75    | < 0.75     | < 0.75    | < 0.75   | < 0.75   | < 0.75     | < 1.0    | < 0.40    | < 0.40   | < 0.75   | < 0.75    | < 0.75     | < 0.75    | -                       | < 0.75   | < 0.75     | < 0.75    | < 0.75    | < 0.75   | < 0.75   | < 0.75     |
| Chloroethane                    | 0.70 J   | < 0.40    | < 0.40   | < 0.40   | < 0.40    | < 0.40     | < 0.32    | < 0.32   | < 0.32   | < 0.32     | < 1.0    | < 0.40    | < 0.40   | < 0.40   | < 0.40    | < 0.40     | < 0.32    | -                       | < 0.32   | < 0.32     | < 0.32    | < 0.32    | < 0.32   | < 0.32   | < 0.32     |
| cis-1,2-Dichloroethene          | 39       | 44        | 28       | 42       | 35        | 21         | 30        | 19       | 43       | 33         | 10       | 47        | 12       | 14       | 13        | 12         | 7.6       | -                       | 12       | 16         | 3.7       | 2.3       | 3.5      | 3.8      | 3.1        |
| Ethylbenzene                    | < 1.0    | < 0.40    | < 0.40   | < 0.74   | < 0.74    | < 0.74     | < 0.74    | < 0.74   | < 0.74   | < 0.74     | < 1.0    | < 0.40    | < 0.40   | < 0.74   | < 0.74    | < 0.74     | < 0.74    | -                       | < 0.74   | < 0.74     | < 0.74    | < 0.74    | < 0.74   | < 0.74   | < 0.74     |
| m-Xylene & p-Xylene             | -        | < 1.0     | < 1.0    | < 1.0    | < 1.0     | < 1.0      | < 1.0     | < 1.0    | < 1.0    | < 1.0      | -        | < 1.0     | < 1.0    | < 1.0    | < 1.0     | < 1.0      | < 1.0     | -                       | < 1.0    | < 1.0      | < 1.0     | < 1.0     | < 1.0    | < 1.0    | < 1.0      |
| o-Xylene                        | -        | < 0.40    | < 0.40   | < 0.76   | < 0.76    | < 0.76     | < 0.76    | < 0.76   | < 0.76   | < 0.76     | -        | < 0.40    | < 0.40   | < 0.76   | < 0.76    | < 0.76     | < 0.76    | -                       | < 0.76   | < 0.76     | < 0.76    | < 0.76    | < 0.76   | < 0.76   | < 0.76     |
| Tetrachloroethene               | 31       | 31        | 27       | 29       | 21        | 8.4        | 23        | 18       | 26       | 19         | 3.8      | 28        | 3.5      | 9.3      | 7.5       | 4.5        | 2.6       | -                       | 2.8      | 3.6        | 1.2       | 1.1       | 12       | 21       | 23         |
| Toluene                         | < 1.0    | < 0.60    | < 0.60   | < 0.60   | < 0.60    | < 0.60     | < 0.51    | < 0.51   | < 0.51   | < 0.51     | < 1.0    | < 0.60    | < 0.60   | < 0.60   | < 0.60    | < 0.60     | < 0.51    | -                       | < 0.51   | < 0.51     | < 0.51    | < 0.51    | < 0.51   | < 0.51   | < 0.51     |
| trans-1,2-Dichloroethene        | < 1.0    | < 0.42    | < 0.42   | < 0.90   | < 0.90    | < 0.90     | < 0.90    | < 0.90   | < 0.90   | < 0.90     | 0.22 J   | < 0.42    | < 0.42   | < 0.90   | < 0.90    | < 0.90     | < 0.90    | -                       | < 0.90   | < 0.90     | < 0.90    | < 0.90    | < 0.90   | < 0.90   | < 0.90     |
| Trichloroethene                 | 64       | 51        | 55       | 49       | 33        | 11         | 57        | 27       | 57       | 29         | 6.7      | 53        | 7.5      | 18       | 14        | 8.4        | 4.6       | -                       | 7.7      | 7.5        | 4.2       | 5.6       | 9        | 19       | 13         |
| Vinyl Chloride                  | 0.50 J   | 0.41 J    | < 1.0    | < 1.0    | < 1.0     | 0.99 J     | 1.3       | < 1.0    | < 1.0    | < 1.0      | 1.0 J    | < 1.0     | 1.4      | 2.3      | 1.8       | 1.5        | 1.5       | -                       | 6.1      | 4.5        | < 1.0     | < 1.0     | < 1.0    | < 1.0    | < 1.0      |
| Xylenes, total                  | < 3.0    | < 1.0     | < 1.0    | < 1.0    | < 1.0     | < 1.0      | < 1.0     | < 1.0    | < 1.0    | < 1.0      | < 3.0    | < 1.0     | < 1.0    | < 1.0    | < 1.0     | < 1.0      | < 1.0     | -                       | < 1.0    | < 1.0      | < 1.0     | < 1.0     | < 1.0    | < 1.0    | < 1.0      |

### Notes:

1. Analyzed using United States Environmental Protection Agency (USEPA) Method 8260.

2. Manhole MH-2 not sampled during Second Quarter 2011 event due to manhole being offline for pump replacement.

BOLD indicates detected concentrations.

### **Definitions:**

< - less than laboratory detection limit listed

"-" - Analyte Not Analyzed For

J - Indicates concentration is estimated

µg/L - micrograms per liter

Table 4. Stormwater Analytical Sampling Results, Former Lockheed Martin French Road Facility, Utica, NY.

| Volatile Organic <sup>(1)</sup> | SPDES Effluent     |           |          |          | CE         | 3-1       |          |          |            |           |          |          | CE         | 3-2       |          |          |            |           |          |          | CB-3       |           |          |          |            |
|---------------------------------|--------------------|-----------|----------|----------|------------|-----------|----------|----------|------------|-----------|----------|----------|------------|-----------|----------|----------|------------|-----------|----------|----------|------------|-----------|----------|----------|------------|
| Compounds (µg/L)                | Limitations (µg/L) | 1/12/2010 | 4/7/2010 | 7/8/2010 | 12/22/2010 | 2/23/2011 | 4/5/2011 | 7/7/2011 | 10/11/2011 | 1/12/2010 | 4/7/2010 | 7/8/2010 | 12/22/2010 | 2/23/2011 | 4/5/2011 | 7/7/2011 | 10/11/2011 | 1/12/2010 | 4/7/2010 | 7/8/2010 | 12/22/2010 | 2/23/2011 | 4/5/2011 | 7/7/2011 | 10/11/2011 |
| 1,1,1-Trichloroethane           | 10                 | < 0.40    | < 0.40   | < 0.82   | < 0.82     | < 0.82    | < 0.82   | < 0.82   | < 0.82     | < 0.40    | < 0.40   | < 0.82   | < 0.82     | < 0.82    | < 0.82   | < 0.82   | < 0.82     | < 0.40    | < 0.40   | < 0.82   | < 0.82     | < 0.82    | < 0.82   | < 0.82   | < 0.82     |
| 1,1-Dichloroethane              | 10                 | < 0.75    | < 0.75   | < 0.75   | < 0.75     | < 0.38    | < 0.38   | < 0.38   | < 0.38     | < 0.75    | < 0.75   | < 0.75   | < 0.75     | < 0.38    | < 0.38   | < 0.38   | < 0.38     | < 0.75    | < 0.75   | 0.85     | < 0.75     | < 0.38    | < 0.38   | < 0.38   | < 0.38     |
| 1,2-Dichlorobenzene             | 10                 | < 0.50    | < 0.50   | < 0.79   | < 0.79     | < 0.79    | < 0.79   | < 0.79   | < 0.79     | < 0.50    | < 0.50   | < 0.79   | < 0.79     | < 0.79    | < 0.79   | < 0.79   | < 0.79     | < 0.50    | < 0.50   | < 0.79   | < 0.79     | < 0.79    | < 0.79   | < 0.79   | < 0.79     |
| 1,3-Dichlorobenzene             | -                  | < 0.40    | < 0.40   | < 0.78   | < 0.78     | < 0.78    | < 0.78   | < 0.78   | < 0.78     | < 0.40    | < 0.40   | < 0.78   | < 0.78     | < 0.78    | < 0.78   | < 0.78   | < 0.78     | < 0.40    | < 0.40   | < 0.78   | < 0.78     | < 0.78    | < 0.78   | < 0.78   | < 0.78     |
| 1,4-Dichlorobenzene             | -                  | < 0.40    | < 0.40   | < 0.84   | < 0.84     | < 0.84    | < 0.84   | < 0.84   | < 0.84     | < 0.40    | < 0.40   | < 0.84   | < 0.84     | < 0.84    | < 0.84   | < 0.84   | < 0.84     | < 0.40    | < 0.40   | < 0.84   | < 0.84     | < 0.84    | < 0.84   | < 0.84   | < 0.84     |
| Benzene                         | -                  | < 0.41    | < 0.41   | < 0.41   | < 0.41     | < 0.41    | < 0.41   | < 0.41   | < 0.41     | < 0.41    | < 0.41   | < 0.41   | < 0.41     | < 0.41    | < 0.41   | < 0.41   | < 0.41     | < 0.41    | < 0.41   | < 0.41   | < 0.41     | < 0.41    | < 0.41   | < 0.41   | < 0.41     |
| Chlorobenzene                   | -                  | < 0.40    | < 0.40   | < 0.75   | < 0.75     | < 0.75    | < 0.75   | < 0.75   | < 0.75     | < 0.40    | < 0.40   | < 0.75   | < 0.75     | < 0.75    | < 0.75   | < 0.75   | < 0.75     | < 0.40    | < 0.40   | < 0.75   | < 0.75     | < 0.75    | < 0.75   | < 0.75   | < 0.75     |
| Chloroethane                    | 10                 | < 0.40    | < 0.40   | < 0.40   | < 0.40     | < 0.32    | < 0.32   | < 0.32   | < 0.32     | < 0.40    | < 0.40   | < 0.40   | < 0.40     | < 0.32    | < 0.32   | < 0.32   | < 0.32     | < 0.40    | < 0.40   | < 0.40   | < 0.40     | < 0.32    | < 0.32   | < 0.32   | < 0.32     |
| cis-1,2-Dichloroethene          | 10                 | < 0.40    | < 0.40   | < 0.81   | < 0.81     | < 0.81    | < 0.81   | < 0.81   | < 0.81     | < 0.40    | < 0.40   | < 0.81   | < 0.81     | < 0.81    | < 0.81   | < 0.81   | < 0.81     | < 0.40    | < 0.40   | 1.9      | < 0.81     | < 0.81    | < 0.81   | < 0.81   | < 0.81     |
| Ethylbenzene                    | 5                  | < 0.40    | < 0.40   | < 0.74   | < 0.74     | < 0.74    | < 0.74   | < 0.74   | < 0.74     | < 0.40    | < 0.40   | < 0.74   | < 0.74     | < 0.74    | < 0.74   | < 0.74   | < 0.74     | < 0.40    | < 0.40   | < 0.74   | < 0.74     | < 0.74    | < 0.74   | < 0.74   | < 0.74     |
| m-Xylene & p-Xylene             | -                  | < 1.0     | < 1.0    | < 1.0    | < 1.0      | < 1.0     | < 1.0    | < 1.0    | < 1.0      | < 1.0     | < 1.0    | < 1.0    | < 1.0      | < 1.0     | < 1.0    | < 1.0    | < 1.0      | < 1.0     | < 1.0    | < 1.0    | < 1.0      | < 1.0     | < 1.0    | < 1.0    | < 1.0      |
| o-Xylene                        | -                  | < 0.40    | < 0.40   | < 0.76   | < 0.76     | < 0.76    | < 0.76   | < 0.76   | < 0.76     | < 0.40    | < 0.40   | < 0.76   | < 0.76     | < 0.76    | < 0.76   | < 0.76   | < 0.76     | < 0.40    | < 0.40   | < 0.76   | < 0.76     | < 0.76    | < 0.76   | < 0.76   | < 0.76     |
| Tetrachloroethene               | 10                 | < 0.40    | < 0.40   | < 0.40   | < 0.40     | < 0.36    | < 0.36   | < 0.36   | < 0.36     | < 0.40    | < 0.40   | < 0.40   | < 0.40     | < 0.36    | < 0.36   | < 0.36   | < 0.36     | < 0.40    | < 0.40   | < 0.40   | < 0.40     | < 0.36    | 0.51     | < 0.36   | < 0.36     |
| Toluene                         | 5                  | < 0.60    | < 0.60   | < 0.60   | < 0.60     | < 0.51    | < 0.51   | < 0.51   | < 0.51     | < 0.60    | < 0.60   | < 0.60   | < 0.60     | < 0.51    | < 0.51   | < 0.51   | < 0.51     | < 0.60    | < 0.60   | < 0.60   | < 0.60     | < 0.51    | < 0.51   | < 0.51   | < 0.51     |
| trans-1,2-Dichloroethene        | 10                 | < 0.42    | < 0.42   | < 0.90   | < 0.90     | < 0.90    | < 0.90   | < 0.90   | < 0.90     | < 0.42    | < 0.42   | < 0.90   | < 0.90     | < 0.90    | < 0.90   | < 0.90   | < 0.90     | < 0.42    | < 0.42   | < 0.90   | < 0.90     | < 0.90    | < 0.90   | < 0.90   | < 0.90     |
| Trichloroethene                 | 10                 | < 0.46    | < 0.46   | < 0.46   | < 0.46     | < 0.46    | < 0.46   | < 0.46   | < 0.46     | < 0.46    | < 0.46   | < 0.46   | < 0.46     | < 0.46    | < 0.46   | < 0.46   | < 0.46     | < 0.46    | < 0.46   | 0.69     | < 0.46     | < 0.46    | < 0.46   | < 0.46   | < 0.46     |
| Vinyl Chloride                  | 10                 | < 1.0     | < 1.0    | < 1.0    | < 1.0      | < 1.0     | < 1.0    | < 1.0    | < 1.0      | < 1.0     | < 1.0    | < 1.0    | < 1.0      | < 1.0     | < 1.0    | < 1.0    | < 1.0      | < 1.0     | < 1.0    | < 1.0    | < 1.0      | < 1.0     | < 1.0    | < 1.0    | < 1.0      |
| Xylenes, total                  | 15                 | < 1.0     | < 1.0    | < 1.0    | < 1.0      | < 1.0     | < 1.0    | < 1.0    | < 1.0      | < 1.0     | < 1.0    | < 1.0    | < 1.0      | < 1.0     | < 1.0    | < 1.0    | < 1.0      | < 1.0     | < 1.0    | < 1.0    | < 1.0      | < 1.0     | < 1.0    | < 1.0    | < 1.0      |

### Notes:

1. Analyzed using United States Environmental Protection Agency (USEPA) Method 8260.

BOLD indicates detected concentrations.

### Definitions:

< - less than laboratory detection limit listed

µg/L - micrograms per liter

Table 5. Groundwater Collection and Treatment System Flowrates, Former Lockheed Martin French Road Facility, Utica, NY.

|                                    | Cu                          | mulative                                     |                              |                                | MH-1                                         |                              |                                | MH-2                                         |                              |                                | MH-3                                         |                              | ۸ir                            | Stripper Para                          | meters                                           |
|------------------------------------|-----------------------------|----------------------------------------------|------------------------------|--------------------------------|----------------------------------------------|------------------------------|--------------------------------|----------------------------------------------|------------------------------|--------------------------------|----------------------------------------------|------------------------------|--------------------------------|----------------------------------------|--------------------------------------------------|
| Date                               | Permanent Flow<br>(gallons) | Flow Per<br>Reporting<br>Period<br>(gallons) | Monthly<br>Flowrate<br>(gpm) | Permanent<br>Flow<br>(gallons) | Flow Per<br>Reporting<br>Period<br>(gallons) | Monthly<br>Flowrate<br>(gpm) | Permanent<br>Flow<br>(gallons) | Flow Per<br>Reporting<br>Period<br>(gallons) | Monthly<br>Flowrate<br>(gpm) | Permanent<br>Flow<br>(gallons) | Flow Per<br>Reporting<br>Period<br>(gallons) | Monthly<br>Flowrate<br>(gpm) | Sump<br>Pressure<br>(In. W.C.) | Differential<br>Pressure<br>(In. W.C.) | Vapor Phase<br>Flowrate<br>(scfm) <sup>(4)</sup> |
| 1/8/2009                           | 51,642,496                  | 547,845                                      | 10.3                         | 43,857,473                     | 468,600                                      | 8.8                          | 7,785,023                      | 79,245                                       | 1.5                          | -                              | -                                            | -                            | 14.0                           | 1.0                                    | 1,398                                            |
| 2/5/2009                           | 51,882,819                  | 240,323                                      | 6.0                          | 44,074,280                     | 216,807                                      | 5.4                          | 7,808,539                      | 23,516                                       | 0.6                          | -                              | -                                            | -                            | 14.0                           | 1.0                                    | 1,398                                            |
| 3/4/2009                           | 52,290,566                  | 407,747                                      | 10.5                         | 44,426,462                     | 352,182                                      | 9.1                          | 7,864,104                      | 55,565                                       | 1.4                          | -                              | -                                            | -                            | 15.0                           | 1.0                                    | 1,398                                            |
| 4/1/2009                           | 52,820,498                  | 529,932                                      | 13.1                         | 44,879,781                     | 453,319                                      | 11.2                         | 7,940,717                      | 76,613                                       | 1.9                          | -                              | -                                            | -                            | 14.0                           | 1.0                                    | 1,398                                            |
| 5/5/2009                           | 53,224,271                  | 403,773                                      | 8.2                          | 45,236,249                     | 356,468                                      | 7.3                          | 7,988,022                      | 47,305                                       | 1.0                          | -                              | -                                            | -                            | 14.0                           | 1.0                                    | 1,398                                            |
| 6/2/2009                           | 53,499,861                  | 275,590                                      | 6.8                          | 45,470,774                     | 234,525                                      | 5.8                          | 8,029,087                      | 41,065                                       | 1.0                          | -                              | -                                            | -                            | 15.0                           | 1.5                                    | 1,712                                            |
| 7/1/2009                           | 53,736,159                  | 236,298                                      | 5.7                          | 45,666,782                     | 196,008                                      | 4.7                          | 8,069,377                      | 40,290                                       | 1.0                          | -                              | -                                            | -                            | 15.0                           | 1.5                                    | 1,712                                            |
| 8/14/2009                          | 54,078,743                  | 342,584                                      | 5.4                          | 45,940,852                     | 274,070                                      | 4.3                          | 8,137,891                      | 68,514                                       | 1.1                          | -                              | -                                            | -                            | 14.0                           | 1.5                                    | 1,712                                            |
| 9/4/2009                           | 54,230,373                  | 151,630                                      | 5.0                          | 46,060,707                     | 119,855                                      | 4.0                          | 8,169,666                      | 31,775                                       | 1.1                          | -                              | -                                            | -                            | 14.0                           | 1.5                                    | 1,712                                            |
| 10/9/2009                          | 54,512,663                  | 282,290                                      | 5.6                          | 46,289,841                     | 229,134                                      | 4.5                          | 8,222,822                      | 53,156                                       | 1.1                          | -                              | -                                            | -                            | 14.5                           | 1.0                                    | 1,398                                            |
| 11/4/2009                          | 54,750,788                  | 238,125                                      | 6.4                          | 46,494,959                     | 205,118                                      | 5.5                          | 8,255,829                      | 33,007                                       | 0.9                          | -                              | -                                            | -                            | 14.5                           | 1.0                                    | 1,398                                            |
| 12/11/2009                         | 55,029,188                  | 278,400                                      | 5.2                          | 46,722,959                     | 228,000                                      | 4.3                          | 8,306,229                      | 50,400                                       | 0.9                          | -                              | -                                            | -                            | 14.0                           | 1.3                                    | 1,594                                            |
| 2009 Totals <sup>(1)</sup>         | -                           | 3,934,537                                    | 7.3                          | -                              | 3,334,086                                    | 6.2                          | -                              | 600,451                                      | 1.1                          | -                              | -                                            | -                            | 14.3                           | 1.2                                    | 1,519                                            |
| 1/12/2010                          | 55,368,138                  | 338,950                                      | 7.4                          | 47,041,049                     | 318,090                                      | 6.9                          | 8,327,089                      | 20,860                                       | 0.5                          | -                              | -                                            | -                            | 18.0                           | 1.2                                    | 1,531                                            |
| 2/3/2010                           | 55,615,048                  | 246,910                                      | 7.8                          | 47,254,345                     | 213,296                                      | 6.7                          | 8,360,703                      | 33,614                                       | 1.1                          | -                              | -                                            | -                            | 24.0                           | 1.0                                    | 1,398                                            |
| 3/3/2010                           | 55,830,985                  | 215,937                                      | 5.4                          | 47,442,614                     | 188,269                                      | 4.7                          | 8,388,371                      | 27,668                                       | 0.7                          | -                              | -                                            | -                            | 11.0                           | 1.7                                    | 1,823                                            |
| 4/7/2010                           | 56,443,357                  | 612,372                                      | 12.2                         | 47,970,713                     | 528,099                                      | 10.5                         | 8,472,644                      | 84,273                                       | 1.7                          | -                              | -                                            | -                            | 12.0                           | 1.5                                    | 1,712                                            |
| 5/5/2010                           | 56,705,454                  | 262,097                                      | 6.5                          | 48,202,863                     | 232,150                                      | 5.8                          | 8,502,591                      | 29,947                                       | 0.7                          | -                              | -                                            | -                            | 17.5                           | 2.7                                    | 2,297                                            |
| 6/3/2010                           | 56,921,019                  | 215,565                                      | 5.2                          | 48,388,351                     | 185,488                                      | 4.4                          | 8,532,668                      | 30,077                                       | 0.7                          | -                              | -                                            | -                            | 16.1                           | 2.7                                    | 2,297                                            |
| 7/7/2010                           | 57,256,158                  | 335,139                                      | 6.8                          | 48,646,601                     | 258,250                                      | 5.3                          | 8,609,557                      | 76,889                                       | 1.6                          | -                              | -                                            | -                            | 15.5                           | 2.4                                    | 2,166                                            |
| 8/5/2010                           | 57,518,041                  | 261,883                                      | 6.3                          | 48,863,064                     | 216,463                                      | 5.2                          | 8,654,977                      | 45,420                                       | 1.1                          | -                              | -                                            | -                            | 15.9                           | 2.2                                    | 2,073                                            |
| 9/7/2010                           | 57,797,649                  | 279,608                                      | 5.9                          | 49,095,255                     | 232,191                                      | 4.9                          | 8,702,394                      | 47,417                                       | 1.0                          | -                              | -                                            | -                            | 18.5                           | 1.9                                    | 1,927                                            |
| 10/5/2010                          | 58,082,548                  | 284,899                                      | 7.1                          | 49,327,736                     | 232,481                                      | 5.8                          | 8,754,812                      | 52,418                                       | 1.3                          | -                              | -                                            | -                            | 17.0                           | 2.0                                    | 1,977                                            |
| 11/2/2010                          | 58,456,895                  | 374,347                                      | 9.3                          | 49,643,060                     | 315,324                                      | 7.8                          | 8,813,835                      | 59,023                                       | 1.5                          | -                              | -                                            | -                            | 22.0                           | 0.9                                    | 1,289                                            |
| 12/22/2010                         | 59,009,574                  | 552,679                                      | 7.7                          | 50,101,316                     | 458,256                                      | 6.4                          | 8,908,258                      | 94,423                                       | 1.3                          | -                              | -                                            | -                            | 17.0                           | NA <sup>2</sup>                        | NA <sup>2</sup>                                  |
| 2010 Totals <sup>(2)</sup>         | -                           | 3,980,386                                    | 7.4                          | -                              | 3,378,357                                    | 6.2                          | -                              | 602,029                                      | 1.1                          | -                              | -                                            | -                            | 17.0                           | 1.8                                    | 1,863                                            |
| 1/28/2011                          | 59,088,966                  | 79,392                                       | 1.5                          | 50,142,913                     | 41,597                                       | 0.8                          | 8,930,851                      | 22,593                                       | 0.4                          | 15,202                         | -                                            | -                            | 25.9                           | -                                      | 718                                              |
| 2/23/2011                          | 59,483,460                  | 394,494                                      | 10.5                         | 50,432,263                     | 289,350                                      | 7.7                          | 8,976,813                      | 45,962                                       | 1.2                          | 74,384                         | 59182.0                                      | 1.6                          | 26.0                           | -                                      | 742                                              |
| 3/22/2011                          | 60,118,863                  | 635,403                                      | 16.3                         | 50,940,888                     | 508,625                                      | 13.1                         | 9,102,550                      | 125,737                                      | 3.2                          | 75,425                         | 1041.0                                       | 0.0                          | 26.2                           | -                                      | 681                                              |
| First Quarter 2011 <sup>(3)</sup>  | -                           | 1,109,289                                    | 8.6                          | -                              | 839,572                                      | 6.5                          | -                              | 194,292                                      | 1.5                          | -                              | 60,223                                       | 0.5                          | 26.0                           | -                                      | 714                                              |
| 4/5/2011                           | 60,264,174                  | 145,311                                      | 7.2                          | 51,085,909                     | 145,021                                      | 7.2                          | 9,102,790                      | 240                                          | 0.0                          | 75,475                         | 50                                           | 0.0                          | 29.0                           | -                                      | 663                                              |
| 5/12/2011                          | 61,189,715                  | 925,541                                      | 17.4                         | 51,609,588                     | 523,679                                      | 9.8                          | 9,161,683                      | 58,893                                       | 1.1                          | 418,444                        | 342,969                                      | 9.2                          | 26.5                           | -                                      | 553                                              |
| 6/2/2011                           | 61,557,472                  | 367,757                                      | 12.2                         | 51,834,699                     | 225,111                                      | 7.4                          | 9,189,679                      | 27,996                                       | 0.9                          | 533,094                        | 114,650                                      | 2.9                          | 26.5                           | -                                      | 618                                              |
| Second Quarter 2011 <sup>(5)</sup> | -                           | 1,438,609                                    | 13.9                         | - , ,,                         | 893,811                                      | 8.6                          | -,,                            | 87,129                                       | 0.8                          | -                              | 457,619                                      | 4.4                          | 27.3                           | -                                      | 611                                              |
| 7/7/2011                           | 61,975,516                  | 418,044                                      | 8.3                          | 52,075,707                     | 241,008                                      | 4.8                          | 9,227,668                      | 37,989                                       | 0.8                          | 672,141                        | 139,047                                      | 2.8                          | 25.2                           | -                                      | 636                                              |
| 8/11/2011                          | 62,296,730                  | 321,214                                      | 6.4                          | 52,243,445                     | 167,738                                      | 3.3                          | 9,265,879                      | 38,211                                       | 0.8                          | 787,406                        | 115,265                                      | 2.3                          | 26.5                           | -                                      | 651                                              |
| 9/8/2011                           | 62,817,398                  | 520,668                                      | 12.9                         | 52,508,569                     | 265,124                                      | 6.6                          | 9,342,539                      | 76,660                                       | 1.9                          | 966,290                        | 178,884                                      | 4.4                          | 28.5                           | -                                      | 609                                              |
| Third Quarter 2011                 | -                           | 1,259,926                                    | 8.9                          | -                              | 673,870                                      | 4.8                          | -                              | 152,860                                      | 1.1                          | -                              | 433,196                                      | 3.1                          | 26.7                           | -                                      | 632                                              |
| 10/11/2011                         | 63,444,585                  | 627,187                                      | 13.2                         | 52,883,146                     | 374,577                                      | 7.9                          | 9,400,121                      | 57,582                                       | 1.2                          | 1,161,318                      | 195,028                                      | 4.1                          | 27.0                           | -                                      | 715                                              |
| 11/1/2011                          | 63,764,975                  | 320,390                                      | 10.2                         | 53,071,145                     | 187,999                                      | 6.2                          | 9,435,095                      | 34,974                                       | 1.2                          | 1,258,735                      | 97,417                                       | 3.2                          | 27.0                           | -                                      | 784                                              |
| 12/1/2011                          | 64,185,589                  | 420,614                                      | 9.7                          | 53,345,456                     | 274,311                                      | 6.3                          | 9,469,773                      | 34,678                                       | 0.8                          | 1,230,735                      | 111,625                                      | 2.6                          | 27.0                           | -                                      | 739                                              |
| Fourth Quarter 2011                | -                           | 1,368,191                                    | 9.7<br>11.3                  | -                              | 836,887                                      | 6.9                          | -                              | 127,234                                      | 0.0<br>1.1                   | -                              | 404,070                                      | 3.3                          | 27.0<br>27.0                   | -                                      | 739<br>746                                       |
| 2011 Totals <sup>(2)</sup>         | -                           | 5,176,015                                    | 10.4                         | -                              | 3,244,140                                    | 6.5                          | -                              | 561,515                                      | 1.1                          | -                              | 1,355,108                                    | 2.7                          | 26.8                           | -                                      | 676                                              |
| 2011 10(8)                         | -                           | 3,170,013                                    | 10.4                         | -                              | 3,244,140                                    | 0.0                          | -                              | 501,515                                      | 1.1                          | -                              | 1,353,108                                    | 2.1                          | 20.0                           | -                                      | 070                                              |

Notes:

1. 2009 Totals include data between 12/8/2008 and 12/11/2009.

2. Existing air stripper taken offline on 11/29/10 and temporary air stripper in operation through end of 2010 while system upgrades were being implemented. System back online last week in February 2011.

3. New air stripper brought online on 1/25/11, and was operated intermittently on the dates of 1/13, 1/14, 1/17, 1/18 and 1/20.

4. Prior to 2011, vapor phase flowrate calculated using the Air Velocity Measurement formula as provided in the Dwyer Instruments catalog. Differential pressure used in the blower intake pipe, and constants for temperature (70°F) and barometric pressure (29.92 in.Hg.) were assumed. Following the beginning of 2011, the vapor phase flowrate has been obtained from flow transmitter FT-106.

5. Manhole MH-2 offline for pump replacement from 3/22/11 to 4/20/11.

Definitions:

gpm - gallons per minute

In. W.C. - Inches of Water Column

cfm - cubic feet per minute

NA - Not applicable

Table 6. Vapor Phase Analytical Sampling Results, Former Lockheed Martin French Road Facility, Utica, NY.

|                                                                      |                      |                        |                                           | F                                                 | Pre-Carbon                     |                                                        |                                                     |                               |                             |                                                          | Mid-Carbon                                   |                                 |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             |                                                                     | Effluent                                                                                           |                                                                                                          |                               |
|----------------------------------------------------------------------|----------------------|------------------------|-------------------------------------------|---------------------------------------------------|--------------------------------|--------------------------------------------------------|-----------------------------------------------------|-------------------------------|-----------------------------|----------------------------------------------------------|----------------------------------------------|---------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------|
| Volatile Organic <sup>(1)</sup> Compounds                            | ;                    | Value<br>used Departin | Valu                                      | e Deperting                                       | Value<br>used Departing        | Value                                                  | Value Value                                         | onorting                      | Value Benerting             | Value Value                                              | Value Value                                  | erting                          | Value Departing                                                                  | Value Va | Value<br>used Departing                                                     | Value Departing                                                     | Value Value                                                                                        | Value Departing                                                                                          | Value<br>used Departing       |
| (µg/m³)                                                              | 1/28/2011 Q          | for Limit              | <sup>g</sup> 2/23/2011 Q used<br>for      |                                                   | used Reporting<br>for Limit    | 7/7/2011 Q for Limit                                   |                                                     | Limit 1/28/2011 Q             | used Reporting<br>for Limit | 2/23/2011 Q used Reportin<br>for Limit                   | g 4/4/2011 Q for L                           | imit 7/7/2011 Q                 | used Reporting<br>for Limit 10/12/20                                             | 011 Q used Reporting<br>for Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U 1/28/2011 Q used Reporting<br>for Limit                                   | 2/23/2011 Q used Reporting<br>for Limit                             | 4/4/2011 Q for Limit                                                                               | 7/7/2011 Q for Limit 10/12/2011                                                                          | Q used Reporting<br>for Limit |
| 1,1,1-Trichloroethane                                                | < 0.83               | <b>calcs</b> 0 0.83    | < 0.83 0                                  | s < 0.83 < 0.83                                   | calcs           0         0.83 | <pre>calcs &lt;0.83 0 0.83</pre>                       | <pre> calcs  &lt; 0.83 0</pre>                      | 0.83 < 0.83                   | <b>calcs</b> 0 0.83         | calcs           < 0.83         0         0.83            | <pre> calcs  &lt; 0.83 0 0 </pre>            | .83 < 0.83                      | calcs         0         0.83         < 0.83                                      | <b>calcs</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <pre>calcs &lt;0.83 0 0.83</pre>                                            | <pre> calcs  &lt; 0.83 0 0.83</pre>                                 | <pre>calcs &lt;0.83 0 0.83</pre>                                                                   | <pre> calcs  &lt; 0.83 0 0.83 &lt; 0.83</pre>                                                            | <b>calcs</b>                  |
| 1,1,2,2-Tetrachloroethane                                            | < 1.00               | 0 1                    | < 1.0 0                                   | < 1.0 < 1.00                                      | 0 1                            | < 1.00 0 1                                             | < 1.00 0                                            | 1 < 1.00                      | 0 1                         | <pre>&lt;1.00 0 1</pre>                                  | < 1.00 0                                     | 1 < 1.00                        | 0 1 <1.00                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <pre>&lt;1.00 0 1</pre>                                                     | <1.00 0 1                                                           | < 1.00 0 1                                                                                         | <pre>&lt;1.00 0 1 &lt;1.00</pre>                                                                         | 0 1                           |
| 1,1,2-Trichloroethane                                                | < 0.83               | 0 0.83                 | < 0.83 0                                  | < 0.83 < 0.83                                     | 0 0.83                         | < 0.83 0 0.83                                          | < 0.83 0                                            | 0.83 < 0.83                   | 0 0.83                      | < 0.83 0 0.83                                            | 10.00 0 0                                    | .83 < 0.83                      | 0 0.83 < 0.83                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 0.83 0 0.83                                                               | < 0.83 0 0.83                                                       | < 0.83 0 0.83                                                                                      | <0.83 0 0.83 < 0.83                                                                                      | 0 0.83                        |
| 1,1-Dichloroethane<br>1,1-Dichloroethene                             | < 0.62<br>< 0.60     | 0 0.62                 | <b>18</b> 18<br>< 0.60 0                  | <b>19</b><br>< 0.60 < 0.60                        | 19<br>0 0.6                    | 71 71<br>0.81 0.81                                     | 41         41           0.48         J         0.48 | 0.49 J<br>< 0.60              | 0.49 0.6                    | < 0.62                                                   | < 0.62 0 0<br>< 0.60 0 0                     | .62 <b>0.66</b><br>0.6 < 0.60   | 0.66 <b>10</b><br>0 0.6 < 0.60                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.62 0 0.62<br><0.60 0 0.6                                                 | < 0.62 0 0.62<br>< 0.60 0 0.6                                       | < 0.62 0 0.62<br>< 0.60 0 0.6                                                                      | <0.62 0 0.62 17<br><0.60 0 0.6 0.48                                                                      | J 0.48                        |
| 1,2,4-Trichlorobenzene                                               | < 1.10               | 0 1.1                  | < 1.1 0                                   | < 1.1 < 1.10                                      | 0 1.1                          | < 1.10 0 1.1                                           | < 1.10 0                                            | 1.1 < 1.10                    | 0 1.1                       | < 1.10 0 1.1                                             | < 1.10 0                                     | 1.1 < 1.10                      | 0 1.1 < 1.10                                                                     | 0 0 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 1.10 0 1.1                                                                | < 1.10 0 1.1                                                        | < 1.10 0 1.1                                                                                       | < 1.10 0 1.1 < 1.10                                                                                      | 0 1.1                         |
| 1,2,4-Trimethylbenzene                                               | 1                    | 1 <b>1</b>             | 4.6 4.6                                   | 1.6                                               | 1.6                            | <b>1.3</b> 1.3                                         | < 0.75 0                                            | 0.75 <b>1.9</b>               | 1.9                         | <b>2.1</b> 2.1                                           | <b>3</b> 3                                   | 14 J                            | 14 < 0.75                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>1.5</b> 1.5                                                              | <b>3.7</b> 3.7                                                      | <b>1.3</b> 1.3                                                                                     | <b>3.3</b> 3.3 < 0.75                                                                                    | 0 0.75                        |
| 1,2-Dibromoethane<br>1,2-Dichlorobenzene                             | < 1.20<br>< 0.92     | 0 1.2 0 0.92           | < 1.2 0<br>< 0.92 0                       | <pre>&lt;1.2 &lt; 1.20 &lt;0.92 &lt; 0.92</pre>   | 0 1.2                          | <pre>&lt; 1.20 0 1.2 &lt; 0.92 0 0.92</pre>            | <1.20 0<br>< 0.92 0                                 | 1.2         < 1.20            | 0 1.2<br>0 0.92             | < 1.20                                                   | <pre>&lt; 1.20 0 0 </pre>                    | 1.2         < 1.20              | 0 1.2 < 1.20<br>0 0.92 < 0.92                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <pre>&lt;1.20 0 1.2 </pre> < 0.92 0 0.92                                    | <1.20 0 1.2<br><0.92 0 0.92                                         | <1.20 0 1.2<br>< 0.92 0 0.92                                                                       | < 1.20                                                                                                   | 0 1.2 0 0.92                  |
| 1,2-Dichloroethane                                                   | < 0.62               | 0 0.62                 | < 0.62 0                                  | < 0.62 < 0.62                                     | 0 0.62                         | < 0.62 0 0.62                                          | < 0.62 0                                            | 0.62 < 0.62                   | 0 0.62                      | < 0.62 0 0.62                                            | < 0.62 0 0                                   | .62 < 0.62                      | 0 0.62 < 0.62                                                                    | 2 0 0.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | < 0.62 0 0.62                                                               | < 0.62 0 0.62                                                       | < 0.62 0 0.62                                                                                      | < 0.62 0 0.62 < 0.62                                                                                     | 0 0.62                        |
| 1,2-Dichloropropane                                                  | < 0.70               | 0 0.7<br>0 0.75        | < 0.70 0<br>15 15                         | < 0.70 < 0.70<br>< 0.75                           | 0 0.7                          | < 0.70 0 0.7<br>< 0.75 0 0.75                          | < 0.70 0                                            | 0.7 < 0.70<br>0.75 <b>0.8</b> | 0 0.7                       | <0.70 0 0.7<br>0.8 0.8                                   | < 0.70 0 0                                   | 0.7 < 0.70<br>4.4               | 0 0.7 < 0.70<br>4.4 < 0.75                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.70 0 0.7<br><b>0.65 J</b> 0.65                                           | < 0.70 0 0.7<br><b>1.4</b> 1.4                                      | < 0.70 0 0.7<br>0.65 J 0.65                                                                        | < 0.70                                                                                                   | 0 0.7                         |
| 1,3,5-Trimethylbenzene<br>1,3-butadiene                              | < 0.75<br>< 0.34     | 0 0.73                 | <b>1.5</b> 1.5<br>< 0.34 0                | < 0.34 < 0.34                                     | 0 0.34                         | <pre>&lt; 0.75 0 0.75 &lt; 0.34 0 0.34</pre>           | < 0.75 0<br>< 0.34 0                                | 0.75 0.8                      | 0.8                         | 0.8         0.8           < 0.34         0         0.34  |                                              | 0.34 < 0.34                     | 4.4     < 0.73       0     0.34       < 0.34                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <pre></pre>                                                                 | <ul> <li>&lt; 0.34</li> <li>&lt; 0.34</li> <li>&lt; 0.34</li> </ul> | <pre>0.05 J 0.05 </pre>                                                                            | 1.3         1.3         < 0.75                                                                           | 0 0.34                        |
| 1,3-Dichlorobenzene                                                  | < 0.92               | 0 0.92                 | < 0.92 0                                  | < 0.92 < 0.92                                     | 0 0.92                         | < 0.92 0 0.92                                          | < 0.92 0                                            | 0.92 < 0.92                   | 0 0.92                      | < 0.92 0 0.92                                            | < 0.92 0 0                                   | .92 < 0.92                      | 0 0.92 < 0.92                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 0.92 0 0.92                                                               | < 0.92 0 0.92                                                       | < 0.92 0 0.92                                                                                      | < 0.92 0 0.92 < 0.92                                                                                     | 0 0.92                        |
| 1,4-Dichlorobenzene                                                  | < 0.92               | 0 0.92                 | < 0.92 0<br>< 1.1 0                       | <0.92 < 0.92<br><1.1 < 1.10                       | 0 0.92                         | <0.92 0 0.92<br><1.10 0 1.1                            | < 0.92 0                                            | 0.92 < 0.92<br>1.1 <b>2.3</b> | 0 0.92                      | < 0.92                                                   |                                              | .92 < 0.92                      | 0 0.92 < 0.92                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.92 0 0.92<br><b>1.6</b> 1.6                                              | <0.92 0 0.92<br><1.10 0 1.1                                         | < 0.92 0 0.92<br>< 1.10 0 1.1                                                                      | < 0.92                                                                                                   | 0 0.92                        |
| 1,4-Dioxane<br>2,2,4-trimethylpentane                                | < 1.10<br>< 0.71     | 0 1.1                  | <b>0.76</b> 0.76                          | < 1.1 < 1.10                                      | 0 1.1 0 0.71                   | <pre>&lt; 1.10 0 1.1 &lt; 0.71 0 0.71</pre>            | <1.10 0<br><0.71 0                                  | 0.71 < 0.71                   | 0 0.71                      | <b>0.66</b> J 0.66                                       | < 1.10 0 · · · · · · · · · · · · · · · · · · | .71 < 0.71                      | 0 0.71 < 0.71                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>1.0</li> <li>1.0</li> <li>0.71</li> <li>0</li> <li>0.71</li> </ul> | <b>0.81</b> 0.81                                                    | <0.71 0 0.71                                                                                       | <pre>&lt; 1.10 0 1.1 &lt; 1.10 &lt; 0.71 0 0.71 &lt; 0.71</pre>                                          | 0 0.71                        |
| 4-ethyltoluene                                                       | 0.6 J                | 0.6                    | <b>1.1</b> 1.1                            | < 0.75                                            | 0 0.75                         | < 0.75 0 0.75                                          | < 0.75 0                                            | 0.75 <b>0.6</b> J             | 0.6                         | <b>0.95</b> 0.95                                         | <b>2.2</b> 2.2                               | 3.5                             | 3.5 < 0.75                                                                       | 5 0 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | < 0.75 0 < 0.75                                                             | <b>0.95</b> 0.95                                                    | <b>0.8</b> 0.8                                                                                     | <b>0.95</b> 0.95 < 0.75                                                                                  | 0 0.75                        |
| Acetone                                                              | 29                   | 29                     | <b>21</b> 21                              | 10                                                | 10                             | <b>14</b> 14                                           | <b>3.7</b> 3.7                                      | 20                            | 20                          | <b>37</b> 37                                             | <b>7.5</b> 7.5                               | 25                              | 25 <b>3.5</b>                                                                    | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>100</b> 100                                                              | <b>27</b> 27                                                        | <b>8.5</b> 8.5                                                                                     | <b>6.2 6.2 4.4</b>                                                                                       | 4.4                           |
| Allyl chloride<br>Benzene                                            | < 0.48<br>< 0.49     | 0 0.48                 | < 0.48 0<br><b>1.5</b> 1.5                | < 0.48 < 0.48 <b>0.91</b>                         | 0 0.48                         | <0.48 0 0.48<br>0.39 J 0.39                            | < 0.48 0<br>0.75 0.75                               | 0.48 < 0.48 <b>2</b>          | 0 0.48                      | <0.48 0 0.48 0.81 0.81                                   |                                              | .48 < 0.48<br>.49 < 0.49        | 0 0.48 < 0.48<br>0 0.49 < 0.49                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.48 0 0.48<br><b>1.1</b> 1.1 0.49                                         | < 0.48 0 0.48<br><b>1.2</b> 1.2                                     | < 0.48 0 0.48<br>< 0.49 0 0.49                                                                     | < 0.48                                                                                                   | 0 0.48                        |
| Benzyl chloride                                                      | < 0.88               | 0 0.88                 | < 0.88 0                                  | < 0.88 < 0.88                                     | 0 0.88                         | < 0.88 0 0.88                                          | < 0.88 0                                            | 0.88 < 0.88                   | 0 0.88                      | < 0.88 0 0.88                                            |                                              | .88 < 0.88                      | 0 0.88 < 0.88                                                                    | 8 0 0.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | < 0.88 0 0.88                                                               | < 0.88 0 0.88                                                       | < 0.88 0 0.88                                                                                      | < 0.88 0 0.88 < 0.88                                                                                     | 0 0.88                        |
| Bromodichloromethane                                                 | < 1.00               | 0 1                    | < 1.0 0                                   | < 1.0 < 1.00                                      | 0 1                            | < 1.00 0 1                                             | < 1.00 0                                            | 1 < 1.00                      | 0 1                         | < 1.00 0 1                                               | < 1.00 0                                     | 1 < 1.00                        | 0 1 < 1.00                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 1.00 0 1                                                                  | < 1.00 0 1                                                          | < 1.00 0 1                                                                                         | < 1.00 0 1 < 1.00                                                                                        | 0 1                           |
| Bromoform<br>Bromomethane                                            | < 1.60<br>< 0.59     | 0 1.6<br>0 0.59        | < 1.6 0<br>< 0.59 0                       | <pre>&lt;1.6 &lt; 1.60 &lt; 0.59 &lt; 0.59</pre>  | 0 1.6                          | <pre>&lt; 1.60 0 1.6 &lt; 0.59 0 0.59</pre>            | <1.60 0<br>< 0.59 0                                 | 1.6         < 1.60            | 0 1.6<br>0 0.59             | < 1.60                                                   | <pre>&lt; 1.60 0 0 </pre>                    | 1.6         < 1.60              | 0 1.6 < 1.60<br>0 0.59 < 0.59                                                    | <b>o</b> 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <1.60 0 1.6<br>< 0.59 0 0.59                                                | <1.60 0 1.6<br><0.59 0 0.59                                         | <pre>&lt; 1.60 0 1.6 &lt; 0.59 0 0.59</pre>                                                        | < 1.60                                                                                                   | 0 1.6 0 0.59                  |
| Carbon disulfide                                                     | < 0.47               | 0 0.47                 | < 0.47 0                                  | < 0.47 < 0.47                                     | 0 0.47                         | 0.32 J 0.32                                            | < 0.47 0                                            | 0.47 < 0.47                   | 0 0.47                      | < 0.47 0 0.47                                            | < 0.47 0 0                                   | .47 <b>0.32</b> J               | 0.32 0.85                                                                        | 0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 0.47 0 0.47                                                               | < 0.47 0 0.47                                                       | < 0.47 0 0.47                                                                                      | <b>0.47</b> 0.47 <b>0.38</b>                                                                             | <b>J</b> 0.38                 |
| Carbon tetrachloride                                                 | < 0.96               | 0 0.96                 | ••••••••••••••••                          | < 0.50                                            | 0 0.96                         | 0.9 J 0.9                                              | 0.38 J 0.38                                         | 0.77 J                        | 0.77                        | < 0.96 0 0.96                                            | < 0.96 0 0                                   | .96 < 0.96                      | 0 0.96 < 0.96                                                                    | 0 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 0.96 0 0.96                                                               | < 0.96 0 0.96<br>< 0.70 0 0.7                                       | < 0.96 0 0.96                                                                                      | <pre>&lt; 0.96 0 0.96 &lt; 0.96</pre>                                                                    | 0 0.96                        |
| Chlorobenzene<br>Chloroethane                                        | < 0.70<br>< 0.40     | 0 0.4                  | 0.66 J 0.66<br>1.2 1.2                    | <u> &lt; 0.70</u><br>< 0.40                       | 0 0.4                          | < 0.70 0 0.7<br>< 0.40 0 0.4                           | <b>0.86</b> 0.86                                    | 0.7 < 0.70 < 0.40             | 0 0.7<br>0 0.4              | < 0.70                                                   | < 0.70 0 0<br>< 0.40 0 0                     | 0.4 < 0.40                      | 0 0.7 < 0.70<br>0 0.4 <b>0.46</b>                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 0.70 0 0.7<br>< 0.40 0 0.4                                                | <0.40 0 0.4                                                         | <ul> <li>&lt; 0.70</li> <li>&lt; 0.40</li> <li>0</li> <li>0.7</li> <li>0.7</li> <li>0.4</li> </ul> | <pre>&lt; 0.70 0 0.7 &lt; 0.70 &lt; 0.40 0 0.4 0.54</pre>                                                | 0.54                          |
| Chloroform                                                           | < 0.74               | 0 0.74                 | <b>5.7</b> 5.7                            | 10                                                | 10                             | <b>8.5</b> 8.5                                         | <b>1.3</b> 1.3                                      | 8.9                           | 8.9                         | < 0.74 0 0.74                                            | < 0.74 0 0                                   | .74 < 0.74                      | 0 0.74 <b>3.7</b>                                                                | 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 0.74 0 0.74                                                               | < 0.74 0 0.74                                                       | < 0.74 0 0.74                                                                                      | < 0.74 0 0.74 <b>4.2</b>                                                                                 | 4.2                           |
| Chloromethane                                                        | <b>1.2</b> < 0.60    | 1.2                    | 0.84 0.84<br>220 220                      | 4 < 0.31                                          | 0 0.31                         | <0.31 0 0.31<br><b>840</b> 840                         | 0.57 0.57<br>210 210                                | 1.2                           | 1.2                         | 0.57         0.57           < 0.60         0         0.6 | <pre>&lt; 0.31 0 0 &lt; 0.60 0 0</pre>       | .31 < 0.31                      | 0 0.31 <b>0.59</b>                                                               | 0.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>1.3</b> 1.3<br><b>9.7</b> J 9.7                                          | <b>0.8</b> 0.8<br>< 0.60 0 0.6                                      | <b>0.94</b> 0.94                                                                                   | 1.2         1.2         0.92           < 0.60         0         0.6         32                           | 0.92                          |
| cis-1,2-Dichloroethene<br>cis-1,3-Dichloropropene                    | < 0.69               | 0 0.69                 | < 0.69 0                                  | < 0.69 < 0.69                                     | 0 0.69                         | <pre>&lt; 0.69</pre> 0 0.69                            | <b>210</b> 210 < 0.69 0                             | 0.69 < 0.69                   | 0 0.69                      | <pre>&lt; 0.60 0 0.69</pre>                              | < 0.69 0 0                                   | 0.6 <b>0.44 J</b><br>.69 < 0.69 | 0 0.69 < 0.69                                                                    | 9 0 0.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <pre> 9.7 5 9.7  &lt; 0.69 0 0.69</pre>                                     | < 0.60 0 0.6<br>< 0.69 0 0.69                                       | < 0.60 0 0.6<br>< 0.69 0 0.69                                                                      | <0.60 0 0.6 <b>32</b><br><0.69 0 0.69 <0.69                                                              | 0 0.69                        |
| Cyclohexane                                                          | < 0.52               | 0 0.52                 | < 0.52 0                                  | < 0.52 < 0.52                                     | 0 0.52                         | < 0.52 0 0.52                                          | < 0.52 0                                            | 0.52 < 0.52                   | 0 0.52                      | < 0.52 0 0.52                                            | < 0.52 0 0                                   | .52 < 0.52                      | 0 0.52 < 0.52                                                                    | 2 0 0.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | < 0.52 0 0.52                                                               | < 0.52 0 0.52                                                       | < 0.52 0 0.52                                                                                      | <b>0.66</b> 0.66 < 0.52                                                                                  | 0 0.52                        |
| Dibromochloromethane                                                 | < 1.30<br>< 0.92     | 0 1.3                  | < 1.3 0<br>< 0.92 0                       | <pre>&lt; 1.3 &lt; 1.30 &lt; 0.92 &lt; 0.92</pre> | 0 1.3                          | <pre>&lt; 1.30 0 1.3 &lt; 0.92 0 0.92</pre>            | <1.30 0<br>< 0.92 0                                 | 1.3     < 1.30                | 0 1.3<br>0 0.92             | < 1.30                                                   | <pre>&lt; 1.30 0</pre>                       | 1.3     < 1.30                  | 0 1.3 < 1.30<br>0 0.92 < 0.92                                                    | 0 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <pre>&lt; 1.30 0 1.3 &lt; 0.92 0 0.92</pre>                                 | <1.30 0 1.3<br><0.92 0 0.92                                         | <pre>&lt; 1.30 0 1.3 &lt; 0.92 0 0.92</pre>                                                        | <pre>&lt; 1.30 0 1.3 &lt; 1.30 &lt; 0.92 0 0.92 &lt; 0.92</pre>                                          | 0 1.3                         |
| Ethyl acetate<br>Ethylbenzene                                        | < 0.92<br><b>2.8</b> | 2.8                    | <b>2.3</b> 2.3                            | 0.92 0.92                                         | 0.71                           | <pre>&lt; 0.92 0 0.92</pre> < 0.66 0 0.66              | < 0.66 0                                            | 0.66 <b>0.97</b>              | 0.97                        | <b>4.5 4</b> .5                                          | 8.2 8.2                                      | 7.5                             | 7.5 <b>0.</b> 92 < 0.92                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>0.97</b> 0.97                                                            | <b>2.4</b> 2.4                                                      | <b>1.5</b> 1.5                                                                                     | < 0.92                                                                                                   | 0 0.66                        |
| Freon 11                                                             | < 0.86               | 0 0.86                 | <b>1.7</b> 1.7                            | 6                                                 | 6                              | <b>1.8</b> 1.8                                         | <b>1.1</b> 1.1                                      | 3.1                           | 3.1                         | < 0.86 0 0.86                                            | 10.00 0 0                                    | .86 <b>9.9</b>                  | 9.9 1.5                                                                          | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 0.86 0 0.86                                                               | < 0.86 0 0.86                                                       | < 0.86 0 0.86                                                                                      | < 0.86 0 0.86 <b>1.9</b>                                                                                 | 1.9                           |
| Freon 113<br>Freon 114                                               | < 1.20<br>< 1.10     | 0 1.2                  | <b>110</b> 110                            | <b>60</b>                                         | 60                             | 170         170           < 1.10         0         1.1 | <b>83</b> 83<br>< 1.10 0                            | <b>1.2</b>                    | 1.2                         | < 1.20                                                   | < 1.20 0 · · · · · · · · · · · · · · · · · · | 1.2 < 1.20<br>1.1 < 1.10        | 0 1.2 <b>16</b><br>0 1.1 < 1.1                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1.20 0 1.2<br><b>0.85 J</b> 0.85                                           | <1.20 0 1.2<br><1.10 0 1.1                                          | <1.20 0 1.2<br><1.10 0 1.1                                                                         | <1.20 0 1.2 <b>22</b>                                                                                    | 22                            |
| Freon 12                                                             | 0.65 J               | 0.65                   | <b>2.8</b> 2.8                            | 3.4                                               | 3.4                            | <b>2.7</b> 2.7                                         | <b>1.6</b> 1.6                                      | 3.6                           | 3.6                         | <b>4.2</b> 4.2                                           | <b>4</b> 4                                   | 5.7                             | 5.7 <b>3.8</b>                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>4.3</b> 4.3                                                              | <b>2.9</b> 2.9                                                      | <b>2.5</b> 2.5                                                                                     | <b>3.7 3.7 4.3</b>                                                                                       | 4.3                           |
| Heptane                                                              | < 0.62               | 0 0.62                 | 0.92 0.92                                 | < 0.02                                            | 0 0.62                         | < 0.62 0 0.62                                          | < 0.62 0                                            | 0.62 0.62                     | 0.62                        | <b>0.79</b> 0.79                                         |                                              | .62 < 0.62                      | 0 0.62 < 0.62                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 0.62 0 0.62                                                               | < 0.62 0 0.62                                                       | < 0.62 0 0.62                                                                                      | < 0.62 0 0.62 < 0.62                                                                                     | 0 0.62                        |
| Hexachloro-1,3-butadiene                                             | < 1.60<br>< 0.54     | 0 1.6                  | < 1.6 0<br>< 0.54 0                       | <pre>&lt; 1.6 &lt; 1.60 &lt; 0.54 &lt; 0.54</pre> | 0 1.6                          | <pre>&lt; 1.60 0 1.6 &lt; 0.54 0 0.54</pre>            | <1.60 0<br>0.75 0.75                                | 1.6 < 1.60<br><b>0.9</b>      | 0 1.6                       | <pre>&lt; 1.60 0 1.6 &lt; 0.54 0 0.54</pre>              | <pre>&lt; 1.60 0 2</pre>                     | 1.6 < 1.60<br>.54 < 0.54        | $\begin{array}{c cccc} 0 & 1.6 & < 1.60 \\ \hline 0 & 0.54 & < 0.54 \end{array}$ | 0 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <1.60 0 1.6<br>< 0.54 0 0.54                                                | < 1.60 0 1.6<br>< 0.54 0 0.54                                       | <pre>&lt; 1.60 0 1.6 &lt; 0.54 0 0.54</pre>                                                        | < 1.60 0 1.6 $< 1.60< 0.54$ 0 0.54 $< 0.54$                                                              | 0 1.6                         |
| Isopropyl alcohol                                                    | < 0.37               | 0 0.37                 | <b>4.3</b> 4.3                            |                                                   | 5.4                            | < 0.37 0 0.37                                          | < 0.37 0                                            | 0.37 < 0.37                   | 0 0.37                      | <b>5.3</b> 5.3                                           |                                              | .37 < 0.37                      | 0 0.37 < 0.37                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <pre>&lt; 0.37 0 0.37</pre>                                                 | <b>6.7</b> 6.7                                                      | <b>4.2</b> 4.2                                                                                     | < 0.37                                                                                                   | 0 0.37                        |
| m&p-Xylene                                                           | 7.9                  | 7.9                    | <b>8.5</b> 8.5                            | 2.3                                               | 2.3                            | <b>1.6</b> 1.6                                         | 0.75 J 0.75                                         | 2.4                           | 2.4                         | <b>34 J</b> 34                                           | <b>20</b> 20                                 | 75                              | 75 3.1                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>2.7</b> 2.7                                                              | <b>9.9</b> 9.9                                                      | <b>7.2</b> 7.2                                                                                     | <b>8.4</b> 8.4 < 1.30                                                                                    | 0 1.3                         |
| Methyl Butyl Ketone<br>Methyl Ethyl Ketone                           | < 1.20<br><b>10</b>  | 0 1.2                  | <1.2 0<br><b>2.7</b> 2.7                  | < 1.2 < 1.20<br><b>2.5</b>                        | 0 1.2<br>2.5                   | <pre>&lt; 1.20 0 1.2 &lt; 0.90 0 0.9</pre>             | <1.20 0<br>1.2 1.2                                  | 1.2 < 1.20<br>3.1             | 0 1.2<br>3.1                | < 1.20                                                   | <1.20 0 ·                                    | 1.2 < 1.20<br>1.7               | 0 1.2 < 1.20<br>1.7 <b>0.87</b>                                                  | <b>o i</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <1.20 0 1.2<br>22 22                                                        | <1.20 0 1.2<br><0.90 0 0.9                                          | <1.20 0 1.2<br>2 2                                                                                 | <pre>&lt;1.20 0 1.2 &lt;1.20 1.9 1.9 1.5</pre>                                                           | 0 1.2                         |
| Methyl Isobutyl Ketone                                               | < 1.20               | 0 1.2                  | < 1.2 0                                   | < 1.2 < 1.20                                      | 0 1.2                          | <1.20 0 1.2                                            | < 1.20 0                                            | 1.2 < 1.20                    | 0 1.2                       | < 1.20                                                   | < 1.20 0                                     | 1.2 < 1.20                      | 0 1.2 < 1.20                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 1.20 0 1.2                                                                | < 1.20 0 1.2                                                        | < 1.20 0 1.2                                                                                       | <pre>&lt;1.20 0 1.2 &lt; 1.20</pre>                                                                      | 0 1.2                         |
| Methyl tert-butyl ether                                              | < 0.55               | 0 0.55                 | < 0.55 0                                  | < 0.55 < 0.55                                     | 0 0.55                         | < 0.55 0 0.55                                          | < 0.55 0                                            | 0.55 < 0.55                   | 0 0.55                      | < 0.55 0 0.55                                            | 0.00                                         | .55 < 0.55                      | 0 0.55 < 0.55                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 0.55 0 0.55                                                               | < 0.55 0 0.55                                                       | < 0.55 0 0.55                                                                                      | < 0.55 0 0.55 < 0.55                                                                                     | 0 0.55                        |
| Methylene chloride<br>o-Xylene                                       | < 0.53<br><b>1.4</b> | 0 0.53                 | 1.8         1.8           3.1         3.1 | 1.8<br>0.66                                       | 0.66                           | 1.8         1.8           0.62         J         0.62  | 0.56         0.56           < 0.66         0        | 0.66 0.71                     | 0.6 0.71                    | 0.6 0.6 5.2 5.2                                          | < 0.53 0 0<br><b>5.7</b> 5.7                 | .53 <b>1.4 30</b>               | 1.4         1.3           30         1.6                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.53 0 0.53<br>0.88 0.88                                                   | 0.64 0.64 3.8 3.8                                                   | 1.2         1.2           1.8         1.8                                                          | 2.4         2.4         0.95           2.5         2.5         < 0.66                                    | 0 0.66                        |
| Propylene                                                            | < 0.26               | 0 0.26                 | < 0.26 0                                  | < 0.26 < 0.26                                     | 0 0.26                         | < 0.26 0 0.26                                          | < 0.26 0                                            | 0.26 < 0.26                   | 0 0.26                      | <pre></pre>                                              | < 0.26 0 0                                   | .26 < 0.26                      | 0 0.26 < 0.26                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <pre>&lt;0.26</pre> 0.26                                                    | < 0.26 0 0.26                                                       | < 0.26 0 0.26                                                                                      | <pre>&lt; 0.26</pre> <pre>&lt; 0.26</pre> <pre>&lt; 0.26</pre> <pre>&lt; 0.26</pre> <pre>&lt; 0.26</pre> | 0 0.26                        |
| Styrene                                                              | 0.52 J               | 0.52                   | < 0.65 0                                  | < 0.65 < 0.65                                     | 0 0.65                         | < 0.65 0 0.65<br>460 460                               | < 0.65 0 <b>140</b>                                 | 0.65 <b>0.48</b> J            | 0.48                        | < 0.65 0 0.65                                            | 10.00 0 0                                    | .65 < 0.65                      | 0 0.65 < 0.65                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.65 0.65                                                                   | < 0.65 0 0.65                                                       | < 0.65 0 0.65                                                                                      | < 0.65 0 0.65 < 0.65                                                                                     | 0 0.65                        |
| Tetrachloroethylene<br>Tetrahydrofuran                               | 0.83 J<br>72         | 0.83                   | <b>110</b> 110<br><b>2.4</b> 2.4          |                                                   | 5.1                            | <b>460</b> 460<br>< 0.45 0 0.45                        | <b>140</b> 140<br><b>0.96</b> 0.96                  | 8.8                           | 8.8<br>12                   | <1.00 0 1<br>5.5 5.5                                     | < 1.00 0<br>8.4 8.4                          | 1 1.5<br>4.2                    | 1.5         < 1.00           4.2 <b>6.5</b>                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>1.9</b> 1.9<br><b>110</b> 110                                            | 0.83         J         0.83           6.3         6.3               | < 1.00 0 1<br>6 6                                                                                  | < 1.00                                                                                                   | 9.7                           |
| Toluene                                                              | 5.7                  | 5.7                    | <b>7.2</b> 7.2                            | 2.3                                               | 2.3                            | <b>1.5</b> 1.5                                         | <b>1.9</b> 1.9                                      | 4                             | 4                           | 21 J 21                                                  | <b>21</b> 21                                 | 39                              | 39 2.2                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>2.1</b> 2.1                                                              | <b>8.1</b> 8.1                                                      | <b>1.4</b> 1.4                                                                                     | <b>2.5 2.5 0.69</b>                                                                                      | 0.69                          |
| trans-1,2-Dichloroethene                                             | < 0.60               | 0 0.6                  | 0.64 0.64                                 | 1.5                                               | 1.5                            | <b>1.1</b> 1.1                                         | <b>1.4</b> 1.4                                      | 1                             | 1                           | < 0.60 0 0.6                                             | < 0.60 0 0                                   | 0.6 < 0.60                      | 0 0.6 1.1                                                                        | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 0.60 0 0.6                                                                | < 0.60 0 0.6                                                        | < 0.60 0 0.6                                                                                       | <0.60 0 0.6 <b>0.44</b>                                                                                  | J 0.44                        |
| trans-1,3-Dichloropropene<br>Trichloroethene                         | < 0.69               | 0 0.69<br>0.71         | < 0.69 0<br><b>350</b> 350                |                                                   | 0 0.69<br>220                  | < 0.69 0 0.69<br><b>1,200</b> 1200                     | < 0.69 0<br><b>180</b> 180                          | 0.69 < 0.69<br><b>32</b>      | 0 0.69<br>32                | < 0.69                                                   | < 0.69 0 0<br>< 0.82 0 0                     | .69 < 0.69<br>.82 <b>3.2</b>    | 0 0.69 < 0.69<br>3.2 <b>0.49</b>                                                 | 9 0 0.69<br>J 0.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.69 0 0.69<br><b>21</b> 21                                                | <0.69 0 0.69<br><0.82 0 0.82                                        | <0.69 0 0.69<br><0.82 0 0.82                                                                       | < 0.69                                                                                                   | 0 0.69                        |
| Vinyl acetate                                                        | < 0.54               | 0 0.54                 | < 0.54 0                                  | < 0.54 < 0.54                                     | 0 0.54                         | < 0.54 0 0.54                                          | < 0.54 0                                            | 0.54 < 0.54                   | 0 0.54                      | < 0.54 0 0.54                                            | < 0.54 0 0                                   | .54 < 0.54                      | 0 0.54 < 0.54                                                                    | 4 0 0.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | < 0.54 0 0.54                                                               | < 0.54 0 0.54                                                       | < 0.54 0 0.54                                                                                      | < 0.54 0 0.54 < 0.54                                                                                     | 0 0.54                        |
| Vinyl Bromide                                                        | < 0.67               | +                      | < 0.67 0                                  | 10101                                             | 0 0.67                         | < 0.67 0 0.67                                          | < 0.67 0                                            | 0.67 < 0.67                   | 0 0.67                      | < 0.67 0 0.67                                            |                                              | .67 < 0.67                      | 0 0.67 < 0.67                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             | < 0.67 0 0.67                                                       | < 0.67 0 0.67                                                                                      | < 0.67 0 0.67 < 0.67                                                                                     | 0 0.67                        |
| Vinyl chloride<br>Cumulative VOCs (µg/m <sup>3</sup> ) <sup>(2</sup> | < 0.39               | 0 0.39                 | 885.99                                    |                                                   | 2.3<br>675.48                  | <b>3</b> 3<br>2781.34                                  | <b>1.7</b> 1.7<br>673.96                            | < 0.39                        | 0 0.39                      | <b>2.3</b> 2.3 126.28                                    | <b>1.6</b> 1.6 84.5                          | 2.6                             | 2.6 <b>2.3</b><br>31.32                                                          | 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 0.39 0 0.39<br>283.2                                                      | <b>2.1</b> 2.1 79.53                                                | <b>1</b>   1   40.99                                                                               | <b>3.2</b> 3.2 <b>3.7</b> 44.18                                                                          | 3.7                           |
| Cum % Removal                                                        |                      | NA                     | NA                                        |                                                   | NA                             | NA                                                     | NA                                                  |                               | NA                          | 86%                                                      | 87%                                          |                                 | 92%                                                                              | 82%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NA                                                                          | 91%                                                                 | 94%                                                                                                | 98%                                                                                                      | 84%                           |
| Target VOCs (µg/m <sup>3</sup> ) <sup>(3)</sup>                      |                      | 1.54                   | 680.64                                    |                                                   | 541.5                          | 2501.1                                                 | 531.4                                               |                               | 65.8                        | 0                                                        | 0                                            |                                 | 5.14                                                                             | 64.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 32.6                                                                        | 0.83                                                                | 0                                                                                                  | 0                                                                                                        | 33.64                         |
| Target % Removal<br>Cumulative VOCs (g/day)                          |                      | NA<br>3.91             | NA 25.78                                  |                                                   | NA<br>16.84                    | NA<br>71.67                                            | NA<br>20.50                                         |                               | NA                          | 100%                                                     | 100%                                         |                                 | 100%                                                                             | 88%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NA                                                                          | 100%                                                                | 100%                                                                                               | 100%                                                                                                     | 94%                           |
|                                                                      | 4                    | 0.01                   | 23.70                                     | <u> </u>                                          | 10.01                          | 11.07                                                  | <b>Ib/year</b> 21.28                                | —                             |                             |                                                          |                                              |                                 |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             |                                                                     |                                                                                                    |                                                                                                          |                               |
| Notes:                                                               |                      |                        |                                           |                                                   |                                |                                                        |                                                     | ı                             |                             |                                                          |                                              |                                 |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             |                                                                     |                                                                                                    |                                                                                                          |                               |

1. Samples analyzed for VOCs using USEPA Method TO-15.

2. Cumulative VOCs calculated using only detected concentrations.

3. Target VOCs calculated using only detected concentrations of the following compounds: 1,1-dichloroethene, cis-1,2-dichloroethene, tetrachloroethylene, trans-1,2-dichloroethene, and trichloroethene. BOLD indicates detected concentrations.

Definitions:

< - less than reporting limit listed

J - indicates concentration is estimated

µg/m<sup>3</sup> - micrograms per cubic meter

Table 7. Summary of Estimated Air Stripper Emissions, Former Lockheed Martin French Road Facility, Utica, NY.

|                                              |                                            |                               | Maximum                                                          | 1/28/2011         | 2/23/2011         | 4/4/2011          | 7/7/2011          | 10/12/2011        |                                                     |                                                                | Actual Annual                      |
|----------------------------------------------|--------------------------------------------|-------------------------------|------------------------------------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-----------------------------------------------------|----------------------------------------------------------------|------------------------------------|
| Volatile Organic<br>Compounds <sup>(1)</sup> | AGC <sup>(2)</sup><br>(µg/m <sup>3</sup> ) | SGC <sup>(2)</sup><br>(µg/m³) | Effluent<br>Concentration<br>(µg/m <sup>3</sup> ) <sup>(3)</sup> | Result<br>(µg/m3) | Result<br>(µg/m3) | Result<br>(µg/m3) | Result<br>(µg/m3) | Result<br>(µg/m3) | Maximum<br>Emission Rate<br>(Ib/day) <sup>(4)</sup> | Actual Annual<br>Impact<br>(μg/m <sup>3</sup> ) <sup>(5)</sup> | Impact<br>Percentage of<br>AGC (%) |
| 1,1,1-Trichloroethane                        |                                            |                               | 0                                                                | 0                 | 0                 | 0                 | 0                 |                   |                                                     |                                                                |                                    |
| 1,1,2,2-Tetrachloroethane                    |                                            |                               | 0                                                                | 0                 | 0                 | 0                 | 0                 |                   |                                                     |                                                                |                                    |
| 1,1,2-Trichloroethane                        |                                            |                               | 0                                                                | 0                 | 0                 | 0                 | 0                 |                   |                                                     |                                                                |                                    |
| 1,1-Dichloroethane                           | 0.63                                       | -                             | 0                                                                | 0                 | 0                 | 0                 | 0                 |                   | 0.00E+00                                            | 0.00E+00                                                       | 0.00                               |
| 1,1-Dichloroethene                           |                                            |                               | 0                                                                | 0                 | 0                 | 0                 | 0                 |                   | 0.00E+00                                            | 0.00E+00                                                       | -                                  |
| 1,2,4-Trichlorobenzene                       |                                            |                               | 0                                                                | 0                 | 0                 | 0                 | 0                 |                   | 0.00E+00                                            | 0.00E+00                                                       | -                                  |
| 1,2,4-Trimethylbenzene                       | 290                                        | -                             | 3.7                                                              | 1.5               | 3.7               | 1.3               | 3.3               | 0                 | 2.16E-04                                            | 2.63E-04                                                       | 0.00                               |
| 1,2-Dibromoethane                            |                                            |                               | 1.4                                                              | 0                 | 0                 | 0                 | 0                 |                   | 8.19E-05                                            | 9.94E-05                                                       | -                                  |
| 1,2-Dichlorobenzene                          |                                            |                               | 1.4                                                              | 0                 | 0                 | 0                 | 0                 |                   | 8.19E-05                                            | 9.94E-05                                                       | -                                  |
| 1,2-Dichloroethane                           | 0.038                                      | -                             | 1.4                                                              | 0                 | 0                 | 0                 | 0                 |                   | 8.19E-05                                            | 9.94E-05                                                       | 0.26                               |
| 1,2-Dichloropropane                          |                                            |                               | 1.4                                                              | 0                 | 0                 | 0                 | 0                 |                   | 8.19E-05                                            | 9.94E-05                                                       | -                                  |
| 1,3,5-Trimethylbenzene                       | 290                                        | -                             | 1.4                                                              | 0.65 J            | 1.4               | 0.65 J            | 1.3               | 0                 | 8.19E-05                                            | 9.94E-05                                                       | 0.00                               |
| 1,3-butadiene                                |                                            |                               | 0                                                                | 0                 | 0                 | 0                 | 0                 |                   | 0.00E+00                                            | 0.00E+00                                                       | -                                  |
| 1,3-Dichlorobenzene                          |                                            |                               | 0                                                                | 0                 | 0                 | 0                 | 0                 |                   | 0.00E+00                                            | 0.00E+00                                                       | -                                  |
| 1,4-Dichlorobenzene                          | 0.09                                       | -                             | 0                                                                | 0                 | 0                 | 0                 | 0                 |                   | 0.00E+00                                            | 0.00E+00                                                       | 0.00                               |
| 1,4-Dioxane                                  | 0.13                                       | 3,000                         | 1.6                                                              | 1.6               | 0                 | 0                 | 0                 | 0                 | 9.36E-05                                            | 1.14E-04                                                       | 0.09                               |
| 2,2,4-trimethylpentane                       | 3,300                                      | -                             | 0.81                                                             | 0                 | 0.81              | 0                 | 0                 | 0                 | 4.74E-05                                            | 5.75E-05                                                       | 0.00                               |
| 4-ethyltoluene                               | -                                          | -                             | 0.95                                                             | 0                 | 0.95              | 0.8               | 0.95              | 0                 | 5.55E-05                                            | 6.75E-05                                                       | -                                  |
| Acetone                                      | 28,000                                     | 180,000                       | 100                                                              | 100               | 27                | 8.5               | 6.2               | 4.4               | 5.85E-03                                            | 7.10E-03                                                       | 0.00                               |
| Allyl chloride                               |                                            |                               | 0                                                                | 0                 | 0                 | 0                 | 0                 |                   | 0.00E+00                                            | 0.00E+00                                                       | -                                  |
| Benzene                                      | 0.13                                       | 1,300                         | 1.2                                                              | 1.1               | 1.2               | 0                 | 0                 | 0                 | 7.02E-05                                            | 8.52E-05                                                       | 0.07                               |
| Benzyl chloride                              |                                            |                               | 0                                                                | 0                 | 0                 | 0                 | 0                 |                   | 0.00E+00                                            | 0.00E+00                                                       | -                                  |
| Bromodichloromethane                         |                                            |                               | 0                                                                | 0                 | 0                 | 0                 | 0                 |                   | 0.00E+00                                            | 0.00E+00                                                       | -                                  |
| Bromoform                                    |                                            |                               | 0                                                                | 0                 | 0                 | 0                 | 0                 |                   | 0.00E+00                                            | 0.00E+00                                                       | -                                  |
| Bromomethane                                 |                                            |                               | 0                                                                | 0                 | 0                 | 0                 | 0                 |                   | 0.00E+00                                            | 0.00E+00                                                       | -                                  |
| Carbon disulfide                             | 700                                        | 6,200                         | 0.47                                                             | 0                 | 0                 | 0                 | 0.47              |                   | 2.75E-05                                            | 3.34E-05                                                       | 0.00                               |
| Carbon tetrachloride                         |                                            |                               | 0                                                                | 0                 | 0                 | 0                 | 0                 |                   | 0.00E+00                                            | 0.00E+00                                                       | -                                  |
| Chlorobenzene                                |                                            |                               | 0                                                                | 0                 | 0                 | 0                 | 0                 |                   | 0.00E+00                                            | 0.00E+00                                                       | -                                  |
| Chloroethane                                 |                                            |                               | 0                                                                | 0                 | 0                 | 0                 | 0                 |                   | 0.00E+00                                            | 0.00E+00                                                       | -                                  |
| Chloroform                                   | 0.043                                      | 150                           | 0                                                                | 0                 | 0                 | 0                 | 0                 |                   | 0.00E+00                                            | 0.00E+00                                                       | 0.00                               |
| Chloromethane                                | 90                                         | 22,000                        | 1.3                                                              | 1.3               | 0.8               | 0.94              | 1.2               | 0.92              | 7.60E-05                                            | 9.23E-05                                                       | 0.00                               |
| cis-1,2-Dichloroethene                       | 63                                         | -                             | 32                                                               | 9.7 J             | 0                 | 0                 | 0                 | 32                | 1.87E-03                                            | 2.27E-03                                                       | 0.00                               |
| cis-1,3-Dichloropropene                      |                                            |                               | 0                                                                | 0                 | 0                 | 0                 | 0                 |                   | 0.00E+00                                            | 0.00E+00                                                       | -                                  |
| Cyclohexane                                  | 6,000                                      | -                             | 0.66                                                             | 0                 | 0                 | 0                 | 0.66              |                   | 3.86E-05                                            | 4.69E-05                                                       | 0.00                               |
| Dibromochloromethane                         |                                            |                               | 0                                                                | 0                 | 0                 | 0                 | 0                 |                   | 0.00E+00                                            | 0.00E+00                                                       | -                                  |
| Ethyl acetate                                |                                            |                               | 0                                                                | 0                 | 0                 | 0                 | 0                 |                   | 0.00E+00                                            | 0.00E+00                                                       | -                                  |
| Ethylbenzene                                 | 1,000                                      | 54,000                        | 2.4                                                              | 0.97              | 2.4               | 1.5               | 1.8               | 0                 | 1.40E-04                                            | 1.70E-04                                                       | 0.00                               |
| Freon 11                                     | 1,000                                      | 68,000                        | 0                                                                | 0                 | 0                 | 0                 | 0                 |                   | 0.00E+00                                            | 0.00E+00                                                       | 0.00                               |
| Freon 113                                    | 180,000                                    | 960,000                       | 0                                                                | 0                 | 0                 | 0                 | 0                 |                   | 0.00E+00                                            | 0.00E+00                                                       | 0.00                               |
| Freon 114                                    | 17,000                                     | -                             | 0.85                                                             | 0.85 J            | 0                 | 0                 | 0                 | 0                 | 4.97E-05                                            | 6.04E-05                                                       | 0.00                               |
| Freon 12                                     | 12,000                                     | -                             | 4.3                                                              | 4.3               | 2.9               | 2.5               | 3.7               | 4.3               | 2.51E-04                                            | 3.05E-04                                                       | 0.00                               |
| Heptane                                      | 3,900                                      | 210,000                       | 0                                                                | 0                 | 0                 | 0                 | 0                 |                   | 0.00E+00                                            | 0.00E+00                                                       | 0.00                               |
| Hexachloro-1,3-butadiene                     |                                            |                               | 0                                                                | 0                 | 0                 | 0                 | 0                 |                   | 0.00E+00                                            | 0.00E+00                                                       | -                                  |
| Hexane                                       | 700                                        | •                             | 0                                                                | 0                 | 0                 | 0                 | 0                 |                   | 0.00E+00                                            | 0.00E+00                                                       | 0.00                               |
| Isopropyl alcohol                            | 7,000                                      | 98,000                        | 6.7                                                              | 0                 | 6.7               | 4.2               | 0                 | 0                 | 3.92E-04                                            | 4.76E-04                                                       | 0.00                               |
| m&p-Xylene                                   | 100                                        | 4,300                         | 9.9                                                              | 2.7               | 9.9               | 7.2               | 8.4               | 0                 | 5.79E-04                                            | 7.03E-04                                                       | 0.00                               |
| Methyl Butyl Ketone                          | E 000                                      | 40.000                        | 0                                                                | 0                 | 0                 | 0                 | 0                 | / · -             | 0.00E+00                                            | 0.00E+00                                                       | -                                  |
| Methyl Ethyl Ketone                          | 5,000                                      | 13,000                        | 22                                                               | 22                | 0                 | 2                 | 1.9               | 1.5               | 1.29E-03                                            | 1.56E-03                                                       | 0.00                               |
| Methyl Isobutyl Ketone                       |                                            |                               | 0                                                                | 0                 | 0                 | 0                 | 0                 |                   | 0.00E+00                                            | 0.00E+00                                                       | -                                  |
| Methyl tert-butyl ether                      |                                            |                               | 0                                                                | 0                 | 0                 | 0                 | 0                 |                   | 0.00E+00                                            | 0.00E+00                                                       | -                                  |
| Methylene chloride                           | 2.1                                        | 14,000                        | 2.4                                                              | 0                 | 0.64              | 1.2               | 2.4               | 0.95              | 1.40E-04                                            | 1.70E-04                                                       | 0.01                               |
| o-Xylene                                     | 100                                        | 4,300                         | 3.8                                                              | 0.88              | 3.8               | 1.8               | 2.5               | 0                 | 2.22E-04                                            | 2.70E-04                                                       | 0.00                               |
| Propylene                                    | 1.000                                      | 47.000                        | 0                                                                | 0                 | 0                 | 0                 | 0                 |                   | 0.00E+00                                            | 0.00E+00                                                       | -                                  |
| Styrene                                      | 1,000                                      | 17,000                        | 0.65                                                             | 0.65              | 0                 | 0                 | 0                 | 0                 | 3.80E-05                                            | 4.62E-05                                                       | 0.00                               |
| Tetrachloroethylene                          | 1                                          | 1,000                         | 1.9                                                              | 1.9               | 0.83 J            | 0                 | 0                 | 1.2               | 1.11E-04                                            | 1.35E-04                                                       | 0.01                               |
| Tetrahydrofuran<br>Toluene                   | 350                                        | 30,000                        | 110<br>8.1                                                       | 110               | 6.3<br>8.1        | 6<br>1.4          | 3.7<br>2.5        | 9.7               | 6.43E-03<br>4.74E-04                                | 7.81E-03                                                       | 0.00                               |
| IUUUUUU                                      | 5,000                                      | 37,000                        |                                                                  | 2.1               |                   |                   |                   | 0.69              |                                                     | 5.75E-04                                                       | 0.00                               |
| tropp 1.2 Diphlaraathara                     |                                            |                               | 0                                                                | 0                 | 0                 | 0                 | 0                 |                   | 0.00E+00                                            | 0.00E+00                                                       | -                                  |
| trans-1,2-Dichloroethene                     |                                            |                               | $\sim$                                                           |                   |                   | 0                 | I U               | 1                 | 0.00E+00                                            | 0.00E+00                                                       | -                                  |
| trans-1,3-Dichloropropene                    | 05                                         | 14.000                        | 0                                                                | -                 |                   | -                 |                   | ^                 |                                                     |                                                                | 0.00                               |
| trans-1,3-Dichloropropene<br>Trichloroethene | 0.5                                        | 14,000                        | 21                                                               | 21                | 0                 | 0                 | 0                 | 0                 | 1.23E-03                                            | 1.49E-03                                                       | 0.30                               |
| trans-1,3-Dichloropropene                    | 0.5                                        | 14,000                        | -                                                                | -                 |                   | -                 |                   | 0                 |                                                     |                                                                | 0.30<br>-                          |

#### Notes:

1. Volatile organic compounds shown are only those detected in effluent samples during 2011.

2. AGC and SGC values obtained from NYSDEC DAR-1 AGC/SGC Tables, dated 9/10/07.

3. Concentrations shown for each volatile organic compound are the maximum concentrations detected during 2011.

4. Maximum emission rate calculated using the maximum concentrations for each volatile organic compound and the average effluent flow rate (652 scfm) during 2011.

5. Actual annual impact calculated by following procedures described in NYSDEC DAR-1 Guidelines for the Control of Toxic Ambient Air Contaminants (NYSDEC 1991). Note effective stack height of 28 feet.

#### Definitions:

- < less than laboratory detection limit listed
- "-" indicates no guideline as been established
- AGC Annual Guideline Concentration
- J Indicates concentration is estimated

lb/day - pounds per day

Q - data qualifier

- SGC Short-term Guideline Concentration
- µg/m<sup>3</sup> micrograms per cubic meter

Table 8. Water Treatment Chemical Consumption Summary, Former Lockheed Martin French Road Facility, Utica, NY.

| Chemical Name - ARIES 2908               |                    |
|------------------------------------------|--------------------|
| Chemical Specific Gravity - 1.04 to 1.09 | 1.065              |
| Specific Weight of Water @ 60°F          | 8.3378 (lb/gallon) |
| Specific Weight of Chemical @ 60°F       | 8.8798 (lb/gallon) |

| Date       | Drum<br># | Days | Volume in<br>30 Gallon<br>Drum (gal.) | % Full | Δ Volume<br>(gal.) | ∆ Lbs | Consumption<br>Rate<br>(Ibs/day) <sup>(1)</sup> | MH-1 Total<br>Flow<br>(gallons) | MH-2 Total<br>Flow (gallons) | MH-3 Total<br>Flow (gallons) | ∑ Total<br>Flows<br>(gallons) | ∆ Total<br>Flow | Dose Rate<br>This Period<br>(ppm) <sup>(2)</sup> |                         |
|------------|-----------|------|---------------------------------------|--------|--------------------|-------|-------------------------------------------------|---------------------------------|------------------------------|------------------------------|-------------------------------|-----------------|--------------------------------------------------|-------------------------|
| 4/20/2011  | 1         | -    | 30                                    | 100%   | -                  | -     | -                                               | 51,271,950                      | 9,102,881                    | 224,649                      | 60,599,480                    | -               | -                                                | Brought sequestering a  |
| 5/19/2011  | 1         | 29   | 18.5                                  | 62%    | 11.5               | 102.1 | 3.5                                             | 51,670,347                      | 9,169,542                    | 455,374                      | 61,295,263                    | 695,783         | 16.5                                             |                         |
| 6/2/2011   | 1         | 14   | 14.1                                  | 47%    | 4.4                | 39.1  | 2.8                                             | 51,837,640                      | 9,189,887                    | 534,242                      | 61,561,769                    | 266,506         | 16.5                                             |                         |
| 7/7/2011   | 1         | 35   | 12                                    | 40%    | 2.1                | 18.6  | 0.5                                             | 52,075,707                      | 9,227,668                    | 672,141                      | 61,975,516                    | 413,747         | 5.1                                              | Under dosing due to CF  |
| 8/11/2011  | 1         | 35   | 7                                     | 23%    | 5                  | 44.4  | 1.3                                             | 52,243,445                      | 9,265,879                    | 787,928                      | 62,297,252                    | 321,736         | 15.5                                             |                         |
| 9/8/2011   | 1         | 28   | 0                                     | 0%     | 7                  | 62.2  | 2.2                                             | 52,508,569                      | 9,342,539                    | 966,290                      | 62,817,398                    | 520,146         | 13.5                                             | Drum #1 empty.          |
|            |           |      |                                       |        |                    |       |                                                 |                                 | NEW D                        | RUM BROUGHT                  | ONLINE                        |                 |                                                  |                         |
| 9/9/2011   | 2         | -    | 30                                    | 100%   | -                  | -     | -                                               | 52,552,901                      | 9,347,402                    | 986,141                      | 62,886,444                    | -               | -                                                | Brought Drum #2 online  |
| 9/26/2011  | 2         | 17   | 26                                    | 87%    | 4                  | 35.5  | 2.1                                             | 52,717,931                      | 9,374,727                    | 1,081,024                    | 63,173,682                    | 287,238         | 13.9                                             | Low sequestering agent  |
| 10/6/2011  | 2         | 10   | 26                                    | 87%    | 0                  | 0.0   | 0.0                                             | 52,842,625                      | 9,395,515                    | 1,142,812                    | 63,380,952                    | 207,270         | 0.0                                              | See Note 3.             |
|            |           |      |                                       |        |                    |       |                                                 |                                 | NEW D                        | RUM BROUGHT                  | ONLINE                        |                 |                                                  |                         |
| 10/6/2011  | 3         | -    | 30                                    | 100%   | -                  | -     | -                                               | 52,842,625                      | 9,395,515                    | 1,142,812                    | 63,380,952                    | -               | -                                                | Cleaned and inspected   |
| 11/1/2011  | 3         | 26   | 26                                    | 87%    | 4                  | 35.5  | 1.4                                             | 53,071,145                      | 9,435,095                    | 1,258,735                    | 63,764,975                    | 384,023         | 10.4                                             | Continue using 3rd drun |
| 12/1/2011  | 3         | 30   | 0                                     | 0%     | 26                 | 230.9 | 7.7                                             | 53,349,688                      | 9,469,794                    | 1,371,989                    | 64,191,471                    | 426,496         | 61.0                                             | 3rd drum empty, reuse 2 |
|            |           |      |                                       |        |                    |       |                                                 |                                 | NEW/PREVIC                   | DUS DRUM BRO                 | UGHT ONLINI                   | Ε               |                                                  |                         |
| 12/1/2011  | 2         | -    | 26                                    | 87%    | -                  | -     | -                                               | 53,349,688                      | 9,469,794                    | 1,371,989                    | 64,191,471                    | -               | -                                                | 3rd drum empty, reuse 2 |
| 12/22/2011 | 2         |      | 22                                    | 73%    | 4                  | 35.5  | 1.7                                             | 53,525,286                      | 9,491,900                    | 1,437,180                    | 64,454,366                    | 262,895         | 15.2                                             |                         |
| 2011 Total | -         | 246  | -                                     | -      | 68                 | 603.8 | -                                               | -                               | -                            | -                            | -                             | 3,854,886       | 17.6                                             | Through 12/22/11        |

Notes:

1) Maximum allowable daily loading rate of 12.5 lbs/day per WTC Usage Form dated 4/11/11.

2) Sequestering agent dosing rate is setup to be proportional to the aggregate flow transmitter value (not shown). However, this table utilizes the sum of the three individual pumping manhole flow transmitter values to calculate dose rate.

3) Sequestering agent low flow alarm occurred on 9/26/11 due to partial solidification of chemical within suction/injection fittings and tubing. Inspection not conducted until 10/6/11, during which time the fittings and tubing were cleaned. Drum #2 was taken offline until vendor could troubleshoot observation, in the interim Drum #3 was brought online.

| Notes                                                        |
|--------------------------------------------------------------|
| agent online for first time.                                 |
|                                                              |
|                                                              |
| FP being offline due to noted past alarms.                   |
|                                                              |
|                                                              |
|                                                              |
| е.                                                           |
| t flow alarm occurs due to solidified chemical. See noted 3. |
|                                                              |
|                                                              |
| l fittings/tubing; brought Drum #3 online.                   |
| m.                                                           |
| 2nd drum that was taken offline on 10/6/11                   |
|                                                              |
| 2nd drum that was taken offline on 10/6/11                   |
|                                                              |
|                                                              |

Table 9. Groundwater Elevation Measurements, Solvent Dock Area, Former Lockheed Martin French Road Facility, Utica, New York.

| Monitoring Well | Top of PVC<br>Riser<br>Elevation | Depth to water<br>(from top of PVC<br>riser) | Groundwater<br>Elevation (ft) | Depth to water<br>(from top of PVC<br>riser) | Groundwater<br>Elevation (ft) | Depth to water<br>(from top of PVC<br>riser) | Groundwater<br>Elevation (ft) | Depth to water<br>(from top of PVC<br>riser) | Groundwater<br>Elevation (ft) |
|-----------------|----------------------------------|----------------------------------------------|-------------------------------|----------------------------------------------|-------------------------------|----------------------------------------------|-------------------------------|----------------------------------------------|-------------------------------|
|                 |                                  | February 23, 2011                            |                               | April 1, 2011                                |                               | July 5, 2011                                 |                               | September 26, 2011                           |                               |
| MW - 1          | 506.80                           | 8.11                                         | 498.69                        | 6.84                                         | 499.96                        | 8.57                                         | 498.23                        | 8.09                                         | 498.71                        |
| MW - 2          | 504.69                           | NM                                           |                               | 4.05                                         | 500.64                        | 5.89                                         | 498.80                        | 5.42                                         | 499.27                        |
| MW - 3          | 509.30                           | 10.58                                        | 498.72                        | 9.30                                         | 500.00                        | 10.98                                        | 498.32                        | 10.58                                        | 498.72                        |
| MW - 4          | 506.73                           | NM                                           |                               | 6.12                                         | 500.61                        | 11.24                                        | 495.49                        | 10.55                                        | 496.18                        |
| MW - 5          | 504.46                           | 3.81                                         | 500.65                        | 2.48                                         | 501.98                        | 2.63                                         | 501.83                        | 3.08                                         | 501.38                        |
| MW - 6          | 508.58                           | 6.87                                         | 501.71                        | 5.92                                         | 502.66                        | 6.23                                         | 502.35                        | 5.59                                         | 502.99                        |
| MW - 7          | 506.94                           | 8.53                                         | 498.41                        | 7.65                                         | 499.29                        | 7.84                                         | 499.10                        | 7.46                                         | 499.48                        |
| MW - 9          | 505.15                           | 2.60                                         | 502.55                        | 1.99                                         | 503.16                        | 3.01                                         | 502.14                        | 2.55                                         | 502.60                        |
| MW - 10         | 504.48                           | 4.41                                         | 500.07                        | 3.53                                         | 500.95                        | 5.16                                         | 499.32                        | 4.80                                         | 499.68                        |
| MW - 11         | 507.03                           | 8.50                                         | 498.53                        | 7.89                                         | 499.14                        | 8.09                                         | 498.94                        | 6.80                                         | 500.23                        |
| MW - 12         | 508.34                           | NM                                           |                               | 10.90                                        | 497.44                        | 12.08                                        | 496.26                        | NM                                           |                               |
| MW - 13S        | 506.03                           | NM                                           |                               | 5.40                                         | 500.63                        | DRY                                          |                               | 6.68                                         | 499.35                        |
| MW - 13BR       | 506.28                           | NM                                           |                               | 9.55                                         | 496.73                        | 10.67                                        | 495.61                        | 10.94                                        | 495.34                        |
| MW - 14S        | 507.85                           | 9.86                                         | 497.99                        | 10.22                                        | 497.63                        | 12.57                                        | 495.28                        | 10.35                                        | 497.50                        |
| MW - 14BR       | 507.95                           | 29.25                                        | 478.70                        | 28.02                                        | 479.93                        | 25.46                                        | 482.49                        | 23.55                                        | 484.40                        |
| MW - 15S        | 507.46                           | 8.04                                         | 499.42                        | 8.24                                         | 499.22                        | 8.38                                         | 499.08                        | 8.28                                         | 499.18                        |
| MW - 15BR       | 507.29                           | 34.23                                        | 473.06                        | 33.48                                        | 473.81                        | 31.94                                        | 475.35                        | 30.79                                        | 476.50                        |
| PZ - 2          | 508.95                           | 1.78                                         | 507.17                        | 6.23                                         | 502.72                        | 3.08                                         | 505.87                        | NM                                           |                               |
| PZ - 4          | 505.51                           | NM                                           |                               | NM                                           |                               | 1.42                                         | 504.09                        | 0.47                                         | 505.04                        |
| PZ - 5          | 508.29                           | 9.13                                         | 499.16                        | 8.99                                         | 499.30                        | 8.94                                         | 499.35                        | 8.83                                         | 499.46                        |
| PZ - 6          | 508.37                           | 9.44                                         | 498.93                        | 9.08                                         | 499.29                        | 9.32                                         | 499.05                        | 9.11                                         | 499.26                        |
| PZ - 7          | 508.36                           | 8.98                                         | 499.38                        | 8.80                                         | 499.56                        | 9.00                                         | 499.36                        | 8.89                                         | 499.47                        |
| PZ - 8          | 508.23                           | 8.91                                         | 499.32                        | 9.00                                         | 499.23                        | 9.51                                         | 498.72                        | 9.05                                         | 499.18                        |
| PZ - 9          | 508.08                           | 8.22                                         | 499.86                        | 7.88                                         | 500.20                        | 8.02                                         | 500.06                        | 7.86                                         | 500.22                        |
| PZ - 10         | 508.14                           | 8.70                                         | 499.44                        | 8.75                                         | 499.39                        | 9.08                                         | 499.06                        | 8.78                                         | 499.36                        |
| PZ - 11R        | 505.82                           | 7.04                                         | 498.78                        | 7.22                                         | 498.60                        | 8.64                                         | 497.18                        | 8.44                                         | 497.38                        |
| PZ - 13R        | 503.85                           | 6.39                                         | 497.46                        | 6.46                                         | 497.39                        | 8.17                                         | 495.68                        | 8.05                                         | 495.80                        |
| PZ - 17         | 504.05                           | 5.66                                         | 498.39                        | 5.68                                         | 498.37                        | 6.17                                         | 497.88                        | 6.47                                         | 497.58                        |
| PZ - 18         | 504.85                           | 6.39                                         | 498.46                        | 6.53                                         | 498.32                        | 7.99                                         | 496.86                        | 7.85                                         | 497.00                        |
| PZ - 19         | 504.60                           | 6.60                                         | 498.00                        | 6.65                                         | 497.95                        | 7.36                                         | 497.24                        | 7.09                                         | 497.51                        |
| PZ - 20         | 503.85                           | 6.28                                         | 497.57                        | 6.38                                         | 497.47                        | 7.04                                         | 496.81                        | 6.62                                         | 497.23                        |
| PZ - 21         | 505.70                           | 8.90                                         | 496.80                        | DRY                                          |                               | DRY                                          |                               | DRY                                          |                               |
| PZ - 22         | 508.57                           | 6.73                                         | 501.84                        | 7.30                                         | 501.27                        | 7.94                                         | 500.63                        | 7.56                                         | 501.01                        |
| PZ - 23         | 510.07                           | 6.81                                         | 503.26                        | 6.09                                         | 503.98                        | 6.82                                         | 503.25                        | 6.12                                         | 503.95                        |
| PZ - 24         | 507.83                           | 10.23                                        | 497.60                        | 10.52                                        | 497.31                        | 10.92                                        | 496.91                        | 10.74                                        | 497.09                        |
| PZ - 25         | 510.62                           | 6.52                                         | 504.10                        | 5.96                                         | 504.66                        | 6.67                                         | 503.95                        | 6.05                                         | 504.57                        |
| PZ - 26         | 510.95                           | 9.07                                         | 501.88                        | 8.72                                         | 502.23                        | 9.21                                         | 501.74                        | 8.99                                         | 501.96                        |
| PZ - 27         | 510.13                           | 8.80                                         | 501.33                        | 10.08                                        | 500.05                        | 11.13                                        | 499.00                        | 11.47                                        | 498.66                        |
| PZ - 28         | 504.12                           | 3.49                                         | 500.63                        | 3.53                                         | 500.59                        | 3.93                                         | 500.19                        | 3.04                                         | 501.08                        |
| PZ - 29         | 503.84                           | NM                                           |                               | 2.36                                         | 501.48                        | 2.43                                         | 501.41                        | 2.12                                         | 501.72                        |
| PZ - 30         | 504.72                           | 3.68                                         | 501.04                        | 3.56                                         | 501.16                        | 4.10                                         | 500.62                        | 3.54                                         | 501.18                        |
| PZ - 31         | 505.17                           | 1.46                                         | 503.71                        | 2.10                                         | 503.07                        | 2.33                                         | 502.84                        | 1.46                                         | 503.71                        |
| PZ - 32         | 504.90                           | 0.65                                         | 504.25                        | 0.53                                         | 504.37                        | 1.84                                         | 503.06                        | 0.45                                         | 504.45                        |
| PZ - 33         | 510.00                           | DRY                                          |                               | DRY                                          |                               | 6.82                                         | 503.18                        | DRY                                          |                               |
| PZ - 34         | 503.88                           | 2.30                                         | 501.58                        | 2.34                                         | 501.54                        | 3.11                                         | 500.77                        | 2.41                                         | 501.47                        |
| PZ - 35         | 503.98                           | NM                                           |                               | 0.98                                         | 503.00                        | 2.09                                         | 501.89                        | 1.04                                         | 502.94                        |
| PZ - 36         | 504.04                           | 1.12                                         | 502.92                        | 1.00                                         | 503.04                        | 1.55                                         | 502.49                        | 1.09                                         | 502.95                        |
| PZ - 39         | 504.51                           | 2.75                                         | 501.76                        | 1.90                                         | 502.61                        | 3.53                                         | 500.98                        | 2.62                                         | 501.89                        |
| PZ - 40         | 506.46                           | 4.45                                         | 502.01                        | 4.49                                         | 501.97                        | 4.92                                         | 501.54                        | 4.58                                         | 501.88                        |
| PZ - 41         | 506.27                           | 4.12                                         | 502.15                        | 4.10                                         | 502.17                        | 4.51                                         | 501.76                        | 4.22                                         | 502.05                        |
| PZ - 42         | 505.18                           | NM                                           |                               | 0.30                                         | 504.88                        | 0.62                                         | 504.56                        | 0.28                                         | 504.90                        |
| A1-PZ1          | 503.77                           | NM                                           |                               | 1.16                                         | 502.61                        | 1.53                                         | 502.24                        | NM                                           |                               |
| A1-PZ2          | 503.00                           | 1.92                                         | 501.08                        | 2.33                                         | 500.67                        | 2.30                                         | 500.70                        | 2.00                                         | 501.00                        |
| A2-PZ1          | 509.74                           | NM                                           |                               | 3.49                                         | 506.25                        | 4.35                                         | 505.39                        | 3.87                                         | 505.87                        |
| A2-PZ2          | 509.46                           | 6.89                                         | 502.57                        | 6.41                                         | 503.05                        | 6.63                                         | 502.83                        | 6.08                                         | 503.38                        |
| A2-PZ3          | 509.46                           | 1.69                                         | 507.77                        | 2.98                                         | 506.48                        | 3.06                                         | 506.40                        | NM                                           |                               |
| A2-PZ4          | 509.40                           | 0.40                                         | 509.00                        | 0.81                                         | 508.59                        | 1.86                                         | 507.54                        | 0.65                                         | 508.75                        |
| A2-PZ5          | 510.03                           | 2.13                                         | 507.90                        | 7.68                                         | 502.35                        | 7.88                                         | 502.15                        | 5.81                                         | 504.22                        |
| A2-PZ6          | 509.74                           | 1.21                                         | 508.53                        | 0.54                                         | 509.20                        | 3.25                                         | 506.49                        | 1.20                                         | 508.54                        |
| A2-PZ7          | 509.59                           | 1.63                                         | 507.96                        | 5.74                                         | 503.85                        | 6.27                                         | 503.32                        | NM                                           |                               |
| A2-PZ8          | 509.70                           | 0.75                                         | 508.95                        | 0.80                                         | 508.90                        | 5.72                                         | 503.98                        | 0.74                                         | 508.96                        |

All elevations are reported as feet mean sea level (ft msl) Survey data is referenced horizontally to the NAD83 and projected on the New York State Plane Coordinate System (Central Zone) The reference vertical benchmark is the finished floor elevation of the southeasterly corner of the Boiler House Building (Elevation 506.50 feet) NI - Not Installed

NM - Not Measured

Figures



CITY:(MAHWAH) DIV/GROUP:(ENRI-1) DB:(JG LD:(Opt) PIC:(Opt) PIM:(CM) TM:(BM) LYR:(Opt)ON=\*;OFF=\*REF\* G:ENVCAD/Mahwah/ACT/NJ001000/0001/00001/00001/2012-02/FIG 1- SITE LOCATION.dwg LAYOUT: 1 SAVED: 2/20/2012 3:39 PM ACADVER: 18.1S (LMS TECH) PAGESETUP: ---- PLOTSTYLETABLE: ---- PLOTTED: 2/20/2012 3:39 PM BY: GONZALEZ, JAMES

XREFS:

IMAGES:

PROJECTNAME: ---



| MW-4-�-             | MONITORING WELL LOCATION                                   |
|---------------------|------------------------------------------------------------|
| IW-1 - <del>-</del> | INJECTION WELL                                             |
| PZ-39 Φ             | PIEZOMETER LOCATION                                        |
| A2-PZ-4 🖲           | SOIL BORING/PIEZOMETER LOCATION<br>(FOCUS AREAS A1 AND A2) |
| SG-23 ▲             | SOIL GAS PROBE LOCATION                                    |

# **ARCADIS**

Appendix A

Record Drawings

**Original As-Built Drawings** 







| NV. 503.21      | NEW CATCH BASIN<br>STA. 3+37 | APPROXIMATE  | NEM CLADE                |                             | NEW_CATCH_BASIN                                            |
|-----------------|------------------------------|--------------|--------------------------|-----------------------------|------------------------------------------------------------|
| 0+00 TO STA 3+3 | 37                           | NEW 24ӯ HDF  | E STORM SEWER PIPE @ 0.4 | 7% FROM STA 3+37 TO STA 6+8 | 38                                                         |
|                 |                              |              |                          |                             |                                                            |
|                 |                              | FORMER GRADE |                          |                             |                                                            |
|                 |                              |              |                          |                             |                                                            |
|                 |                              |              | <br><br>                 |                             | CONNECT NEW 24"\$<br>TO EXISTING 48"ø<br>(SEE DETAIL SHEET |
|                 | = 504.24<br>= 500.2          |              |                          | <u> </u>                    | = 503.81<br>= 498.85                                       |
|                 | RIM EL                       |              |                          | 2<br>2<br>2                 | RIM EL                                                     |
| 3+00            | · ·                          | 4+00         | 5+00                     | 6                           | 6+00                                                       |





| DIAGRAM ON SHEET E-3<br>ETAILS                                                            | 551 | CIFICATIONS AND NOTES (APPLICABLE TO DRAWINGS G-1 THROUGH E-3)                                                                                                                                                                                                                                                                                                                    |        |                          |
|-------------------------------------------------------------------------------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------------|
|                                                                                           | 1.  | AIR STRIPPER SYSTEM TO BE MANUFACTURED BY SHALLOWTRAY MODEL 3631, 316<br>AS SPECIFIED IN MATERIAL AND PERFORMANCE SPECIFICATION MP-04006.                                                                                                                                                                                                                                         | 18.    | DUC<br>A.                |
|                                                                                           | 2.  | ALL PVC PIPES SHALL BE SCHEDULE 80 TYPE II UNLESS OTHERWISE SPECIFIED.                                                                                                                                                                                                                                                                                                            |        |                          |
| ANGE                                                                                      | 3.  | ALL PVC JOINTS TO BE SOLVENT WELDED.                                                                                                                                                                                                                                                                                                                                              |        | В.                       |
| ANGE                                                                                      | 4.  | ALL PVC PIPES SHALL BE SUPPORTED EVERY 5'-0" AND LOCATED 2'-0" (MAX) FROM JOINT LOCATIONS.                                                                                                                                                                                                                                                                                        |        | C.                       |
|                                                                                           | 5.  | ALL CORRUGATED HDPE PIPE SHALL BE ADS N-12 SMOOTH INTERIOR OR EQUAL.<br>ALL OTHER HDPE PIPE TO BE SDR-11 OR SDR-17 AS INDICATED.                                                                                                                                                                                                                                                  |        | POT/<br>WRC              |
|                                                                                           | 6.  | ALL HDPE JOINTS TO BE BUTT FUSED.                                                                                                                                                                                                                                                                                                                                                 | 20.    | ITEM<br>THE              |
|                                                                                           | 7.  | ALL PIPE AND HOSE TO BE INSTALLED AND PRESSURE—TESTED AS PER MANUFACTURER'S SPECIFICATIONS. ZERO LEAKAGE IS ALLOWED FOR ALL JOINTS.                                                                                                                                                                                                                                               | 21.    | DIRE<br>ALL              |
| TE MANHOLE ACCESS                                                                         | 8.  | ALL PIPING AND MANIFOLDS TO BE LABELED WITH STENCIL OR ADHESIVE. FLOW ARROWS<br>TO BE LABELED AT INLET AND DISCHARGE CONNECTIONS, PIPING AND DESCRIPTION (E.G.,<br>MANHOLE NO. 1 INFLUENT) SHALL ALSO BE CLEARLY LABELED AT ALL VALVE AND<br>APPURTENANCE LOCATIONS.                                                                                                              | 22.    | BUIL<br>ALL<br>RESI      |
| BLY WITH 30"x30"<br>G HINGED ALUMINUM<br>EQUIPPED WITH SAFETY                             | 9.  | FLOW METERS SHALL BE SIGNET ANALOG FLOW TOTALIZER, WHICH DISPLAYS FLOW RATE<br>AND TOTALIZED FLOW VOLUME OR EQUAL. SIGNET INDICATOR SHALL BE A MODEL                                                                                                                                                                                                                              | 23.    | ALL<br>FRO               |
| NETTING MANUFACTURED<br>E APPROACH, INC.                                                  |     | P57540. ASSOCIATED SIGNET SENSOR SHALL BE MODEL P51530-PO. FITTINGS AND DIAL RANGES ARE AS FOLLOWS:                                                                                                                                                                                                                                                                               | 24.    | CON                      |
| SURE RELIEF VALVE<br>CONDUIT (TYP)                                                        |     | A. MANHOLE NO. 1, 2 INCH DIAMETER INFLUENT LINE<br>SENSOR FITTING – PV8T020<br>DIAL RANGE – 0-60 GPM                                                                                                                                                                                                                                                                              |        | CON<br>TYPI              |
| NHOLE TOP                                                                                 |     |                                                                                                                                                                                                                                                                                                                                                                                   | 26.    | ALL<br>DEP               |
| EVATION "D"<br>P., ALL AROUND)                                                            |     | <ul> <li>B. MANHOLE NO. 2, 2 INCH DIAMETER INFLUENT LINE</li> <li>SENSOR FITTING – PV8T020</li> <li>DIAL RANGE – 0–30 GPM</li> </ul>                                                                                                                                                                                                                                              | 27.    | SLO<br>PRO<br>STR        |
| INSIC<br>DUIT                                                                             |     | C. SUMP PUMP 1-INCH DIAMETER INFLUENT LINE<br>SENSOR FITTING - PV8T012<br>DIAL RANGE - 0-30 GPM                                                                                                                                                                                                                                                                                   | 28.    | NEW<br>THE<br>ACC<br>THE |
| DFF (TYP)                                                                                 | 10. | ALL FLOW METERS SHALL HAVE STRAIGHT PIPE PRECEDING (10 TIMES PIPE DIAMETER)<br>AND FOLLOWING (5 TIMES PIPE DIAMETER) THEM.                                                                                                                                                                                                                                                        |        | CAL                      |
| JUNCTION BOX<br>(TYP)                                                                     | 11. | ALL SAMPLE TAPS AND DRAIN VALVES SHALL CONSIST OF A 1/2"Ø PIPE EXTENSION AND<br>BALL VALVE OR EQUAL. SAMPLE TAPS AND DRAIN VALVES SHALL BE LOCATED AT<br>LOCATIONS SHOWN ON THE DRAWINGS AND AT ALL LOW ELEVATIONS IN PROCESS PIPING.                                                                                                                                             |        | DESI<br>WITH<br>SEE      |
| Ø PVC                                                                                     | 12. | ALL BALL VALVES TO BE PVC TRUE UNION TYPE WITH VITON SEALS BY TRUE BLUE<br>OR EQUAL.                                                                                                                                                                                                                                                                                              |        | NOT<br>SIZE              |
| PE (TYP)                                                                                  | 13. | ALL BALL CHECK VALVES TO BE PVC, TRUE UNION TYPE WITH VITON SEALS<br>BY PLASTO-MATIC OR EQUAL.                                                                                                                                                                                                                                                                                    | 31.    | ALL<br>REPI<br>OR        |
|                                                                                           | 14. | ALL PRESSURE GAUGES TO BE TRERICE MODEL NO. 450 LFB (WET) SILICONE-FILLED OR EQUAL. DIAL RANGES ARE AS FOLLOWS:                                                                                                                                                                                                                                                                   | 32.    | BACł                     |
| RT MILLER EXTENDED CONCRETE PRECAST MANHOLE                                               |     | A. MANHOLE NO. 1 INFLUENT LINE — (0—30 PSI)<br>B. MANHOLE NO. 2 INFLUENT LINE — (0—30 PSI)<br>C. SUMP PUMP INFLUENT LINE — (0—15 PSI)                                                                                                                                                                                                                                             | 33.    | BACI<br>STRE             |
| TH BASE, SECTIONS AND PLATFORM FROM NEW YORK<br>ATE DEPARTMENT OF TRANSPORTATION APPROVED | 15  | SUMP PUMP SHALL BE A GRUNDFOG MODEL BOSS 210-A STAINLESS STEEL TOP-                                                                                                                                                                                                                                                                                                               |        | ALL                      |
| CTIONS TO HAVE BUTYL RUBBER O-RINGS                                                       | 10. | DISCHARGE SUBMERSIBLE SUMP PUMP WITH AUTOMATIC FLOAT SWITCH.                                                                                                                                                                                                                                                                                                                      |        | ALL                      |
|                                                                                           | 16. | MANHOLE NO. 1 PUMPS SHALL BE GOULDS PUMPS MODEL 3887 WITH VITON SEALS AND<br>CAST IRON IMPELLER (3/4 HP, 230 VOLTS, 1,750 RPM, 1 PHASE) CAPABLE OF 20 GPM<br>@ 23 FEET TDH (ONE PUMP) AND 40 GPM @ 28 FEET TDH (TWO PUMPS) OR EQUAL.                                                                                                                                              |        | ALL<br>PREF<br>TREN      |
| ORIENTATION OF GROUND-WATER COLLECTION PIPE<br>SHOWN SYMBOLICALLY. REFER TO SITE PLAN ON  | 17. | MANHOLE NO. 2 PUMPS SHALL BE GOULDS PUMPS MODEL 3887 WITH VITON SEALS AND CAST IRON IMPELLER (3/4 HP, 230 VOLTS, 1,750 RPM, 1 PHASE) CAPABLE OF 10 GPM                                                                                                                                                                                                                            |        | DRAI                     |
| ID GROUT AS NECESSARY.<br><b>TES:</b><br>ORIENTATION OF GROUND-WATER COLLECTION PIPE      | 16. | DISCHARGE SUBMERSIBLE SUMP PUMP WITH AUTOMATIC FLOAT SWITCH.<br>MANHOLE NO. 1 PUMPS SHALL BE GOULDS PUMPS MODEL 3887 WITH VITON SEALS AND<br>CAST IRON IMPELLER (3/4 HP, 230 VOLTS, 1,750 RPM, 1 PHASE) CAPABLE OF 20 GPM<br>@ 23 FEET TDH (ONE PUMP) AND 40 GPM @ 28 FEET TDH (TWO PUMPS) OR EQUAL.<br>MANHOLE NO. 2 PUMPS SHALL BE GOULDS PUMPS MODEL 3887 WITH VITON SEALS AND | 3<br>3 | 56.<br>57.               |

| - MANHOLE TO BE EMBEDDED IN |  |
|-----------------------------|--|
| CRUSHED GRAVEL TO WITHIN    |  |
| 1 FOOT OF GROUND SURFACE    |  |

BOTTOM EL. "F"

| $\bowtie$ | BALL VALVE            |
|-----------|-----------------------|
| $\square$ | CHECK VALVE           |
| Ð         | NUT UNION             |
|           | SAMPLE/DRAIN TAP      |
| —Е—       | POWER WIRING          |
| А<br>Ш    | PRESSURE RELIEF VALVE |

| COLLEC      | TION MANHOLE S  | CHEDULE |
|-------------|-----------------|---------|
| DESCRIPTION | MH-1            | MH-2    |
| DIST. A     | 13'—1"          | 18'-5"  |
| DIST. B     | 0'-8"           | 0'-6"   |
| DIST. C     | 2'-0"           | 2'-0"   |
| TOP EL. D   | 505.79 <b>'</b> | 506.93' |
| INV. EL. E  | 494.66'         | 490.44' |
| BOT. EL. F  | 492.63 <b>'</b> | 488.41' |
| LSLL        | 494.13'         | 489.91' |
| LSL         | 495.13'         | 491.41' |
| LSH1        | 497.63'         | 493.41' |
| LSH2        | 499.63'         | 496.41' |
| LSHH        | 502.13'         | 499.41' |

NOT TO SCALE



- UNLESS SPECIFICALLY SHOWN OTHERWISE, DUCTWORK SHALL BE FABRICATED OF ASTM AA167 TYPE 316 STAINLESS STEEL, SCHEDULE 10.
- DUCTWORK JOINTS, FABRICATION, AND SUPPORTS SHALL BE IN ACCORDANCE WITH SMACNA DUCT CONSTRUCTION STANDARDS.
- ALL DUCTWORK TO BE AIR TIGHT.
- TABLE WATER LINE PIPING SHALL BE ASTM B88 TYPE L COPPER WITH ANSI/ASME B16.29 ROUGHT COPPER FITTINGS. JOINTS SHALL BE SOLDERED WITH GRADE 95TA SOLDER.
- EMS OF SPECIFIC MANUFACTURERS SHALL BE INSTALLED IN STRICT ACCORDANCE WITH HE PRINTED INSTRUCTIONS AND/OR THE MANUFACTURERS REPRESENTATIVES RECTIONS.
- L WALL PENETRATIONS SHALL BE SEALED WITH SILICONE AND COORDINATED WITH UILDING MANUFACTURER SO AS NOT TO VOID BUILDING WARRANTEE.
- ALL EXPOSED METALLIC SURFACES SHALL BE CORROSION RESISTANT OR CORROSION SISTANT PAINTED.
- ALL EQUIPMENT SHALL BE SUPPLIED AS SHOWN ON THE DRAWINGS. ANY PROPOSED DEVIATION ROM THE DRAWING MUST BE APPROVED BY LMC'S REPRESENTATIVE.
- ONCRETE COATING SYSTEM TO BE PROVIDED AS PER SPECIFICATION MP-03002.
- ONTRACTOR TO PROVIDE AND MOUNT ON WALL A FULLY-CHARGED DRY CHEMICAL YPE FIRE EXTINGUISHER WITH AN A, B, C, RATING KIDDE OR EQUAL.
- LL WORK SHALL BE IN ACCORDANCE WITH LOCAL BUILDING CODES AND LOCAL HEALTH EPARTMENT REGULATIONS.
- ILOP SINK SHALL BE MUSTEE UTILATUB MODEL 18F OR EQUAL ROVIDE WITH MANUFACTURERS FAUCET WITH SWING SPOUT 1-1/2" BASKET TRAINER AND P-TRAP.
- EW MANHOLES SHALL BE EXFILTRATION TESTED AS FOLLOWS: HE MANHOLE SHALL BE FILLED WITH POTABLE WATER FOR 8 HOURS AND WILL BE CCEPTABLE IF, FOR A TWO-HOUR OBSERVATION PERIOD THE LEAKAGE RATE IN HE STRUCTURE IS BELOW ONE GALLON PER VERTICAL FOOT OF DEPTH OVER A ALCULATED 24-HOUR PERIOD, NO VISIBLE LEAKAGE OF ANY AMOUNT IS ACCEPTABLE.
- SIGN LOADS: ALL STRUCTURAL LOADS AND LOAD COMBINATIONS SHALL BE IN ACCORDANCE ITH THE NEW YORK STATE BUILDING CODE.
- MECHANICAL DRAWINGS FOR LOCATION OF ALL OPENINGS IN FLOOR AND WALLS OT SHOWN ON STRUCTURAL DRAWINGS. THE CONTRACTOR SHALL VERIFY THE NUMBER, ZE AND LOCATION OF ALL OPENINGS BEFORE POURING ANY CONCRETE.
- LL BACKFILL REQUIRED AS THE RESULT OF OVER EXCAVATION, UNLESS DIRECTED BY EPRESENTATIVES OF LMC, SHALL BE MADE WITH COMPACTED SPECIAL BACKFILL LEAN CONCRETE FILL.
- ACKFILL AT WALLS SHALL BE PLACED AND COMPACTED SIMULTANEOUSLY ON BOTH SIDES. ACKFILL SHALL NOT BE PLACED AGAINST FOUNDATION WALLS UNTIL 28-DAY DESIGN RENGTH IS REACHED OR THE WALLS ARE ADEQUATELY BRACED.
- L STEEL REINFORCING SHALL BE SECURELY WIRED TOGETHER IN THE FORMS.
- L EXPOSED EDGES OF CONCRETE SHALL BE CHAMFERED 3/4-INCH.
- . SURFACES AT RECENTLY POURED CONCRETE RECEIVING NEW CONCRETE SHALL BE EPARED BY CLEANING, WETTING AND TREATMENT WITH A NEAT CEMENT GROUT.
- ENCH DRAIN SHALL CONSIST OF A 24" WIDE, 11" DEEP AND 39" LONG PRECAST CONCRETE RAIN WITH CAST IRON GRATING, AND 6"Ø OUTLET.
- MPING MANHOLES NO.1 AND NO.2 ARE ELECTRICALLY CLASSIFIED AS CLASS 1, ISION 1, GROUP D ATMOSPHERES.



# **PUMPING MANHOLE DETAILS AND SPECIFICATIONS**











# **MISCELLANEOUS DETAILS**

# LOCKHEED MARTIN CORPORATION UTICA, NEW YORK GROUNDWATER COLLECTION AND **TREATMENT SYSTEM**

NOT TO SCALE

**GRAVEL ACCESS DRIVE DETAIL** 

DRIVE DIRECTLY ON THE GEOTEXTILE OR WITH LESS THAN 6-INCHES OF CRUSHED STONE OVER THE 5. AFTER COMPLETION OF FINISH GRADING ALL POINTS ON THE ROAD SURFACE SHALL BE ROLLED AT LEAST 4 TIMES WITH A SMOOTH DRUM VIBRATORY ROLLER WITH A MINIMUM STATIC WEIGHT OF AT

3. WOVEN GEOTEXTILE SHALL BE PLACED OVER THE PROPOSED ROAD SUBGRADE SO THAT IT IS FREE OF FOLD AND WRINKLES. MINIMUM OVERLAPS BETWEEN ROLLS OF GEOTEXTILE SHALL BE 3 FEET.

2. AREAS THAT DO NOT PASS PROOF ROLLING WILL BE OVER EXCAVATED AND REPLACED WITH CRUSHED STONE AS DIRECTED BY LMC'S REPRESENTATIVE.

- WOVEN GEOTEXTILE

-EXISTING SUBGRADE 1. ROAD SUBGRADE SHALL BE STRIPPED OF NATIVE VEGETATION TO THE BOTTOM OF ROOT ZONE. THE SUBGRADE WILL THEN BE PROOF ROLLED WITH A SMOOTH DRUM VIBRATORY ROLLER WITH

AS REQUIRED YPE "A" CRUSHED STONE 2% SLOPE (SOUTH) (12" MIN. THICKNESS) 

NOT TO SCALE

STORM SEWER PIPE COUPLING DETAIL

2. USE AT ALL STORM SEWER PIPE JOINTS & CONNECTION WITH EXISTING 24"Ø STORM SEWER. 

NOT TO SCALE — "O" RING GASKET INSTALLED IN FIRST FULL VALLEY

NOTES:

DRAINAGE DITCH AREA TRENCH DETAIL

\$6**56566**8

- NEW 24"Ø HDPE

2'≤ 6" < < </p>

STORM SEWER PIPE

DRAINAGE PIPE

1. CONTRACTOR SHALL MAKE ALL JOINTS SQUARE & TIGHT. DAMAGED ENDS SHALL

BE FIELD TRIMMED.

- NON-WOVEN GEOTEXTILE WITH A MINIMUM 2'-0" OVERLAP

NEW 8"Ø PERFORATED

- EXISTING GRADE - TYPE "A" CRUSHED GRAVEL

-FINISHED GRADE (REFER TO PROFILE ON DRAWING G-2)









# PROCESS AND INSTRUMENTATION DIAGRAM

GROUND WATER COLLECTION PIPE

PUMPS NO. 1 AND NO. 2 (10 GPM © 26 FT TDH - ONE PUMP) (20 GPM © 30 FT TDH - TWO PUMPS)

MANHOLE NO. 2

| $\bowtie$    | BALL VALVE                                                 |
|--------------|------------------------------------------------------------|
| FM           | FLOW METER                                                 |
|              |                                                            |
| -·-E-·-      | POWER WIRING                                               |
| НОА          | HAND-OFF-AUTO                                              |
| FT<br>100    | INSTRUMENT TAG No. (SEE<br>CONTROL LOGIC ON OM&N APPENDIX) |
| $\bigcirc$   | PLC (INTERLOCK)                                            |
| LSH<br>102   | FIELD MOUNTED                                              |
| HS<br>103B   | PANEL MOUNTED                                              |
| $\leftarrow$ | FLOW DIRECTION                                             |
| <u>А</u>     | PRESSURE RELIEF VALVE                                      |
| HS           | HAND SWITCH                                                |
| LSH          | LEVEL SENSOR HIGH                                          |
| LSHH         | LEVEL SENSOR HIGH HIGH                                     |
| LSL          | LEVEL SENSOR LOW                                           |
| LSLL         | LEVEL SENSOR LOW LOW                                       |
| PSL          | PRESSURE SENSOR LOW                                        |
| PSH          | PRESSURE SENSOR HIGH                                       |
| TS           | TEMPERATURE SENSOR                                         |
|              |                                                            |

PRESSURE INDICATOR

PRESSURE INDICATOR

SAMPLE/DRAIN TAP

CHECK VALVE

LEGEND



# HEATING AND VENTILATING EQUIPMENT SPECIFICATIONS:

A. UNIT HEATERS

UNIT HEATER (UH-2)

- 1. HEATER SHALL BE CHROMOLAX CATALOG NO. LUH-10-43 OR EQUAL
- 2. HEATER SHALL BE 10 kW, 460 VAC, THREE PHASE, CAPABLE OF 750 CFM 47' RISE AND 27' THROW.
- 3. PROVIDE WITH MANUFACTURER'S INTEGRAL THERMOSTAT AND HANGER KIT.

# B. LOUVERS

LOUVER (LV-1)

- 1. LOUVER SHALL BE ARROW UNITED MODEL NO. 690, RUSKIN MODEL NO. ELC6375 D, OR EQUAL.
- 2. LOUVER SHALL BE ALUMINUM, COMBINATION TYPE WITH DRAINABLE BLADES.
- 3. LOUVER LV-1 SHALL HANDLE 900 CFM AT APPROXIMATELY 650 FPM FREE AREA VELOCITY AND A MAXIMUM PRESSURE DROP OF 0.05" W.C.

## DAMPER MOTORS C.

DAMPER MOTOR (DM-1)

- 1. DAMPER MOTORS SHALL BE 120 VAC, 2 POSITION SPRING RETURN, 60-INCH POUNDS TORQUE WITH AUXILIARY SWITCH TO MAKE OR BREAK A CIRCUIT AT THE POWERED END OF STROKE.
- 2. DAMPER MOTORS SHALL BE BARBER COLEMAN MODEL NO. MA418-500.

# **GENERAL NOTES:**

- 1. ALL WORK SHALL CONFORM TO ALL APPLICABLE RULES, REGULATIONS AND CODES INCLUDING, BUT NOT LIMITED TO, NEW YORK STATE BUILDING CODES AND LOCAL HEALTH DEPARTMENT REGULATIONS.
- 2. ITEMS OF SPECIFIC MANUFACTURERS SHALL BE INSTALLED IN STRICT ACCORDANCE WITH THE PRINTED INSTRUCTIONS AND/OR THE MANUFACTURER'S REPRESENTATIVES DIRECTIONS.
- 3. ALL ELECTRICAL EQUIPMENT SHALL BE U.L. LISTED AND LABELED.
- 4. THE CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS.
- 5. ALL THERMOSTATS SHALL BE MOUNTED 5'-0" AFF.
- 6. DIMENSIONS SHOWN "AFF" INDICATE THE ACTUAL CLEAR DIMENSION FROM THE FINISHED FLOOR ELEVATION TO THE BOTTOM OF THE UNIT.
- 7. ALL INDOOR PROCESS EQUIPMENT EXHAUST DUCTS SHALL BE PVC. ALL OUTDOOR EXHAUST DUCTS SHALL BE STAINLESS STEEL.
- 8. PROTECT ALL HEATING AND VENTILATING EQUIPMENT FROM DAMAGE DURING CONSTRUCTION. DAMAGED UNITS SHALL BE REPLACED AT NO ADDITIONAL COST TO THE OWNER.
- 9. INTERIOR OF AIR STRIPPER AND AREA WITHIN 3-FEET OF BLOWER ARE ELECTRICALLY CLASSIFIED AS CLASS 1, DIVISION 1, GROUP D ATMOSPHERE.

LOCKHEED MARTIN CORPORATION UTICA, NEW YORK **GROUNDWATER COLLECTION AND TREATMENT SYSTEM** 

# FLOOR PLAN AND DETAILS

FIGURE

**M-2** 







RECORD DRAWING: MADE FROM BBL DRAWING E-2, FILE NUMBER 380.92.09F, DATED OCTOBER 13, 1995 DRAWING E-3, FILE NUMBER 380.92.10F, DATED OCTOBER 13, 1995

# NOT TO SCALE

| TOR         | CONDUIT<br>SIZE              | NAME                                  |
|-------------|------------------------------|---------------------------------------|
| #10G        | 3/4"<br>EMT                  | PUMP CONTROL PANEL<br>POWER FEEDS     |
| #12G        | 3/4"<br>EMT                  | FLOW METER & CHART REC.<br>POWER FEED |
| #12G        | 3/4 <b>"</b><br>EMT          | 24V TRANSFORMER<br>POWER FEED         |
| <b>#</b> 16 | 3/4"<br>EMT                  | FLOW SIGNALS                          |
| #6G         | 1-1/2" EMT<br>(RGS OUTDOORS) | BUILDING POWER                        |
| 10G         | 1"<br>SEAL TITE              | TRANSFORMER FEED                      |
| #8G         | 1"<br>SEAL TITE              | PANEL LP FEED                         |
| #12G<br>4   | 3/4"<br>EMT                  | DAMPER MOTOR AND<br>LIMIT SWITCH      |
| 2           | 1-1/2"<br>RGS                | TELEPHONE SERVICE                     |
| #10G        | 3/4"<br>EMT                  | UNIT HEATER (UH-1)                    |
| #10G        | 3/4"<br>EMT                  | UNIT HEATER (UH-2)                    |
| 4           | 3/4"<br>EMT                  | SUMP HIGH LEVEL                       |

|                                                                                                                      |    | S        | <u>حرا</u><br>ج                | 〕<br>                                           |
|----------------------------------------------------------------------------------------------------------------------|----|----------|--------------------------------|-------------------------------------------------|
| C<br>W<br>+<br>C<br>+<br>C<br>+<br>C<br>+<br>+<br>C<br>+<br>+<br>C<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+ | €M | N<br>  P | NHOLE<br>O. 1<br>UMP<br>ITROLS | (K1)<br>(Q,Q,Q,Q,Q,Q,Q,Q,Q,Q,Q,Q,Q,Q,Q,Q,Q,Q,Q, |

SUMP SUMP PUMP MH-1

LEVEL

HIGH FLOW METER PUMPS FLOATS FLOW

 $\langle R \rangle$ 

1#8 GND.-

PANEL

LP (100A)

# NOTES:

MH-1

METER

MH-1

- 1. CONTROLS WERE MODIFIED FROM A ELECTRICAL CIRCUIT RELAY. BASED CONTROL SYSTEM TO A MICROPROCESSOR BASED (PROGRAMMABLE LOGIC CONTROLLER) CONTROLS BY AZTECH TECHNOLOGIÉS, INC, IN DECEMEBR 2007.
- 2. MODIFIED CONTROL DETAILS AND LINE DRAWING/SCHEMATIC ARE PROVIDED IN THE APPENDIX OF OM&N MANUAL.

|        |       | PANEL   |
|--------|-------|---------|
| GROUND | WATER | TREATME |
|        |       |         |

LOCATION : \_\_\_\_ 100 MAIN BUS RATINGS : MINIMUM SHORTCIRCUIT INTERUPTING RATING 60 MAIN BREAKER TRIP : ESTIMATED CONNECTED LOAD :

| DESCRIPTION                 | LOAD<br>W-KW-HP | Д  |
|-----------------------------|-----------------|----|
| INDOOR LIGHTING             | 480W            | 20 |
| OUTDOOR LIGHTING            | 300W            | 20 |
| RECEPTACLES (SOUTH)         | 720W            | 20 |
| RECEPTACLES (NORTH)         | 900W            | 20 |
| FLOW METER & CHART RECORDER | _               | 20 |
| SPARE                       | -               | 20 |
| SPARE                       | _               | 20 |

| _ |                                                                                          |                 |            |         |         |          |          |               |                 |           |                                              |      |
|---|------------------------------------------------------------------------------------------|-----------------|------------|---------|---------|----------|----------|---------------|-----------------|-----------|----------------------------------------------|------|
|   |                                                                                          | PAI             | NELBO      | ٩RI     | D       | PP       | _ S      | CHEDU         | LE              |           |                                              |      |
|   | LOCATION : GROUND W                                                                      |                 |            |         |         |          |          |               |                 |           | PANEL CIRCUIT                                |      |
|   | MAIN BUS RATINGS :                                                                       | 100             |            | AMF     | PS, _   | 480      | VC       |               |                 |           | 3                                            | WIRE |
|   | MINIMUM SHORTCIRCUIT INTERUPTI<br>MAIN BREAKER TRIP :100 (<br>ESTIMATED CONNECTED LOAD : | SERVICE E       | NTRANCE    | RA      | TED)    | AMPS ,   | IN       | COMING FEE    |                 | 3#2, 1#6  | I-LINE HCN<br>GND., 1-1/2"C<br>DUNTED NEMA 1 | TYPE |
|   | DESCRIPTION                                                                              | LOAD<br>W-KW-HP | CB<br>AMPS | CIR.    | А       | вС       | CI       | R. CB<br>AMPS | LOAD<br>W-KW-HP |           | DESCRIPTION                                  |      |
|   | BLOWER, STRIPPER CONTROLS                                                                | 15HP            | 45         | 1       | <b></b> |          | <u> </u> |               |                 | SPACE     |                                              |      |
|   | SUMP PUMP, & DAMPER MOTOR                                                                |                 |            | 3       |         | •        | <u> </u> | . 35          | 15KVA           | TRANSFOR  | MER FEED                                     | 4    |
|   |                                                                                          |                 | 3          | 5       |         | <u>_</u> | <u> </u> | 2             |                 |           |                                              |      |
|   | UNIT HEATER (UH-1)                                                                       | 10KW            | 30         | 7       |         |          | <u> </u> | 30            | 10KW            | UNIT HEAT | TER (UH-2)                                   |      |
|   |                                                                                          |                 | 3          | 9<br>11 |         |          | <u>1</u> | 2 3           |                 |           |                                              |      |

17

19

# LEGEND

| n        | 2 LAMP FLUORESCENT LIG<br>DENOTES FIXTURE TYPE |
|----------|------------------------------------------------|
| WL       | EXTERIOR WALL PACK LIGH                        |
|          | EMERGENCY LIGHT FIXTURE                        |
| S        | SINGLE POLE SWITCH                             |
| φ        | DUPLEX RECEPTACLE                              |
| ∯ gFI    | GROUND FAULT CIRCUIT IN<br>RECEPTACLE          |
| JB       | JUNCTION BOX                                   |
|          | MOTOR                                          |
| $\frown$ | CIRCUIT HOMERUN                                |
| ▼        | TELEPHONE OUTLET                               |
| LS       | LIMIT SWITCH                                   |
|          | CIRCUIT BREAKER                                |





# ONE LINE DIAGRAM, CONDUCTOR AND PANELBOARD SCHEDULES

LOCKHEED MARTIN CORPORATION UTICA, NEW YORK GROUNDWATER COLLECTION AND TREATMENT SYSTEM

INTERRUPTER DUPLEX

RE

GHT FIXTURE

IGHT FIXTURE, LETTER

| CANELBOARD |            |      |        |                     | _        | CHEDU              |                                              | NEL "PP" CI     | RCUITS 4 &                         | : 6         |              |                     |
|------------|------------|------|--------|---------------------|----------|--------------------|----------------------------------------------|-----------------|------------------------------------|-------------|--------------|---------------------|
| NG         | :7         |      | 10,C   | _ <u>240</u><br>000 | /120     | VOL<br>RMS<br>INCO | TS ,<br>5. SYMM. A<br>DMING FEE<br>CLOSURE : | AMPS<br>D:      | PHASE ,<br>3#6, 1#8<br>SURFACE MOU |             | WIRE<br>TYPE |                     |
| )<br>·HP   | CB<br>AMPS | CIF  | R.     | B                   | c        | CIR.               | CB<br>AMPS                                   | LOAD<br>W-KW-HP |                                    | DESCRIPTION |              | -                   |
| ٧          | 20         | 1 1  |        | •                   | $\frown$ | 2                  | 30                                           | 1.5 HP          | MANHOLE N                          | O.1 PUMP    | CONTROLS     | $\left< L1 \right>$ |
| V          | 20         | 1 3  |        |                     | •        | 4                  | 2                                            |                 |                                    |             |              |                     |
| V          | 20         | 1 5  |        | _                   |          | 6                  | 30                                           | 1.5 HP          | MANHOLE N                          | 10.2 PUMP   | CONTROLS     | ]⟨L2⟩               |
| ۷          | 20         | 1 7  |        |                     | •        | 8                  | 2                                            |                 |                                    |             |              | ]                   |
|            | 20         | 1 9  |        |                     |          | 10                 | 20 1                                         | _               | SPARE                              |             |              | ]                   |
|            | 20         | 1 1' |        |                     |          | 12                 | 20 1                                         | _               | SPARE                              |             |              |                     |
|            | 20         | 1 13 | $\sim$ |                     |          | 14                 | 20 1                                         | _               | SPARE                              |             |              |                     |

—

—

—

SPARE

SPARE

SPARE

2010-2011 System Upgrade As-Built Drawings



# **RECORD DRAWINGS GROUNDWATER COLLECTION AND** TREATMENT SYSTEM AT FORMER LOCKHEED MARTIN FRENCH ROAD FACILITY

DATE ISSUED **MARCH 2011** 

# LOCKHEED MARTIN CORPORATION **UTICA, NEW YORK**



ARCADIS OF NEW YORK, INC.

# INDEX TO DRAWINGS

# GENERA

- G-1 SITE PLAN
- G-2 PLAN & PROFILE OF MH-3 AND GROUNDWATER COLLECTION TRENCH
- PUMPING MANHOLE DETAILS AND SPECIFICATIONS G-3
- PIPING AND TRENCHING DETAILS G-4
- GENERAL NOTES AND ABBREVIATIONS G-5
- G-6 LEGEND AND SYMBOLS

# MECHANICAL

- PIPING AND INSTRUMENTATION DIAGRAM M-1
- FLOOR PLAN AND DETAILS M-2
- M-3 PROCESS FLOW DIAGRAM

# ELECTRICAL

- ELECTRICAL FLOOR PLANS E-1
- ONE LINE DIAGRAM, CONDUCTOR AND PANELBOARD E-2 SCHEDULES
- CONTROL LOGIC E-3

# STRUCTURAL

BUILDING ELEVATION SECTION AND DETAILS S-1

# **RECORD DRAWINGS**

TO THE BEST OUR KNOWLEDGE, INFORMATION AND BELIEF, THESE RECORD DRAWINGS SUBSTANTIALLY REPRESENT THE PROJECT AS

CONSTRUCTED. DATE: 06/13/201/ BY:



| •         | ineer's Name<br>IUDDIN PhD | A TELOF      |       |
|-----------|----------------------------|--------------|-------|
| onal Engi | neer's No.                 | 155          |       |
| 7         |                            |              |       |
|           | Date Signed                | Project Mgr. |       |
|           | 06/13/20/1                 | P.MILIONIS   | ICE . |
| d by      | Drawn by                   | Checked by   | 1000  |
| GNAN      | J.GONZALEZ                 | E.PANHORST   | PR    |





| ENCH ROAD FACILITY • UTICA, NEW YORK CTION AND TREATMENT SYSTEM | ARCADIS Project No.<br>NJ001024.0001.00005                                                |     |
|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----|
|                                                                 | Date<br>MARCH 2011                                                                        | G-3 |
| TAILS AND SPECIFICATIONS                                        | ARCADIS OF NEW YORK, INC.<br>465 NEW KARNER ROAD<br>ALBANY, NEW YORK<br>TEL. 518.452.7826 | 6-5 |











essional Engineer's Name MOH MOHIUDDIN PhD, PE, DEE fessional Engineer's No. Date Signed Project Mgr. 06/13/2011 P.MILIONIS Drawn by Checked by T.CARIGNAN J.GONZALEZ E.PANHORS



ARCADIS OF NEW YORK, INC.





# ABBREVIATIONS:

- A.F.F ABOVE FINISHED FLOOR
- BV BALL VALVE
- BFV BUTTERFLY VALVE
- CMP CHEMICAL METERING PUMP
- FS FLOW SENSOR
- FT FLOW TRANSMITTER
- HS HAND SWITCH
- LEVEL INDICATOR LI
- LSH LEVEL SENSOR HIGH
- LSL LEVEL SENSOR LOW
- LV LOUVER
- MIN. MINIMUM
- PRESSURE INDICATOR PI
- PT PRESSURE TRANSMITTER
- SP SAMPLE PORT
- TE TEMPERATURE ELEMENT
- TI TEMPERATURE INDICATOR
- TT TEMPERATURE TRANSMITTER
- UH UNIT HEATER

| MOH                   | UDDIN PhD                 | , PE, DEE                  | $r\gamma$ |
|-----------------------|---------------------------|----------------------------|-----------|
| nal Engi              | neer's No.                |                            |           |
|                       | Date Signed<br>06//3/201/ | Project Mgr.<br>P.MILIONIS | LICE      |
| <sup>by</sup><br>GNAN | Drawn by<br>J.GONZALEZ    | Checked by<br>E.PANHORST   |           |

fessional Engineer's Nam

esigned





ARCADIS OF NEW YORK, INC.

FORMER LOCKHEED MARTIN FR

# **GENERAL NOTES**

| RENCH ROAD FACILITY • UTICA, NEW YORK | ARCADIS Project No.<br>NJ001024.0001.00005                                                |     |
|---------------------------------------|-------------------------------------------------------------------------------------------|-----|
|                                       | Date<br>MARCH 2011                                                                        | G-5 |
| AND ABBREVIATIONS                     | ARCADIS OF NEW YORK, INC.<br>465 NEW KARNER ROAD<br>ALBANY, NEW YORK<br>TEL. 518.452.7826 | 9-9 |



| H MOH       | , PE, DEE   | KYZE         |     |
|-------------|-------------|--------------|-----|
| sional Engl |             |              |     |
| 527         |             |              |     |
|             | Date Signed | Project Mgr. | IEI |
|             | 06/13/2011  | P.MILIONIS   | I E |
| ned by      | Drawn by    | Checked by   | 136 |
| RIGNAN      | J.GONZALEZ  | E.PANHORST   |     |

# **CIVIL LEGEND**

SITE PLAN LEGEND MANHOLE DISCHARGE WATER LINE GROUNDWATER COLLECTION LINE STORM SEWER PIPE ELECTRICAL CIRCUIT WATER LINE TELEPHONE LINE EXISTING SANITARY SEWER EXISTING STORM SEWER EXISTING WATER LINE EXISTING GAS LINE EXISTING ELECTRIC LINE EXISTING CHAIN LINK FENCE EXISTING PROPERTY LINE

ACCESS DRIVE

EXISTING BITUMINOUS PAVEMENT EXISTING HYDRANT EXISTING POSITION INDICATOR VALVE EXISTING LIGHT POLE EXISTING MANHOLE EXISTING CATCH BASIN MONITORING WELL LOCATION

PIEZOMETER LOCATION

TEST PIT LOCATION

# PROFILE LEGEND

GROUNDWATER LEVEL, 11/18/08 OUTLINE OF TEST PIT PROFILE FILL TILL - WELL DESIGNATION -EXISTING LAND SURFACE (DASHED WHERE INFERRED)

-GEOLOGIC CONTACT (DASHED WHERE INFERRED) -SCREENED INTERVAL

-----END OF BOREHOLE

| RENCH ROAD FACILITY • UTICA, NEW YORK | ARCADIS Project No.<br>NJ001024.0001.00005                                                |     |
|---------------------------------------|-------------------------------------------------------------------------------------------|-----|
|                                       | Date<br>MARCH 2011                                                                        | G-6 |
| AND SYMBOLS                           | ARCADIS OF NEW YORK, INC.<br>465 NEW KARNER ROAD<br>ALBANY, NEW YORK<br>TEL. 518.452.7826 | 9-0 |





# GENERAL NOTES:

1. REFER TO DRAWING G-5 FOR SPECIFICATIONS AND NOTES.

| N FRENCH ROAD FACILITY • UTICA, NEW YORK | ARCADIS Project No.<br>NJ001024.0001.00005                                                |       |
|------------------------------------------|-------------------------------------------------------------------------------------------|-------|
|                                          | Date<br>MARCH 2011                                                                        | M-2   |
| AN AND DETAILS                           | ARCADIS OF NEW YORK, INC.<br>465 NEW KARNER ROAD<br>ALBANY, NEW YORK<br>TEL. 518.452.7826 | IVI-Z |







|            |     |                         | 1   | 1/6/10  | DRAFT 100% DESIGN WORK PLAN                                                                                                                           | Ľ |
|------------|-----|-------------------------|-----|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| HIS BAR    |     |                         | 0   | 12/2/09 | DRAFT 60% DESIGN WORK PLAN                                                                                                                            |   |
| ESENTS ONE |     | USE TO VERIFY<br>FIGURE | No. | Date    | Revisions                                                                                                                                             |   |
| H ON THE   | REI | REPRODUCTION<br>SCALE   |     |         | IE PROPERTY OF THE ARCADIS ENTITY IDENTIFIED IN THE TITLE BLOCK<br>DUCED OR ALTERED IN WHOLE OR IN PART WITHOUT THE EXPRESS WE<br>PERMISSION OF SAME. |   |

AND MAY

Designed by ITTEN C.MCLAUGHLIN J.GONZALEZ M.CURRIE



| LEGEND        |                                                                  |
|---------------|------------------------------------------------------------------|
| n             | 2 LAMP FLUORESCENT LIGHT FIXTURE, LETTER<br>DENOTES FIXTURE TYPE |
| WL            | EXTERIOR WALL PACK LIGHT FIXTURE                                 |
|               | EMERGENCY LIGHT FIXTURE                                          |
| S             | SINGLE POLE SWITCH                                               |
| φ             | DUPLEX RECEPTACLE                                                |
| ∯ GFI         | GROUND FAULT CIRCUIT INTERRUPTER DUPLEX<br>RECEPTACLE            |
| JB            | JUNCTION BOX                                                     |
| $\mathcal{O}$ | MOTOR                                                            |
|               | CIRCUIT HOMERUN                                                  |
| ▼             | TELEPHONE OUTLET                                                 |
| LS            | LIMIT SWITCH                                                     |
|               | CIRCUIT BREAKER                                                  |
|               | DISCONNECTED, UNFUSED                                            |

| LOAD SERVICE - 480V CONNECTED LOADS |           |           |               |    |                |  |  |  |
|-------------------------------------|-----------|-----------|---------------|----|----------------|--|--|--|
| LOAD/ITEM DESCRIPTION               | LOAD (KW) | LOAD (HP) | LOAD (F.L.A.) | CB | SERVICE FACTOR |  |  |  |
| DUCT HEATER (12 KW)                 | 12.0      |           | 67.7          | 30 | 50%            |  |  |  |
| A/S BLOWER (NEW)                    |           | 10        | 14.0          | 30 | 100%           |  |  |  |
| UNIT HEATER (UH-1)                  | 10.0      |           | 12.1          | 20 | 50%            |  |  |  |
| UNIT HEATER (UH-2)                  | 10.0      |           | 12.1          | 20 | 50%            |  |  |  |
| WELL PUMPS (6)                      |           | 3/4 (EA)  | 20.7          | 10 | 50%            |  |  |  |
| MISC 10 LOADS                       |           |           | 4.6           | 20 | 50%            |  |  |  |
| TOTAL                               |           |           | 81.2A         |    |                |  |  |  |

|                | LBOAR        |          |        | Р    | — S  | CH          | IEDULE       | PANE            | L "PP" CI | RCUITS 4 &             | 6            |
|----------------|--------------|----------|--------|------|------|-------------|--------------|-----------------|-----------|------------------------|--------------|
| TING :         | AM<br>AM     |          | 0,000  | /120 | _ VO | LTS<br>S. S |              | 1 P<br>>S       | HASE ,    | 3<br>NQOD<br>GND., 1"C | Wire<br>Type |
|                | 7.1 K        |          | 3      |      | - EN | CLO         | SURE :       | SUF             | RFACE MOL | JNTED NEMA             | X 1          |
| LOAD<br>-KW-HP | CB<br>AMPS   | CIR.     | E      | з с  |      | CIR.        | CB<br>AMPS   | LOAD<br>W-KW-HP |           | DESCRIPTION            |              |
| 480W           | 20 1         | 1        |        |      |      | 2           | 30           | 1.5 HP          | MANHOLE   | NO.1 PUMP              | CONTROLS     |
| 720W           | 20 1         | 5        | $\leq$ |      |      | 6           | 2<br>30      | 1.5 HP          | MANHOLE   | NO.2 PUMP              | ' CONTROLS   |
| 900W<br>-      | 20 1<br>20 1 | 7<br>9   |        |      |      | 8<br>10     | 2<br>30      | 1.5 HP          | MANHOLE   | NO.3 PUMP              | ' CONTROLS   |
| -              | 20 1<br>20 1 | 11<br>13 |        |      |      | 12<br>14    | <u> </u>     |                 | MANHOLE   | NO.3 FLOW              | METER        |
| -              | 15 1<br>20 1 | 15<br>17 |        |      |      | 1           | 20 1<br>20 1 | _               | C RECEPT  | ſS                     |              |
| _              |              | 19       |        |      |      | 1           | 20 1         | -               | SPARE     |                        |              |

LOGIC FOR MANHOLE NO. 1

PUMP NO. 1 SHALL NOT OPERATE IF:

1. PUMP NO. 1 HOA SWITCH (HS-101A) IS IN AUTO POSITION, AND FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC

2. PUMP NO. 1 HOA SWITCH (HS-101A) IS IN OFF POSITION

3. MANHOLE NO. 1 LEVEL IS BELOW LOW LEVEL FLOAT (LSL-103)

4. MANHOLE NO. 1 LEVEL IS BELOW LOW-LOW LEVEL FLOAT (LSLL-103)

PUMP NO. 1 SHALL OPERATE IF:

1. PUMP NO. 1 HOA SWITCH (HS-101A) IS IN AUTO POSITION AND MANHOLE NO. 1 LEVEL IS ABOVE HIGH-1 LEVEL FLOAT (LSH1-103) AND PUMP NO. 1 IS DESIGNATED BY PLC AS LEAD PUMP AND

NO FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC

2. PUMP NO. 1 HOA SWITCH (HS-101A) IS IN AUTO POSITION AND MANHOLE NO. 1 LEVEL IS ABOVE HIGH-2 LEVEL FLOAT (LSH2-103) AND PUMP NO. 1 IS DESIGNATED BY PLC AS LAG PUMP AND NO FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC

3. PUMP NO. 1 HOA SWITCH (HS-102A) IS IN HAND POSITION

PUMP NO. 2 SHALL NOT OPERATE IF:

1. PUMP NO. 2 HOA SWITCH (HS-101B) IS IN AUTO POSITION, AND FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC

2. PUMP NO. 2 HOA SWITCH (HS-101B) IS IN OFF POSITION

3. MANHOLE NO. 1 LEVEL IS BELOW LOW LEVEL FLOAT (LSL-103) 4. MANHOLE NO. 1 LEVEL IS BELOW LOW-LOW LEVEL FLOAT (LSLL-103)

PUMP NO. 2 SHALL OPERATE IF:

1. PUMP NO. 2 HOA SWITCH (HS-101B) IS IN AUTO POSITION AND MANHOLE NO. 1 LEVEL IS ABOVE HIGH-1 LEVEL FLOAT (LSH1-103) AND PUMP NO. 2 IS DESIGNATED BY PLC AS LEAD PUMP AND NO FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC

2. PUMP NO. 2 HOA SWITCH (HS-101B) IS IN AUTO POSITION AND MANHOLE NO. 1 LEVEL IS ABOVE HIGH-2 LEVEL FLOAT (LSH2-103) AND PUMP NO. 2 IS DESIGNATED BY PLC AS LAG PUMP AND NO FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC

3. PUMP NO. 2 HOA SWITCH (HS-101B) IS IN HAND POSITION

# LOGIC FOR AIR STRIPPER BLOWER (B-100)

**BLOWER SHALL OPERATE IF:** 

1. BLOWER HOA SWITCH (HS-100) IS IN HAND POSITION

2. BLOWER HOA SWITCH (HS-100) IS IN AUTO POSITION AND [MANHOLE NO. 1 PUMP NO. 1 HOA SWITCH (HS-101A) IS IN AUTO POSITION AND MANHOLE NO. 1 PUMP NO. 1 HAS BEEN RUNNING WITHIN LAST TEN MINUTES] 3. BLOWER HOA SWITCH (HS-100) IS IN AUTO POSITION AND [MANHOLE NO. 1 PUMP NO. 2 HOA SWITCH (HS-101B) IS IN AUTO POSITION AND MANHOLE NO. 1 PUMP NO. 2 HAS BEEN RUNNING WITHIN LAST TEN MINUTES] 4. BLOWER HOA SWITCH (HS-100) IS IN AUTO POSITION AND [MANHOLE NO. 2 PUMP NO. 1 HOA SWITCH (HS-102A) IS IN AUTO POSITION AND MANHOLE NO. 2 PUMP NO. 1 HAS BEEN RUNNING WITHIN LAST TEN MINUTES 5. BLOWER HOA SWITCH (HS-100) IS IN AUTO POSITION AND [MANHOLE NO. 2 PUMP NO. 2 HOA SWITCH (HS-102B) IS IN AUTO POSITION AND MANHOLE NO. 2 PUMP NO. 2 HAS BEEN RUNNING WITHIN LAST TEN MINUTES] 6. BLOWER HOA SWITCH (HS-100) IS IN AUTO POSITION AND [MANHOLE NO. 3 PUMP NO. 1 HOA SWITCH (HS-103A) IS IN AUTO POSITION AND MANHOLE NO. 3 PUMP NO. 1 HAS BEEN RUNNING WITHIN LAST TEN MINUTES] 7. BLOWER HOA SWITCH (HS-100) IS IN AUTO POSITION AND [MANHOLE NO. 3 PUMP NO. 2 HOA SWITCH (HS-103B) IS IN AUTO POSITION AND MANHOLE

BLOWER SHALL NOT OPERATE IF:

1. BLOWER HOA SWITCH (HS-100) IS IN OFF POSITION

2. BLOWER HOA SWITCH (HS-100) IS IN AUTO POSITION AND FATAL ALARMS (SHOWN ON THIS DRAWING) HAVE BEEN INDICATED AT PLC FOR GREATER THAN TEN MINUTES

NO. 3 PUMP NO. 2 HAS BEEN RUNNING WITHIN LAST TEN MINUTES]

3. BLOWER HOA SWITCH (HS-100) IS IN AUTO POSITION AND NONE OF THE STATEMENTS LISTED ABOVE ARE TRUE

|  |                                                                             |    |                                                                                                     |                                                |     |     | Professional Engi           | neer's Name |              |
|--|-----------------------------------------------------------------------------|----|-----------------------------------------------------------------------------------------------------|------------------------------------------------|-----|-----|-----------------------------|-------------|--------------|
|  |                                                                             |    | 6/12/11                                                                                             | AS-BUILT RECORD DRAWINGS                       | MEC | MEC | MICHAEL E. CUF              | RRE         |              |
|  |                                                                             | 3  | 3/14/11                                                                                             | AS-BUILT RECORD DRAWINGS                       | CD  | CM  | Professional Engineer's No. |             |              |
|  | SCALE(S) AS INDICATED                                                       |    | 2/11/10                                                                                             | FINAL 100% REMEDIAL DESIGN SUBMITTAL TO NYSDEC | СМ  | MM  | 082521                      |             |              |
|  |                                                                             |    | 1/6/10                                                                                              | DRAFT 100% DESIGN WORK PLAN                    | СМ  | MM  |                             |             |              |
|  | THIS BAR USE TO VERIFY<br>REPRESENTS ONE FIGURE<br>INCH ON THE REPRODUCTION |    | 12/2/09                                                                                             | DRAFT 60% DESIGN WORK PLAN                     | CM  | MM  |                             |             | Project Mgr. |
|  |                                                                             |    | Date                                                                                                | Revisions                                      | By  | Ckd | NY                          | 6/13/11     | P.MILION     |
|  |                                                                             |    | THIS DRAWING IS THE PROPERTY OF THE ARCADIS ENTITY IDENTIFIED IN THE TITLE BLOCK AND MAY            |                                                |     |     | Designed by                 | Drawn by    | Checked by   |
|  | ORIGINAL DRAWING: SCALE                                                     | NO | NOT BE REPRODUCED OR ALTERED IN WHOLE OR IN PART WITHOUT THE EXPRESS WRITTEN<br>PERMISSION OF SAME. |                                                |     |     |                             | J.GONZALEZ  | M.CURRIE     |

# LOGIC FOR MANHOLE NO. 2

# PUMP NO. 1 SHALL NOT OPERATE IF:

1. PUMP NO. 1 HOA SWITCH (HS-102A) IS IN AUTO POSITION, AND FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC 2. PUMP NO. 1 HOA SWITCH (HS-102A) IS IN OFF POSITION 3. MANHOLE NO. 2 LEVEL IS BELOW LOW LEVEL FLOAT (LSL-104) 4. MANHOLE NO. 2 LEVEL IS BELOW LOW-LOW LEVEL FLOAT (LSLL-104)

# PUMP NO. 1 SHALL OPERATE IF:

1. PUMP NO. 1 HOA SWITCH (HS-102A) IS IN AUTO POSITION AND MANHOLE NO. 2 LEVEL IS ABOVE HIGH-1 LEVEL FLOAT (LSH1-104) AND PUMP NO. 1 IS DESIGNATED BY PLC AS LEAD PUMP AND NO FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC 2. PUMP NO. 1 HOA SWITCH (HS-102A) IS IN AUTO POSITION AND MANHOLE NO. 2 LEVEL IS ABOVE HIGH-2 LEVEL FLOAT (LSH2-104) AND PUMP NO. 1 IS DESIGNATED BY PLC AS LAG PUMP AND NO FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC 3. PUMP NO. 1 HOA SWITCH (HS-102A) IS IN HAND POSITION

# PUMP NO. 2 SHALL NOT OPERATE IF:

1. PUMP NO. 2 HOA SWITCH (HS-102B) IS IN AUTO POSITION, AND FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC 2. PUMP NO. 2 HOA SWITCH (HS-102B) IS IN OFF POSITION 3. MANHOLE NO. 2 LEVEL IS BELOW LOW LEVEL FLOAT (LSL-104) 4. MANHOLE NO. 2 LEVEL IS BELOW LOW-LOW LEVEL FLOAT (LSLL-104)

# PUMP NO. 2 SHALL OPERATE IF:

1. PUMP NO. 2 HOA SWITCH (HS-102B) IS IN AUTO POSITION AND MANHOLE NO. 2 LEVEL IS ABOVE HIGH-1 LEVEL FLOAT (LSH1-104) AND PUMP NO. 2 IS DESIGNATED BY PLC AS LEAD PUMP AND NO FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC 2. PUMP NO. 2 HOA SWITCH (HS-102B) IS IN AUTO POSITION AND MANHOLE NO. 2 LEVEL IS ABOVE HIGH-2 LEVEL FLOAT (LSH2-104) AND PUMP NO. 2 IS DESIGNATED BY PLC AS LAG PUMP AND NO FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC 3. PUMP NO. 2 HOA SWITCH (HS-102B) IS IN HAND POSITION

LOGIC FOR DUCT HEATER (DH-300)

# DUCT HEATER SHALL OPERATE IF:

1. DUCT HEATER HEAT ON/OFF SWITCH IS IN ON POSITION AND BLOWER HOA SWITCH (HS-100) IS IN AUTO POSITION AND BLOWER (B-100) IS RUNNING

DUCT HEATER SHALL NOT OPERATE IF:

1. DUCT HEATER HEAT ON/OFF SWITCH IS IN OFF POSITION 2. DUCT HEATER HEAT ON/OFF SWITCH IS IN ON POSITION AND BLOWER HOA SWITCH (HS-100) IS IN AUTO POSITION AND BLOWER (B-100) IS NOT RUNNING

# LOGIC FOR CHEMICAL METERING PUMP (CMP-200)

CHEMICAL METERING PUMP SHALL OPERATE IF:

1. AGGREGATE FLOW TRANSMITTER (FT-105) IS REGISTERING AN INSTANTANEOUS FLOWRATE

CHEMICAL METERING PUMP SHALL NOT OPERATE IF:

1. AGGREGATE FLOW TRANSMITTER (FT-105) IS NOT REGISTERING AN INSTANTANEOUS FLOWRATE

# LOGIC FOR MANHOLE NO. 3

PUMP NO. 1 SHALL NOT OPERATE IF:

1. PUMP NO. 1 HOA SWITCH (HS-103A) IS IN AUTO POSITION, AND FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC 2. PUMP NO. 1 HOA SWITCH (HS-103A) IS IN OFF POSITION 3. MANHOLE NO. 3 LEVEL IS BELOW LOW LEVEL FLOAT (LSL-105) 4. MANHOLE NO. 3 LEVEL IS BELOW LOW-LOW LEVEL FLOAT (LSLL-105)

# PUMP NO. 1 SHALL OPERATE IF:

1. PUMP NO. 1 HOA SWITCH (HS-103A) IS IN AUTO POSITION AND MANHOLE NO. 3 LEVEL IS ABOVE HIGH-1 LEVEL FLOAT (LSH1-105) AND PUMP NO. 1 IS DESIGNATED BY PLC AS LEAD PUMP AND NO FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC 2. PUMP NO. 1 HOA SWITCH (HS-103A) IS IN AUTO POSITION AND MANHOLE NO. 3 LEVEL IS ABOVE HIGH-2 LEVEL FLOAT (LSH2-105) AND PUMP NO. 1 IS DESIGNATED BY PLC AS LAG PUMP AND NO FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC 3. PUMP NO. 1 HOA SWITCH (HS-103A) IS IN HAND POSITION

PUMP NO. 2 SHALL NOT OPERATE IF:

1. PUMP NO. 2 HOA SWITCH (HS-103B) IS IN AUTO POSITION, AND FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC 2. PUMP NO. 2 HOA SWITCH (HS-103B) IS IN OFF POSITION 3. MANHOLE NO. 3 LEVEL IS BELOW LOW LEVEL FLOAT (LSL-105) 4. MANHOLE NO. 3 LEVEL IS BELOW LOW-LOW LEVEL FLOAT (LSLL-105)

PUMP NO. 2 SHALL OPERATE IF:

1. PUMP NO. 2 HOA SWITCH (HS-103B) IS IN AUTO POSITION AND MANHOLE NO. 3 LEVEL IS ABOVE HIGH-1 LEVEL FLOAT (LSH1-105) AND PUMP NO. 2 IS DESIGNATED BY PLC AS LEAD PUMP AND NO FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC 2. PUMP NO. 2 HOA SWITCH (HS-103B) IS IN AUTO POSITION AND MANHOLE NO. 3 LEVEL IS ABOVE HIGH-2 LEVEL FLOAT (LSH2-105) AND PUMP NO. 2 IS DESIGNATED BY PLC AS LAG PUMP AND NO FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC 3. PUMP NO. 2 HOA SWITCH (HS-103B) IS IN HAND POSITION

# FATAL ALARMS:

1. HIGH AIR STRIPPER SUMP PRESSURE (PT-106)

- 2. LOW AIR STRIPPER SUMP PRESSURE (PT-106) 3. HIGH AIR STRIPPER SUMP LEVEL (LSH-100)
- 4. LOW AIR STRIPPER SUMP LEVEL (LSL-100)
- 5. HIGH AIR FLOWRATE (FT-106)
- 6. LOW AIR FLOWRATE (FT-106)
- 7. PRE-CARBON HIGH TEMPERATURE (TT-400) 8. PRE-CARBON LOW TEMPERATURE (TT-400)
- 9. PRE-CARBON HIGH PRESSURE (PT-400)
- 10. PRE-CARBON LOW PRESSURE (PT-400)
- 11. BUILDING WET FLOOR SENSOR ALARM (WFS-106)

**ARCADIS** Project Mgr. **P.MILIONIS** Checked by

ARCADIS OF NEW YORK, INC.

**GROUNDWATER COLLECTION AND TREATMENT SYSTEM** 



NOTES:

- 1. CONTROLS WERE MODIFIED FROM AN ELECTRICAL CIRCUIT RELAY. BASED CONTROL SYSTEM TO A MICROPROCESSOR BASED (PROGRAMMABLE LOGIC CONTROLLER) CONTROLS BY AZTECH TECHNOLOGIÉS, INC, IN DECEMBER 2007.
- 2. MODIFIED CONTROL DETAILS AND LINE DRAWINGS/SCHEMATIC ARE PROVIDED IN THE APPENDIX OF OM&M MANUAL.
- 3. PLC PROGRAMMING WILL BE PERFORMED BY ARCADIS.

# **RECORD DRAWINGS**

TO THE BEST OUR KNOWLEDGE, INFORMATION AND BELIEF, THESE RECORD DRAWINGS SUBSTANTIALLY REPRESENT THE PROJECT AS

FORMER LOCKHEED MARTIN FRENCH ROAD FACILITY • UTICA, NEW YORK ARCADIS Project No. NJ001024.0001.00005 **MARCH 2011 E-3** ARCADIS OF NEW YORK, INC. 465 NEW KARNER ROAD ALBANY, NEW YORK TEL. 518.452.7826



# **ARCADIS**

Appendix B

Monthly O&M Checklists

| Monthly OM&M Log Sheet,      | Groundwater Collection and                    | Date:             | 3/22/2011 |
|------------------------------|-----------------------------------------------|-------------------|-----------|
| Treatment System, Solvent    | Time:                                         | 0915              |           |
| French Road Facility, Utica, | Technician:                                   | D. Zuck/D. Nodine |           |
| SYSTEM STATUS                |                                               |                   |           |
| System operational? (PLC sc  | reen indicating system in "AUTO" or "MANUAL") | Auto              |           |
| System currently cycling?    | No                                            |                   |           |
| Alarms? (list) None          |                                               |                   |           |
|                              |                                               |                   |           |

# AIR STRIPPER PARAMETERS (record while air stripper is running)

| Parameter                                                                                  | Value         | Units      |  |  |  |
|--------------------------------------------------------------------------------------------|---------------|------------|--|--|--|
| Air stripper sump pressure [PI-106]                                                        | 28            | (in. W.C.) |  |  |  |
| Air stripper sump water elevation (record from site gauge)                                 | 14.5 -> 14.75 | (inches)   |  |  |  |
| Blower intake line vacuum [PI-100]                                                         | -1.5          | (in. W.C.) |  |  |  |
| Main damper position (record distance from center of wingnut to outside of blower housing) | 2             | (inches)   |  |  |  |
| Interior dilution damper position (0" is shut, 3" is open)                                 | 3/8           | (inches)   |  |  |  |
| Is white "POWER ON" light on air stripper control panel lit? (Y/N) Y                       |               |            |  |  |  |
| Is air stripper hand-off-auto switch [HS-100] in "AUTO" position? (Y/N) N (Manual/Hand)    |               |            |  |  |  |
| Note scaling inside liquid effluent pipe from access                                       | port          | Slight     |  |  |  |
| Note scaling observed inside air stripper via clear tray access of                         | door          | Some       |  |  |  |

# **FLOWMETER / PUMP PARAMETERS**

Are white power lights lit on MH-1, MH-2, and MH-3 control panels? (Y/N)

Y

Are pump hand-off-auto switches [HS-101A, HS-101B, HS-102A, HS-102B, HS-103A,

and HS-103B] in "auto" position? (Y/N) All But HS-103A + 103B

| Parameter                    | MH-1<br>[FT-101] | MH-2<br>[FT-102] | MH-3<br>[FT-103] | Sump<br>[FT-104] | Cumulative<br>[FT-105] |
|------------------------------|------------------|------------------|------------------|------------------|------------------------|
| Date/Time                    | 3/22/11 1018 -   |                  |                  |                  | $\rightarrow$          |
| Instantaneous Flowrate [gpm] | 21.56            | 27.12            | NA               | NA               | 38.47                  |
| Permanent Flow (gallons)     | 11,294,008       | 1,952,453        | 78,745           | 1513             | 873,020                |
| Total Flow (gallons)         | 1,297,828        | 288,715          | 78,745           | 199              | 872,881                |
| Pump 1 Running (Y/N)?        | Y                | Y                | N                | -                | -                      |
| Pump 2 Running (Y/N)?        | Ν                | N                | N                | -                | -                      |

- Flowrate, Permanent Flow, and Total Flow can be viewed locally from wall-mounted flow transmitters FT-101 through FT-105 using up/down arrows.

# VAPOR PHASE PARAMETERS (record while air stripper is running)

| Is duct heater "HEAT ON/OFF" light lit? (Y/N)  | Y | (located on duct heater control panel door) |
|------------------------------------------------|---|---------------------------------------------|
| Is duct heater "HI TEMP" alarm light on? (Y/N) | Ν | (located on duct heater control panel door) |

# **ADDITIONAL NOTES**

|                    |            |   | Flowrate | Via PLC:    |
|--------------------|------------|---|----------|-------------|
|                    |            |   | FT-101   | 20.27 (gpm) |
| Blower Velocity:   | 4069 (cfm) |   | FT-102   | 25.30 (gpm) |
| Effluent Velocity: | 2188 (cfm) |   | FT-103   | 0.00 (gpm)  |
| _                  |            | _ | FT-105   | 39.96 (gpm) |

Date: 3/22/2011 Time: 0915 Technician: D. Zuck/D. Nodine

## VAPOR PHASE PARAMETERS (continued)

| Parameter                              | PID Tag | Value | Units      | Notes                                         |
|----------------------------------------|---------|-------|------------|-----------------------------------------------|
| Pre-Duct Heater Temperature            | TI-300  | 68    | (°F)       |                                               |
| Pre-Carbon Temperature                 | TI-400  | 90    | (°F)       |                                               |
| Duct Heater Temperature<br>Setpoint    | -       | 91    | (°F)       | (located in green on duct heat control panel) |
| Duct Heater Temperature<br>Transmitter | -       | 86    | (°F)       | (located in red on duct heat control panel)   |
| Pre-Carbon Pressure                    | PI-401  | 10    | (in. W.C.) |                                               |
| Mid-Carbon Pressure                    | PI-402  | 4.5   | (in. W.C.) |                                               |
| Effluent Pressure                      | PI-403  | 2     | (in. W.C.) |                                               |

# TRANSMITTER READINGS (record from ProControl)

| Parameter                  | PID Tag | Value | Units      | Notes |
|----------------------------|---------|-------|------------|-------|
| Air Stripper Sump Pressure | PT-106  | 26.16 | (in. W.C.) |       |
| Vapor Flowrate             | FT-106  | 668   | (cfm)      |       |
| Pre-Carbon Temperature     | TT-400  | 93.9  | (°F)       |       |
| Pre-Carbon Pressure        | PT-400  | 4.3   | (in. W.C.) |       |
| Building Temperature       | TT-100  | 58.6  | (°F)       |       |

- Press the "I/O" up/down arrows on the ProControl screen until the desired transmitter value is displayed.

## SEQUESTERING AGENT (record while air stripper is running)

| Parameter                                                                                                                                                                                   | Status  | Notes                                                                                         |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------|--|--|--|
| Is pump operating? (Y/N)                                                                                                                                                                    | Ν       |                                                                                               |  |  |  |
| Is low flow alarm present? (Y/N)                                                                                                                                                            | Ν       |                                                                                               |  |  |  |
| Is pump in external mode? (Y/N)                                                                                                                                                             | Ν       |                                                                                               |  |  |  |
| If in external mode, record one set of mA and stroke speed values                                                                                                                           | · · · / | (display screen should automatically be switching back and forth between mA and stroke speed) |  |  |  |
| Stroke length                                                                                                                                                                               |         | (record from local stroke length knob on pump)                                                |  |  |  |
| Sequestering agent drum level [LI-200]                                                                                                                                                      | Full    |                                                                                               |  |  |  |
| Quantity of additional full drums                                                                                                                                                           | 1       |                                                                                               |  |  |  |
| Inspect sequestering agent components for None, not active<br>signs of leaking or wear (tubing [suction,<br>injection, bleed return], injection check valve<br>fitting, spill pallet, etc.) |         |                                                                                               |  |  |  |

## MONTHLY OM&M TASKS

| Task                                            | Notes               |
|-------------------------------------------------|---------------------|
| Monthly liquid effluent sample collected? (Y/N) | Y                   |
| pH of effluent sample                           | 8.10 / Temp: 9.3 °C |
| Model of pH meter                               | Hanna 991001        |
| Calibration notes / method used                 | Cal 7.00 & 4.00: OK |

Date: 3/22/2011 Time: 0915 Technician: D. Zuck/D. Nodine

# MONTHLY OM&M TASKS (continued)

| Task                                                                                                                                         | Notes                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Liquid flow sensors cleaned? (Y/N)                                                                                                           | Y                                                                                         |
| Monthly manhole inspections conducted? (Y/N)                                                                                                 | Y                                                                                         |
| Leaking/dripping of water observed from double-<br>walled HDPE discharge pipe located inside<br>manhole? (Y/N)                               | No                                                                                        |
| Do level floats appear to be in good condition and hanging freely? (Y/N)                                                                     | Yes                                                                                       |
| Observe groundwater inside each manhole and note odor and appearance                                                                         | MH-1, MH-3: None/Clear waterMH-2: Shows sheans & Oil Blebs on water surface               |
| Is confined space entry signage present at each manhole? (Y/N)                                                                               | Yes, Should be replaced @ MH-1<br>None, @ MH-23                                           |
| With pump(s) running, visually inspect discharge piping, pipe fittings, and pressure relief valve for leaks                                  | Working on MH-1 & MH-2 Off<br>on MH-2&3                                                   |
| With pump(s) running, listen for any unusual sounds                                                                                          | None                                                                                      |
| Inspect condition of collection line gate valve protection flush-mount covers for each manhole                                               | ОК                                                                                        |
| With system running, visually inspect all piping within the treatment system for leaks, signs of distress, or any other notable observations | None                                                                                      |
| Treatment system valves exercised? (Y/N) (should be conducted with system in-between batch cycles)                                           | Yes                                                                                       |
| List any notable observations                                                                                                                | Well Oil Check: MW-4: Clean / MW-3: Clean / MW-2:<br>Clean / MW-13BR: Clean / MW-5: Clean |

# HEALTH AND SAFETY

| Item                                                                                                                       | Status                |
|----------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Is fire extinguisher charged, unobstructed, and possessing an inspection tag? (Y/N)                                        | Y                     |
| Is eyewash/shower station operational and unobstructed? (Y/N)                                                              | Y                     |
| Is interior emergency lighting operational? (Y/N)                                                                          | Y                     |
| Is first aid kit present and in good condition? (Y/N)                                                                      | Y                     |
| Is lockout/tagout equipment available? (Y/N)                                                                               | Y                     |
| Have electrical GFIs been tested and reset? (Y/N)                                                                          | Y                     |
| Do all electrical panels have 36" of open floor space in front of them?<br>(Y/N)                                           | Y                     |
| Are both the OM&M Manual and HASP onsite? (Y/N) (note dates for each)                                                      | HASP 11/08 OM&M 12/10 |
| Is emergency spill kit available? (Y/N)                                                                                    | Y                     |
| Is H&S signage including emergency contact list, eye protection hearing protection, and automatic equipment present? (Y/N) | Y                     |
| Is current SPDES permit onsite? (Y/N) (note date)                                                                          | Y 11/10               |

 $\label{eq:c:lusersldzucklappDatalLocallMicrosoftWindows\Temporary Internet Files\Content.Outlook\EWEEONB3\3-2011\_GCTS\_OMM\_Log\_Sheets.xlsx$ 

| Monthly OM&M     | Log Sheet     | , Groundwater Collection and                   | Date:       | 4/5/2011 |
|------------------|---------------|------------------------------------------------|-------------|----------|
| Treatment Syst   | em, Solven    | t Dock Area, Former Lockheed Martin            | Time:       | 9:15     |
| French Road Fa   | acility, Utic | a, New York                                    | Technician: | DZ/DN    |
| SYSTEM STAT      | JS            |                                                |             |          |
| System operation | nal? (PLC s   | creen indicating system in "AUTO" or "MANUAL") | AUTO        |          |
| System currently | v cycling?    | Yes                                            |             |          |
| Alarms? (list)   | None          |                                                |             |          |
|                  |               |                                                |             |          |

# AIR STRIPPER PARAMETERS (record while air stripper is running)

| Units      | Value | Parameter                                                                                  |
|------------|-------|--------------------------------------------------------------------------------------------|
| (in. W.C.) | 29    | Air stripper sump pressure [PI-106]                                                        |
| (inches)   | 17.75 | Air stripper sump water elevation (record from site gauge)                                 |
| (in. W.C.) | 0.5   | Blower intake line vacuum [PI-100]                                                         |
| (inches)   | 2     | Main damper position (record distance from center of wingnut to outside of blower housing) |
| (°)        | 10    | Interior dilution damper position (0° is shut, 90° is open)                                |
| Y          |       | Is white "POWER ON" light on air stripper control panel lit?                               |
| Y          |       | Is air stripper hand-off-auto switch [HS-100B] in "AUTO" position?                         |
| esent      |       | Note scaling inside liquid effluent pipe from access port                                  |
| esent      |       | Note scaling observed inside air stripper via clear tray access door                       |

# FLOWMETER / PUMP PARAMETERS

Are white power lights lit on MH-1, MH-2, and MH-3 control panels? (Y/N) yes, except MH-2

Are pump hand-off-auto switches [HS-101A, HS-101B, HS-102A, HS-102B, HS-103A, and HS-103B] in "auto" position? (Y/N) yes, except 102s

| Parameter                    | MH-1           | MH-2      | MH-3     | Sump     | Cumulative |
|------------------------------|----------------|-----------|----------|----------|------------|
| Parameter                    | [FT-101]       | [FT-102]  | [FT-103] | [FT-104] | [FT-105]   |
| Date/Time                    | 4/5/2011 10:30 |           |          |          |            |
| Instantaneous Flowrate [gpm] | 45.76          | 0         | 29.02    | 0        | 74.33      |
| Permanent Flow (gallons)     | 11,452,117     | 1,955,047 | 78,749   | 1,513    | 1,012,904  |
| Pump 1 Running (Y/N)?        | Ν              | Ν         | Y        | N        | NA         |
| Pump 2 Running (Y/N)?        | Y              | N         | Y        | NA       | NA         |

- Flowrate and Permanent Flow can be viewed locally from wall-mounted flow transmitters FT-101 through FT-105 using up/down arrows.

# VAPOR PHASE PARAMETERS (record while air stripper is running)

 Is duct heater "HEAT ON/OFF" light lit? (Y/N)
 Y
 (located on duct heater control panel door)

 Is duct heater "HI TEMP" alarm light on? (Y/N)
 N
 (located on duct heater control panel door)

## VAPOR PHASE PARAMETERS (continued)

| Parameter                              | PID Tag | Value | Units      | Notes                                         |
|----------------------------------------|---------|-------|------------|-----------------------------------------------|
| Pre-Duct Heater Temperature            | TI-300  | 70    | (°F)       |                                               |
| Pre-Carbon Temperature                 | TI-400  | 103   | (°F)       |                                               |
| Duct Heater Temperature<br>Setpoint    | -       | 91    | (°F)       | (located in green on duct heat control panel) |
| Duct Heater Temperature<br>Transmitter | -       | 90    | (°F)       | (located in red on duct heat control panel)   |
| Pre-Carbon Pressure                    | PI-401  | 10    | (in. W.C.) |                                               |
| Mid-Carbon Pressure                    | PI-402  | 4.5   | (in. W.C.) |                                               |
| Effluent Pressure                      | PI-403  | 0.5   | (in. W.C.) |                                               |

# TRANSMITTER READINGS (record from ProControl)

| Parameter                  | PID Tag | Value     | Units      | Notes |
|----------------------------|---------|-----------|------------|-------|
| Air Stripper Sump Pressure | PT-106  | 26.7      | (in. W.C.) |       |
| Vapor Flowrate             | FT-106  | 632 - 694 | (cfm)      |       |
| Pre-Carbon Temperature     | TT-400  | 99.5      | (°F)       |       |
| Pre-Carbon Pressure        | PT-400  | 2.7       | (in. W.C.) |       |
| Building Temperature       | TT-100  | 65.3      | (°F)       |       |

- Press the "I/O" up/down arrows on the ProControl screen until the desired transmitter value is displayed.

## SEQUESTERING AGENT (record while air stripper is running)

| Parameter                                 | Status  | Notes                                                      |
|-------------------------------------------|---------|------------------------------------------------------------|
| Is pump operating? (Y/N)                  | Ν       |                                                            |
| Is low flow alarm present? (Y/N)          | Ν       |                                                            |
| Is pump in external mode? (Y/N)           | Ν       |                                                            |
| If in external mode, record one set of mA | - (mA)  | (display screen should automatically be switching back and |
| and stroke speed values                   | - (spm) | forth between mA and stroke speed)                         |
| Stroke length                             | -       | (record from local stroke length knob on pump)             |
| Sequestering agent drum level [LI-200]    | FULL    |                                                            |
| Quantity of additional full drums         | ONE     |                                                            |

Inspect sequestering agent components for OK signs of leaking or wear (tubing [suction, injection, bleed return], injection check valve fitting, spill pallet, etc.)

# MONTHLY OM&M TASKS

| Task                                            | Notes                                            |
|-------------------------------------------------|--------------------------------------------------|
| Monthly liquid effluent sample collected? (Y/N) | yes, @ 12:56                                     |
| pH of effluent sample                           | 8.05                                             |
| Model of pH meter                               | Hanna 991001                                     |
| Calibration notes / method used                 | 2-point span calibration at pH 4 and pH 7; okay. |

 Date:
 4/5/2011

 Time:
 12:07

 Technician:
 DN

# MONTHLY OM&M TASKS (continued)

| Task                                                                                                                                                     | Notes                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Liquid flow sensors cleaned? (Y/N)                                                                                                                       | yes                                                                                                   |
| Monthly manhole inspections conducted? (Y/N)                                                                                                             | yes                                                                                                   |
| Leaking/dripping of water observed from double-<br>walled HDPE discharge pipe located inside<br>manhole? (Y/N)                                           | no                                                                                                    |
| Do level floats appear to be in good condition and hanging freely? (Y/N)                                                                                 | yes, hanging freely                                                                                   |
| Observe groundwater inside each manhole and note odor and appearance                                                                                     | MH-1: moderately clear, no odor. MH-2: murky, solids floating on top, no odor. MH-3: No odor, turbid. |
| Is confined space entry signage present at each manhole? (Y/N)                                                                                           | Yes, except MH-3.                                                                                     |
| With pump(s) running, visually inspect discharge piping, pipe fittings, and pressure relief valve for leaks                                              | all appear good                                                                                       |
| With pump(s) running, listen for any unusual sounds                                                                                                      | all sound fine; MH-2 offline.                                                                         |
| Inspect condition of collection line gate valve protection flush-mount covers for each manhole                                                           | all appear good                                                                                       |
| With system running, visually inspect all piping within<br>the treatment system for leaks, signs of distress, or any<br>other notable observations       | Okay.                                                                                                 |
| Treatment system valves exercised? (Y/N) (should be conducted with system in-between batch cycles)                                                       | Yes.                                                                                                  |
| List any notable observations                                                                                                                            |                                                                                                       |
| Are both building heaters working properly? (Y/N)<br>(adjust respective wall-mounted thermostats for both heaters<br>and confirm proper beater response) |                                                                                                       |
| and confirm proper heater response)                                                                                                                      | Y                                                                                                     |

# HEALTH AND SAFETY

| Item                                                                                                                       | Status                 |
|----------------------------------------------------------------------------------------------------------------------------|------------------------|
| Is fire extinguisher charged, unobstructed, and possessing an inspection tag? (Y/N)                                        |                        |
| Is eyewash/shower station operational and unobstructed? (Y/N)                                                              | Y                      |
| Is interior emergency lighting operational? (Y/N)                                                                          | Y                      |
| Is first aid kit present and in good condition? (Y/N)                                                                      | Y                      |
| Is lockout/tagout equipment available? (Y/N)                                                                               | Υ                      |
| Have electrical GFIs been tested and reset? (Y/N)                                                                          | Y                      |
| Do all electrical panels have 36" of open floor space in front of them?<br>(Y/N)                                           |                        |
| Are both the OM&M Manual and HASP onsite? (Y/N) (note dates for each)                                                      | HASP - 3/11, OM&M 3/11 |
| Is emergency spill kit available? (Y/N)                                                                                    | Y                      |
| Is H&S signage including emergency contact list, eye protection hearing protection, and automatic equipment present? (Y/N) |                        |
| Is current SPDES permit onsite? (Y/N) (note date)                                                                          | Y 11/2010              |

| Quarterly OM&M Log Sheet, Gro                     | oundwater Collection a     | nd                       | Date:                 | 4/5/11 - 4/6/11      |
|---------------------------------------------------|----------------------------|--------------------------|-----------------------|----------------------|
| Treatment System, Solvent Doc                     | k Area, Former Lockhe      | ed Martin                | Time:                 | -                    |
| French Road Facility, Utica, New                  | v York                     |                          | Technician:           | DZ/DN/CD/TC          |
| QUARTERLY OM&M TASKS                              |                            |                          |                       |                      |
| Quarterly liquid influent                         | samples collected for M    | H-1, MH-2, and MH-       | 3? (Y/N) MH-1 and     | MH-3                 |
| MH                                                | -1 influent pH             | 7.16                     |                       |                      |
| MH                                                | -2 influent pH             | NA                       |                       |                      |
| MH                                                | -3 influent pH             | 7.39                     |                       |                      |
| Quarterly vapor samples                           | collected pre-carbon, mic  | l-carbon, and effluer    | nt? (Y/N) <u>Y</u>    |                      |
| Quarterly catch basi                              | n samples collected for C  | B-1, CB-2, and CB-       | 3? (Y/N) Y            |                      |
| Q                                                 | uarterly groundwater elev  | ation levels collecte    | d? (Y/N) Y            |                      |
|                                                   | Blo                        | wer bearings grease      | d? (Y/N) N            |                      |
| Indicate air velocity measuremer                  | t collected from 8" efflue | nt pipe (plug located    | on wall               |                      |
|                                                   | side of ve                 | rtical portion of efflue | ent pipe) 20          | 30 (fpm) / 644 (cfm) |
| QUARTERLY CRITICAL DEVICE                         | / ALARM TESTING            |                          |                       |                      |
| Liquid flow transmitters FT-101, F                |                            |                          |                       |                      |
|                                                   | be d                       | one after flow sensor    | cleaning) Y, except   | FT-102.              |
| If yes, document testing and                      | Performed pumpdown tests   | consistent with GCTS SC  | OP-09. Changed both K | -factors for         |
| note any changes in sensor<br>calibration factors | MH-1 from 66.739 to 81.4.1 | Did not change any other | K-factors.            |                      |
|                                                   |                            |                          |                       |                      |
| Manhole floats tested? (Y/N)                      | Y                          |                          |                       |                      |

Test the following critical alarms (note that system must be in AUTO to observe proper alarm response):

| Alarm                              | Corresponding<br>Transmitter /<br>Sensor                                                                                                                           | PLC Alarm<br>Output Name                                                                                                                       | Alarm Type    | Caused PLC<br>Alarm Output<br>State Change?<br>(Y/N) | Caused System<br>Shutdown?<br>(Y/N) | Passed<br>(Y/N) |  |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------------------------------------------|-------------------------------------|-----------------|--|
|                                    | PT-106                                                                                                                                                             | PA_106                                                                                                                                         | fatal         | Y                                                    | Y                                   | Y               |  |
| Air Stripper Sump<br>High Pressure |                                                                                                                                                                    | <i>Notes:</i> Adjusted high setpoint to 26. Observed 45 second delay. Lit up "BLOWER PRESSURE HH or LL ALARM" light on blower panel. Shutdown. |               |                                                      |                                     |                 |  |
|                                    | PT-106                                                                                                                                                             | PA_106                                                                                                                                         | fatal         | Y                                                    | Y                                   | Y               |  |
| Air Stripper Sump<br>Low Pressure  |                                                                                                                                                                    | ow setpoint to 29.<br>I" light on blower p                                                                                                     |               | •                                                    | up "BLOWER PF                       | RESSURE         |  |
|                                    | LSH-100                                                                                                                                                            | LA_100                                                                                                                                         | fatal         | NA                                                   | NA                                  | NA              |  |
| Air Stripper High<br>Liquid Level  | <i>Notes:</i> Verified that input works. Confirmed alarm within last couple of weeks, although it is currently disabled while new tethered level float is ordered. |                                                                                                                                                |               |                                                      |                                     |                 |  |
|                                    |                                                                                                                                                                    |                                                                                                                                                |               |                                                      |                                     |                 |  |
|                                    | LSL-100                                                                                                                                                            | LA_100                                                                                                                                         | fatal         | Y                                                    | Y                                   | Y               |  |
| Air Stripper Low<br>Liquid Level   | Notes: Closed B                                                                                                                                                    | LA_100<br>FV-401. LSL-100 s<br>ond delay and shu                                                                                               | state changes |                                                      |                                     | site gauge.     |  |
|                                    | Notes: Closed Bl<br>Observed 25 sec                                                                                                                                | FV-401. LSL-100 :                                                                                                                              | state changes |                                                      |                                     | site gauge.     |  |

Date: 4/6/11 - 4/7/11 Time: -Technician: CD/TC

| Alarm                              | Corresponding<br>Transmitter /<br>Sensor                                                                             | PLC Alarm<br>Output Name                | Alarm Type    | Caused PLC<br>Alarm Output<br>State Change?<br>(Y/N) | Caused System<br>Shutdown?<br>(Y/N) | Passed<br>(Y/N) |  |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------|------------------------------------------------------|-------------------------------------|-----------------|--|
|                                    | FT-106                                                                                                               | FA_106                                  | fatal         | Y                                                    | Y                                   | Y               |  |
| Low Air Flowrate                   |                                                                                                                      | _                                       |               | lay and system sl                                    |                                     |                 |  |
|                                    | TT-400                                                                                                               | TAH400                                  | fatal         | Y                                                    | Y                                   | Y               |  |
| Pre-Carbon High<br>Temperature     | Notes: Changed                                                                                                       | high setpoint to 8                      | 0. Observed   | 1 minute delay an                                    | d shutdown.                         |                 |  |
|                                    | TT-400                                                                                                               | TAL400                                  | fatal         | Y                                                    | Y                                   | Y               |  |
| Pre-Carbon Low<br>Temperature      | Notes: Changed                                                                                                       | low setpoint to 95                      | 5. Observed 3 | minute delay and                                     | l shutdown.                         |                 |  |
|                                    | PT-400                                                                                                               | PA_400                                  | fatal         | Y                                                    | Y                                   | Y               |  |
| Pre-Carbon High<br>Pressure        | Notes: Adjusted high setpoint to 4. Observed 45 second delay and shutdown. Adjusted time delay to 10 seconds.        |                                         |               |                                                      |                                     |                 |  |
|                                    | PT-400                                                                                                               | PA_400                                  | fatal         | Y                                                    | Y                                   | Y               |  |
| Pre-Carbon Low<br>Pressure         | <i>Notes:</i> Adjusted low setpoint to 15. Observed 45 second delay and shutdown. Adjusted time delay to 10 seconds. |                                         |               |                                                      |                                     |                 |  |
|                                    | FT-101                                                                                                               | FA_101                                  | warning       | Y                                                    | Ν                                   | Y               |  |
| MH-1 Low Flowrate                  |                                                                                                                      | ning automatically<br>ond delay. No shu | y, turned HOA | A switches for both                                  | n MH-1 pumps to o                   | off position.   |  |
|                                    | FT-102                                                                                                               | FA_102                                  | warning       | Y                                                    | Ν                                   | Y               |  |
| MH-2 Low Flowrate                  |                                                                                                                      | ning automatically<br>ond delay. No shu |               | A switches for both                                  | n MH-2 pumps to o                   | off position.   |  |
|                                    | FT-103                                                                                                               | FA_103                                  | warning       | Y                                                    | Ν                                   | Y               |  |
| MH-3 Low Flowrate                  |                                                                                                                      | ning automatically<br>ond delay. No shu |               | A switches for both                                  | MH-3 pumps to o                     | off position.   |  |
|                                    | FT-105                                                                                                               | FA_105                                  | warning       | Y                                                    | Ν                                   | Y               |  |
| Aggregate Low<br>Flowrate          | Notes: Tested w                                                                                                      | —                                       |               | 5 second delay ar                                    |                                     |                 |  |
|                                    | WFS-106                                                                                                              | WFS106                                  | fatal         | Y                                                    | Ν                                   | Y               |  |
| Building Wet Floor<br>Sensor Alarm | Notes: Filled sun                                                                                                    | np with sink water                      |               | nutdown.                                             |                                     |                 |  |

Date: 4/6/11 - 4/7/11 Time: -Technician: CD/TC

| Alarm                            | Corresponding<br>Transmitter /<br>Sensor | PLC Alarm<br>Output Name                 | Alarm Type          | Caused PLC<br>Alarm Output<br>State Change?<br>(Y/N) | Caused System<br>Shutdown?<br>(Y/N) | Passed<br>(Y/N) |
|----------------------------------|------------------------------------------|------------------------------------------|---------------------|------------------------------------------------------|-------------------------------------|-----------------|
|                                  | LSH-106                                  | LSH106                                   | warning             | Y                                                    | Ν                                   | Y               |
| Building Sump High<br>Level      |                                          | np with water. Ob                        | -                   | nutdown alarm.                                       |                                     | -               |
|                                  | FT-200                                   | FA_200                                   | warning             | Y                                                    | Ν                                   | Y               |
| Sequestering Agent<br>Low Flow   |                                          | suction tubing fro<br>delay, then non-fa |                     | •                                                    | error message loc                   | ally at         |
|                                  | LSH-200                                  | LSH200                                   | warning             | Y                                                    | Ν                                   | Y               |
| Spill Pallet Wet<br>Sensor Alarm | Notes: Dipped in                         | water. Observed                          |                     | elay. Non shutdow                                    | /n.                                 |                 |
|                                  | LSHH-103                                 | LA_MH1                                   | warning             | Y                                                    | Ν                                   | Y               |
| MH-1 High Level                  | Notes: Tipped flo                        | oat. Observed ala                        | m occur, no s       | shutdown.                                            |                                     |                 |
|                                  | LSLL-103                                 | LA_MH1                                   | warning             | Y                                                    | Ν                                   | Y               |
| MH-1 Low Level                   | Turned off pump                          | and triggered ala                        |                     | n shutdown.                                          | o running automati                  |                 |
|                                  | LSHH-104                                 | LA_MH2                                   | warning             | Y                                                    | Ν                                   | Y               |
| MH-2 High Level                  | Notes: Float tipp<br>shutdown.           | ed naturally as Mł                       | H-2 has been        | offline for over 1                                   | week. Alarm prese                   | ent, no         |
|                                  | LSLL-104                                 | LA_MH2                                   | warning             | NA                                                   | NA                                  | NA              |
| MH-2 Low Level                   | Notes: Should for out/tagged out.        | rce off both MH-2                        | <i>pumps.</i> Did r | not test because N                                   | /IH-2 pumps curre                   | ntly locked     |
|                                  | LSHH-105                                 | LA_MH3                                   | warning             | Y                                                    | Ν                                   | Y               |
| MH-3 High Level                  | Notes: Tipped flo                        | bat. Observed ala                        |                     | shutdown.                                            |                                     |                 |
|                                  | LSLL-105                                 | LA_MH3                                   | warning             | Y                                                    | Ν                                   | Y               |
| MH-3 Low Level                   | Notes: Should for                        |                                          |                     |                                                      | o running automati                  | cally.          |

Date: 4/6/11 - 4/7/11 Time: -Technician: CD/TC

| Alarm         | Corresponding<br>Transmitter /<br>Sensor | PLC Alarm<br>Output Name | Alarm Type    | Caused PLC<br>Alarm Output<br>State Change?<br>(Y/N) | Caused System<br>Shutdown?<br>(Y/N) | Passed<br>(Y/N) |
|---------------|------------------------------------------|--------------------------|---------------|------------------------------------------------------|-------------------------------------|-----------------|
| Building High | TT-100                                   | TA_100                   | shutdown      | Y                                                    | Y                                   | Y               |
| Temperature   | Notes: Changed                           | high setpoint to 5       | 5. Observed : | 2 minute delay an                                    | d system shutdow                    | m.              |
| Building Low  | TT-100                                   | TA_100                   | shutdown      | Y                                                    | Y                                   | Y               |
| Temperature   | Notes: Held ice/s                        | snow up to probe.        | Observed 2 r  | minute delay and                                     | shutdown.                           |                 |

#### Water Level Record

| Page           | 1 of 2 |
|----------------|--------|
| Staff: D. Zuck |        |
|                |        |

Project LMC Utica, NY

Date 4/1/2011

| Well (s)  | Depth to Water (ft)<br>(TIC)/MP | Time    | Remarks                                                  |
|-----------|---------------------------------|---------|----------------------------------------------------------|
| MW - 1    | 6.84                            | 1358    |                                                          |
| MW - 2    | 4.05                            | 1402    |                                                          |
| MW - 3    | 9.30                            | 1357    |                                                          |
| MW - 4    | 6.12                            | 1355.00 |                                                          |
| MW - 5    | 2.48                            | 1405    |                                                          |
| MW - 6    | 5.92                            | 1458    | Bailer in well.                                          |
| MW - 7    | 7.65                            | 1626    |                                                          |
| MW - 9    | 1.99                            | 1407    |                                                          |
| MW - 10   | 3.53                            | 1403    | Replace and tap larger bolts/holes                       |
| MW - 11   | 7.89                            | 1353    | Replace bolts, J-Plug.                                   |
| MW - 12   | 10.90                           | 1643.00 |                                                          |
| MW - 13S  | 5.40                            | 1400.00 |                                                          |
| MW - 13T  | Unable to locate                |         |                                                          |
| MW - 13BR | 9.55                            | 1359.00 |                                                          |
| MW - 14S  | 10.22                           | 1636    |                                                          |
| MW - 14BR | 28.02                           | 1638    |                                                          |
| MW - 15S  | 8.24                            | 1630    |                                                          |
| MW - 15BR | 33.48                           | 1632    | Under pressure *caution when opening, replace all bolts. |
| PZ - 2    | 6.23                            | 1415    |                                                          |
| PZ - 4    | Under water                     |         |                                                          |
| PZ - 5    | 8.99                            | 1546    | Conmed                                                   |
| PZ - 6    | 9.08                            | 1552    | Conmed                                                   |
| PZ - 7    | 8.80                            | 1554    | Conmed                                                   |
| PZ - 8    | 9.00                            | 1556    | Conmed                                                   |
| PZ - 9    | 7.88                            | 1537    | Conmed                                                   |
| PZ - 10   | 8.75                            | 1540    | Conmed                                                   |
| PZ - 11R  | 7.22                            | 1743    | No ID                                                    |
| PZ - 13R  | 6.46                            | 1620    | No ID                                                    |
| PZ - 17   | 5.68                            | 1616    |                                                          |
| PZ - 18   | 6.53                            | 1618    |                                                          |
| PZ - 19   | 6.65                            | 1624    |                                                          |
| PZ - 20   | 6.38                            | 1622    |                                                          |
| PZ - 21   | Dry                             | 1755    | IHOP                                                     |
| PZ - 22   | 7.30                            | 1420    |                                                          |
| PZ - 23   | 6.09                            | 1423    |                                                          |

#### Water Level Record

| Project |
|---------|
|---------|

LMC Utica, NY

Page 2 of 2 Staff: D. Zuck

Date 4/1/2011

| Well (s) | Depth to Water (ft)<br>(TIC)/MP | Time    | Remarks       |
|----------|---------------------------------|---------|---------------|
| PZ - 24  | 10.52                           | 1424    |               |
| PZ - 25  | 5.96                            | 1428    |               |
| PZ - 26  | 8.72                            | 1434    |               |
| PZ - 27  | 10.08                           | 1444    |               |
| PZ - 28  | 3.53                            | 1418    |               |
| PZ - 29  | 2.36                            | 1422    |               |
| PZ - 30  | 3.56                            | 1427    |               |
| PZ - 31  | 2.10                            | 1430    |               |
| PZ - 32  | 0.53                            | 1431    |               |
| PZ - 33  | Dry                             | 1442    |               |
| PZ - 34  | 2.34                            | 1411    |               |
| PZ - 35  | 0.98                            | 1409    | Cut down IC   |
| PZ - 36  | 1.00                            | 1408    | Cut down IC   |
| PZ - 39  | 1.90                            | 1406    |               |
| PZ - 40  | 4.49                            | 1451    | (In building) |
| PZ - 41  | 4.10                            | 1448    | (In building  |
| PZ - 42  | 0.30                            | 1446    | (In building) |
| A1-PZ1   | 1.16                            | 1416.00 |               |
| A1-PZ2   | 2.33                            | 1417    |               |
| A2-PZ1   | 3.49                            | 1436.00 |               |
| A2-PZ2   | 6.41                            | 1437    |               |
| A2-PZ3   | 2.98                            | 1441    |               |
| A2-PZ4   | 0.81                            | 1437    |               |
| A2-PZ5   | 7.68                            | 1440    |               |
| A2-PZ6   | 0.54                            | 1435    |               |
| A2-PZ7   | 5.74                            | 1439    |               |
| A2-PZ8   | 0.80                            | 1438    |               |

| Monthly OM&M Log Sheet, Groundwater Collection and<br>Treatment System, Solvent Dock Area, Former Lockheed Martin<br>French Road Facility, Utica, New York        | Date: _<br><br>Technician: | 5/12/11<br>DB                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------------|
| SYSTEM STATUS<br>System operational? (PLC screen indicating system in "AUTO" or "MANUAL")<br>System currently cycling? <u>No (Pat :n Head to collect Data/Sam</u> | ele) <u>Auto</u>           | ······································ |
| Alarms? (list) Me                                                                                                                                                 |                            |                                        |

#### AIR STRIPPER PARAMETERS (record while air stripper is running)

|            |                                                                                   | ile Produce 1      |            |
|------------|-----------------------------------------------------------------------------------|--------------------|------------|
|            | Air stripper sump pressure [PI-106]                                               | 20.5               | (in, W.C.) |
| nm 15th    | Air stripper sump water elevation (record from site gauge)                        | 20.5-720.7         | (inches)   |
|            | Blower intake line vacuum [PI-100]                                                | -1.5               | (in. W.C.) |
| Main dampe | er position (record distance from center of wingnut to outside of blower housing) | 2"                 | (inches)   |
| ~~~~~      | Interior dilution damper position ( <del>0° is shut, 00</del> ° is open)          | 2/8                | XX ``      |
|            | Is white "POWER ON" light on air stripper control panel                           | iit?               | · · · ·    |
| ls a       | air stripper hand-off-auto switch [HS-100B] in "AUTO" positio                     | on? Y              |            |
|            | Note scaling inside liquid effluent pipe from access p                            | oort <u>Slight</u> | · · ·      |
| Not        | e scaling observed inside air stripper via clear tray access do                   | oor Slight         |            |

Note scaling observed inside air stripper via clear tray access door

#### FLOWMETER / PUMP PARAMETERS

Are white power lights lit on MH-1, MH-2, and MH-3 control panels? (Y/N). Are pump hand-off-auto switches [HS-101A, HS-101B, HS-102A, HS-102B, HS-103A, and HS-103B] in "auto" position? (Y/N)

|     |                            |              | NATIONAL CONTRACTOR | Maria Maria  |            | Currinative |
|-----|----------------------------|--------------|---------------------|--------------|------------|-------------|
|     | Date/Time                  | 5/12/11 144  |                     |              |            |             |
| ไกร | stantaneous Flowrate [gpm] | 36.15        | \$ 16.00            | @20.42       | <u> </u>   | 71.72       |
| *   | Permanent Flow (gallons)   | 11980051     | FRAM (1)            | Brownak (2)  | JETN 1602. | 1920162     |
| *   | Pump 1 Running (Y/N)?      | Y            | Ý.                  | V ~ ~        | • <i>N</i> | NA          |
| -*  | Pump 2 Running (Y/N)?      | N, But Works | N, But Works        | N. But Works | NA         | NA          |

- Flowrete and Permanent Flow can be viewed locally from wall-mounted flow transmitters FT-101 through FT-105 using up/down arrows.

#### VAPOR PHASE PARAMETERS (record while air stripper is running)

| Is duct heater "HEAT ON/OFF" light lit? (Y/N)  | N | _(located on duct heater control panel door) |
|------------------------------------------------|---|----------------------------------------------|
| Is duct heater "HI TEMP" alarm light on? (Y/N) | N | _(located on duct heater control panel door) |

\* Systan off Durry 6/124m, Put in Hand to cultured Data/sompte. [1) 2014063 (2)438196 FT-102: 17.46 - Blower colorday: 3489 fpm x.19=(738.9) FT-103: 16.56 - Efflad Velody: 2200 fpm x.33 (727.98) FT-105: 66.12

C:\Users\dzuck\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Outlook\KBUBT9QM\Appendix D - GCTS OMM Log Sheets.xlsx

| Date:       | 5/12/11 |  |
|-------------|---------|--|
| Time:       |         |  |
| Technician: | 5-5     |  |

# MONTHLY OM&M TASKS (continued)

| Liquid flow sensors cleaned? (Y/N) (only as needed)                                                                                                      | Inspected, No sala evolt.                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Monthly manhole inspections conducted? (Y/N)                                                                                                             | Y                                                                                                       |
| Leaking/dripping of water observed from double-<br>walled HDPE discharge pipe located inside<br>manhole? (Y/N)                                           | None 141,2+3,22000                                                                                      |
| Do level floats appear to be in good condition and<br>hanging freely? (Y/N)                                                                              | Yes Floots up: MH1:2, MH2:1, MH=3:2                                                                     |
| Observe groundwater inside each manhole and<br>note odor and appearance                                                                                  | MH-1+3: Clear, Shear/Wize on MH-2.                                                                      |
| Is confined space entry signage present at each<br>manhole? (Y/N)                                                                                        | Yey, Addah Newon all 3 MH's                                                                             |
| With pump(s) running, visually inspect discharge<br>piping, pipe fittings, and pressure relief valve for<br>leaks                                        | Now in MH 2+3, QMH-1 + theodol fithe                                                                    |
| With pump(s) running, listen for any unusual<br>sounds                                                                                                   | proe                                                                                                    |
| Inspect condition of collection line gate valve<br>protection flush-mount covers for each manhole                                                        | ok                                                                                                      |
| With system running, visually inspect all piping within<br>the treatment system for leaks, signs of distress, or any<br>other notable observations       | Noe                                                                                                     |
| Treatment system valves exercised? (Y/N) (should be<br>conducted with system in-between batch cycles)                                                    | Yes functioning                                                                                         |
| List any notable observations                                                                                                                            | None                                                                                                    |
| Are both building heaters working properly? (Y/N)<br>(adjust respective wall-mounted thermostats for both heaters<br>and confirm proper heater response) | Too warm to activate Normally fuctory then<br>Normally actually, forced circuit Bracker off for Season. |

#### HEALTH AND SAFETY

| Is fire extinguisher charged, unobstructed, and possessing an inspection                                             |                                       |
|----------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| tag? (CN)                                                                                                            | I <u>Y</u>                            |
| Is eyewash/shower station operational and unobstructed?                                                              | X                                     |
| Is interior emergency lighting operational? (Y/N)                                                                    | Y                                     |
| Is first aid kit present and in good condition?                                                                      | Y                                     |
| Is lockout/fagout equipment available? (YN)                                                                          | Y                                     |
| Have electrical GFIs been tested and reset?                                                                          | ΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥ |
| Do all electrical panels have 36" of open floor space in front of them?                                              | Y                                     |
| Are both the OM&M Manual and HASP onsite? (N) (note dates for each)                                                  | 0 m+m: 3/2011<br>HASP: 3/2011         |
| Is emergency spill kit available? (VN)                                                                               | Y                                     |
| Is H&S signage including emergency contact list, eye protection hearing protection, and automatic equipment present? |                                       |
| Is current SPDES permit onsite? 🕐 N) (note date)                                                                     | 11/14/2010                            |

C:\Users\dzuck\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Outlook\KBUBT9QM\Appendix D - GCTS OMM Log Sheets.xlsx

Date: 5/12/11 Time: Technician: ワネ

### **VAPOR PHASE PARAMETERS (continued)**

| E Service Partmeter State              | - Mileikie |     |            |                                               |
|----------------------------------------|------------|-----|------------|-----------------------------------------------|
| Pre-Duct Heater Temperature            | TI-300     | 60  | (°F)       | (No 709)                                      |
| Pre-Carbon Temperature                 | T1-400     | 68  | (°F)       |                                               |
| Duct Heater Temperature<br>Setpoint    | -          | 85  | (°F)       | (located in green on duct heat control panel) |
| Duct Heater Temperature<br>Transmitter | -          | 59  | (°F)       | (located in red on duct heat control panel)   |
| Pre-Carbon Pressure                    | PI-401     | 6   | (in. W.C.) |                                               |
| Mid-Carbon Pressure                    | PI-402     | 3   | (in. W.C.) |                                               |
| Effluent Pressure                      | PI-403     | 0.5 | (in. W.C.) |                                               |

# TRANSMITTER READINGS (record from ProControl)

|                            | <b>PPIE</b> C |         | i doma se  |  |
|----------------------------|---------------|---------|------------|--|
| Air Stripper Sump Pressure | PT-106        | 28.30   | (in, W.C.) |  |
| Vapor Flowrate             | FT-106        | 5357571 | (cfm)      |  |
| Pre-Carbon Temperature     | TT-400        | 52.5    | (°F)       |  |
| Pre-Carbon Pressure        | PT-400        | 6.8     | (in. W.C.) |  |
| Building Temperature       | TT-100        | 73.9    | (°F)       |  |

- Press the "I/O" up/down arrows on the ProControl screen until the desired transmitter value is displayed.

### SEQUESTERING AGENT (record while air stripper is running)

| Parabater III.                                                                                                                                             | of Stat                          | <b>North</b> a | Line and the line and |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------|------------------------------------------------------------------------------------------------------------------|
| Is pump operating? (Y/N)                                                                                                                                   | Y                                |                |                                                                                                                  |
| Is low flow alarm present? (Y/N)                                                                                                                           | Ň                                |                |                                                                                                                  |
| Is pump in external mode? (Y/N)                                                                                                                            | Y                                |                |                                                                                                                  |
| If in external mode, record one set of mA                                                                                                                  | 10                               | (mA)           | (display screen should automatically be switching back and                                                       |
| and stroke speed values                                                                                                                                    | and stroke speed values 5.6 (spm |                | forth between mA and stroke speed)                                                                               |
| Stroke length                                                                                                                                              | 100                              |                | (record from local stroke length knob on pump)                                                                   |
| Sequestering agent drum level [LI-200]                                                                                                                     | 1/3-7                            | 4/2-           | - 2/2 3                                                                                                          |
| Quantity of additional full drums                                                                                                                          | 1                                |                |                                                                                                                  |
| Inspect sequestering agent components<br>signs of leaking or wear (tubing [suct<br>injection, bleed return], injection check va<br>fitting shill pallet of | ion,<br>alve                     | speedd         | , No Issan to hole.                                                                                              |

fitting, spill pallet, etc.)

### MONTHLY OM&M TASKS

|                                                | Notes and the Notes with the second |
|------------------------------------------------|-------------------------------------|
| Monthly liquid effluent sample collected? (VN) |                                     |
| pH of effluent sample                          | 6.91                                |
| Model of pH meter                              |                                     |
| Calibration notes / method used                | 4.01 + 7.00 : 04                    |

·

C:\Users\dzuck\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Outlook\KBUBT9QM\Appendix D - GCTS OMM Log Sheets.xlsx

Date: Time: Technician:

A 1.

# Monthly OM&M Log Sheet, Groundwater Collection and Treatment System, Solvent Dock Area, Former Lockheed Martin French Road Facility, Utica, New York

#### SYSTEM STATUS

| System operational? (PLC screen indicating system in "AUTO" or "MANUAL") | Huto                                   |
|--------------------------------------------------------------------------|----------------------------------------|
| System currently cycling?                                                |                                        |
| Alarms? (list) // /                                                      | 11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 |

# AIR STRIPPER PARAMETERS (record while air stripper is running)

| rite 👘 | Value        | Perameter                                                                                  |
|--------|--------------|--------------------------------------------------------------------------------------------|
| V.C.)  | 26.5 (in.    | Air stripper sump pressure [PI-106]                                                        |
| es)    | 17.5 (inc    | Air stripper sump water elevation (record from site gauge)                                 |
| V.C.)  |              | Blower intake line vacuum [PI-100]                                                         |
| es)    | 15 (inc      | Main damper position (record distance from center of wingnut to outside of blower housing) |
|        | .1 (9)       | Interior dilution damper position (0 <sup>%</sup> is shut, 90° is open)                    |
|        | Y            | Is white "POWER ON" light on air stripper control panel I                                  |
|        | Y            | Is air stripper hand-off-auto switch [HS-100B] in "AUTO" position                          |
|        | Trace scally | Note scaling inside liquid effluent pipe from access pe                                    |
|        |              |                                                                                            |

Note scaling observed inside air stripper via clear tray access door Trace scalling

### FLOWMETER / PUMP PARAMETERS

Are white power lights lit on MH-1, MH-2, and MH-3 control panels? (Y/N)

Are pump hand-off-auto switches [HS-101A, HS-101B, HS-102A, HS-102B, HS-103A, and HS-103B] in "auto" position? (Y/N)

| Paramoter                      | MA-1<br>(FT-101) | MP-2<br>(FT-102) | MH-3<br>(FT-103) | «Sump<br>[FT-104] | Cumulative<br>[FT-105] |
|--------------------------------|------------------|------------------|------------------|-------------------|------------------------|
| Date/Time                      |                  | 15-15            | 1515             | 1515              | 1515                   |
| Instantaneous Flowrate [gpm]   | 35.65            | 16.56            | [9]3             | 0                 | 61.2.8                 |
| "Total" Flow (resettable, gal) |                  | -28,250          | 120,251          | 0                 | 363,107                |
| "Perm" Flow (gal)              | 12,208,887       | 2,04,313         | 558 447          | 602               | 2,283,269              |
| Pump 1 Running (Y/N)?          | · · · · ·        | N Moundary       | N/ Mayel: Y)     | 'N                | <u>́NĂ</u>             |
| Pump 2 Running (Y/N)?          | N                | Ň                | N                | NA                | NA                     |

- Flowrate and Permanent Flow can be viewed locally from wall-mounted flow transmitters FT-101 through FT-105 using up/down arrows.

#### VAPOR PHASE PARAMETERS (record while air stripper is running)

| Is duct heater "HEAT ON/OFF" light lit? (Y/N)  | Y | (located on duct heater control panel door) |
|------------------------------------------------|---|---------------------------------------------|
| Is duct heater "HI TEMP" alarm light on? (Y/N) | N | (located on duct heater control panel door) |

Date Time. Technician:

#### VAPOR PHASE PARAMETERS (continued)

| Parameter                              | PID Tag | E SZIII. | c tinite   | Notes                                         |
|----------------------------------------|---------|----------|------------|-----------------------------------------------|
| Pre-Duct Heater Temperature            | TI-300  | * THERE  | (°F)       | <i>¥.60°</i> ₽                                |
| Pre-Carbon Temperature                 | TI-400  | 750      | (°F)       |                                               |
| Duct Heater Temperature<br>Setpoint    | ***     | 85       | (°F)       | (located in green on duct heat control panel) |
| Duct Heater Temperature<br>Transmitter |         | 85       | (°F)       | (located in red on duct heat control panel)   |
| Pre-Carbon Pressure                    | PI-401  | 11.      | (in. W.C.) |                                               |
| Mid-Carbon Pressure                    | PI-402  | 5        | (in, W.C.) |                                               |
| Effluent Pressure                      | PI-403  | 0        | (in. W.C.) |                                               |

#### TRANSMITTER READINGS (record from ProControl)

| Parameter                  | PiD Tag | Value | Unita      | Notes |
|----------------------------|---------|-------|------------|-------|
| Air Stripper Sump Pressure | PT-106  | 30,46 | (in. W.C.) |       |
| Vapor Flowrate             | FT-106  | 617.8 | (cfm)      |       |
| Pre-Carbon Temperature     | TT-400  | 77.1  | (°F)       |       |
| Pre-Carbon Pressure        | PT-400  | 8,4   | (in. W.C.) |       |
| Building Temperature       | TT-100  | 68.6  | (°F)       |       |

- Press the "I/O" up/down arrows on the ProControl screen until the desired transmitter value is displayed.

#### SEQUESTERING AGENT (record while air stripper is running)

| Parameter                                 | Status  | Notes                                                      |   |
|-------------------------------------------|---------|------------------------------------------------------------|---|
| Is pump operating? (Y/N)                  | Ye5     |                                                            |   |
| is low flow alarm present? (Y/N)          | NO      |                                                            |   |
| ts pump in external mode? (Y/N)           | Yes     |                                                            | Í |
| If in external mode, record one set of mA |         | (display screen should automatically be switching back and |   |
| and stroke speed values                   | ) (spm) | forth between mA and stroke speed)                         | l |
| Stroke length                             | 100     | (record from local stroke length knob on pump)             |   |
| Sequestering agent drum level [LI-200]    | 149.    | leval indicator not working properly                       | × |
| Quantity of additional full drums         | 1       |                                                            | l |

lange.

Inspect sequestering agent components for

signs of leaking or wear (tubing [suction, injection, bleed return], injection check valve 600d

fitting, spill pallet, etc.)

#### MONTHLY OM&M TASKS

| Monthly liquid effluent sample collected? (Y/N) | Y=3                           |
|-------------------------------------------------|-------------------------------|
| pH of effluent sample                           | 6.19                          |
| Model of pH meter                               | H1 991001                     |
| Calibration notes / method used                 | 4.00/7.00 04                  |
| * Te onsite (17/11, adjusted                    | Sight gauge flowt operational |

\\NY2FP1\data\APROJECT\LOCKHEED\NJ001024.0001\GCTS Construction Documents\OM&M\OM&M Manual\Volume I\Appendices\Appendix D - OM&M Log Sheets\Appendix D - GCTS OM&M Log Sheets.xtsx

Date:  $\frac{6/2}{11}$ Time:  $\frac{1300}{126}$ Technician:  $\frac{130}{12}$ 

|                                   | REAL ROOM OF CREATING AND AND A                                                                                    |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------|
|                                   |                                                                                                                    |
| Y all clearal, could hap to       | e FS-102                                                                                                           |
| Yea                               |                                                                                                                    |
| MH-Z MH-1<br>None None            | MH-3<br>None                                                                                                       |
| Yes Yes                           | MH-3<br>Ve7                                                                                                        |
| MH-2 Nooder                       | MH-3<br>No odor<br>Clear                                                                                           |
| MH-Z MH-1<br>Yes Yes              | МН-3<br>УСS                                                                                                        |
| MH-2 MH-1<br>Good Good            | MH-3<br>Good                                                                                                       |
| M4-Z M4-1<br>None None            | MH-3<br>None                                                                                                       |
| MH-2 MH-1<br>Good Good            | MH-3<br>G ood                                                                                                      |
| Y, Nore                           |                                                                                                                    |
| Yas                               | ·`.                                                                                                                |
| 8 BV-104 Does Not Close Couplethy |                                                                                                                    |
| OFf for Symmer Season.            |                                                                                                                    |
|                                   | MH-2<br>None<br>None<br>MH-2<br>Yes<br>MH-2<br>Yes<br>MH-2<br>MH-2<br>MH-2<br>MH-2<br>MH-2<br>MH-2<br>MH-2<br>MH-2 |

# MONTHLY OM&M TASKS (continued)

#### HEALTH AND SAFETY

| item                                                                                                                          | Status       |
|-------------------------------------------------------------------------------------------------------------------------------|--------------|
| Is fire extinguisher charged, unobstructed, and possessing an inspection tag? (Y/N)                                           | Yes          |
| Is eyewash/shower station operational and unobstructed? (Y/N)                                                                 | 403          |
| Is interior emergency lighting operational? (Y/N)                                                                             | Ves          |
| Is first aid kit present and in good condition? (Y/N)                                                                         | 740          |
| Is lockout/tagout equipment available? (Y/N)                                                                                  | Yes          |
| Have electrical GFIs been tested and reset? (Y/N)                                                                             | yes          |
| Do all electrical panels have 36" of open floor space in front of them?<br>(Y/N)                                              | Y \$ 5       |
| Are both the OM&M Manual and HASP onsite? (Y/N) (note dates for each)                                                         | Y45          |
| Is emergency spill kit available? (Y/N)                                                                                       | Yes          |
| Is H&S signage including emergency contact list, eye protection hearing<br>protection, and automatic equipment present? (Y/N) | Yes          |
| Is current SPDES permit onsite? (Y/N) (note date)                                                                             | Yes 11/10/10 |

\\NY2FP1\data\APROJECT\LOCKHEED\NJ001024.0001\GCTS Construction Documents\OM&M\OM&M Manual\Volume I\Appendices\Appendix D - OM&M Log Sheets\Appendix D - GCTS OM&M Log Sheets.x4sx

# Date: 7/7/1/ Time: 0900 Technician: D, <u>Eur/Jasu</u> G,

#### SYSTEM STATUS

| System operational? (F  | LC scre | en indicating | system in "Al | JTO" or "MANUA  | L") | Auto |  |
|-------------------------|---------|---------------|---------------|-----------------|-----|------|--|
| System currently cyclin | g?      | NO            |               |                 |     |      |  |
| Alarms? (list)//o       | ne on   | plc: Acid     | Pump: EZ      | Non - oponArmol |     |      |  |
|                         |         |               |               |                 |     |      |  |

#### AIR STRIPPER PARAMETERS (record while air stripper is running)

| ameter                                                                                     | Value         | Units      |  |
|--------------------------------------------------------------------------------------------|---------------|------------|--|
| Air stripper sump pressure [PI-106]                                                        | 25.2          | (in. W.C.) |  |
| water elevation (record from site gauge)                                                   | 18            | (inches)   |  |
| Blower intake line vacuum [PI-100]                                                         | 1.9           | (in. W.C.) |  |
| Main damper position (record distance from center of wingnut to outside of blower housing) |               |            |  |
| damper position (0° is shut, 90° is open)                                                  | O I " (closed | /) (°)     |  |

Is air stripper hand-off-auto switch [HS-100B] in "AUTO" position?  $\sqrt{e_5}$ 

Note scaling inside liquid effluent pipe from access port

Note scaling observed inside air stripper via clear tray access door Med ill m

### FLOWMETER / PUMP PARAMETERS

Are white power lights lit on MH-1, MH-2, and MH-3 control panels? (Y/N)  $9e_5$ 

Are pump hand-off-auto switches [HS-101A, HS-101B, HS-102A, HS-102B, HS-103A, and HS-103B] in "auto" position? (Y/N) ye5

| Parameter                        | MH-1<br>[FT-101] | MH-2<br>[FT-102] | MH-3<br>[FT-103] | Sump<br>[FT-104] | Cumulative<br>[FT-105]                  |
|----------------------------------|------------------|------------------|------------------|------------------|-----------------------------------------|
| Date/Time                        | 7/7/11 0900      |                  |                  |                  | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| Instantaneous Flowrate [gpm]     | 36.5             | 6-17.5           | 17-18            | NA               | 68-71.5                                 |
| ¥ "Total" Flow (resettable, gal) | 238194           | 37698            | 142986           | 1                | 392191                                  |
| ✓ "Perm" Flow (gal)              | 12447081         | 2080011          | 701433           | 1603             | 2675461                                 |
| Pump 1 Running (Y/N)?            | Y                | Y                | Ι Υ              | N                | NA                                      |
| Pump 2 Running (Y/N)?            | N                | N                | N                | NA               | NA                                      |

- Flowrate and Permanent Flow can be viewed locally from wall-mounted flow transmitters FT-101 through FT-105 using up/down arrows.

\* Collectul when system was off.

# VAPOR PHASE PARAMETERS (record while air stripper is running)

| Is duct heater "HEAT ON/OFF" light lit? (Y/N)  | Y | (located on duct heater control panel door) |
|------------------------------------------------|---|---------------------------------------------|
| Is duct heater "HI TEMP" alarm light on? (Y/N) | N | (located on duct heater control panel door) |

EMON: 57026 KWH

Date: Date: 7/7/// Time: 0900 Technician: 5. Zuch / Jame C.

#### **VAPOR PHASE PARAMETERS (continued)**

| Parameter                              | PID Tag | Value | Units               | Notes                                         |
|----------------------------------------|---------|-------|---------------------|-----------------------------------------------|
| Pre-Duct Heater Temperature            | TI-300  | BO    | (°F)                |                                               |
| Pre-Carbon Temperature                 | TI-400  | 80    | (°F)                |                                               |
| Duct Heater Temperature<br>Setpoint    | -       | 85    | (°F)                | (located in green on duct heat control panel) |
| Duct Heater Temperature<br>Transmitter | _       | 85    | (°F)                | (located in red on duct heat control panel)   |
| Pre-Carbon Pressure                    | PI-401  | 10    | (in. W.C.)          |                                               |
| Mid-Carbon Pressure                    | PI-402  | চ     | (in. W.C.)          |                                               |
| Effluent Pressure                      | PI-403  | 0     | (in. W <i>.</i> C.) |                                               |

## TRANSMITTER READINGS (record from ProControl)

| Parameter                  | PID Tag | Value | Units      | Notes |
|----------------------------|---------|-------|------------|-------|
| Air Stripper Sump Pressure | PT-106  | 27.50 | (in. W.C.) |       |
| Vapor Flowrate             | FT-106  | 635.5 | (cfm)      |       |
| Pre-Carbon Temperature     | TT-400  | 81.4  | (°F)       |       |
| Pre-Carbon Pressure        | PT-400  | 8.5   | (in. W.C.) |       |
| Building Temperature       | TT-100  | 76.7  | (°F)       |       |

- Press the "I/O" up/down arrows on the ProControl screen until the desired transmitter value is displayed.

### SEQUESTERING AGENT (record while air stripper is running)

| Parameter (V                                                         | ) St | atus          | Notes                                                                                         |
|----------------------------------------------------------------------|------|---------------|-----------------------------------------------------------------------------------------------|
| Is pump operating? ()                                                | XN   |               | Pump not Operational (EZArer)                                                                 |
| Is low flow alarm present? (Y)N)                                     | Ý    |               |                                                                                               |
| Is pump in external mode? (Y/N)                                      | Y    |               |                                                                                               |
| If in external mode, record one set of mA<br>and stroke speed values |      | (mA)<br>(spm) | (display screen should automatically be switching back and forth between mA and stroke speed) |
| Stroke length                                                        | 100  | )             |                                                                                               |
| Sequestering agent drum level [LI-200]                               | .35  | /12gal.       |                                                                                               |
| Quantity of additional full drums                                    | 1    |               |                                                                                               |

### 

fitting, spill pallet, etc.)

ະ ້

#### MONTHLY OM&M TASKS

| Task                                            | Notes           |
|-------------------------------------------------|-----------------|
| Monthly liquid effluent sample collected? (Y/N) | Yes             |
| pH of effluent sample                           | 8.10            |
| Model of pH meter                               | Honna HI 991001 |
| Calibration notes / method used                 |                 |
|                                                 |                 |

| Date:       | 7/7/1  | /       |
|-------------|--------|---------|
| Time:       | 0400   |         |
| Technician: | D. Zul | DasmiG. |

## MONTHLY OM&M TASKS (continued)

| Task                                                                                                                                                     | Notes                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| Liquid flow sensors cleaned? (Y/N) (only as needed)                                                                                                      | Yes                                                   |
| Monthly manhole inspections conducted? (Y/N)                                                                                                             |                                                       |
| Leaking/dripping of water observed from double-<br>walled HDPE discharge pipe located inside<br>manhole? (Y/N)                                           | MH1: Nove<br>MH2: Nove<br>MH3: Nove                   |
| Do level floats appear to be in good condition and<br>hanging freely? (Y/N)                                                                              | yes                                                   |
| Observe groundwater inside each manhole and<br>note odor and appearance                                                                                  | MH-3-clear no odors.<br>MH-2:threen safa; MH-1: [lean |
| Is confined space entry signage present at each<br>manhole? (Y/N)                                                                                        | 483                                                   |
| With pump(s) running, visually inspect discharge<br>piping, pipe fittings, and pressure relief valve for<br>leaks                                        | MH-1 trove leaf Q pressue Reland                      |
| With pump(s) running, listen for any unusual sounds                                                                                                      | me                                                    |
| Inspect condition of collection line gate valve protection flush-mount covers for each manhole                                                           | Good                                                  |
| With system running, visually inspect all piping within<br>the treatment system for leaks, signs of distress, or any<br>other notable observations       | No leaks / Issues                                     |
| Treatment system valves exercised? (Y/N) (should be<br>conducted with system in-between batch cycles)                                                    | Y                                                     |
| List any notable observations                                                                                                                            | NO issues                                             |
| Are both building heaters working properly? (Y/N)<br>(adjust respective wall-mounted thermostats for both heaters<br>and confirm proper heater response) | Breakons tured off for someon                         |

# HEALTH AND SAFETY

| ltem                                                                                                                 | Status          |
|----------------------------------------------------------------------------------------------------------------------|-----------------|
| Is fire extinguisher charged, unobstructed, and possessing an inspection tag? (V)N                                   | Y               |
| Is eyewash/shower station operational and unobstructed? (ON)                                                         | Y               |
| Is interior emergency lighting operational?                                                                          | Y               |
| Is first aid kit present and in good condition?                                                                      |                 |
| Is lockout/tagout equipment available?                                                                               | Y               |
| Have electrical GFIs been tested and reset?                                                                          | Y               |
| Do all electrical panels have 36" of open floor space in front of them?                                              | Y               |
| Are both the OM&M Manual and HASP onsite? () (note dates for each)                                                   | YJ3 (ulu (Both) |
| Is emergency spill kit available?                                                                                    | Y               |
| Is H&S signage including emergency contact list, eye protection hearing protection, and automatic equipment present? | Υ               |
| Is current SPDES permit onsite?(Y/) (note date)                                                                      | 4/1/10          |

\\NY2FP1\data\APROJECT\LOCKHEED\NJ001024.0001\GCTS Construction Documents\OM&M\OM&M Manual\Volume I\Appendices\Appendix D - OM&M Log Sheets\Appendix D - GCTS OM&M Log Sheets.xlsx

Date: Quarterly OM&M Log Sheet, Groundwater Collection and Treatment System, Solvent Dock Area, Former Lockheed Martin Time: French Road Facility, Utica, New York Technician: QUARTERLY OM&M TASKS Tes Quarterly liquid influent samples collected for MH-1, MH-2, and MH-3? (Y/N) MH-1 influent pH 6.59 MH-2 influent pH 6.84 MH-3 influent pH 7.07 Yes Quarterly vapor samples collected pre-carbon, mid-carbon, and effluent? (Y/N) Quarterly catch basin samples collected for CB-1, CB-2, and CB-3? (Y/N) Yes Quarterly groundwater elevation levels collected? (Y/N) Yes No Blower bearings greased? (Y/N) Indicate air velocity measurement collected from 8" effluent pipe (plug located on wall 2283 (fpm) side of vertical portion of effluent pipe, 1 fpm = 0.317 cfm) (cfm) 724 **QUARTERLY CRITICAL DEVICE / ALARM TESTING** Liquid flow transmitters FT-101, FT-102, FT-103, and FT-105 calibrated? (Y/N) (should be done after flow sensor cleaning) If yes, document testing and FT-103 -> Provolum test. A volume per DTW= 787.6 gallows 44.75" note any changes in sensor A volume per FT-103= 803 gallas calibration factors = 2.0% = OKAY! Ger D [per FT-102] = 497 gallars → 0.8% > OKAY FT-102 > Pumpeloun A volume A volume Toer FT-1017= Foer DTWT 651, 2 gallons 37" -> Pumpde A volume FT-105 -> instantaneous FT-103=20-22 goin, FT-105= snadshot 32-33 901 Yes Manhole floats tested? (Y/N) Test the following critical alarms (note that system must be in AUTO to observe proper alarm response): Caused PLC Caused System Corresponding Passed Alarm Output **PLC Alarm** 

| Alarm                              | Transmitter /<br>Sensor | Output Name | Alarm Type | State Change?<br>(Y/N) | Shutdown?<br>(Y/N) | (Y/N) |  |  |
|------------------------------------|-------------------------|-------------|------------|------------------------|--------------------|-------|--|--|
|                                    | PT-106                  | PA_106      | fatal      | 4                      | 9                  | 4     |  |  |
| Air Stripper Sump<br>High Pressure | Notes: Chan             | ged setpoin | nt         |                        |                    |       |  |  |
|                                    | PT-106                  | PA_106      | fatal      | 4                      | 4                  | 9     |  |  |
| Air Stripper Sump<br>Low Pressure  | Notes: Changed setpoint |             |            |                        |                    |       |  |  |
|                                    | LSH-100                 | LA_100      | fatal      | 4                      | ¥                  | 4     |  |  |
| Air Stripper High<br>Liquid Level  | Notes: Closed           | BF-1901     | Sensor     | not installed          |                    |       |  |  |

| Date:       | 7/1/11 |  |
|-------------|--------|--|
| Time:       | 16:30  |  |
| Technician: | CD/DZ  |  |

| Alarm                                                      | Corresponding<br>Transmitter /<br>Sensor Output Name |                  | Alarm Type<br>Caused PLC<br>Alarm Output<br>State Change?<br>(Y/N) |                  | Caused System<br>Shutdown?<br>(Y/N) | Passed<br>(Y/N) |  |  |  |
|------------------------------------------------------------|------------------------------------------------------|------------------|--------------------------------------------------------------------|------------------|-------------------------------------|-----------------|--|--|--|
|                                                            | LSL-100                                              | LA_100           | fatal                                                              | Y                | Y                                   | Y               |  |  |  |
| Air Stripper Low<br>Liquid Level                           | Notes: Close                                         |                  |                                                                    |                  |                                     |                 |  |  |  |
|                                                            | FT-106                                               | FA_106           | fatal                                                              | Y                | Y                                   | Y               |  |  |  |
| High Air Flowrate                                          | Notes: Domper 6                                      | » 2,15." [tizk ; | mark on move                                                       | cable handle], c | Changed high                        | setpent         |  |  |  |
|                                                            | FT-106                                               | FA_106           | fatal                                                              | Y                | Y                                   | 9               |  |  |  |
| Low Air Flowrate                                           | Notes: Change                                        | ed setpoint.     |                                                                    |                  |                                     |                 |  |  |  |
|                                                            | TT-400                                               | TAH400           | fatal                                                              | Y                | Y                                   | Y               |  |  |  |
| Pre-Carbon High<br>Temperature                             | Notes: Changed setpoint.                             |                  |                                                                    |                  |                                     |                 |  |  |  |
| naan ya markin da katala sa karata da da karata karata     | TT-400                                               | TAL400           | fatal                                                              | Y                | Y                                   | 7               |  |  |  |
| Pre-Carbon Low<br>Temperature                              | Notes: Changed                                       | i setpoint.      |                                                                    |                  |                                     |                 |  |  |  |
|                                                            | PT-400                                               | PA_400           | fatal                                                              | Y                | 4                                   | 4               |  |  |  |
| Pre-Carbon High<br>Pressure                                | Notes: Change                                        | ed setpoint.     |                                                                    |                  |                                     |                 |  |  |  |
|                                                            | PT-400                                               | PA_400           | fatal                                                              | Y                | Y                                   | Y               |  |  |  |
| Pre-Carbon Low<br>Pressure                                 | Notes: Chang                                         | ed setpoint      |                                                                    |                  |                                     |                 |  |  |  |
|                                                            | FT-101                                               | FA_101           | warning                                                            | Y                | N                                   | 4               |  |  |  |
| MH-1 Low Flowrate                                          | Notes: Turned                                        |                  | A's to off my                                                      | / HI-I float     | ср.                                 |                 |  |  |  |
|                                                            | FT-102                                               | FA_102           | warning                                                            | Y                | N                                   | ý               |  |  |  |
| MH-2 Low Flowrate                                          | Notes:<br>Turned k                                   | ooth MH-2 HC     | A's to A                                                           | w/ High-1 -      | float .p.                           |                 |  |  |  |
| nangangan (PAR (PAR SA | FT-103                                               | FA_103           | warning                                                            | 4                | $\mathcal{N}$                       | У               |  |  |  |
| MH-3 Low Flowrate                                          | Notes: Jurned                                        | both MH-3 H      | -O-A's to off                                                      | - m/ High-l A    | iont p.                             |                 |  |  |  |

| Date:       | 7/1/11      |
|-------------|-------------|
| Time:       | 16:45       |
| Technician: | 16:45 CD/DZ |

| Alarm                              | Corresponding<br>Transmitter /<br>Sensor | Transmitter / Output Name Alar   |           | Caused PLC<br>Alarm Output<br>State Change?<br>(Y/N) | Caused System<br>Shutdown?<br>(Y/N) | Passed<br>(Y/N) |  |
|------------------------------------|------------------------------------------|----------------------------------|-----------|------------------------------------------------------|-------------------------------------|-----------------|--|
|                                    | FT-105                                   | FA_105                           | warning   | Y                                                    | N                                   | 7               |  |
| Aggregate Low<br>Flowrate          | Notes: Alarm                             | occurred during                  | FA_101 TZ | vrv FA-103 te                                        | ests.                               |                 |  |
|                                    | WFS-106                                  | WFS106                           | fatal     | Y                                                    | Ŷ                                   | Y               |  |
| Building Wet Floor<br>Sensor Alarm | Notes: 74 Ov                             | erflowed si                      | тр. воод  | Ι.                                                   |                                     |                 |  |
|                                    | LSH-106                                  | LSH106                           | warning   | Y                                                    | N                                   | Y               |  |
| Building Sump High<br>Level        | Notes: Filled                            | m/ pump                          | unplugged |                                                      |                                     |                 |  |
|                                    | FT-200                                   | FA_200                           | warning   | Y                                                    | N                                   | 4               |  |
| Sequestering Agent<br>Low Flow     | Notes:                                   |                                  |           |                                                      |                                     |                 |  |
|                                    | LSH-200                                  | LSH200                           | warning   | Y                                                    | N                                   | Y               |  |
| Spill Pallet Wet<br>Sensor Alarm   | Notes: Dipped                            | in water.                        |           | v                                                    |                                     |                 |  |
|                                    | LSHH-103                                 | LA_MH1                           | warning   | Y                                                    | N                                   | Y               |  |
| MH-1 High Level                    | Notes: Manual                            | y tested.                        |           |                                                      |                                     |                 |  |
|                                    | LSLL-103                                 | LA_MH1                           | warning   | Y                                                    | N                                   | 9               |  |
| MH-1 Low Level                     | Notes: Should for                        |                                  | 1 pumps 🗸 |                                                      |                                     |                 |  |
|                                    | Manual                                   | y tested.                        |           |                                                      |                                     |                 |  |
|                                    | LSHH-104                                 | LA_MH2                           | warning   | Y                                                    | N                                   | Ÿ               |  |
| MH-2 High Level                    | Notes: Manual                            | ly tested.                       |           |                                                      |                                     |                 |  |
|                                    | LSLL-104                                 | LA_MH2                           | warning   | Y                                                    | N                                   | Y               |  |
| MH-2 Low Level                     | Notes: Should for<br>Marva               | rce off both MH-:<br>Ily Tested. | 2 pumps   |                                                      |                                     |                 |  |
|                                    | LSHH-105                                 | LA_MH3                           | warning   | Y                                                    | N                                   | Y               |  |
| MH-3 High Level                    | Notes: Monually                          | raised.                          |           |                                                      |                                     | 1               |  |



| Alarm                        | Corresponding<br>Transmitter /<br>Sensor | PLC Alarm<br>Output Name | Alarm Type | Caused PLC<br>Alarm Output<br>State Change?<br>(Y/N) | Caused System<br>Shutdown?<br>(Y/N) | Passed<br>(Y/N) |  |  |
|------------------------------|------------------------------------------|--------------------------|------------|------------------------------------------------------|-------------------------------------|-----------------|--|--|
|                              | LSLL-105                                 | LA_MH3                   | warning    | Y                                                    | N                                   | Y               |  |  |
| MH-3 Low Level               | Notes: Should for                        |                          | pumps      |                                                      |                                     |                 |  |  |
|                              | Nonwelly tested.                         |                          |            |                                                      |                                     |                 |  |  |
|                              | TT-100                                   | TA_100                   | shutdown   | 4                                                    | Y                                   | Y               |  |  |
| Building High<br>Temperature | Notes: Change                            | d setpoint.              |            |                                                      |                                     |                 |  |  |
| 20 <sup>1</sup>              | TT-100                                   | TA_100                   | shutdown   | 9                                                    | Y                                   | 4               |  |  |
| Building Low<br>Temperature  | Notes: Held in                           | ce up to prob            | ٤.         |                                                      |                                     |                 |  |  |

### ARCADIS

#### Water Level Record

Page <u>1 of 2</u> Staff: <u>D. Zuck/J. Gutkow</u>ski

Project

LMC Utica, NY

Date 7/5/2011

| Well (s)  | Depth to Water (ft)<br>(TIC)/MP | Time | Remarks                                                  |
|-----------|---------------------------------|------|----------------------------------------------------------|
| MW - 1    | 8.57                            | 1040 |                                                          |
| MW - 2    | 5.89                            | 030  | Replace 1 Bolt (Retap)                                   |
| MW - 3    | 10.98                           | 1523 | q , , , , , , , , , , , , , , , , , , ,                  |
| MW - 4    | 11.24                           | 1016 | · ·                                                      |
| MW - 5    | 263                             | 1052 |                                                          |
| MW - 6    | 6.23                            | 1159 | Bailer in well. Replace / 0: Lock                        |
| MW - 7    | 7.84                            | 1510 |                                                          |
| MW - 9    | 3.01                            | 1110 |                                                          |
| MW - 10   | 5.16                            | 1056 | Replace and tap larger bolts/holes                       |
| MW - 11   | 8.09                            | 1010 | Replace bolts, J-Plug.                                   |
| MW - 12   | 12.08                           | ામમમ |                                                          |
| MW - 13S  | 6.99-Dry                        | 1037 |                                                          |
| MW - 13T  |                                 |      |                                                          |
| MW - 13BR | 10.67                           | 1024 |                                                          |
| MW - 14S  | 12.57                           | 1448 |                                                          |
| MW - 14BR | 25.46                           | 1452 |                                                          |
| MW - 15S  | 8.38                            | 1458 |                                                          |
| MW - 15BR | 31.94                           | 1456 | Under pressure *caution when opening, replace all bolts. |
| PZ - 2    | 3.01                            | (145 |                                                          |
| PZ - 4    | 1.42                            | 1114 |                                                          |
| PZ - 5    | \$ .94                          | 1558 | Conmed                                                   |
| PZ - 6    | 9.32                            | 1601 | Conmed                                                   |
| PZ - 7    | 4.00                            | 1604 | Conmed                                                   |
| PZ - 8    | 9.51                            | 1556 | Conmed                                                   |
| PZ - 9    | 8.02                            | 1546 | Conmed                                                   |
| PZ - 10   | 9.08                            | 1550 | Conmed                                                   |
| PZ - 11R  | 4.64                            | 14/9 | No ID                                                    |
| PZ - 13R  | 8.17                            | 1428 | No ID                                                    |
| PZ - 17   | 6.17                            | 1413 | Full of Bostonido                                        |
| PZ - 18   | 7.99                            | 424  |                                                          |
| PZ - 19   | 7.36                            | 1437 |                                                          |
| PZ - 20   | 7.04                            | 1434 |                                                          |
| PZ - 21   | Dry                             | 1504 | ІНОР                                                     |
| PZ - 22   | 7.94                            | 1206 |                                                          |
| PZ - 23   | 6.82                            | 1209 |                                                          |

#### ARCADIS

### Water Level Record

Page\_\_\_\_\_ Staff: <u>D. Zuck/J. Gutkow</u>ski 2 of 2 Ķ ¥

Project

LMC Utica, NY

Date 7/5/2011

| Well (s) | Depth to Water (ft)<br>(TIC)/MP | Time  | Remarks                    |
|----------|---------------------------------|-------|----------------------------|
| PZ - 24  | (TIC)/MP                        | 1212  |                            |
| PZ - 25  | 6.67                            | 1214  |                            |
| PZ - 26  | 9.21                            | 1226  |                            |
| PZ - 27  | 11.13                           | 1229  |                            |
| PZ - 28  | 3.93                            | 204   | Missing Bilt               |
| PZ - 29  | 2.43                            | 1210  |                            |
| PZ - 30  | 4.10                            | 1216  |                            |
| PZ - 31  | 1.33                            | 1220  |                            |
| PZ - 32  | 1.84                            | 1224  |                            |
| PZ - 33  | 6.82                            | 1518  |                            |
| PZ - 34  | 3.11                            | 1(37  |                            |
| PZ - 35  | 2.09                            | 1130  | Cut down IC Add J-Plug     |
| PZ - 36  | 1.55                            | (124  | Cut down IC Needs IV       |
| PZ - 39  | 3,53                            | 1103  | N-cedy IV                  |
| PZ - 40  | 4.92                            | 1245  | (In building)              |
| PZ - 41  | 4.51                            | 1242  | (In building (Missing BOH) |
| PZ - 42  | 0.62                            | 1234  | (In building)              |
| A1-PZ1   | 1.53                            | 1150: |                            |
| A1-PZ2   | 2.30                            | 11.56 |                            |
| A2-PZ1   | 1233 4.35                       | 12.50 |                            |
| A2-PZ2   | 6.63                            | 1253  |                            |
| A2-PZ3   | 3.06                            | 1256  |                            |
| A2-PZ4   | 1.86                            | 1251  |                            |
| A2-PZ5   | 7.89                            | 12:55 |                            |
| A2-PZ6   | 3.25                            | 1247  |                            |
| A2-PZ7   | 6.27                            | 1254  | · ·                        |
| A2-PZ8   | 5.72                            | 1252  |                            |

\_\_\_\_\_\_ \_\_\_\_\_\_

a . 🕈 6

• • • · · · .

G:\TECHNICL\FIELD LOGS\Water Level Round.XLS- Sheet1

Date: <u>s/ii/ii</u> Time: O SOO

Technician: )a son Gotkowski

# SYSTEM STATUS

| Our face surged by and in the second se |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| System currently cycling? NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Alarms? (list) None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |

# AIR STRIPPER PARAMETERS (record while air stripper is running)

| Parameter                                                                                  | Value | Units      |
|--------------------------------------------------------------------------------------------|-------|------------|
| Air stripper sump pressure [PI-106]                                                        | 26.5  | (in. W.C.) |
| Air stripper sump water elevation (record from site gauge)                                 | 17.5  | (inches)   |
| Blower intake line vacuum [PI-100]                                                         | 2.0   | (in. W.C.) |
| Main damper position (record distance from center of wingnut to outside of blower housing) | 5.]   | (inches)   |
| Interior dilution damper position (0° is shut, 90° is open)                                | 0.5   | (°)        |

Is white "POWER ON" light on air stripper control panel lit? Ve5

Is air stripper hand-off-auto switch [HS-100B] in "AUTO" position?

Note scaling inside liquid effluent pipe from access port liqua-

Note scaling observed inside air stripper via clear tray access door Inh+

# FLOWMETER / PUMP PARAMETERS

Are white power lights lit on MH-1, MH-2, and MH-3 control panels? (Y/N)

Are pump hand-off-auto switches [HS-101A, HS-101B, HS-102A, HS-102B, HS-103A, and HS-103B] in "auto" position? (Y/N)

| Parameter                      | MH-1<br>[FT-101] | MH-2<br>[FT-102] | MH-3<br>[FT-103] | Sump<br>[FT-104] | Cumulative<br>[FT-105]                  |   |
|--------------------------------|------------------|------------------|------------------|------------------|-----------------------------------------|---|
| Date/Time                      | 8/11/11          |                  |                  |                  | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |   |
| Instantaneous Flowrate [gpm]   | 36.6             | 16.5             | 19.57            | NIA              | 72,1                                    |   |
| "Total" Flow (resettable, gal) | 169153           | 38461            | 121023           | 37               | 2967415                                 | R |
| "Perm" Flow (gal)              | 12616234         | 2118472          | 822459           | 1639             | 291945                                  | 2 |
| Pump 1 Running (Y/N)?          | <u>у</u>         | L Y              | Y                | N                | NA                                      |   |
| Pump 2 Running (Y/N)?          | N                | N                | N                | NA               | NA                                      |   |

- Flowrate and Permanent Flow can be viewed locally from wall-mounted flow transmitters FT-101 through FT-105 using up/down arrows.

# VAPOR PHASE PARAMETERS (record while air stripper is running)

| Is duct heater "HEAT ON/OFF" light lit? (Y/N)  | yes | (located on duct heater control panel door)     |
|------------------------------------------------|-----|-------------------------------------------------|
| Is duct heater "HI TEMP" alarm light on? (Y/N) | NO  | <br>(located on duct heater control panel door) |

Date: <u>8/11/11</u> Time: <u>0900</u> Technician: <u>Jason Gotkow</u>sk:

#### VAPOR PHASE PARAMETERS (continued)

| Parameter                              | PID Tag | Value | Units      | Notes                                         |
|----------------------------------------|---------|-------|------------|-----------------------------------------------|
| Pre-Duct Heater Temperature            | TI-300  | 72    | (°F)       |                                               |
| Pre-Carbon Temperature                 | TI-400  | 80    | (°F)       |                                               |
| Duct Heater Temperature<br>Setpoint    | -       | 85    | (°F)       | (located in green on duct heat control panel) |
| Duct Heater Temperature<br>Transmitter | -       | 85    | (°F)       | (located in red on duct heat control panel)   |
| Pre-Carbon Pressure                    | PI-401  | 11    | (in. W.C.) | Α.                                            |
| Mid-Carbon Pressure                    | PI-402  | 21    | (in. W.C.) |                                               |
| Effluent Pressure                      | PI-403  | 0     | (in. W.C.) |                                               |

# **TRANSMITTER READINGS (record from ProControl)**

| Parameter                  | PID Tag | Value | Units      | Notes |
|----------------------------|---------|-------|------------|-------|
| Air Stripper Sump Pressure | PT-106  | 24.27 | (in. W.C.) |       |
| Vapor Flowrate             | FT-106  | 651.2 | (cfm)      |       |
| Pre-Carbon Temperature     | TT-400  | 87.8  | (°F)       |       |
| Pre-Carbon Pressure        | PT-400  | 8.1   | (in. W.C.) | ·     |
| Building Temperature       | TT-100  | 73.6  | (°F)       |       |

- Press the "I/O" up/down arrows on the ProControl screen until the desired transmitter value is displayed.

# SEQUESTERING AGENT (record while air stripper is running)

| Parameter                                 | Status     | Notes                                                         |
|-------------------------------------------|------------|---------------------------------------------------------------|
| Is pump operating? (Y/N)                  | yes        |                                                               |
| Is low flow alarm present? (Y/N)          | NO         |                                                               |
| Is pump in external mode? (Y/N)           | Yes        |                                                               |
| If in external mode, record one set of mA |            | A) (display screen should automatically be switching back and |
| and stroke speed values                   | 104001 (sp | m) forth between mA and stroke speed)                         |
| Stroke length                             | 100        | (record from local stroke length knob on pump)                |
| Sequestering agent drum level [LI-200]    | Tgal.      |                                                               |
| Quantity of additional full drums         | Ĩ          |                                                               |

# Inspect sequestering agent components for \_\_\_\_\_

| signs of leaking or wear (tubing [suction,      | Inspected, NO leave | es, NOBUILDUD                         |
|-------------------------------------------------|---------------------|---------------------------------------|
| injection, bleed return], injection check valve | Checked Écleaned @, | Point of entry                        |
| fitting, spill pallet, etc.)                    |                     | · · · · · · · · · · · · · · · · · · · |

# MONTHLY OM&M TASKS

| Task                                            | Notes           |
|-------------------------------------------------|-----------------|
| Monthly liquid effluent sample collected? (Y/N) | Ves             |
| pH of effluent sample                           | 8.2             |
| Model of pH meter                               | Hanna HI 991001 |
| Calibration notes / method used                 | 4.01/7.01       |

C:\Users\Powerex\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.IE5\QN4DSE0E\GCTS%20OM&M%20Log%20Sheets[1].xlsx

Date: <u>\$/11/11\_</u> Time: <u>1240</u> Technician: <u>Jason Gutkowski</u>

### MONTHLY OM&M TASKS (continued)

| Task                                                                                                                                               | Notes                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| Liquid flow sensors cleaned? (Y/N) (only as needed)                                                                                                | NO                            |
| Monthly manhole inspections conducted? (Y/N)                                                                                                       | Yes                           |
| Leaking/dripping of water observed from double-                                                                                                    | MHI:                          |
| walled HDPE discharge pipe located inside                                                                                                          | MH2: None                     |
| manhole? (Y/N)                                                                                                                                     | MH3! None                     |
| Do level floats appear to be in good condition and hanging freely? (Y/N)                                                                           | Yes                           |
| Observe groundwater inside each manhole and                                                                                                        | MH1:                          |
| note odor and appearance                                                                                                                           | MHZ: Clear No Odor            |
| Is confined space entry signage present at each<br>manhole? (Y/N)                                                                                  | Yes.                          |
| With pump(s) running, visually inspect discharge<br>piping, pipe fittings, and pressure relief valve for<br>leaks                                  | Yes                           |
| With pump(s) running, listen for any unusual sounds                                                                                                | Yes                           |
| Inspect condition of collection line gate valve protection flush-mount covers for each manhole                                                     | Yes                           |
| With system running, visually inspect all piping within<br>the treatment system for leaks, signs of distress, or any<br>other notable observations | Yes                           |
| Treatment system valves exercised? (Y/N) (should be<br>conducted with system in-between batch cycles)                                              | yes .                         |
| List any notable observations                                                                                                                      | NOISSUES                      |
| Are both building heaters working properly? (Y/N)                                                                                                  |                               |
| (adjust respective wall-mounted thermostats for both heaters                                                                                       |                               |
| and confirm proper heater response)                                                                                                                | Breakers turned off forseason |

## HEALTH AND SAFETY

| Status                       |
|------------------------------|
|                              |
| Yes                          |
| Ves                          |
| Ves UW wall Mountedlight Dim |
| Ves .                        |
| Y-es                         |
| Xes                          |
|                              |
| Yes 3/11/11 (Both)           |
| Yes                          |
| Ves                          |
|                              |
| Y05                          |
| yes 4/1/11                   |
|                              |

C:\Users\Powerex\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.IE5\QN4DSE0E\GCTS%20OM&M%20Log%20Sheets[1].xlsx

| Monthly OM&M Log Sheet, Groundwater Collection and          |
|-------------------------------------------------------------|
| Treatment System, Solvent Dock Area, Former Lockheed Martin |
| French Road Facility, Utica, New York                       |

Date: <u>9/8/11</u> Time: <u>0945</u> Technician: ).

#### SYSTEM STATUS

| System operational? (PLC s | screen indicating system in "AUTO" or "MANUAL") | Auto |
|----------------------------|-------------------------------------------------|------|
| System currently cycling?  | Ves                                             |      |
| Alarms? (list) None        |                                                 |      |

### AIR STRIPPER PARAMETERS (record while air stripper is running)

| Parameter                                                                                  | Value      | Units      |
|--------------------------------------------------------------------------------------------|------------|------------|
| Air stripper sump pressure [PI-106]                                                        | 28.5       | (in. W.C.) |
| Air stripper sump water elevation (record from site gauge)                                 | 18.5       | (inches)   |
| Blower intake line vacuum [PI-100]                                                         | 2.0        | (in. W.C.) |
| Main damper position (record distance from center of wingnut to outside of blower housing) | Z.1        | (inches)   |
| Interior dilution damper position (0° is shut, 90° is open)                                | 0.1        | (°)        |
| Is white "POWER ON" light on air stripper control panel                                    | lit? Ves   |            |
| Is air stripper hand-off-auto switch [HS-100B] in "AUTO" position                          | 102        |            |
| Note scaling inside liquid effluent pipe from access                                       | oort light |            |

light Note scaling observed inside air stripper via clear tray access door light

### FLOWMETER / PUMP PARAMETERS

Are white power lights lit on MH-1, MH-2, and MH-3 control panels? (Y/N) \_\_\_\_\_\_\_

Are pump hand-off-auto switches [HS-101A, HS-101B, HS-102A, HS-102B, HS-103A,

and HS-103B] in "auto" position? (Y/N)

| Parameter                      | MH-1<br>[FT-101] | MH-2<br>[FT-102] | MH-3<br>[FT-103] | Sump<br>[FT-104] | Cumulative<br>[FT-105] |
|--------------------------------|------------------|------------------|------------------|------------------|------------------------|
| Date/Time                      | 9/8/11 0950      |                  |                  |                  | >                      |
| Instantaneous Flowrate [gpm]   | 42.80            | NA               | 27.21            | NIA              | 62.3+067.38            |
| "Total" Flow (resettable, gal) | 429578           | 115304           | 303734           | 37               | 763854                 |
| "Perm" Flow (gal)              | 12876683         | 2195315          | 1005199          | 1639             | 3439305                |
| Pump 1 Running (Y/N)?          | Ý                | N                | γ                | N                | NA                     |
| Pump 2 Running (Y/N)?          | Ý                | N                | Y                | NA               | NA                     |

- Flowrate and Permanent Flow can be viewed locally from wall-mounted flow transmitters FT-101 through FT-105 using up/down arrows.

# VAPOR PHASE PARAMETERS (record while air stripper is running)

| Is duct heater "HEAT ON/OFF" light lit? (Y/N)  | Ves | (located on duct heater control panel door) |
|------------------------------------------------|-----|---------------------------------------------|
| Is duct heater "HI TEMP" alarm light on? (Y/N) | NO  | (located on duct heater control panel door) |

Date:  $\frac{9/8/11}{1015}$ Technician:  $\frac{9}{2500}$  Guth ouck.

# VAPOR PHASE PARAMETERS (continued)

| Parameter                              | PID Tag | Value | Units      | Notes                                         |
|----------------------------------------|---------|-------|------------|-----------------------------------------------|
| Pre-Duct Heater Temperature            | TI-300  | 69    | (°F)       |                                               |
| Pre-Carbon Temperature                 | TI-400  | 79    | (°F)       |                                               |
| Duct Heater Temperature<br>Setpoint    | -       | 85    | (°F)       | (located in green on duct heat control panel) |
| Duct Heater Temperature<br>Transmitter | -       | 85    | (°F)       | (located in red on duct heat control panel)   |
| Pre-Carbon Pressure                    | PI-401  | 9     | (in. W.C.) |                                               |
| Mid-Carbon Pressure                    | PI-402  | 3     | (in. W.C.) |                                               |
| Effluent Pressure                      | PI-403  | 0     | (in. W.C.) |                                               |

# TRANSMITTER READINGS (record from ProControl)

| Parameter                  | PID Tag | Value | Units      | Notes |
|----------------------------|---------|-------|------------|-------|
| Air Stripper Sump Pressure | PT-106  | 30.40 | (in. W.C.) |       |
| Vapor Flowrate             | FT-106  | 609.3 | (cfm)      | -     |
| Pre-Carbon Temperature     | TT-400  | 76.6  | (°F)       |       |
| Pre-Carbon Pressure        | PT-400  | 7.5   | (in. W.C.) |       |
| Building Temperature       | TT-100  | 72.6  | (°F)       |       |

- Press the "I/O" up/down arrows on the ProControl screen until the desired transmitter value is displayed.

# SEQUESTERING AGENT (record while air stripper is running)

| Parameter                                                            | Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Notes                                                                                         |
|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Is pump operating? (Y/N)                                             | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Rumpwas off, Turnedon, Pumpunz Rendurg                                                        |
| Is low flow alarm present? (Y/N)                                     | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (E2) 100 sequestering Agent, changed out Drung                                                |
| ls pump in external mode? (Y/N)                                      | ye5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                               |
| If in external mode, record one set of mA<br>and stroke speed values | and the second sec | (display screen should automatically be switching back and forth between mA and stroke speed) |
| Stroke length                                                        | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (record from local stroke length knob on pump)                                                |
| Sequestering agent drum level [LI-200]                               | Newi Full<br>30 gali                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                               |
| Quantity of additional full drums                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | on oder                                                                                       |

# Inspect sequestering agent components for \_\_\_\_\_

| signs of leaking or wear (tubing [suction,      | No leaks or Buildup           |
|-------------------------------------------------|-------------------------------|
| injection, bleed return], injection check valve | Checked & cleaned entry point |
| fitting, spill pallet, etc.)                    |                               |

#### MONTHLY OM&M TASKS

| Task                                            | Notes           |
|-------------------------------------------------|-----------------|
| Monthly liquid effluent sample collected? (Y/N) | Yes             |
| pH of effluent sample                           | 7.9             |
| Model of pH meter                               | Hanna HI 991001 |
| Calibration notes / method used                 |                 |

C:\Users\Powerex\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.IE5\QN4DSE0E\Appendix%20D%20-%20GCTS%20OM&M%20Log%20Sheets[1],xlsx

# Date: <u>9/8/i/</u> Time: <u>//00</u> Technician: <u>Jason Gotteouste</u>;

# MONTHLY OM&M TASKS (continued)

| Task                                                                                                                                               | Notes                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| Liquid flow sensors cleaned? (Y/N) (only as needed)                                                                                                | NO                                  |
| Monthly manhole inspections conducted? (Y/N)                                                                                                       | Yes                                 |
| Leaking/dripping of water observed from double-<br>walled HDPE discharge pipe located inside<br>manhole? (Y/N)                                     | MHI: None<br>MHZ: None<br>MH3: None |
| Do level floats appear to be in good condition and hanging freely? (Y/N)                                                                           | yes                                 |
| Observe groundwater inside each manhole and note odor and appearance                                                                               | MHI<br>MHZ Clear No ador            |
| Is confined space entry signage present at each<br>manhole? (Y/N)                                                                                  | yes                                 |
| With pump(s) running, visually inspect discharge<br>piping, pipe fittings, and pressure relief valve for<br>leaks                                  | Yes                                 |
| With pump(s) running, listen for any unusual sounds                                                                                                | Yes NO UNUSUAl sounds               |
| Inspect condition of collection line gate valve protection flush-mount covers for each manhole                                                     | Yes                                 |
| With system running, visually inspect all piping within<br>the treatment system for leaks, signs of distress, or any<br>other notable observations | Ves                                 |
| Treatment system valves exercised? (Y/N) (should be<br>conducted with system in-between batch cycles)                                              | Yes                                 |
| List any notable observations                                                                                                                      | NO 1550es                           |
| Are both building heaters working properly? (Y/N)<br>(adjust respective wall-mounted thermostats for both heaters                                  |                                     |
| and confirm proper heater response)                                                                                                                | Breakers turned off forseason       |

# HEALTH AND SAFETY

| Item                                                                                                                       | Status               |
|----------------------------------------------------------------------------------------------------------------------------|----------------------|
| Is fire extinguisher charged, unobstructed, and possessing an inspection tag? (Y/N)                                        | Ye5                  |
| Is eyewash/shower station operational and unobstructed? (Y/N)                                                              | yes -                |
| Is interior emergency lighting operational? (Y/N)                                                                          | Y#3                  |
| Is first aid kit present and in good condition? (Y/N)                                                                      | Ves                  |
| Is lockout/tagout equipment available? (Y/N)                                                                               | Ves                  |
| Have electrical GFIs been tested and reset? (Y/N)                                                                          | Yes                  |
| Do all electrical panels have 36" of open floor space in front of them?<br>(Y/N)                                           | yes                  |
| Are both the OM&M Manual and HASP onsite? (Y/N) (note dates for each)                                                      | Yes 3/11/11 for Both |
| Is emergency spill kit available? (Y/N)                                                                                    | Yes                  |
| Is H&S signage including emergency contact list, eye protection hearing protection, and automatic equipment present? (Y/N) | Yes                  |
| Is current SPDES permit onsite? (Y/N) (note date)                                                                          | Yes 4/1/11           |

C:\Users\Powerex\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.IE5\QN4DSE0E\Appendix%20D%20-%20GCTS%20OM&M%20Log%20Sheets[1].xlsx

Date: <u>io/ii/ii</u> Time: <u>/355</u> Technician: <u>j Gu+kowsk</u>;

#### SYSTEM STATUS

| System operational? (PLC so | creen indicating system in "AUTO" or "MANUAL") | Auto |
|-----------------------------|------------------------------------------------|------|
| System currently cycling?   | Yes                                            |      |
| Alarms? (list)              |                                                |      |
|                             |                                                |      |

#### AIR STRIPPER PARAMETERS (record while air stripper is running)

| Parameter                                                                                     | Value             | Units      |
|-----------------------------------------------------------------------------------------------|-------------------|------------|
| Air stripper sump pressure [PI-106]                                                           | 27                | (in. W.C.) |
| Air stripper sump water elevation (record from site gauge)                                    | 181/2             | (inches)   |
| Blower intake line vacuum [PI-100]                                                            | 2                 | (in. W.C.) |
| Main damper position (record distance from center of wingnut to outside of<br>blower housing) | 2 <sup>3</sup> /8 | (inches)   |
| Interior dilution damper position (0° is shut, 90° is open)                                   | 0                 | (°)        |

Is white "POWER ON" light on air stripper control panel lit?

Is air stripper hand-off-auto switch [HS-100B] in "AUTO" position?

Note scaling inside liquid effluent pipe from access port 114/e scaling, Clean Glass door

Note scaling observed inside air stripper via clear tray access door trays 's Cleaned

#### FLOWMETER / PUMP PARAMETERS

Are white power lights lit on MH-1, MH-2, and MH-3 control panels? (Y/N) <u>Yes all Three</u> Are pump hand-off-auto switches [HS-101A, HS-101B, HS-102A, HS-102B, HS-103A, and HS-103B] in "auto" position? (Y/N) <u>Yes all six</u>

|                                |               |          |            |          |            | *   |
|--------------------------------|---------------|----------|------------|----------|------------|-----|
| Parameter                      | MH-1          | MH-2     | MH-3       | Sump     | Cumulative |     |
| Falameter                      | [FT-101]      | [FT-102] | [FT-103]   | [FT-104] | [FT-105]   |     |
| Date/Time                      | 10/11/11 1355 |          |            |          | >          |     |
| Instantaneous Flowrate [gpm]   | 0             | 19       | 20         | 0        | 34-38      |     |
| "Total" Flow (resettable, gal) | 811288        | 173219   | 511522     | 37       | 34-38137   | 068 |
| "Perm" Flow (gal)              | 13258369      | 2253237  | BH91212948 | 1639     | 4046130    |     |
| Pump 1 Running (Y/N)?          | (D) YESNO     | Yes      | Yes        | NO       | NA         |     |
| Pump 2 Running (Y/N)?          | No            | NÓ       | NO         | NA       | NA         | 1.0 |

- Flowrate and Permanent Flow can be viewed locally from wall-mounted flow transmitters FT-101 through FT-105 using up/down arrows.

### VAPOR PHASE PARAMETERS (record while air stripper is running)

| Is duct heater "HEAT ON/OFF" light lit? (Y/N)  | Yes | (located on duct heater control panel door) |
|------------------------------------------------|-----|---------------------------------------------|
| Is duct heater "HI TEMP" alarm light on? (Y/N) | NO  | (located on duct heater control panel door) |

Technician:

#### VAPOR PHASE PARAMETERS (continued)

| Parameter                              | PID Tag | Value | Units      | Notes                                        |
|----------------------------------------|---------|-------|------------|----------------------------------------------|
| Pre-Duct Heater Temperature            | TI-300  | 64    | (°F)       |                                              |
| Pre-Carbon Temperature                 | TI-400  | 79    | (°F)       |                                              |
| Duct Heater Temperature<br>Setpoint    | -       | 85    | (°F)       | (located in green on duct heat control panel |
| Duct Heater Temperature<br>Transmitter | -       | 85    | (°F)       | (located in red on duct heat control panel)  |
| Pre-Carbon Pressure                    | PI-401  | 10.8  | (in. W.C.) |                                              |
| Mid-Carbon Pressure                    | PI-402  | 4,3   | (in. W.C.) |                                              |
| Effluent Pressure                      | PI-403  | <     | (in. W.C.) |                                              |

#### TRANSMITTER READINGS (record from ProControl)

| Parameter                  | PID Tag | Value   | Units      | Notes |
|----------------------------|---------|---------|------------|-------|
| Air Stripper Sump Pressure | PT-106  | 31.14   | (in. W.C.) |       |
| Vapor Flowrate             | FT-106  | 670-760 | (cfm)      |       |
| Pre-Carbon Temperature     | TT-400  | 81,8    | (°F)       |       |
| Pre-Carbon Pressure        | PT-400  | 9,4     | (in. W.C.) | ~~~~~ |
| Building Temperature       | TT-100  | 67.5    | (°F)       |       |

- Press the "I/O" up/down arrows on the ProControl screen until the desired transmitter value is displayed.

# SEQUESTERING AGENT (record while air stripper is running) Recorded 10/7/11, following -

| Parameter                                                         | Status | Notes                                                                                         |
|-------------------------------------------------------------------|--------|-----------------------------------------------------------------------------------------------|
| Is pump operating? (Y/N)                                          | Yes    |                                                                                               |
| Is low flow alarm present? (Y/N)                                  | No     |                                                                                               |
| Is pump in external mode? (Y/N)                                   | Yes    |                                                                                               |
| If in external mode, record one set of mA and stroke speed values |        | (display screen should automatically be switching back and forth between mA and stroke speed) |
| Stroke length                                                     | 100    | (record from local stroke length knob on pump)                                                |
| Sequestering agent drum level [LI-200]                            | 30 gal | Drum#3                                                                                        |
| Quantity of additional full drums                                 | Zero   | Drum # 2 on pallet, but chemical bad; 26 gallens les                                          |

Inspect sequestering agent components for On 10/6/11, low chemical flow alarm was present. Alarm & signs of leaking or wear (tubing [suction, <u>cavsed due to partial solidification of chemical in bottom</u> injection, bleed return], injection check value of drum (#2), suction tubing, pump fittings, and part of discharge fitting, spill pallet, etc.) tubing. Most was soup-like consistency, except in the intake screen inside drum, where it was fairly hardened. No problem on injection fitting. CP cleaned fittings, replaced suction tubing, installed new Y-function value and began use of drum #3.

| Task                                            | Notes                |
|-------------------------------------------------|----------------------|
| Monthly liquid effluent sample collected? (Y/N) | Ves jolulu           |
| pH of effluent sample                           | 7.80                 |
| Model of pH meter                               | Hanna HII 491301     |
| Calibration notes / method used                 | 7.00. 4.00, 10,00 OK |

G:\APROJECT\LOCKHEED\NJ001024.0001\GCTS Construction Documents\OM&M\OM&M Manual\Volume I\Appendices\Appendix D -OM&M Log Sheets\Appendix D - GCTS OM&M Log Sheets.xlsx

| Date:       | 10/11/11 |
|-------------|----------|
| Time:       | 9:00     |
| Technician: | CP/JG    |

### MONTHLY OM&M TASKS (continued)

| Task                                                                                                                                                     | Notes                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| Liquid flow sensors cleaned? (Y/N) (only as needed)                                                                                                      | N                                                               |
| Monthly manhole inspections conducted? (Y/N)                                                                                                             | Y                                                               |
| Leaking/dripping of water observed from double-<br>walled HDPE discharge pipe located inside<br>manhole? (Y/N)                                           | i N<br>2 N<br>3 N                                               |
| Do level floats appear to be in good condition and<br>hanging freely? (Y/N)                                                                              | 1 Y 3 Y<br>2 Y                                                  |
| Observe groundwater inside each manhole and note odor and appearance                                                                                     | 1 clear/no odor 3 clear/no odor<br>2 organic sheen, slight odor |
| Is confined space entry signage present at each<br>manhole? (Y/N)                                                                                        | Yes                                                             |
| With pump(s) running, visually inspect discharge<br>piping, pipe fittings, and pressure relief valve for<br>leaks                                        | 1 OK<br>2 OK<br>3 OK                                            |
| With pump(s) running, listen for any unusual sounds                                                                                                      | 1 with Piping shakes upon startup 30K                           |
| Inspect condition of collection line gate valve protection flush-mount covers for each manhole                                                           | 1 OK<br>2 OK<br>3 OK                                            |
| With system running, visually inspect all piping within<br>the treatment system for leaks, signs of distress, or any<br>other notable observations       | No leaks observed                                               |
| Treatment system valves exercised? (Y/N) (should be conducted with system in-between batch cycles)                                                       | Yes                                                             |
| List any notable observations                                                                                                                            |                                                                 |
| Are both building heaters working properly? (Y/N)<br>(adjust respective wall-mounted thermostats for both heaters<br>and confirm proper heater response) | Yes                                                             |

#### HEALTH AND SAFETY

| Item                                                                                                                          | Status             |
|-------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Is fire extinguisher charged, unobstructed, and possessing an inspection tag? (Y/N)                                           | 100                |
| Is eyewash/shower station operational and unobstructed? (Y/N)                                                                 | Yes                |
| Is interior emergency lighting operational? (Y/N)                                                                             | Yes                |
| Is first aid kit present and in good condition? (Y/N)                                                                         | Yes                |
| Is lockout/tagout equipment available? (Y/N)                                                                                  | Yes                |
| Have electrical GFIs been tested and reset? (Y/N)                                                                             | Yes                |
| Do all electrical panels have 36" of open floor space in front of them?<br>(Y/N)                                              | Yes                |
| Are both the OM&M Manual and HASP onsite? (Y/N) (note dates for each)                                                         | Yes 3/11/11 (BOTH) |
| Is emergency spill kit available? (Y/N)                                                                                       | Yes                |
| Is H&S signage including emergency contact list, eye protection hearing<br>protection, and automatic equipment present? (Y/N) |                    |
| Is current SPDES permit onsite? (Y/N) (note date)                                                                             | Yes 4/1/11         |

G:\APROJECT\LOCKHEED\NJ001024.0001\6 Notes and Data\2011 GCTS OMM Field Notes\Appendix D - GCTS OM&M Log Sheets.xlsx

| Quarterly OM&M Log Sheet, Groundwater Collection and<br>Treatment System, Solvent Dock Area, Former Lockheed Martin<br>French Road Facility, Utica, New York<br>QUARTERLY OM&M TASKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Date: $10/\tau/II$<br>Time: $11245$<br>nnician: $CD$                                        |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----|
| Quarterly liquid influent samples collected for MH-1, MH-2, and MH-3? (Y/N)<br>MH-1 influent pH <u>6.85</u><br>MH-2 influent pH <u>7.2.2</u><br>MH-3 influent pH <u>7.2.7</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Yes 10/11/11                                                                                |     |
| Quarterly vapor samples collected pre-carbon, mid-carbon, and effluent? (Y/N)<br>Quarterly catch basin samples collected for CB-1, CB-2, and CB-3? (Y/N)<br>Quarterly groundwater elevation levels collected? (Y/N)<br>Blower bearings greased? (Y/N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes, 10/12/11<br>Yes /0//////<br>Yes                                                        | ]   |
| Indicate air velocity measurement collected from 8" effluent pipe (plug located on wall side of vertical portion of effluent pipe, 1 fpm = 0.317 cfm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2250 (fpm<br>3583 (cfm                                                                      |     |
| QUARTERLY CRITICAL DEVICE / ALARM TESTING<br>Liquid flow transmitters FT-101, FT-102, FT-103, and FT-105 calibrated? (Y/N)<br>(should be done after flow sensor cleaning)<br>If yes, document testing and <u>Pumpdown tests</u> in each manhole with collection                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | yes (10/17/11)<br>lines closed. Measured                                                    | DTL |
| calibration factors in manhole w/ type and compared A volume transmitter totalizers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | e with the A from t                                                                         | low |
| $\begin{array}{l} \underline{MH-1[FT-101]; \ DTW_i = 119\frac{1}{8}, \ DTW_f = 150\frac{2}{7}, \ \DeltaDTW = 31" = 546 \ gal. \ \DeltaFT-101 = 523. \ gal. \\ \underline{MH-2[FT-102]; \ DTW_i = 170\frac{1}{7}, \ DTW_f = 190\frac{1}{7}, \ \DeltaDTW = 30" = 352. \ gal. \ \DeltaFT-102 = 363. \ gal. \\ \underline{MH-3[FT-102]; \ DTW_i = 152\frac{3}{7}, \ DTW_f = 168\frac{3}{7}, \ \DeltaDTW = 16" = 282. \ gal. \ \DeltaFT-103 = 279. \ gal. \\ \underline{MH-3[FT-102]; \ DTW_i = 152\frac{3}{7}, \ DTW_f = 168\frac{3}{7}, \ \DeltaDTW = 16" = 282. \ gal. \ \DeltaFT-103 = 279. \ gal. \\ \underline{FT-105]; \ \DeltaFT-105 = 528. \ gal. \ dviing \ FT-101 \ tert, \ where \ \DeltaDTW = 31" = 546. \ gal. \end{array}$ | 4,2% dutterence = 0K<br>1. 3,0% dutterence =<br>1,0% dutterence = 0K<br>3.3% dutterence = 0 | OK! |
| Manhole floats tested? (Y/N) Yes, during critical alarm testing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                             |     |
| Test the following critical alarms (note that system must be in AUTO to observe proper alarm r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | esponse):                                                                                   |     |

4

| Alarm                              | Corresponding<br>Transmitter /<br>Sensor | PLC Alarm<br>Output Name          | Alarm Type          | Caused PLC<br>Alarm Output<br>State Change?<br>(Y/N) | Caused System<br>Shutdown?<br>(Y/N) | Passed<br>(Y/N) |
|------------------------------------|------------------------------------------|-----------------------------------|---------------------|------------------------------------------------------|-------------------------------------|-----------------|
|                                    | PT-106                                   | PA_106                            | fatal               | Yes.                                                 | Yes                                 | Yes             |
| Air Stripper Sump<br>High Pressure |                                          | setpoint = 34 in<br>pressure HH/U |                     |                                                      |                                     | 106 alurm       |
| Air Stripper Sump                  | PT-106<br>Notes: Current                 | PA_106<br>sctpomt = 151           | fatal<br>Inwe, Swit | y<br>ched to 33 in                                   | Y<br>W.C. PA IBL                    | Y               |
| Low Pressure                       | set off. Blowe                           | r Pressure HH/                    | ILL alarm           | light lit up c                                       | m blower MCF                        | c. 147M         |

NA-not applicable

G:\APROJECT\LOCKHEED\NJ001024.0001\GCTS Construction Documents\OM&M\OM&M Manual\Volume I\Appendices\Appendix D - OM&M Log Sheets\Appendix D - GCTS OM&M Log Sheets.xlsx

10/7/11 Date: Time: 12:10 Technician: CD

QUARTERLY CRITICAL DEVICE / ALARM TESTING (continued)

| Alarm                                                                                                                                  | Corresponding<br>Transmitter /<br>Sensor                                                                      | PLC Alarm<br>Output Name           | Alarm Type  | Caused PLC<br>Alarm Output<br>State Change?<br>(Y/N) | Caused System<br>Shutdown?<br>(Y/N) | Passed<br>(Y/N) |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------|-------------|------------------------------------------------------|-------------------------------------|-----------------|--|--|
|                                                                                                                                        | LSL-100                                                                                                       | LA_100                             | fatal       | 4                                                    | Y                                   | Y               |  |  |
| Air Stripper Low                                                                                                                       | Notes: Closed                                                                                                 | BF4-401                            | artially ut | ule system a                                         | xching. Observe                     | 1 LSLIDO        |  |  |
| Liquid Level                                                                                                                           | switch off at<br>AErater Sums L                                                                               | - around 13.25<br>evel Alarm light | " in site g | auge. Alarm                                          | iching. Observe<br>LA_100 initia    | ted and         |  |  |
|                                                                                                                                        | FT-106                                                                                                        | FA_106                             | fatal       | 4                                                    | Y                                   | Y               |  |  |
| High Air Flowrate                                                                                                                      | Notes: Cirrent<br>FA_106 alarm                                                                                |                                    | Octm, Ch    | anged to 5                                           | 00 ctm. Torgg                       | ered            |  |  |
|                                                                                                                                        | FT-106                                                                                                        | FA_106                             | fatal       | Y                                                    | Y                                   | Y               |  |  |
| Low Air Flowrate                                                                                                                       | Notes: Current                                                                                                |                                    | 400 ctm. C  | hanged to 90                                         | 10 cfm. Trigg                       | ered            |  |  |
| Low All Flowlate                                                                                                                       | FA_106 alarm.                                                                                                 | Volta i de                         |             |                                                      |                                     |                 |  |  |
|                                                                                                                                        | TT-400                                                                                                        | TAH400                             | fatal       | 4                                                    | Y                                   | Y               |  |  |
| Pre-Carbon High<br>Temperature                                                                                                         | Notes: Circent setpoint is 110°F. Switched to 75°F. Observed roughly / min.<br>delay, Alarm TAH400 triggered. |                                    |             |                                                      |                                     |                 |  |  |
|                                                                                                                                        | TT-400                                                                                                        | TAL400                             | fatal       | Y                                                    | Y                                   | Y               |  |  |
| Pre-Carbon Low<br>Temperature                                                                                                          | Notes: Current setpoint is 60°F. Changed to 20°F. Observed 3 minute delax.<br>Marin TAL400 triggered.         |                                    |             |                                                      |                                     |                 |  |  |
|                                                                                                                                        | PT-400                                                                                                        | PA_400                             | fatal       | Y                                                    | Y                                   | Y               |  |  |
| Pre-Carbon High<br>Pressure                                                                                                            | Notes: Current<br>delay. PA_400                                                                               | setpoint 25 in<br>indicated        | we. Change  | ed to 7 inw                                          | c. Observed                         | 45 sec          |  |  |
|                                                                                                                                        | PT-400                                                                                                        | PA_400                             | fatal       | Y                                                    | Y                                   | Y               |  |  |
| Pre-Carbon Low<br>Pressure                                                                                                             | Notes: Current<br>belay. PA_400                                                                               |                                    | l inwe. Cl  | ranged to l                                          | linwc. Observa                      | ed 45 sec       |  |  |
|                                                                                                                                        | FT-101                                                                                                        | FA_101                             | warning     | Y                                                    | N                                   | Y               |  |  |
| MH-1 Low Flowrate                                                                                                                      | Notes: With MH-1 pump & running in AUTO, switch both MH-1 pump                                                |                                    |             |                                                      |                                     |                 |  |  |
|                                                                                                                                        | HOA's to att.                                                                                                 | : Observed 3                       | 0 second    | delay. FA-10                                         | 1 triggered.                        | 1 1             |  |  |
|                                                                                                                                        | FT-102                                                                                                        | FA_102                             | warning     |                                                      |                                     |                 |  |  |
| MH-2 Low Flowrate Notes: With MH-2 pump A running in auto, Su<br>to off, Observed 30 second delay, FA-102 t                            |                                                                                                               |                                    |             |                                                      | oth MH-2 prm                        | p HOA's         |  |  |
|                                                                                                                                        | roon, Orserve                                                                                                 | ea 10 secana                       | celay, FA-  | TUD Triggered                                        |                                     | 14              |  |  |
|                                                                                                                                        | FT-103                                                                                                        | FA_103                             | warning     | Y (///                                               | N                                   | Y               |  |  |
| MH-3 Low Flowrate Notes: With MH-3 pump running in AUTO, switched both MH-3<br>to off via HOA switch. 30 sec. delay. FA_103 triggered. |                                                                                                               |                                    |             |                                                      |                                     | pumps           |  |  |

G:\APROJECT\LOCKHEED\NJ001024.0001\GCTS Construction Documents\OM&M\OM&M Manual\Volume I\Appendices\Appendix D - OM&M Log Sheets\Appendix D - GCTS OM&M Log Sheets.xlsx

Date: Time: 12:30 Technician: CD

QUARTERLY CRITICAL DEVICE / ALARM TESTING (continued)

| ······································ | γ                                                                                                                  |                                 |                        |                                                      | Г                                             |                 |  |  |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------|------------------------------------------------------|-----------------------------------------------|-----------------|--|--|
| Alarm                                  | Corresponding<br>Transmitter /<br>Sensor                                                                           | PLC Alarm<br>Output Name        | Alarm Type             | Caused PLC<br>Alarm Output<br>State Change?<br>(Y/N) | Caused System<br>Shutdown?<br>(Y/N)           | Passed<br>(Y/N) |  |  |
|                                        | FT-105                                                                                                             | FA_105                          | warning                | Y                                                    | N                                             | Y               |  |  |
| Aggregate Low<br>Flowrate              | Notes: This a<br>imanhole flou                                                                                     | larm, FA_105,<br>1 alarms.      | occurred               | firing testing                                       | of individual                                 | low             |  |  |
|                                        | WFS-106                                                                                                            | WFS106                          | fatal                  | Y                                                    | Y                                             | Y               |  |  |
| Building Wet Floor<br>Sensor Alarm     |                                                                                                                    | / /                             |                        |                                                      | y sump. Trig.<br>state. Also<br>Harm light on |                 |  |  |
|                                        | LSH-106                                                                                                            | LSH106                          | warning                | Y                                                    | N                                             | Y               |  |  |
| Building Sump High<br>Level            | Notes: With su<br>LSH106 input s                                                                                   | mp pump unplu<br>tate furns on, | gged, begin<br>and LSF | filling somp<br>4106 alarm                           | with sunk we apply turns a                    | iter.           |  |  |
|                                        | FT-200                                                                                                             | FA_200                          | warning                | Y                                                    | N                                             | Y               |  |  |
| Sequestering Agent<br>Low Flow         | Notes: Was real-lite confirmed resterday, FA-200 ortput was on.                                                    |                                 |                        |                                                      |                                               |                 |  |  |
|                                        | LSH-200                                                                                                            | LSH200                          | warning                | Y                                                    | N                                             | Y               |  |  |
| Spill Pallet Wet<br>Sensor Alarm       | Notes: Put sensor into cup of water. LSH200 input turns on, LSH200 nkm output turns on.                            |                                 |                        |                                                      |                                               |                 |  |  |
|                                        | LSHH-103                                                                                                           | LA_MH1                          | warning                | Y                                                    | N                                             | 9               |  |  |
| MH-1 High Level                        | Notes: Manually tested. LA_MHI triggered.<br>10/11/11                                                              |                                 |                        |                                                      |                                               |                 |  |  |
|                                        | LSLL-103                                                                                                           | LA_MH1                          | warning                | Ý                                                    | N                                             | Y               |  |  |
| MH-1 Low Level                         | Notes: Should for<br>10/11/11 Manual                                                                               |                                 |                        | imp turned of                                        | F LA_MHI Y                                    | nggered         |  |  |
|                                        | LSHH-104                                                                                                           | LA_MH2                          | warning                | Y                                                    | N                                             | Y               |  |  |
| MH-2 High Level                        | Notes: Manually<br>10/11/11                                                                                        | tested. LA.                     | -MH2 +                 | nggered.                                             |                                               |                 |  |  |
|                                        | LSLL-104                                                                                                           | LA_MH2                          | warning                | Y                                                    | N                                             | Y               |  |  |
| MH-2 Low Level                         | Notes: Should force off both MH-2 pumps<br>10/11/11 Manually tested w/ pump on; pump turned off. LA_MH2 triggered. |                                 |                        |                                                      |                                               |                 |  |  |
|                                        | LSHH-105                                                                                                           | LA_MH3                          | warning                | Y                                                    | N                                             | 4               |  |  |
| MH-3 High Level                        | Notes:                                                                                                             | tested. LA_                     |                        | gered.                                               |                                               |                 |  |  |

G:\APROJECT\LOCKHEED\NJ001024.0001\GCTS Construction Documents\OM&M\OM&M Manual\Volume I\Appendices\Appendix D - OM&M Log Sheets\Appendix D - GCTS OM&M Log Sheets.xlsx

| Date:       | 10/7/4 |  |
|-------------|--------|--|
| Time:       | 12:50  |  |
| Technician: | CD     |  |

QUARTERLY CRITICAL DEVICE / ALARM TESTING (continued)

|                          | dorating of the                                             | CAL DEVICE / AL                                           | ANN IESTING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | continued)   |                                                      |                                     |                                   |
|--------------------------|-------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------------------------------|-------------------------------------|-----------------------------------|
|                          | Alarm                                                       | Corresponding<br>Transmitter /<br>Sensor                  | PLC Alarm<br>Output Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Alarm Type   | Caused PLC<br>Alarm Output<br>State Change?<br>(Y/N) | Caused System<br>Shutdown?<br>(Y/N) | Passed<br>(Y/N)                   |
|                          |                                                             | LSLL-105                                                  | LA_MH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | warning      | Y                                                    | N                                   | Y                                 |
|                          | MH-3 Low Level                                              | Notes: Should for                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                      |                                     |                                   |
|                          |                                                             | 10/11/1 Manually                                          | tested w/ pv.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mp on; pump  | turned off. Li                                       | 4-MH3 thĝ                           | gered                             |
|                          | D 11 11 11 11                                               | TT-100                                                    | TA_100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | shutdown     | Y                                                    | Y                                   | Y                                 |
|                          | Building High<br>Temperature                                | 4 4                                                       | setpoint is<br>00 indicated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | anged to 7                                           | 0°F. Observed                       | 2 min                             |
|                          |                                                             | TT-100                                                    | TA 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | shutdown     |                                                      | T                                   |                                   |
|                          | Building Low                                                |                                                           | THE PARTY OF THE P |              | ed to 880F                                           | Observed 2 m                        |                                   |
|                          | Temperature                                                 | delax. TA-10                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - Is Chory   | 0 10 00 1.                                           | Coserved An                         |                                   |
|                          |                                                             | 100mg . 101210                                            | 0 1401001003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |                                                      |                                     |                                   |
| July of                  | 1-1                                                         |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                      | via outputs                         | Tocked" surtch of<br>mg on 2A-MHI |
| 10/11/11 07              | 106                                                         |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                      | 1 click                             | ing on LA-MHI                     |
| Мн                       | -3 Lift H1 13                                               | t Pump On #2                                              | 18 gpm M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H-1 [Tilt H] | Pump IFI on; 3                                       | 4 gpm                               |                                   |
|                          | Lift H2 2m                                                  | Propon #1                                                 | 30 gpm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TIT H2       | Pump # 2 on j                                        | 12 gpm                              |                                   |
|                          | Liff HH Ala                                                 | wm? LA_MH3                                                | $\checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Tit HH       | Received LA_<br>Reset LA_MHH                         | мн(                                 |                                   |
|                          |                                                             |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 7 Reser CA-MILL                                      |                                     |                                   |
|                          | Prop All Ruma                                               | s all                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Vrop All     | Reset LA_MI                                          | 41                                  |                                   |
|                          | Lift HI mart R                                              | inmi L still tilted.<br>s officients<br>Impon for the top | 18 gpm .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Lift L.      | Pumps aff.                                           |                                     |                                   |
|                          | Raite 11 Prime                                              | off, Alwon I L                                            | A NU3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | WH TIT I     | 11. Pump#20                                          | m.                                  |                                   |
|                          | Time ch is my                                               | on , iquan m. V                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | / L.A. LL    | Pump off, LA.                                        | MHI on.                             |                                   |
| MH-                      | 2 [Titt HI] Pom                                             | 0#100 20g                                                 | pm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |                                                      |                                     |                                   |
| FT-10:                   | Tit Ha Pur                                                  | · · · · · · · · · · · · · · · · · · ·                     | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | This is p    | rocedure use                                         | d to test #                         | tow floats                        |
|                          | Tilt HH Received LA-MHZ - and float logic for each manhole. |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                      |                                     |                                   |
|                          | Prop All Reset LA_MHZ                                       |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                      |                                     |                                   |
| Lift L Pumps off         |                                                             |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                      |                                     |                                   |
| Titt HIT PUMP#2 on       |                                                             |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                      |                                     |                                   |
| LATTLY Pump off LA_MHZON |                                                             |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                      |                                     |                                   |
|                          |                                                             |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1            |                                                      |                                     |                                   |
|                          |                                                             |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1            |                                                      |                                     |                                   |

G:\APROJECT\LOCKHEED\NJ001024.0001\GCTS Construction Documents\OM&M\OM&M Manual\Volume f\Appendices\Appendix D - OM&M Log Sheets\Appendix D - GCTS OM&M Log Sheets.xlsx

### ARCADÍS

### Water Level Record

Page\_ 1 of 2

LMC Utica, NY

Date 9/26/11 - 9/27/11 Staff: D. Nodine / D. Zuk

| Well (s)  | Depth to Water (ft)<br>(TIC)/MP | Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Remarks                                                     |
|-----------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| MW - 1    | 8.09                            | 10.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                             |
| MW - 2    | 5.42                            | 11:18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                             |
| MW - 3    | 10,58                           | 134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                             |
| MW - 4    | 10.55                           | 10:70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                             |
| MW - 5    | 3.08                            | 11:32.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                             |
| MW - 6    | 5.59                            | 0903 9/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Bailer in well 2'to bailer bails not get wetter fait        |
| MW - 7    | 7.46                            | 15:45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                             |
| MW - 9    | 2.55                            | 12.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                             |
| MW - 10   | 4.80                            | 11:51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                             |
| MW - 11   | 6.80                            | 10:09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                             |
| MW - 12   |                                 | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Not on figure - Not Regural Based on Figure                 |
| MW - 13S  | 6.68                            | 11:10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                             |
| MW - 13BR | 10,94                           | 11:04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                             |
| MW - 14S  | 10.35                           | 16:10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                             |
| MW - 14BR | 23.55                           | 16:05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                             |
| MW - 15S  | 8.28                            | 18:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                             |
| MW - 15BR | 30.79                           | 18:10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Under pressure *caution when opening, Bol +5 Do put tighter |
| PZ - 2    |                                 | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Greved by Egyphent                                          |
| PZ - 4    | 0.47                            | 12:12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                             |
| PZ - 5    | 8.03                            | 17:05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (Conmed)                                                    |
| PZ - 6    | 9.1                             | 17:10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (Conmed)                                                    |
| PZ - 7    | 8.89                            | 17:15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (Conmed)                                                    |
| PZ - 8    | 9.05                            | 16:51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (Conmed)                                                    |
| PZ - 9    | 2:86                            | 16:41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (Conmed)                                                    |
| PZ - 10   | 8,18                            | 17:18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (Conmed)                                                    |
| PZ - 11R  | 6-8-8.44                        | 10:04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CAP Porked on by officell 1645 called wh                    |
| PZ - 13R  | 8.05                            | 9:72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |
| PZ - 17   | 6.47                            | 9:10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bentante cleared.                                           |
| PZ - 18   | <del>×</del> -7.85              | ×173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cos-Parked on the of 1 kill                                 |
| PZ - 19   | 7.09                            | 9:49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - • np • ·                                                  |
| PZ - 20   | 6.62                            | 9:37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |
| PZ - 21   | Dry                             | and the second se | (Outside IHOP) Afor the to cause the The the                |
| PZ - 22   | 7.56                            | 15:23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                             |
| PZ - 23   | 6.12                            | 15:15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                             |
| PZ - 24   | 10.74                           | 1511Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                             |

### ARCADIS

#### Water Level Record

Project

LMC Utica, NY

Page 2 of 2 Date 9/26/11 + 9/27/4 Staff: D.NGd. N. P. Z.K

| ſ   | Well (s) | Depth to Water (ft)<br>(TIC)/MP | Time         | Remarks                         |
|-----|----------|---------------------------------|--------------|---------------------------------|
|     | PZ - 25  | [1.05]                          | 15:05        |                                 |
| - F | PZ - 26  | 490                             | 14:55        |                                 |
| - 1 | PZ - 27  | 16.47                           | 14:47        |                                 |
|     | PZ - 28  | 3.04                            | 15:K         |                                 |
|     | PZ - 29  |                                 |              | Gu HAGt (ULGte                  |
| f   | PZ - 30  | 3,54                            | 15:10        |                                 |
| ſ   | PZ - 31  | 7.46                            | 15.00        |                                 |
| ſ   | PZ - 32  | 0.45                            | 14:50        |                                 |
| ſ   | PZ - 33  | 6.8 (DTR)                       | 13:53        | Dru Buttom                      |
| Γ   | PZ - 34  | 2:41                            | 14:38        | Botts DEET Hous to be re-topped |
| Γ   | PZ - 35  | 1.04                            | 14:45        |                                 |
|     | PZ - 36  | +001.09                         | 12:15        |                                 |
|     | PZ - 39  | 2,62                            | 11:72        |                                 |
|     | PZ - 40  | 4.58                            | 17:25        | (In building)                   |
| -[  | PZ - 41  | HE4.22                          | 17:20        | (In building)                   |
| [   | PZ - 42  | 0.28                            | 09071/27     | (In building)                   |
| [   | A1-PZ1   | 247                             | H+30         | Greved by equipment             |
| Į   | A1-PZ2   | 2.00                            | 15:13        |                                 |
| -   | A2-PZ1   | 3.57                            | 14:30        |                                 |
|     | A2-PZ2   | 6.08                            | 14:21        |                                 |
| /   | A2-PZ3   | い思えて                            |              | ICMissing                       |
| - H |          | 0.65                            | 14:38        | 5                               |
| [   | A2-PZ5   | 5.81                            | 100          |                                 |
|     | A2-PZ6   | -                               |              |                                 |
| 2   | A2-PZ7   | 1209                            | 14:32<br>105 |                                 |
| [/  | A2-PZ8   | 0.74                            | 14:25 .      |                                 |

Date: Date: ///////\_\_\_\_\_ Time: 0800 Technician: Jacon Gutkowski

### SYSTEM STATUS

| System operational? (     | LC screen indicating system in "AUTO" or "MANUAL") | Auto |
|---------------------------|----------------------------------------------------|------|
| System currently cyclin   | ? Ves                                              | A    |
| Alarms? (list) <u>Nor</u> | · · · · · · · · · · · · · · · · · · ·              |      |

# AIR STRIPPER PARAMETERS (record while air stripper is running)

| Parameter Value                                                              | Units      | 7 |
|------------------------------------------------------------------------------|------------|---|
| Air stripper sump pressure [PI-106] 27.0                                     | (in. W.C.) |   |
| ripper sump water elevation (record from site gauge) /5.25                   | (inches)   | 1 |
| Blower intake line vacuum [PI-100] 2.0                                       | (in. W.C.) | 1 |
| on (record distance from center of wingnut to outside of blower housing) 2.1 | (inches)   |   |
| rior dilution damper position (0° is shut, 90° is open)                      | (°)        |   |

Is white "POWER ON" light on air stripper control panel lit? Ves

Is air stripper hand-off-auto switch [HS-100B] in "AUTO" position?

Ves Note scaling inside liquid effluent pipe from access port

ligh+ Note scaling observed inside air stripper via clear tray access door ligh+

# FLOWMETER / PUMP PARAMETERS

Are white power lights lit on MH-1, MH-2, and MH-3 control panels? (Y/N) <u>Ves all three</u> and-off-auto switches [HS-101A, HS-101B, HS-102A, HS-102B, HS-103A, and HS-103B] in "auto" position? (Y/N) <u>Yes allsix</u> Are pump hand-off-auto switches [HS-101A, HS-101B, HS-102A, HS-102B, HS-103A,

| Parameter                      | MH-1<br>[FT-101] | MH-2<br>[FT-102] | MH-3<br>[FT-103] | Sump<br>[FT-104] | Cumulative<br>[FT-105] |
|--------------------------------|------------------|------------------|------------------|------------------|------------------------|
| Date/Time                      | 11/1/11 0800     |                  |                  |                  |                        |
| Instantaneous Flowrate [gpm]   | 10 4.48 35.24    | NIA              | NIA              | NIA              | 35.40                  |
| "Total" Flow (resettable, gal) | 1000431          | 208/12           | 613684           | 37               | 1665301                |
| "Perm" Flow (gal)              | 13447511         | 2288123          | 1315/20          | 1639             | 4340771                |
| Pump 1 Running (Y/N)?          | Yes              | No               | No               | NO               | NA                     |
| Pump 2 Running (Y/N)?          | NO               | No               | NO               | NA               | NA                     |

- Flowrate and Permanent Flow can be viewed locally from wall-mounted flow transmitters FT-101 through FT-105 using up/down arrows.

# VAPOR PHASE PARAMETERS (record while air stripper is running)

| Is duct heater "HEAT ON/OFF" light lit? (Y/N)  | Ves | (located on duct heater control panel door) |
|------------------------------------------------|-----|---------------------------------------------|
| Is duct heater "HI TEMP" alarm light on? (Y/N) | •   | (located on duct heater control panel door) |

Monthly OM&M Log Sheet, Groundwater Collection and Treatment System, Solvent Dock Area, Former Lockheed Martin French Road Facility, Utica, New York Date: ////// -\_\_\_\_ Time: /400

Time: 1400 Technician: Jason Gutkowsk:

 $\sim$ 

#### MONTHLY OM&M TASKS (continued)

| Task                                                                                                                                                                 | Notes                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Liquid flow sensors cleaned? (Y/N) (only as needed)                                                                                                                  | Ves                                                                |
| Monthly manhole inspections conducted? (Y/N)                                                                                                                         | Ves                                                                |
| Leaking/dripping of water observed from double-<br>walled HDPE discharge pipe located inside<br>manhole? (Y/N)<br>Do level floats appear to be in good condition and | MHI: NONE<br>MHZ: None<br>MHJ: None<br>MHJ: All 6000 MHJ: All good |
| hanging freely? (Y/N)                                                                                                                                                | MHZ: AllGood                                                       |
| Observe groundwater inside each manhole and note odor and appearance                                                                                                 | clear w/ No odos in all three                                      |
| Is confined space entry signage present at each<br>manhole? (Y/N)                                                                                                    | Yes                                                                |
| With pump(s) running, visually inspect discharge<br>piping, pipe fittings, and pressure relief valve for<br>leaks                                                    | Yes                                                                |
| With pump(s) running, listen for any unusual<br>sounds                                                                                                               | Yes, Nounusual sounds                                              |
| Inspect condition of collection line gate valve<br>protection flush-mount covers for each manhole                                                                    | A11600d                                                            |
| With system running, visually inspect all piping within<br>the treatment system for leaks, signs of distress, or any<br>other notable observations                   | AllGood                                                            |
| Treatment system valves exercised? (Y/N) (should be<br>conducted with system in-between batch cycles)                                                                | Yes                                                                |
| List any notable observations                                                                                                                                        | 100 00000                                                          |
| Are both building heaters working properly? (Y/N) (adjust respective wall-mounted thermostats for both heaters                                                       | Heater Working in GCTS Building                                    |
| and confirm proper heater response)                                                                                                                                  | No Heater in 5505 Building                                         |

#### HEALTH AND SAFETY

| Item                                                                                                                          | Status                 |
|-------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Is fire extinguisher charged, unobstructed, and possessing an inspection                                                      |                        |
| tag? (Y/N)                                                                                                                    | Yes                    |
| Is eyewash/shower station operational and unobstructed? (Y/N)                                                                 | Ves                    |
| Is interior emergency lighting operational? (Y/N)                                                                             | Ves                    |
| Is first aid kit present and in good condition? (Y/N)                                                                         | V45                    |
| Is lockout/tagout equipment available? (Y/N)                                                                                  | Ves                    |
| Have electrical GFIs been tested and reset? (Y/N)                                                                             |                        |
| Do all electrical panels have 36" of open floor space in front of them?<br>(Y/N)                                              | Ye3                    |
| Are both the OM&M Manual and HASP onsite? (Y/N) (note dates for each)                                                         | Yes 3/11/11            |
| <ul> <li>Is emergency spill kit available? (Y/N)</li> </ul>                                                                   | Ves                    |
| Is H&S signage including emergency contact list, eye protection hearing<br>protection, and automatic equipment present? (Y/N) | New Postedonwall       |
| Is current SPDES permit onsite? (Y/N) (note date)                                                                             | Yes Ylill Postedonwall |

C:\Users\jgutkowski\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Outlook\60M3FNGD\Appendix D - GCTS OMM Log Sheets.xlsx

Date: <u>//////\_\_\_\_\_</u> Time: <u>0830</u> Technician: <u>Jason Gutkow</u>ski,

#### VAPOR PHASE PARAMETERS (continued)

| Parameter                              | PID Tag | Value   | Units      | Notes                                         |
|----------------------------------------|---------|---------|------------|-----------------------------------------------|
| Pre-Duct Heater Temperature            | TI-300  | 62 81QB | (°F)       |                                               |
| Pre-Carbon Temperature                 | TI-400  | 81      | (°F)       |                                               |
| Duct Heater Temperature<br>Setpoint    | -       | 85      | (°F)       | (located in green on duct heat control panel) |
| Duct Heater Temperature<br>Transmitter | ÷       | 85      | (°F)       | (located in red on duct heat control panel)   |
| Pre-Carbon Pressure                    | PI-401  | 12      | (in. W.C.) | ······································        |
| Mid-Carbon Pressure                    | PI-402  | 5       | (in. W.C.) |                                               |
| Effluent Pressure                      | PI-403  | 0       | (in. W.C.) |                                               |

#### TRANSMITTER READINGS (record from ProControl)

| Parameter                  | PID Tag | Value | Units      | Notes |
|----------------------------|---------|-------|------------|-------|
| Air Stripper Sump Pressure | PT-106  | 28.88 | (in. W.C.) |       |
| Vapor Flowrate             | FT-106  | 784.7 | (cfm)      |       |
| Pre-Carbon Temperature     | TT-400  | 83.6  | (°F)       |       |
| Pre-Carbon Pressure        | PT-400  | 10.6  | (in. W.C.) |       |
| Building Temperature       | TT-100  | 67.3  | (°F)       |       |

- Press the "I/O" up/down arrows on the ProControl screen until the desired transmitter value is displayed.

#### SEQUESTERING AGENT (record while air stripper is running)

| Parameter                                 | Status   | Notes                                                      |
|-------------------------------------------|----------|------------------------------------------------------------|
| Is pump operating? (Y/N)                  | Ves      |                                                            |
| Is low flow alarm present? (Y/N)          | No       |                                                            |
| Is pump in external mode? (Y/N)           | Ves      |                                                            |
| If in external mode, record one set of mA | 4.0 (mA) | (display screen should automatically be switching back and |
| and stroke speed values                   | 5 (spm)  | forth between mA and stroke speed)                         |
| Stroke length                             | 100      | (record from local stroke length knob on pump)             |
| Sequestering agent drum level [LI-200]    |          |                                                            |
|                                           | 26901    |                                                            |
| Quantity of additional full drums         | 1        |                                                            |

#### MONTHLY OM&M TASKS

| Task                                            | Notes             |
|-------------------------------------------------|-------------------|
| Monthly liquid effluent sample collected? (Y/N) | Ves 11/11 10,0830 |
| pH of effluent sample                           | 7.83              |
| Model of pH meter                               | PHSEnsor 30       |
| Calibration notes / method used                 | Auto lal.         |

#### Monthly OM&M Log Sheet, Groundwater Collection and Treatment System, Solvent Dock Area, Former Lockheed Martin French Road Facility, Utica, New York

Date: Time: 0830 Technician: <u>J. Gutkowski</u>

#### SYSTEM STATUS

| System operation | nal? (PLC scr | een indicating system | in "AUTO" or "MANUAL") | ") Auto |
|------------------|---------------|-----------------------|------------------------|---------|
| System currently | cycling?      | Ves                   |                        |         |
| Alarms? (list)   | None          | ,                     |                        |         |
|                  |               |                       |                        |         |

#### AIR STRIPPER PARAMETERS (record while air stripper is running)

| Units      | Value | Parameter                                                                                           |
|------------|-------|-----------------------------------------------------------------------------------------------------|
| (in. W.C.) | 27.0  | Air stripper sump pressure [PI-106]                                                                 |
| (inches)   | 15.50 | Air stripper sump water elevation (record from site gauge)                                          |
| (in. W.C.) | 2.0   | Blower intake line vacuum [PI-100]                                                                  |
| (inches)   | 2.1   | Main damper position ( <i>record distance from center of wingnut to outside of blower housing</i> ) |
| (°)        | 906   | Interior dilution damper position (0° is shut, 90° is open)                                         |

Is white "POWER ON" light on air stripper control panel lit? Ves

Is air stripper hand-off-auto switch [HS-100B] in "AUTO" position?

Note scaling inside liquid effluent pipe from access port

Note scaling observed inside air stripper via clear tray access door 1194+

#### FLOWMETER / PUMP PARAMETERS

Are white power lights lit on MH-1, MH-2, and MH-3 control panels? (Y/N)

5 all three Allothers ~ A ....Lf set to Aut Are pump hand-off-auto switches [HS-101A, HS-101B, HS-102A, HS-102B, HS-103A, and HS-103B] in "auto" position? (Y/N) HS-102A

| Parameter                      | MH-1<br>[FT-101] | MH-2<br>[FT-102] | MH-3<br>[FT-103] | Sump<br>[FT-104] | Cumulative<br>[FT-105] |
|--------------------------------|------------------|------------------|------------------|------------------|------------------------|
| Date/Time                      | 12/11/0850       |                  |                  |                  |                        |
| Instantaneous Flowrate [gpm]   | 38.50            | 18:60            | 16.44            | NIA              | 73.81                  |
| "Total" Flow (resettable, gal) | 1,276,899        | 242,880          | 117,208          | 50               | 2,035,276              |
| "Perm" Flow (gal)              | 13,723,980       |                  | 1,432,329        | 1652             | 4710804                |
| Pump 1 Running (Y/N)?          | YES              | Ves              | ves              | NA               | NA                     |
| Pump 2 Running (Y/N)?          | NO               | NO               | NO               | NA               | NA                     |

- Flowrate and Permanent Flow can be viewed locally from wall-mounted flow transmitters FT-101 through FT-105 using up/down arrows.

#### VAPOR PHASE PARAMETERS (record while air stripper is running)

| Is duct heater "HEAT ON/OFF" light lit? (Y/N)  | 145 | (located on duct heater control panel door)      |
|------------------------------------------------|-----|--------------------------------------------------|
| Is duct heater "HI TEMP" alarm light on? (Y/N) |     | -<br>(located on duct heater control panel door) |

Date: <u>12/1/11</u> Time: <u>1345</u> Technician: <u>J. Gutlepuste</u>:

#### VAPOR PHASE PARAMETERS (continued)

| Parameter                              | PID Tag | Value | Units      | Notes                                         |
|----------------------------------------|---------|-------|------------|-----------------------------------------------|
| Pre-Duct Heater Temperature            | TI-300  | 62    | (°F)       |                                               |
| Pre-Carbon Temperature                 | TI-400  | 85    | (°F)       | ······································        |
| Duct Heater Temperature<br>Setpoint    | -       | ४5    | (°F)       | (located in green on duct heat control panel) |
| Duct Heater Temperature<br>Transmitter | -       | 85    | (°F)       | (located in red on duct heat control panel)   |
| Pre-Carbon Pressure                    | PI-401  | 11    | (in. W.C.) |                                               |
| Mid-Carbon Pressure                    | PI-402  | 4     | (in. W.C.) |                                               |
| Effluent Pressure                      | PI-403  | Ò     | (in. W.C.) |                                               |

#### **TRANSMITTER READINGS (record from ProControl)**

| Parameter                  | PID Tag | Value | Units      | Notes                                 |
|----------------------------|---------|-------|------------|---------------------------------------|
| Air Stripper Sump Pressure | PT-106  | 31.04 | (in. W.C.) |                                       |
| Vapor Flowrate             | FT-106  | 739,6 | (cfm)      | · · · · · · · · · · · · · · · · · · · |
| Pre-Carbon Temperature     | TT-400  | 83.8  | (°F)       |                                       |
| Pre-Carbon Pressure        | PT-400  | 9.0   | (in. W.C.) |                                       |
| Building Temperature       | TT-100  | 66.5  | (°F)       |                                       |

- Press the "I/O" up/down arrows on the ProControl screen until the desired transmitter value is displayed.

#### SEQUESTERING AGENT (record while air stripper is running)

| Parameter                                 | Status   | Notes                                                      |  |
|-------------------------------------------|----------|------------------------------------------------------------|--|
| Is pump operating? (Y/N)                  | ye5      |                                                            |  |
| Is low flow alarm present? (Y/N)          |          |                                                            |  |
| Is pump in external mode? (Y/N)           | Ves      |                                                            |  |
| If in external mode, record one set of mA |          | (display screen should automatically be switching back and |  |
| and stroke speed values                   | 5 (spm)  | forth between mA and stroke speed)                         |  |
| Stroke length                             | 100      | (record from local stroke length knob on pump)             |  |
| Sequestering agent drum level [LI-200]    | 314 Full | Drum empty, place new drum online.                         |  |
| Quantity of additional full drums         | 0        |                                                            |  |

Inspect sequestering agent components for ans of leaking or wear (tubing Isuction

| inspect sequestering agent components for       |                     |
|-------------------------------------------------|---------------------|
| signs of leaking or wear (tubing [suction,      | No leaks or buildup |
| injection, bleed return], injection check valve | Checked, all good   |
| fitting, spill pallet, etc.)                    |                     |
|                                                 |                     |

### MONTHLY OM&M TASKS

| Task                                            | Notes        |
|-------------------------------------------------|--------------|
| Monthly liquid effluent sample collected? (Y/N) | Ves @ 1340   |
| pH of effluent sample                           |              |
| Model of pH meter                               | PH Sensor 30 |
| Calibration notes / method used                 | Auto Cal.    |

#### Monthly OM&M Log Sheet, Groundwater Collection and Treatment System, Solvent Dock Area, Former Lockheed Martin French Road Facility, Utica, New York

Date: <u>/z/////</u> Time: <u>1400</u> Technician: <u>S-Goi+troarski</u>

#### MONTHLY OM&M TASKS (continued)

| Task                                                                                                                                               | Notes                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Liquid flow sensors cleaned? (Y/N) (only as needed)                                                                                                | Yes F5-103 Had Slight Buildup<br>All others were clean |
| Monthly manhole inspections conducted? (Y/N)                                                                                                       | Ves Ves                                                |
| Leaking/dripping of water observed from double-<br>walled HDPE discharge pipe located inside<br>manhole? (Y/N)                                     | MHI: NONE<br>MHZ; NONE<br>MHJ; NONE                    |
| Do level floats appear to be in good condition and<br>hanging freely? (Y/N)                                                                        | MHI: AllGood MH3: AllGood<br>MHZ: AllGood              |
| Observe groundwater inside each manhole and note odor and appearance                                                                               | Clear W/No odor In All Three                           |
| Is confined space entry signage present at each<br>manhole? (Y/N)                                                                                  | yes                                                    |
| With pump(s) running, visually inspect discharge<br>piping, pipe fittings, and pressure relief valve for<br>leaks                                  | Yes All Good                                           |
| With pump(s) running, listen for any unusual sounds                                                                                                | No unusual sounds                                      |
| Inspect condition of collection line gate valve protection flush-mount covers for each manhole                                                     | AllGood                                                |
| With system running, visually inspect all piping within<br>the treatment system for leaks, signs of distress, or any<br>other notable observations | All 600d                                               |
| Treatment system valves exercised? (Y/N) (should be<br>conducted with system in-between batch cycles)                                              | Ves                                                    |
| List any notable observations                                                                                                                      |                                                        |
| Are both building heaters working properly? (Y/N)<br>(adjust respective wall-mounted thermostats for both heaters                                  | Heater is working in GCTS Building                     |
| and confirm proper heater response)                                                                                                                | Thermostatchecked, 600d                                |

#### HEALTH AND SAFETY

| Item                                                                                                                          | Status                                |
|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Is fire extinguisher charged, unobstructed, and possessing an inspection                                                      | · · · · · · · · · · · · · · · · · · · |
| tag? (Y/N)                                                                                                                    | Ves                                   |
| Is eyewash/shower station operational and unobstructed? (Y/N)                                                                 |                                       |
| Is interior emergency lighting operational? (Y/N)                                                                             | Ves                                   |
| Is first aid kit present and in good condition? (Y/N)                                                                         |                                       |
| Is lockout/tagout equipment available? (Y/N)                                                                                  |                                       |
| Have electrical GFIs been tested and reset? (Y/N)                                                                             |                                       |
| Do all electrical panels have 36" of open floor space in front of them?<br>(Y/N)                                              | 24 <i>22</i>                          |
| Are both the OM&M Manual and HASP onsite? (Y/N) (note dates for each)                                                         | yes 3/11/11                           |
| Is emergency spill kit available? (Y/N)                                                                                       | Ves                                   |
| Is H&S signage including emergency contact list, eye protection hearing<br>protection, and automatic equipment present? (Y/N) | Yes Posted on wall                    |
| Is current SPDES permit onsite? (Y/N) (note date)                                                                             | yes 4/1/11 Posted on wall             |

## **ARCADIS**

Appendix C

Alarm-Response Log Sheets

Alarm Response Log, Groundwater Collection and Treatment System, Solvent Dock Area, Former Lockheed Martin French Road Facility, Utica, New York

| Date:       | 3/14/2011 |
|-------------|-----------|
| Time:       | 10:30     |
| Technician: | TC/CD     |

#### ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Date: 3/14/11 Time: NA

#### Alarm Condition:

Automated daily efax was not received by operator

#### Cause of Alarm:

Data logger indicates fax failed.

#### **Corrective Action:**

Log into system and verify communication settings and initiate a fax now command to further test line.

Changed time for daily log/efax to be sent to operators at 01:00 versus 06:00.

May need to contact efax to obtain a new # if problem persists?

Alarm Response Log, Groundwater Collection and Treatment System, Solvent Dock Area, Former Lockheed Martin French Road Facility, Utica, New York

| Date:       | 3/15/2011 |
|-------------|-----------|
| Time:       | 8:00      |
| Technician: | TC/CD     |

#### ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

| Date: | 3/14/11 | Time: | 0:43:32  |
|-------|---------|-------|----------|
|       | 3/14/11 |       | 23:53:58 |

**Alarm Condition:** 

Process 32 / LSL-100

#### Cause of Alarm:

Low water level in air stripper sump due to sump pressure setting to be high.

#### **Corrective Action:**

Restart system remotely on 3/14/11 at 10:31

Monitor system remotely.

Restart system remotely on 3/15/11 at 9:14

Interim corrective action taken on 3/15/11 to adjust influent blower damper to reduce pressure in sump.

Permanent corrective action will involve replacing currently installed rigid level sensors LSL-100 and

LSH-100 with tethered mechanical floats to provide a greater range for the water level in the air stripper

sump, which is required for the gravity discharge and varying sump pressures associated with this system.







THE ARCADIS GCTS SYSTEM IN LOCKHEED UTICA @ 23:53:58 ON 03/14/2011 SER NO 9539 : SETUP VER 1 : ROM 2.1996 : MODEL A2

# System Status:

SHUTD

: LAST SHUTDOWN @ 00:43:32 ON 03/14/2011 BY LSL100 FAX REPORT INITIATED BY PROCESS 32



| MH1 HH is OFF | MH1 H2 is OFF | MH1 H1 is ON               | MH1 LO is ON  |
|---------------|---------------|----------------------------|---------------|
| MH1_LL is ON  | MH2_HH is OFF | MH2_H2 is OFF              | MH2_H1 is OFF |
| MH2_LO is ON  | MH2_LL is ON  | MH3_HH is OFF              | MH3_H2 is OFF |
| MH3_H1 is OFF | MH3_LO is OFF | MH3_LL is ON               | WFS106 is OFF |
| MOTION is OFF | LSH106 is OFF | $LSH\overline{1}00$ is OFF | LSL100 is ON  |
| FT_200 is OFF | LSH200 is OFF |                            |               |



| MH1_P1              |    |     | MH1_P2 |    |     |
|---------------------|----|-----|--------|----|-----|
| MH3_P1              | is |     | мн3_р2 |    |     |
| мн1 нн              |    |     | FA_101 | is | OFF |
| мн3_нн              | is | OFF | FA_103 | is | OFF |
| $LSH\overline{1}06$ |    |     | WFS106 | is | OFF |
| FA 106              |    |     | FA 200 | is | OFF |
| $TA\overline{L}400$ | is | OFF | PA_400 | is | OFF |
|                     |    |     |        |    |     |

### Analog Inputs:

| FT 101 is 0.00        | GPM            | TOTAL FLOW is | 673070 GA | L          |     |
|-----------------------|----------------|---------------|-----------|------------|-----|
| FT_102 is 0.00        | GPM            | TOTAL FLOW is | 150108 GA | L          |     |
| FT_103 is 0.00        | GPM            | TOTAL FLOW is | -75425 GA | ւ          |     |
| FT_105 is 0.00        | GPM            | TOTAL FLOW is | 687120 GA | ւ          |     |
| FT <b>_106 is 763</b> | $\mathbf{CFM}$ | LIMITS are L: | 400 CF    | м н: 1000  | CFM |
| PT_106 is 25.46       | IWC            | LIMITS are L: | 15.00 IW  | С Н: 30.00 | IWC |
| TT_400 is 77.4        | DEG            | LIMITS are L: | 60.0 DE   | G H: 105.0 | DEG |
| PT_400 is 6.0         | IWC            | LIMITS are L: | 1.0 IW    | С Н: 25.0  | IWC |
| TT_100 is 57.8        | DEG            | LIMITS are L: | 40.0 DE   | G H: 120.0 | DEG |

|          |           |      |                                                                                                                | <br>                      |  |
|----------|-----------|------|----------------------------------------------------------------------------------------------------------------|---------------------------|--|
|          |           |      |                                                                                                                | <br>                      |  |
| 2000     |           |      |                                                                                                                |                           |  |
| 200 C (C | 1.000.000 |      | The second s | <br>ALC: NO OTHER DOCTORS |  |
| . ÷      |           | **** |                                                                                                                | <br>                      |  |
|          |           |      |                                                                                                                | <br>                      |  |
|          |           |      |                                                                                                                |                           |  |
|          |           |      |                                                                                                                |                           |  |

INJSPD 0.0 I

| Alarm Response Log, Groundwater Collection and Treatment |  |
|----------------------------------------------------------|--|
| System, Solvent Dock Area, Former Lockheed Martin French |  |
| Road Facility, Utica, New York                           |  |

| Date:       | 3/20/2011 |
|-------------|-----------|
| Time:       | 13:00     |
| Technician: | TC        |

#### ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

| Date: | 3/20/11 | Time: | 7:26:00 |
|-------|---------|-------|---------|
|       |         |       |         |

#### Alarm Condition:

| Process 32 / I | LSL-100 | ) |
|----------------|---------|---|
|----------------|---------|---|

#### Cause of Alarm:

Low water level in air stripper sump due to sump pressure setting to be high.

#### **Corrective Action:**

Restart system remotely on 3/20/11 at 12:49

Monitor system remotely.

Permanent corrective action will involve replacing currently installed rigid level sensors LSL-100 and

LSH-100 with tethered mechanical floats to provide a greater range for the water level in the air stripper

sump, which is required for the gravity discharge and varying sump pressures associated with this system.







THE ARCADIS GCTS SYSTEM IN LOCKHEED UTICA @ 12:49:40 ON 03/20/2011 SER NO 9539 : SETUP VER 1 : ROM 2.1996 : MODEL A2

## System Status:

AUTO P07 : LAST SHUTDOWN @ 07:26:37 ON 03/20/2011 BY LSL100 FAX REPORT INITIATED BY REMOTE



| MH1 HH is OFF             | MH1 H2 is OFF              | MH1 H1 is ON               | MH1 LO is ON               |
|---------------------------|----------------------------|----------------------------|----------------------------|
| MH1 <sup>_</sup> LL is ON | MH2 <sup>-</sup> HH is OFF | MH2 <sup>-</sup> H2 is OFF | MH2 <sup>_</sup> H1 is OFF |
| MH2_LO is ON              | MH2_LL is ON               | MH3_HH is OFF              | MH3_H2 is OFF              |
| MH3_H1 is OFF             | MH3_LO is OFF              | MH3_LL is ON               | WFS106 is OFF              |
| MOTION is OFF             | LSH106 is OFF              | LSH100 is OFF              | LSL100 is ON               |
| FT_200 is OFF             | LSH200 is OFF              |                            |                            |



|    |                            | FA 101                     | is                                                           | OFF                                                                                                                                                                  |
|----|----------------------------|----------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                            |                            |                                                              |                                                                                                                                                                      |
|    |                            | $WF\overline{S}106$        | is                                                           | OFF                                                                                                                                                                  |
|    |                            | FA 200                     | is                                                           | OFF                                                                                                                                                                  |
| is | OFF                        | PA_400                     | is                                                           | OFF                                                                                                                                                                  |
|    | is<br>is<br>is<br>is<br>is | is OFF<br>is OFF<br>is OFF | is OFFMH3_P2is OFFFA_101is OFFFA_103is OFFWFS106is OFFFA_200 | is OFF         MH3_P2 is           is OFF         FA_101 is           is OFF         FA_103 is           is OFF         WFS106 is           is OFF         FA_200 is |

### Analog Inputs:

| FT 101 is 43.74         | GPM            | TOTAL FLOW is | 754263 | GAL            |          |                |
|-------------------------|----------------|---------------|--------|----------------|----------|----------------|
| FT_102 is 0.00          | GPM            | TOTAL FLOW is | 172240 | GAL            |          |                |
| FT_103 is 0.00          | GPM            | TOTAL FLOW is | 75425  | GAL            |          |                |
| FT <b>_105 is 43.83</b> | GPM            | TOTAL FLOW is | 784620 | GAL            |          |                |
| FT_106 is 700           | $\mathbf{CFM}$ | LIMITS are L: | 400    | CFM            | н: 1000  | $\mathbf{CFM}$ |
| PT_106 is 26.43         | IWC            | LIMITS are L: | 15.00  | IWC            | н: 30.00 | IWC            |
| TT_400 is 86.5          | DEG            | LIMITS are L: | 60.0   | $\mathbf{DEG}$ | н: 105.0 | DEG            |
| PT_400 is 4.8           | IWC            | LIMITS are L: | 1.0    | IWC            | н: 25.0  | IWC            |
| TT_100 is 57.7          | DEG            | LIMITS are L: | 40.0   | DEG            | Н: 120.0 | DEG            |
|                         |                |               |        |                |          |                |

|   |       | · · · · | ••• | · . | • • • |    | ٠. |     |    |     |   | ۰. | ٠. | ۰. | ٠. | ٠. | •.• |    |       | ٠. | • • |     |    |    | · . | ٠. | • • |   |    |    | · · · | ٠. | •.• |     |    |     |    | ٠. | •. |
|---|-------|---------|-----|-----|-------|----|----|-----|----|-----|---|----|----|----|----|----|-----|----|-------|----|-----|-----|----|----|-----|----|-----|---|----|----|-------|----|-----|-----|----|-----|----|----|----|
|   |       |         |     |     | •••   |    | ۰. | -   | •  | 1   |   | •  | •  | ٠. | •  | •  | •2  | -  | 20    | ٠. | 10  | 0   | ۰. |    |     | •  | •0  | 0 | 24 |    |       | •  | •   |     | •  | 24  |    | ٠. | •  |
|   |       | ÷.,     | ••• | 26  | •••   |    |    | P   | •  |     |   | ٠. | •• | ٠. | ۰. | ۰. | 2   | ٠. |       |    |     | 9   | ٩. |    |     | •  | •   | 0 | ÷  |    |       | 6  | ••• |     | •  | ÷   |    | ٠. | ٠. |
|   | 361   |         | 20  |     | 2     |    | 7  | К.  | 2  | 7   | v | 15 | 1  | ۰. | ۰. | 21 | κ.  |    |       | ÷  | Π.  | v.  |    |    |     | н  | ÷   |   |    | ۰. | ۰.    | 2  | Ē   | v.  | ٠  | 2   |    | ٠. | 5  |
|   | ο.    | 1.1     | к.  |     | D     |    | r. | r   | P. |     |   | ۰. |    | ۰. | ۰. |    |     |    | 65    |    | 14  |     |    | P. |     |    |     | r |    | P. |       | 2  |     | 9   |    |     |    | ٠. | ۰. |
| æ | · · . | :       | ۰.  | ы   | м     |    | н  |     | ю  |     |   |    | 2. | ٠. | ۰. | 1  |     |    | τ.    |    | Ο.  |     | 2  | 1  | С   | з. |     | v |    | 6  | ι.    |    |     |     | ۴. |     |    | ٠. | ٠. |
| 5 | · 77  | · · ·   | ·   |     | ٠.    |    |    | ٠., | Ξ. | . 1 | 2 |    | ۰. | ٠. | ٠. | ۰. | ~   | ٠. | N     | т. |     |     |    |    | r,  | ۰. | •7  |   | 7  |    |       | 27 | ۰.  |     | ٠. | ٠.  | 0  | ۰. | ٠. |
|   |       | · · · · | ••• | ٠.  | •.•   | ۰. | ٠. | •.• |    | - 2 |   | -  | ۰. | ٠. | ۰. | ۰. | •.• | ٠. | · * • | ٠. | 10  | •.• | Q4 | -  | μ.  | ۰. | •   |   |    |    | ٠.    | ۰. | ••  | ٠., | ٠. | . ۰ | ۰. | ۰. | •  |

INJSPD 47.3 PCT PRO

Alarm Response Log Sheet, Groundwater Collection and Treatment System, Solvent Dock Area, Former Lockheed Martin French Road Facility, Utica, New York

| Date:       | 3/20/2011 |
|-------------|-----------|
| Time:       | 15:00     |
| Technician: | TC        |

#### ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

| Date: | 3/20/11 & | Time: | 7:26 & (3:21 & |  |
|-------|-----------|-------|----------------|--|
|       | 3/26/11   |       | 21:38)         |  |

#### Alarm Condition:

Process 32 / LSL-100 (low air stripper sump level)

#### Cause of Alarm:

Low water level in air stripper sump occurs due to operating range between low and high sump levels being

too narrow.

#### **Corrective Action:**

Restart system remotely on 3/20/11 at 12:49, on 3/26/11 at 9:37, and on 3/29/11 at 9:52.

Monitor system remotely.

Permanent corrective action will involve replacing currently installed rigid level sensor LSH-100 with

tethered mechanical float to provide greater range for the water level in the air stripper sump, which is

required for the gravity discharge and varying sump pressures associated with the system.







THE ARCADIS GCTS SYSTEM IN LOCKHEED UTICA @ 12:49:40 ON 03/20/2011 SER NO 9539 : SETUP VER 1 : ROM 2.1996 : MODEL A2

## System Status:

AUTO P07 : LAST SHUTDOWN @ 07:26:37 ON 03/20/2011 BY LSL100 FAX REPORT INITIATED BY REMOTE



| MH1 HH is OFF             | MH1 H2 is OFF              | MH1 H1 is ON               | MH1 LO is ON               |
|---------------------------|----------------------------|----------------------------|----------------------------|
| MH1 <sup>_</sup> LL is ON | MH2 <sup>-</sup> HH is OFF | MH2 <sup>-</sup> H2 is OFF | MH2 <sup>_</sup> H1 is OFF |
| MH2_LO is ON              | MH2_LL is ON               | MH3_HH is OFF              | MH3_H2 is OFF              |
| MH3_H1 is OFF             | MH3_LO is OFF              | MH3_LL is ON               | WFS106 is OFF              |
| MOTION is OFF             | LSH106 is OFF              | LSH100 is OFF              | LSL100 is ON               |
| FT_200 is OFF             | LSH200 is OFF              |                            |                            |



|    |                            | FA 101                     | is                                                           | OFF                                                                                                                                                                  |
|----|----------------------------|----------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                            |                            |                                                              |                                                                                                                                                                      |
|    |                            | $WF\overline{S}106$        | is                                                           | OFF                                                                                                                                                                  |
|    |                            | FA 200                     | is                                                           | OFF                                                                                                                                                                  |
| is | OFF                        | PA_400                     | is                                                           | OFF                                                                                                                                                                  |
|    | is<br>is<br>is<br>is<br>is | is OFF<br>is OFF<br>is OFF | is OFFMH3_P2is OFFFA_101is OFFFA_103is OFFWFS106is OFFFA_200 | is OFF         MH3_P2 is           is OFF         FA_101 is           is OFF         FA_103 is           is OFF         WFS106 is           is OFF         FA_200 is |

### Analog Inputs:

| FT 101 is 43.74         | GPM            | TOTAL FLOW is | 754263 | GAL            |          |                |
|-------------------------|----------------|---------------|--------|----------------|----------|----------------|
| FT_102 is 0.00          | GPM            | TOTAL FLOW is | 172240 | GAL            |          |                |
| FT_103 is 0.00          | GPM            | TOTAL FLOW is | 75425  | GAL            |          |                |
| FT <b>_105 is 43.83</b> | GPM            | TOTAL FLOW is | 784620 | GAL            |          |                |
| FT_106 is 700           | $\mathbf{CFM}$ | LIMITS are L: | 400    | CFM            | н: 1000  | $\mathbf{CFM}$ |
| PT_106 is 26.43         | IWC            | LIMITS are L: | 15.00  | IWC            | н: 30.00 | IWC            |
| TT_400 is 86.5          | DEG            | LIMITS are L: | 60.0   | $\mathbf{DEG}$ | н: 105.0 | DEG            |
| PT_400 is 4.8           | IWC            | LIMITS are L: | 1.0    | IWC            | н: 25.0  | IWC            |
| TT_100 is 57.7          | DEG            | LIMITS are L: | 40.0   | DEG            | Н: 120.0 | DEG            |
|                         |                |               |        |                |          |                |

|   |       | · · · · | ••• | · . | • • • |    | ٠. |     |    |     |   | ٠. | ٠. | ۰. | ٠. | ٠. | •.• |    |       | ٠. | • • |     |    |    | · . | ۰. | • • |   |    |    | · · · | ٠. | •.• |      |    |     |    | ٠. | •. |
|---|-------|---------|-----|-----|-------|----|----|-----|----|-----|---|----|----|----|----|----|-----|----|-------|----|-----|-----|----|----|-----|----|-----|---|----|----|-------|----|-----|------|----|-----|----|----|----|
|   |       |         |     |     | •••   |    | ۰. | -   | •  | 1   |   | •  | •  | ٠. | •  | •  | •2  | -  | 20    | ٠. | 10  | 0   | ۰. |    |     | •  | •0  | 0 | 24 |    |       | •  | •   |      | •  | 24  |    | ٠. | •  |
|   |       | ÷.,     | ••• | 26  | •••   |    |    | P   | •  |     |   | ٠. | •• | ٠. | ۰. | ۰. | 2   | ٠. |       |    |     | 9   | ٩. |    |     | •  | •   | 0 | ÷  |    |       | 6  | ••• |      | •  | ÷   |    | ٠. | ٠. |
|   | 361   |         | 20  |     | 2     |    | 7  | К.  | 2  | 7   | v | 15 | 1  | ۰. | ۰. | 21 | κ.  |    |       | ÷  | Π.  | v.  |    |    |     | н  | ÷   |   |    | ۰. | ۰.    | 2  | Ē   | v.   | ٠  | 2   |    | ٠. | 5  |
|   | ο.    | 1.1     | к.  |     | D     |    | r. | r   | P. |     |   | ۰. |    | ۰. | ۰. |    |     |    | 65    |    | 14  |     |    | P. |     |    |     | r |    | P. |       | 2  |     | 9    |    |     |    | ٠. | ۰. |
| æ | · · . | :       | ۰.  | ы   | м     |    | н  |     | ю  |     |   |    | 2. | ٠. | ۰. | 1  |     |    | τ.    |    | Ο.  |     | 2  | 1  | С   | з. |     | v |    | 6  | ι.    |    |     |      | ۴. |     |    | ٠. | ٠. |
| 5 | · 77  | · · ·   | ·   |     | ٠.    |    |    | ٠., | Ξ. | . 1 | 2 |    | ۰. | ٠. | ٠. | ۰. | ~   | ٠. | N     | т. |     |     |    |    | r,  | ۰. | •7  |   | 7  |    |       | 27 | ۰.  |      | ٠. | ٠.  | 0  | ٠. | ٠. |
|   |       | · · · · | ••• | ٠.  | •.•   | ۰. | ٠. | •.• |    | - 2 |   | -  | ۰. | ٠. | ۰. | ۰. | •.• | ٠. | · * • | ٠. | 10  | •.• | Q4 | -  | μ.  | ٠. | •   |   |    |    | ٠.    | ۰. | ••  | ٠. ' | ٠. | . ۰ | ۰. | ۰. | •  |

INJSPD 47.3 PCT PRO





THE ARCADIS GCTS SYSTEM IN LOCKHEED UTICA @ 03:21:37 ON 03/26/2011 SER NO 9539 : SETUP VER 1 : ROM 2.1996 : MODEL A2

## System Status:

SHUTD

: LAST SHUTDOWN @ 06:57:24 ON 03/23/2011 BY B\_100 FAX REPORT INITIATED BY PROCESS 32



| MH1 HH is OFF | MH1 H2 is OFF | MH1 H1 is ON               | MH1 LO is ON  |
|---------------|---------------|----------------------------|---------------|
| MH1_LL is ON  | MH2_HH is OFF | MH2_H2 is OFF              | MH2_H1 is ON  |
| MH2_LO is ON  | MH2_LL is ON  | MH3_HH is OFF              | MH3_H2 is OFF |
| MH3_H1 is OFF | MH3_LO is OFF | MH3_LL is ON               | WFS106 is OFF |
| MOTION is OFF | LSH106 is OFF | $LSH\overline{1}00$ is OFF | LSL100 is OFF |
| FT_200 is OFF | LSH200 is OFF |                            |               |



| MH1_P1              |    | OFF | MH1_P2              | is | OFF |
|---------------------|----|-----|---------------------|----|-----|
| MH3_P1              | is |     | MH3_P2              |    |     |
| MH1_HH              |    |     | $FA_{101}$          |    |     |
| мн3_нн              |    |     | FA_103              |    |     |
| $LSH\overline{1}06$ |    |     | $WF\overline{S}106$ | is | OFF |
| FA_106              |    |     | FA_200              |    |     |
| $TA\overline{L}400$ | is | OFF | PA_400              | is | OFF |

| MH2_P1<br>B_100<br>MH2_HH<br>PA_106<br>TA_100<br>MOTION | is<br>is<br>is<br>is | ON<br>OFF<br>OFF<br>OFF | MH2_P2<br>DH_300<br>FA_102<br>LA_100<br>FA_105<br>TAH400 | is<br>is<br>is<br>is | ON<br>ON<br>ON<br>ON |
|---------------------------------------------------------|----------------------|-------------------------|----------------------------------------------------------|----------------------|----------------------|
| $\frac{MOTION}{LSH200}$                                 |                      |                         | та <b>н</b> 400                                          | is                   | OFF                  |

### Analog Inputs:

| FT 101 is 0.00  | GPM            | TOTAL FLOW is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 823257 ( | GAL    |       |     |
|-----------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|-------|-----|
| FT_102 is 0.00  | GPM            | TOTAL FLOW is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 180635 ( | GAL    |       |     |
| FT_103 is 0.00  | GPM            | TOTAL FLOW is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 75429 (  | GAL    |       |     |
| FT_105 is 0.00  | GPM            | TOTAL FLOW is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 847045 0 | GAL    |       |     |
| FT_106 is 807   | $\mathbf{CFM}$ | LIMITS are L:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 400 0    | CFM H: | 1000  | CFM |
| PT_106 is 25.21 | IWC            | LIMITS are L:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15.00    | IWC H: | 30.00 | IWC |
| TT_400 is 82.3  | DEG            | LIMITS are L:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 60.0 I   |        | 105.0 | DEG |
| PT_400 is 6.1   | IWC            | LIMITS are L:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.0      |        | 25.0  | IWC |
| TT_100 is 57.7  | DEG            | LIMITS are L:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 40.0 1   | DEG H: | 120.0 | DEG |
| 11_100 18 31.1  | DEG            | Efficie de la companya de | 40.0     |        | 120.0 | DEG |

| <b>-</b>                                |          |                 | · · · · · · · · · · · · · · · · · · ·        |         | 20000000                                |
|-----------------------------------------|----------|-----------------|----------------------------------------------|---------|-----------------------------------------|
| 1 A 1                                   | 2818     | 3 Y 9 30 100    | 18850                                        | 199298  |                                         |
| - A - A - A - A - A - A - A - A - A - A | 14444    | e / - e e e e / | 1. 1. i. | 444.4   | 2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 |
|                                         |          | 0               |                                              |         |                                         |
| <u></u>                                 | <u> </u> |                 |                                              | <u></u> |                                         |

INJSPD







THE ARCADIS GCTS SYSTEM IN LOCKHEED UTICA @ 21:38:04 ON 03/26/2011 SER NO 9539 : SETUP VER 1 : ROM 2.1996 : MODEL A2

## System Status:

SHUTD

: LAST SHUTDOWN @ 03:31:37 ON 03/26/2011 BY LSL100 FAX REPORT INITIATED BY PROCESS 32



| MH1 HH is OFF | MH1 H2 is OFF              | MH1 H1 is ON               | MH1 LO is ON  |
|---------------|----------------------------|----------------------------|---------------|
| MH1_LL is ON  | MH2_HH is OFF              | MH2_H2 is ON               | MH2_H1 is ON  |
| MH2_LO is ON  | MH2_LL is ON               | MH3_HH is OFF              | MH3_H2 is OFF |
| MH3_H1 is OFF | MH3_LO is OFF              | MH3_LL is ON               | WFS106 is OFF |
| MOTION is OFF | $LSH\overline{1}06$ is OFF | $LSH\overline{1}00$ is OFF | LSL100 is ON  |
| FT_200 is OFF | LSH200 is OFF              |                            |               |



| MH1_P1              |    |     | MH1_P2              |    |     |
|---------------------|----|-----|---------------------|----|-----|
| MH3_P1              |    |     | MH3_P2              |    |     |
| MH1_HH              |    |     | $FA_{101}$          |    |     |
| мн3_нн              |    |     | FA_103              |    |     |
| $LSH\overline{1}06$ |    |     | $WF\overline{S}106$ |    |     |
| FA_106              |    |     | FA_200              |    |     |
| TAL400              | is | OFF | PA_400              | is | OFF |

### Analog Inputs:

|              |           | <br> |                      |  |
|--------------|-----------|------|----------------------|--|
|              |           | <br> |                      |  |
|              |           |      |                      |  |
|              | 10.00.000 | <br> | 10 ST 10 ST 10 ST 10 |  |
| <del>.</del> |           |      |                      |  |
| 1 . E        |           |      |                      |  |
|              |           |      |                      |  |
|              |           | <br> |                      |  |

INJSPD

| Alarm Resp   | onse Log Shee    | et, Groundwate   | Date:                           | 3/23/2011 |  |
|--------------|------------------|------------------|---------------------------------|-----------|--|
| Treatment \$ | System, Solven   | t Dock Area, Fo  | a, Former Lockheed Martin Time: | 15:00     |  |
| French Roa   | d Facility, Utic | a, New York      | Technician:                     | CD        |  |
| ALARM RE     | SPONSE / COR     | RECTIVE ACTION   | ON LOG SHEET                    |           |  |
| Date:        | 3/23/11          | Time:            | 6:47:00                         |           |  |
| Alarm Cond   | lition:          |                  |                                 |           |  |
| Process 42   | / LSH-100 (high  | air stripper sum | p level)                        |           |  |

#### Cause of Alarm:

High water level in air stripper sump occurs due to operating range between low and high sump levels being

too narrow.

#### **Corrective Action:**

Restart system remotely on 3/23/11 at 11:42.

Monitor system remotely.

Permanent corrective action will involve replacing currently installed rigid level sensor LSH-100 with

tethered mechanical float to provide greater range for the water level in the air stripper sump, which is

required for the gravity discharge and varying sump pressures associated with the system.







THE ARCADIS GCTS SYSTEM IN LOCKHEED UTICA @ 23:53:58 ON 03/14/2011 SER NO 9539 : SETUP VER 1 : ROM 2.1996 : MODEL A2

# System Status:

SHUTD

: LAST SHUTDOWN @ 00:43:32 ON 03/14/2011 BY LSL100 FAX REPORT INITIATED BY PROCESS 32



| MH1 HH is OFF | MH1 H2 is OFF | MH1 H1 is ON               | MH1 LO is ON  |
|---------------|---------------|----------------------------|---------------|
| MH1_LL is ON  | MH2_HH is OFF | MH2_H2 is OFF              | MH2_H1 is OFF |
| MH2_LO is ON  | MH2_LL is ON  | MH3_HH is OFF              | MH3_H2 is OFF |
| MH3_H1 is OFF | MH3_LO is OFF | MH3_LL is ON               | WFS106 is OFF |
| MOTION is OFF | LSH106 is OFF | $LSH\overline{1}00$ is OFF | LSL100 is ON  |
| FT_200 is OFF | LSH200 is OFF |                            |               |



| MH1_P1              |    |     | MH1_P2 |    |     |
|---------------------|----|-----|--------|----|-----|
| MH3_P1              | is |     | мн3_р2 |    |     |
| мн1 нн              |    |     | FA_101 | is | OFF |
| мн3_нн              | is | OFF | FA_103 | is | OFF |
| $LSH\overline{1}06$ |    |     | WFS106 | is | OFF |
| FA 106              |    |     | FA 200 | is | OFF |
| $TA\overline{L}400$ | is | OFF | PA_400 | is | OFF |
|                     |    |     |        |    |     |

### Analog Inputs:

| FT 101 is 0.00        | GPM            | TOTAL FLOW is | 673070 GA | L          |     |
|-----------------------|----------------|---------------|-----------|------------|-----|
| FT_102 is 0.00        | GPM            | TOTAL FLOW is | 150108 GA | L          |     |
| FT_103 is 0.00        | GPM            | TOTAL FLOW is | -75425 GA | ւ          |     |
| FT_105 is 0.00        | GPM            | TOTAL FLOW is | 687120 GA | ւ          |     |
| FT <b>_106 is 763</b> | $\mathbf{CFM}$ | LIMITS are L: | 400 CF    | м н: 1000  | CFM |
| PT_106 is 25.46       | IWC            | LIMITS are L: | 15.00 IW  | С Н: 30.00 | IWC |
| TT_400 is 77.4        | DEG            | LIMITS are L: | 60.0 DE   | G H: 105.0 | DEG |
| PT_400 is 6.0         | IWC            | LIMITS are L: | 1.0 IW    | С Н: 25.0  | IWC |
| TT_100 is 57.8        | DEG            | LIMITS are L: | 40.0 DE   | G H: 120.0 | DEG |

|          |           |      |                                                                                                                | <br>                      |  |
|----------|-----------|------|----------------------------------------------------------------------------------------------------------------|---------------------------|--|
|          |           |      |                                                                                                                | <br>                      |  |
| 2000     |           |      |                                                                                                                |                           |  |
| 200 C (C | 1.000.000 |      | The second s | <br>ALC: NO OTHER DOCTORS |  |
| . ÷      |           | **** |                                                                                                                | <br>                      |  |
|          |           |      |                                                                                                                | <br>                      |  |
|          |           |      |                                                                                                                |                           |  |
|          |           |      |                                                                                                                |                           |  |

INJSPD 0.0 I

| Quarterly OM&M Checklist, Groundwater Collection and        |
|-------------------------------------------------------------|
| Treatment System, Solvent Dock Area, Former Lockheed Martin |
| French Road Facility, Utica, New York                       |

 Date:
 3/14/2011

 Time:
 11:35

 Technician:
 CD

#### ALARM RESPONSE / CRITICAL DEVICE CORRECTIVE ACTION LOG SHEET

Date: 3/14/11 Time: 6:30:00

#### Alarm Condition / Critical Device Failure:

Daily fax report did not occur.

#### Cause of Alarm / Device Failure:

Cause of fax failure related to recent re-configuration of control unit, as well as recent plugging / unplugging

of phone line.

#### **Corrective Action:**

Will implement as part of SOPs that the control unit is rebooted following any re-configuration of unit or

adjustment of phone line connections.

Alarm Response Log Sheet, Groundwater Collection and Treatment System, Solvent Dock Area, Former Lockheed Martin French Road Facility, Utica, New York

| Date:       | 3/20/2011 |
|-------------|-----------|
| Time:       | 15:00     |
| Technician: | TC        |

#### ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

| Date: | 3/20/11 & | Time: | 7:26 & (3:21 & |  |
|-------|-----------|-------|----------------|--|
|       | 3/26/11   |       | 21:38)         |  |

#### Alarm Condition:

Process 32 / LSL-100 (low air stripper sump level)

#### Cause of Alarm:

Low water level in air stripper sump occurs due to operating range between low and high sump levels being

too narrow.

#### **Corrective Action:**

Restart system remotely on 3/20/11 at 12:49, on 3/26/11 at 9:37, and on 3/29/11 at 9:52.

Monitor system remotely.

Permanent corrective action will involve replacing currently installed rigid level sensor LSH-100 with

tethered mechanical float to provide greater range for the water level in the air stripper sump, which is

required for the gravity discharge and varying sump pressures associated with the system.

| Alarm Resp                            | onse Log Shee                                               | et, Groundwate   | Date:        | 3/23/2011 |       |
|---------------------------------------|-------------------------------------------------------------|------------------|--------------|-----------|-------|
| Treatment \$                          | Freatment System, Solvent Dock Area, Former Lockheed Martin |                  |              | Time:     | 15:00 |
| French Road Facility, Utica, New York |                                                             |                  | Technician:  | CD        |       |
| ALARM RE                              | SPONSE / COR                                                |                  | ON LOG SHEET |           |       |
| Date:                                 | 3/23/11                                                     | Time:            | 6:47:00      |           |       |
| Alarm Cond                            | lition:                                                     |                  |              |           |       |
| Process 42                            | / LSH-100 (high                                             | air stripper sum | p level)     |           |       |

#### Cause of Alarm:

High water level in air stripper sump occurs due to operating range between low and high sump levels being

too narrow.

**Corrective Action:** 

Restart system remotely on 3/23/11 at 11:42.

Monitor system remotely.

Permanent corrective action will involve replacing currently installed rigid level sensor LSH-100 with

tethered mechanical float to provide greater range for the water level in the air stripper sump, which is

required for the gravity discharge and varying sump pressures associated with the system.

| Alarm Response Log Sheet, Groundwater Collection and<br>Treatment System, Solvent Dock Area, Former Lockheed Martin |                   |               | Date:<br>Time:  | 6/12/2011<br>11:30 |  |
|---------------------------------------------------------------------------------------------------------------------|-------------------|---------------|-----------------|--------------------|--|
| French                                                                                                              | Road Facility, Ut | ica, New York | Technician:     | TC                 |  |
| ALARN                                                                                                               | I RESPONSE / CC   | ORRECTIVE AC  | CTION LOG SHEET |                    |  |
| Date:                                                                                                               | 6/11/11           | Time:         | 16:52:58        |                    |  |
| Alarm (                                                                                                             | Condition:        | ·             |                 |                    |  |
| Power (                                                                                                             | Dutage            |               |                 |                    |  |
|                                                                                                                     |                   |               |                 |                    |  |
|                                                                                                                     |                   |               |                 |                    |  |

#### Cause of Alarm:

Power failure due to local lightning storms.

#### **Corrective Action:**

6/12/11 - Log into system remotely and restart system at 11:40.







THE ARCADIS GCTS SYSTEM IN LOCKHEED UTICA @ 11:47:03 on 06/12/2011 SER NO 9539 : SETUP VER 1 : ROM 2.1996 : MODEL A2

## System Status:

AUTO P21 : LAST SHUTDOWN @ 16:52:58 ON 06/11/2011 BY LSL100 FAX REPORT INITIATED BY REMOTE



| MH1_HH is OFF | MH1_H2 is OFF | MH1_H1 is ON               | MH1_LO is ON                |
|---------------|---------------|----------------------------|-----------------------------|
| MH1_LL is ON  | MH2_HH is OFF | MH2_H2 is OFF              | MH2_H1 is OFF               |
| MH2_LO is ON  | MH2_LL is ON  | MH3_HH is OFF              | MH3_H2 is OFF               |
| MH3_H1 is ON  | MH3_LO is ON  | MH3_LL is ON               | WFS $\overline{1}06$ is OFF |
| MOTION is OFF | LSH106 is OFF | $LSH\overline{1}00$ is OFF | LSL100 is ON                |
| FT_200 is OFF | LSH200 is OFF |                            |                             |



| MH1_P1 |    |     | MH1_P2              |    |     |
|--------|----|-----|---------------------|----|-----|
| MH3_P1 | is | OFF | MH3_P2              | is | OFF |
| LA_MH1 | is | OFF | $FA_{101}$          | is | OFF |
| LA MH3 | is |     | FA_103              |    |     |
| LSH106 | is | OFF | $WF\overline{S}106$ | is | OFF |
| FA_106 |    |     | FA_200              |    |     |
| TAL400 | is | ON  | PA_400              | is | OFF |

### Analog Inputs:

| FT 101 is 0.00  | GPM            | TOTAL FLOW is | 51894665 | GAL |          |                |
|-----------------|----------------|---------------|----------|-----|----------|----------------|
| FT_102 is 0.00  | GPM            | TOTAL FLOW is | 9198545  | GAL |          |                |
| FT_103 is 0.00  | GPM            | TOTAL FLOW is | 565324   | GAL |          |                |
| FT_105 is 0.00  | GPM            | TOTAL FLOW is | 2299194  | GAL |          |                |
| PT_106 is 26.98 | IWC            | LIMITS are L: | 15.00    | IWC | н: 34.00 | IWC            |
| TT_400 is 57.9  | DEG            | LIMITS are L: | 60.0     | DEG | н: 110.0 | $\mathbf{DEG}$ |
| PT_400 is 10.1  | IWC            | LIMITS are L: | 1.0      | IWC | н: 25.0  | IWC            |
| TT_100 is 65.7  | DEG            | LIMITS are L: | 40.0     | DEG | н: 110.0 | DEG            |
| FT_106 is 746.2 | $\mathbf{CFM}$ | LIMITS are L: | 400.0    | CFM | Н:       | CFM            |

|          | ******   |         | *********** |                  |             | ********** | ******* |
|----------|----------|---------|-------------|------------------|-------------|------------|---------|
|          | 14 C C C |         |             |                  |             |            |         |
|          | E 1000   |         |             | ·· · · · · · · · |             |            |         |
| ·        | E 201    | 751     |             |                  | 1 2 2 2 1 3 |            |         |
| - V - T  | 10.55    | 8 C A 1 |             | ~ • • • • • • •  |             |            |         |
| 19. A.A. |          |         |             |                  |             |            |         |
|          | ******   |         |             |                  |             |            |         |

INJSPD

| Alarm Response Log Sheet, Groundwater Collection and        |
|-------------------------------------------------------------|
| Treatment System, Solvent Dock Area, Former Lockheed Martin |
| French Road Facility, Utica, New York                       |

| Date:       | 6/13/2011 |
|-------------|-----------|
| Time:       | 7:00      |
| Technician: | TC        |

#### ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Date: 6/12/11 Time: 19:16:49

#### Alarm Condition:

Process - 57 - Aggregate low flowrate, FT-105

#### (Non-Fatal Alarm)

#### Cause of Alarm:

Most likely attributed to delay in aggregate flowmeter registering flow within 15 second time delay period with only MH-3 online.

#### **Corrective Action:**

6.14.11 - Inspect flow transmitter data logger for to compare aggregate flows to MH-3 flows. Appears that this alarm condition was a anomaly.







THE ARCADIS GCTS SYSTEM IN LOCKHEED UTICA @ 19:16:49 ON 06/12/2011 SER NO 9539 : SETUP VER 1 : ROM 2.1996 : MODEL A2

## System Status:

AUTO P57 : LAST SHUTDOWN @ 11:57:15 ON 06/12/2011 BY TT\_400 FAX REPORT INITIATED BY PROCESS 57



| MH1 HH is OFF | MH1 H2 is OFF              | MH1 H1 is OFF              | MH1 LO is ON  |
|---------------|----------------------------|----------------------------|---------------|
| MH1_LL is ON  | MH2_HH is OFF              | MH2_H2 is OFF              | MH2_H1 is OFF |
| MH2_LO is ON  | MH2_LL is ON               | MH3_HH is OFF              | MH3_H2 is OFF |
| MH3_H1 is OFF | MH3_LO is ON               | MH3_LL is ON               | WFS106 is OFF |
| MOTION is OFF | $LSH\overline{1}06$ is OFF | $LSH\overline{1}00$ is OFF | LSL100 is ON  |
| FT_200 is OFF | LSH200 is OFF              |                            |               |



| MH1_P1 |    |     | MH1_P2              |    |     |
|--------|----|-----|---------------------|----|-----|
| MH3_P1 |    |     | MH3_P2              | is | OFF |
| LA_MH1 | is |     | $FA_{101}$          |    |     |
| LA MH3 | is | OFF | FA_103              | is | OFF |
| LSH106 | is |     | $WF\overline{S}106$ |    |     |
| FA 106 |    |     | FA 200              | is | OFF |
| TAL400 | is | OFF | PA_400              | is | OFF |

| MH2_P1<br>B_100<br>LA_MH2<br>PA_106<br>TA_100<br>MOTION<br>LSH200 | is<br>is<br>is<br>is | ON<br>OFF<br>OFF<br>OFF<br>OFF | MH2_P2<br>DH_300<br>FA_102<br>LA_100<br>FA_105<br>TAH400 | is<br>is<br>is<br>is | ON<br>OFF<br>OFF<br>ON |
|-------------------------------------------------------------------|----------------------|--------------------------------|----------------------------------------------------------|----------------------|------------------------|
| LSH200                                                            | is                   | OFF                            |                                                          |                      |                        |

### Analog Inputs:

| FT 101 is 0.00  | GPM            | TOTAL FLOW is | 51901642 | GAL |          |                |
|-----------------|----------------|---------------|----------|-----|----------|----------------|
| FT_102 is 0.00  | GPM            | TOTAL FLOW is | 9198545  | GAL |          |                |
| FT_103 is 19.78 | GPM            | TOTAL FLOW is | 569890   | GAL |          |                |
| FT_105 is 6.93  | GPM            | TOTAL FLOW is | 2310141  | GAL |          |                |
| PT_106 is 27.66 | IWC            | LIMITS are L: | 15.00    | IWC | н: 34.00 | IWC            |
| TT_400 is 61.3  | DEG            | LIMITS are L: | 60.0     | DEG | Н: 110.0 | $\mathbf{DEG}$ |
| PT_400 is 9.6   | IWC            | LIMITS are L: | 1.0      | IWC | н: 25.0  | IWC            |
| TT_100 is 69.4  | DEG            | LIMITS are L: | 40.0     | DEG | Н: 110.0 | DEG            |
| FT_106 is 671.2 | $\mathbf{CFM}$ | LIMITS are L: | 400.0    | CFM | Н:       | CFM            |

| · 2  | 1.151 | 20 Y T T T | 11 A A A A A A A A A A A A A A A A A A | A 11 - 12 - 12 |  |
|------|-------|------------|----------------------------------------|----------------|--|
| 1 B. | 2254  |            |                                        |                |  |
|      |       |            |                                        |                |  |

INJSPD

1.3 PCT PRO

Alarm Response Log Sheet, Groundwater Collection and Treatment System, Solvent Dock Area, Former Lockheed Martin French Road Facility, Utica, New York

| Date:       | 6/12/2011 |
|-------------|-----------|
| Time:       | 11:30     |
| Technician: | TC        |

#### ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

| Date: | 6/12/11 | Time: | 11:51:00 |
|-------|---------|-------|----------|
|       | 6/12/11 |       | 22:58:29 |
| -     |         |       |          |

#### Alarm Condition:

Process - 47 - Pre-Carbon temperature alarm, TT-400

#### Cause of Alarm:

Power failure due to local lightning storms. Power outage to duct heater MCP triggered a false internal duct heater temperature alarm.

#### **Corrective Action:**

6/12/11 - Log into system remotely and DZ onsite to inspect duct heater and restart system.

6/13/11 - Log into system remotely and temporarily adjust TT-400 low temperature set point form 60 F to 50 F and restart system. Local electrician (Usmail) onsite to reset internal temperature alarm at duct heater MCP.

6/14/11 - Login to system remotely and reset TT-400 low set point back to 60 F.







THE ARCADIS GCTS SYSTEM IN LOCKHEED UTICA @ 11:51:00 ON 06/12/2011 SER NO 9539 : SETUP VER 1 : ROM 2.1996 : MODEL A2

## System Status:

SHUTD P02 : LAST SHUTDOWN @ 16:52:58 ON 06/11/2011 BY LSL100 FAX REPORT INITIATED BY PROCESS 47



| MH1_HH is OFF | MH1_H2 is OFF | MH1_H1 is ON               | MH1_LO is ON                |
|---------------|---------------|----------------------------|-----------------------------|
| MH1_LL is ON  | MH2_HH is OFF | MH2_H2 is OFF              | MH2_H1 is OFF               |
| MH2_LO is ON  | MH2_LL is ON  | MH3_HH is OFF              | MH3_H2 is OFF               |
| MH3_H1 is ON  | MH3_LO is ON  | MH3_LL is ON               | WFS $\overline{1}06$ is OFF |
| MOTION is OFF | LSH106 is OFF | $LSH\overline{1}00$ is OFF | LSL100 is ON                |
| FT_200 is OFF | LSH200 is OFF |                            |                             |



| MH1_P1 |    |     | MH1_P2 |    |     |
|--------|----|-----|--------|----|-----|
| MH3_P1 | is | OFF | MH3_P2 | is | OFF |
| LA_MH1 | is | OFF | FA_101 | is | OFF |
| LA_MH3 | is | OFF | FA_103 | is | OFF |
| LSH106 |    |     | WFS106 | is | OFF |
| FA_106 |    |     | FA_200 |    |     |
| TAL400 | is | ON  | PA_400 | is | OFF |

| MH2_P1<br>B_100<br>LA_MH2<br>PA_106<br>TA_100<br>MOTION | is<br>is<br>is<br>is<br>is | ON<br>OFF<br>OFF<br>OFF<br>OFF | MH2_P2<br>DH_300<br>FA_102<br>LA_100<br>FA_105<br>TAH400 | is<br>is<br>is<br>is | ON<br>OFF<br>OFF<br>OFF |
|---------------------------------------------------------|----------------------------|--------------------------------|----------------------------------------------------------|----------------------|-------------------------|
| LSH200                                                  | is                         | OFF                            |                                                          |                      |                         |

### Analog Inputs:

| FT 101 is 0.00  | GPM | TOTAL FLOW is | 51894665 | GAL |          |                |
|-----------------|-----|---------------|----------|-----|----------|----------------|
| FT_102 is 0.00  | GPM | TOTAL FLOW is | 9198545  | GAL |          |                |
| FT_103 is 0.00  | GPM | TOTAL FLOW is | 565324   | GAL |          |                |
| FT_105 is 0.00  | GPM | TOTAL FLOW is | 2299194  | GAL |          |                |
| PT_106 is 26.16 | IWC | LIMITS are L: | 15.00    | IWC | н: 34.00 | IWC            |
| TT_400 is 59.1  | DEG | LIMITS are L: | 60.0     | DEG | н: 110.0 | $\mathbf{DEG}$ |
| PT_400 is 10.6  | IWC | LIMITS are L: | 1.0      | IWC | н: 25.0  | IWC            |
| TT_100 is 65.9  | DEG | LIMITS are L: | 40.0     | DEG | н: 110.0 | DEG            |
| FT_106 is 751.3 | CFM | LIMITS are L: | 400.0    | CFM | Н:       | CFM            |

| 6                           |
|-----------------------------|
| 1 S S F X X / S F X 9000000 |
|                             |
|                             |

INJSPD







THE ARCADIS GCTS SYSTEM IN LOCKHEED UTICA @ 22:58:29 ON 06/12/2011 SER NO 9539 : SETUP VER 1 : ROM 2.1996 : MODEL A2

## System Status:

SHUTD P-1 : LAST SHUTDOWN @ 11:57:15 ON 06/12/2011 BY TT\_400 FAX REPORT INITIATED BY PROCESS 47



| MH1_HH is OFF | MH1_H2 is OFF              | MH1_H1 is ON               | MH1_LO is ON           |
|---------------|----------------------------|----------------------------|------------------------|
| MH1_LL is ON  | MH2_HH is OFF              | MH2_H2 is OFF              | MH2_H1 is OFF          |
| MH2_LO is ON  | MH2_LL is ON               | MH3_HH is OFF              | MH3_H2 is OFF          |
| MH3_H1 is OFF | MH3_LO is ON               | MH3_LL is ON               | WFS <b>1</b> 06 is OFF |
| MOTION is OFF | $LSH\overline{1}06$ is OFF | $LSH\overline{1}00$ is OFF | LSL100 is ON           |
| FT_200 is OFF | LSH200 is OFF              |                            |                        |



| MH1_P1 | is | OFF | MH1_P2                |    |     |
|--------|----|-----|-----------------------|----|-----|
| MH3_P1 | is |     | MH3_P2                |    |     |
| LA_MH1 | is | OFF | $FA_{\overline{1}01}$ | is | OFF |
| LA_MH3 |    |     | FA_103                |    |     |
| LSH106 |    |     | $WF\overline{S}106$   | is | OFF |
| FA 106 |    |     | FA 200                | is | OFF |
| TAL400 | is | ON  | PA_400                | is | OFF |

### Analog Inputs:

| FT 101 is 0.00            | GPM | TOTAL FLOW is | 51901795 | GAL |          |     |
|---------------------------|-----|---------------|----------|-----|----------|-----|
| FT_102 is 0.00            | GPM | TOTAL FLOW is | 9198545  | GAL |          |     |
| FT <sup>103</sup> is 0.00 | GPM | TOTAL FLOW is | 570603   | GAL |          |     |
| FT_105 is 0.00            | GPM | TOTAL FLOW is | 2310518  | GAL |          |     |
| PT_106 is 26.95           | IWC | LIMITS are L: | 15.00    | IWC | н: 34.00 | IWC |
| TT_400 is 57.0            | DEG | LIMITS are L: | 60.0     | DEG | Н: 110.0 | DEG |
| PT_400 is 10.4            | IWC | LIMITS are L: | 1.0      | IWC | н: 25.0  | IWC |
| TT_100 is 67.3            | DEG | LIMITS are L: | 40.0     | DEG | Н: 110.0 | DEG |
| FT_106 is 727.6           | CFM | LIMITS are L: | 400.0    | CFM | Н:       | CFM |

|               | •.•.•.•.•.•.• | *************     |                       | <br>************ |
|---------------|---------------|-------------------|-----------------------|------------------|
|               |               |                   |                       | <br>             |
| 2.00          | in the second | Contraction (CONT | and the second second | <br>             |
| . <del></del> | ****          |                   |                       | Z                |
| 化合理学          | : R. S. S.    |                   |                       | <br>             |
|               |               |                   |                       | <br>             |

INJSPD

| Alarm Response Log Sheet, Groundwater Collection and<br>Treatment System, Solvent Dock Area, Former Lockheed Martin<br>French Road Facility, Utica, New York |                 |                  | Date:<br>Time: | 6/13/2011<br>9:30 |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------|----------------|-------------------|--|
|                                                                                                                                                              |                 |                  | Technician:    | TC                |  |
| ALARM F                                                                                                                                                      | RESPONSE / CO   | DRRECTIVE AC     | TION LOG SHEET |                   |  |
| Date:                                                                                                                                                        | 6/13/11         | Time:            | 8:10:06        |                   |  |
| Alarm Co                                                                                                                                                     | ondition:       | _                |                |                   |  |
| Process -                                                                                                                                                    | 53 - Sequesteri | ng agent low flo | w, FT-200      |                   |  |

(Non-Fatal Alarm)

#### Cause of Alarm:

Pump lost prime.

#### **Corrective Action:**

6/13/11 - DZ onsite to Inspect alarm condition. Sequestering agent drum is approx. 1/3 full. However, a large air bubble was noted in the sunction line of the pump. DZ manually primed the chemcial feed pump until the air bubble was removed. Alarm was cleared remotely.







THE ARCADIS GCTS SYSTEM IN LOCKHEED UTICA @ 08:10:06 ON 06/13/2011 SER NO 9539 : SETUP VER 1 : ROM 2.1996 : MODEL A2

## System Status:

AUTO P53 : LAST SHUTDOWN @ 07:03:26 ON 06/13/2011 BY TT\_400 FAX REPORT INITIATED BY PROCESS 53



| MH1_HH is OFF | MH1_H2 is OFF | MH1_H1 is ON               | MH1_LO is ON           |
|---------------|---------------|----------------------------|------------------------|
| MH1_LL is ON  | MH2_HH is OFF | MH2_H2 is OFF              | MH2_H1 is OFF          |
| MH2_LO is ON  | MH2_LL is ON  | MH3_HH is OFF              | MH3_H2 is OFF          |
| MH3_H1 is OFF | MH3_LO is ON  | MH3_LL is ON               | WFS <b>1</b> 06 is OFF |
| MOTION is OFF | LSH106 is OFF | $LSH\overline{1}00$ is OFF | LSL100 is ON           |
| FT_200 is ON  | LSH200 is OFF |                            |                        |



| MH1_P1 i |       | _MH1_P2 i         |       |
|----------|-------|-------------------|-------|
|          | s ON  |                   |       |
| LA_MH1 i |       | FA_101 i          |       |
| LA MH3 i |       | FA_103 i          |       |
| LSH106 i | s OFF | WF <b>S</b> 106 i | S OFF |
| FA 106 i |       | FA 200 i          |       |
| TAL400 i | s OFF | PA_400 i          | S OFF |

| MH2_P1             |    |     | MH2_P2                |    |     |
|--------------------|----|-----|-----------------------|----|-----|
| $B_1\overline{0}0$ |    |     | $DH_{\overline{3}00}$ | is | ON  |
| LA_MH2             |    |     | FA_102                |    |     |
| PA_106             |    |     | $LA_{100}$            |    |     |
| TA_100             | is | OFF | FA_105                |    |     |
| MOTION             | is | OFF | TAH400                | is | OFF |
| LSH200             | is | OFF |                       |    |     |

### Analog Inputs:

| FT 101 is 38.97 | GPM            | TOTAL FLOW is | 51904196 | GAL |          |                |
|-----------------|----------------|---------------|----------|-----|----------|----------------|
| FT_102 is 17.92 | GPM            | TOTAL FLOW is | 9199663  | GAL |          |                |
| FT 103 is 19.73 | GPM            | TOTAL FLOW is | 571934   | GAL |          |                |
| FT_105 is 71.18 | GPM            | TOTAL FLOW is | 2315148  | GAL |          |                |
| PT_106 is 30.56 | IWC            | LIMITS are L: | 15.00    | IWC | н: 34.00 | IWC            |
| TT_400 is 57.1  | DEG            | LIMITS are L: | 50.0     | DEG | н: 110.0 | $\mathbf{DEG}$ |
| PT_400 is 8.1   | IWC            | LIMITS are L: | 1.0      | IWC | н: 25.0  | IWC            |
| TT_100 is 67.3  | DEG            | LIMITS are L: | 40.0     | DEG | н: 110.0 | DEG            |
| FT_106 is 539.7 | $\mathbf{CFM}$ | LIMITS are L: | 400.0    | CFM | Н:       | CFM            |



INJSPD 11.0 PCT PRO

| Date:       | 6/20/2011 |
|-------------|-----------|
| Time:       | 12:00     |
| Technician: | TC        |

#### ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

| 6/20/11 | Time:   | 9:42:17  |
|---------|---------|----------|
| 6/22/11 |         | 12:58:00 |
| 6/23/11 |         | 9:25:59  |
|         | 6/22/11 | 6/22/11  |

#### Alarm Condition:

Process - 53 - Sequestering agent low flow alarm FA-200 via transmitter FT-200.

#### (Non-Fatal Alarm)

#### Cause of Alarm:

Pump has lost prime or flowrate has been reduced.

#### **Corrective Action:**

6/20/11 - DZ onsite to Inspect alarm condition. Sequestering agent drum is approx. 1/3 full. No air bubble noted in the suction line of the pump. DZ manually re-primes the chemical feed pump and alarm is cleared.

6/22/11 - Alarm returned - DZ onsite to Inspect alarm condition. Sequestering agent drum is approx. 1/3 full. No air bubble noted in the suction line of the pump. DZ manually re-primes the chemical feed pump and alarm is cleared but returns after returning to external mode whether being call to pump by PLC or not? Inspect priming bleed valve for proper operation, observed adjustment knob broken off, however valve still appears to operational and can be adjust with pliers. Following several failed attempts to clear flow alarm condition following SOP and manufacturers troubleshooting sections ARCADIS contacted Aries Chemical to ask for troubleshooting assistance and also to order a replacement multifunction valve. Aries Chemical discussed the alarm condition with the onsite ARCADIS personnel and was unable to determine any obvious reasons why the alarm would not clear?

6/23/11 - Looking into if Aries Chemical can provide a technician tomorrow to come out to the site to look at the pump and flow monitoring device. In addition, we are planning on temporarily taking the pump offline to inspect the discharge tubing and injection port for fouling/partial blockage that may be reducing the flow and triggering the alarm condition.







THE ARCADIS GCTS SYSTEM IN LOCKHEED UTICA @ 09:25:59 ON 06/23/2011 SER NO 9539 : SETUP VER 1 : ROM 2.1996 : MODEL A2

## System Status:

AUTO P53 : LAST SHUTDOWN @ 07:03:26 ON 06/13/2011 BY TT\_400 FAX REPORT INITIATED BY PROCESS 53



| MH1 HH is OFF | MH1 H2 is OFF              | MH1 H1 is OFF              | MH1 LO is ON  |
|---------------|----------------------------|----------------------------|---------------|
| MH1_LL is ON  | MH2_HH is OFF              | MH2_H2 is OFF              | MH2_H1 is OFF |
| MH2_LO is ON  | MH2_LL is ON               | MH3_HH is OFF              | MH3_H2 is OFF |
| MH3_H1 is OFF | MH3_LO is ON               | MH3_LL is ON               | WFS106 is OFF |
| MOTION is OFF | $LSH\overline{1}06$ is OFF | $LSH\overline{1}00$ is OFF | LSL100 is ON  |
| FT_200 is ON  | LSH200 is OFF              |                            |               |



| MH1_P1 |    |     | MH1_P2              |    |     |
|--------|----|-----|---------------------|----|-----|
|        |    | ON  | MH3_P2              | is | OFF |
| LA MH1 | is | OFF | FA_101              | is | OFF |
| LA_MH3 | is | OFF | FA_103              | is | OFF |
| LSH106 | is | OFF | $WF\overline{S}106$ | is | OFF |
| FA 106 |    |     | FA 200              |    |     |
| TAL400 | is | OFF | PA_400              | is | OFF |

### Analog Inputs:

| FT 101 is 0.00             | GPM | TOTAL FLOW is | 51964584 | GAL |          |     |
|----------------------------|-----|---------------|----------|-----|----------|-----|
| FT_102 is 0.00             | GPM | TOTAL FLOW is | 9209851  | GAL |          |     |
| FT <sup>103</sup> is 20.46 | GPM | TOTAL FLOW is | 609214   | GAL |          |     |
| FT_105 is 19.66            | GPM | TOTAL FLOW is | 2416889  | GAL |          |     |
| PT_106 is 27.41            | IWC | LIMITS are L: | 15.00    | IWC | н: 34.00 | IWC |
| TT_400 is 80.3             | DEG | LIMITS are L: | 60.0     | DEG | н: 110.0 | DEG |
| PT_400 is 9.0              | IWC | LIMITS are L: | 1.0      | IWC | н: 25.0  | IWC |
| TT_100 is 70.0             | DEG | LIMITS are L: | 40.0     | DEG | н: 110.0 | DEG |
| FT_106 is 686.5            | CFM | LIMITS are L: | 400.0    | CFM | Н:       | CFM |

|            | •••••      |      |                                       | ************* | <br>************** |
|------------|------------|------|---------------------------------------|---------------|--------------------|
|            |            |      | · · · · · · · · · · · · · · · · · · · |               |                    |
| · · · · ·  |            |      |                                       |               | <br>               |
| . <u>A</u> |            |      |                                       |               | <br>Q              |
| . Y        | 10.010     | 1002 |                                       |               |                    |
|            | T T T. /   |      |                                       |               | <br>               |
|            | ********** |      |                                       |               | <br>               |

INJSPD 3.

3.2 PCT PRO







THE ARCADIS GCTS SYSTEM IN LOCKHEED UTICA @ 12:58:00 ON 06/22/2011 SER NO 9539 : SETUP VER 1 : ROM 2.1996 : MODEL A2

## System Status:

AUTO P53 : LAST SHUTDOWN @ 07:03:26 ON 06/13/2011 BY TT\_400 FAX REPORT INITIATED BY PROCESS 53



| MH1 HH is OFF             | MH1 H2 is OFF              | MH1 H1 is OFF              | MH1 LO is ON               |
|---------------------------|----------------------------|----------------------------|----------------------------|
| MH1 <sup>_</sup> LL is ON | MH2 HH is OFF              | MH2 <sup>-</sup> H2 is OFF | MH2 <sup>-</sup> H1 is OFF |
| MH2_LO is ON              | MH2_LL is ON               | MH3_HH is OFF              | MH3_H2 is OFF              |
| MH3_H1 is OFF             | MH3_LO is OFF              | MH3_LL is ON               | WFS106 is OFF              |
| MOTION is OFF             | $LSH\overline{1}06$ is OFF | $LSH\overline{1}00$ is OFF | LSL100 is ON               |
| FT_200 is ON              | LSH200 is OFF              |                            |                            |



| ſ |
|---|
| £ |
| ſ |
| £ |
|   |
| £ |
|   |

| MH2_P1        |    |     | MH2_P2                |    |     |
|---------------|----|-----|-----------------------|----|-----|
| <u>в_10</u> 0 |    |     | $DH_{\overline{3}00}$ | is | ON  |
| LA_MH2        |    |     | FA_102                |    |     |
| PA_106        |    |     | $LA_{100}$            |    |     |
| $TA_{100}$    | is | OFF | FA_105                |    |     |
| MOTION        | is | OFF | TAH400                | is | OFF |
| LSH200        | is | OFF |                       |    |     |

### Analog Inputs:

| FT 101 is 0.00  | GPM            | TOTAL FLOW is | 51956063 | GAL |          |                |
|-----------------|----------------|---------------|----------|-----|----------|----------------|
| FT_102 is 0.00  | GPM            | TOTAL FLOW is | 9207440  | GAL |          |                |
| FT_103 is 0.00  | GPM            | TOTAL FLOW is | 601360   | GAL |          |                |
| FT_105 is 0.00  | GPM            | TOTAL FLOW is | 2398642  | GAL |          |                |
| PT_106 is 25.98 | IWC            | LIMITS are L: | 15.00    | IWC | н: 34.00 | IWC            |
| TT_400 is 79.8  | DEG            | LIMITS are L: | 60.0     | DEG | н: 110.0 | $\mathbf{DEG}$ |
| PT_400 is 10.3  | IWC            | LIMITS are L: | 1.0      | IWC | н: 25.0  | IWC            |
| TT_100 is 70.7  | DEG            | LIMITS are L: | 40.0     | DEG | н: 110.0 | DEG            |
| FT_106 is 725.0 | $\mathbf{CFM}$ | LIMITS are L: | 400.0    | CFM | Н:       | CFM            |

|                                         |           |             | <br>• • • • • • • • • • • • • • • • • |  |
|-----------------------------------------|-----------|-------------|---------------------------------------|--|
|                                         |           |             | <br>                                  |  |
| <b>-</b>                                | 0.200222  | <u></u>     |                                       |  |
| ·                                       | 2251      | V 3 Y 3 BY. | <br>                                  |  |
| - A - A - A - A - A - A - A - A - A - A | 8 N Y A I |             |                                       |  |
|                                         |           |             |                                       |  |
|                                         |           |             | <br>                                  |  |

INJSPD 0.0 P







THE ARCADIS GCTS SYSTEM IN LOCKHEED UTICA @ 09:42:17 ON 06/20/2011 SER NO 9539 : SETUP VER 1 : ROM 2.1996 : MODEL A2

## System Status:

AUTO P53 : LAST SHUTDOWN @ 07:03:26 ON 06/13/2011 BY TT\_400 FAX REPORT INITIATED BY PROCESS 53



| MH1 HH is OFF | MH1 H2 is OFF | MH1 H1 is OFF               | MH1 LO is ON  |
|---------------|---------------|-----------------------------|---------------|
| MH1_LL is ON  | MH2_HH is OFF | MH2_H2 is OFF               | MH2_H1 is OFF |
| MH2_LO is ON  | MH2_LL is ON  | MH3_HH is OFF               | MH3_H2 is OFF |
| MH3_H1 is OFF | MH3_LO is ON  | MH3_LL is ON                | WFS106 is OFF |
| MOTION is OFF | LSH106 is OFF | LSH $\overline{1}00$ is OFF | LSL100 is ON  |
| FT_200 is ON  | LSH200 is OFF |                             |               |



| MH1_P1 |    |     | MH1_P2              |    |     |
|--------|----|-----|---------------------|----|-----|
| MH3_P1 |    |     | мн3_р2              | is | OFF |
| LA_MH1 |    |     | FA_101              | is | OFF |
| LA MH3 | is |     | FA_103              |    |     |
| LSH106 | is | OFF | $WF\overline{S}106$ | is | OFF |
| FA 106 |    |     | FA 200              |    |     |
| TAL400 | is | OFF | PA_400              | is | OFF |

| MH2_P1<br>B_100<br>LA_MH2<br>PA_106<br>TA_100<br>MOTION | is<br>is<br>is<br>is<br>is | ON<br>OFF<br>OFF<br>OFF<br>OFF | MH2_P2<br>DH_300<br>FA_102<br>LA_100<br>FA_105<br>TAH400 | is<br>is<br>is<br>is | ON<br>OFF<br>OFF<br>OFF |
|---------------------------------------------------------|----------------------------|--------------------------------|----------------------------------------------------------|----------------------|-------------------------|
| LSH200                                                  | is                         | OFF                            |                                                          |                      |                         |

### Analog Inputs:

| FT_101 is 0.00  | GPM            | TOTAL FLOW is | 51945850 | GAL |          |     |
|-----------------|----------------|---------------|----------|-----|----------|-----|
| FT_102 is 18.88 | GPM            | TOTAL FLOW is | 9206987  | GAL |          |     |
| FT_103 is 0.00  | GPM            | TOTAL FLOW is |          | GAL |          |     |
| FT_105 is 11.17 | GPM            | TOTAL FLOW is | 2382622  | GAL |          |     |
| PT_106 is 27.35 | IWC            | LIMITS are L: | 15.00    | IWC | н: 34.00 | IWC |
| TT_400 is 76.4  | DEG            | LIMITS are L: | 60.0     | DEG | н: 110.0 | DEG |
| PT_400 is 8.9   | IWC            | LIMITS are L: | 1.0      | IWC | н: 25.0  | IWC |
| TT_100 is 72.8  | DEG            | LIMITS are L: | 40.0     | DEG | н: 110.0 | DEG |
| FT_106 is 648.1 | $\mathbf{CFM}$ | LIMITS are L: | 400.0    | CFM | Н:       | CFM |

|       |      | <br>                                       |         |  |
|-------|------|--------------------------------------------|---------|--|
|       |      | <br>++++++++++++++++++++++++++++++++++++++ |         |  |
|       |      | <br>                                       |         |  |
| ¥⊷ t. | 2121 |                                            |         |  |
| - C   |      | A & B & A /                                | <b></b> |  |
|       |      | <br>                                       |         |  |

INJSPD 1.7 P

1.7 PCT PRO

| Date:       | 6/24/2011 |
|-------------|-----------|
| Time:       | 17:25     |
| Technician: | TC        |

#### ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

| Date: | 6/20/11 | Time: | 9:42:17  |
|-------|---------|-------|----------|
|       | 6/22/11 |       | 12:58:00 |
|       | 6/23/11 | _     | 9:25:59  |

#### **Alarm Condition:**

Process - 53 - Sequestering agent low flow alarm FA-200 via transmitter FT-200.

#### (Non-Fatal Alarm)

#### Cause of Alarm:

Pump has lost prime or flowrate has been reduced.

#### **Corrective Action:**

6/20/11 - DZ onsite to Inspect alarm condition. Sequestering agent drum is approx. 1/3 full. No air bubble noted in the suction line of the pump. DZ manually re-primes the chemical feed pump and alarm is cleared.

6/22/11 - Alarm returned - DZ onsite to Inspect alarm condition. Sequestering agent drum is approx. 1/3 full. No air bubble noted in the suction line of the pump. DZ manually re-primes the chemical feed pump and alarm is cleared but returns after returning to external mode whether being call to pump by PLC or not? Inspect priming bleed valve for proper operation, observed adjustment knob broken off, however valve still appears to operational and can be adjust with pliers. Following several failed attempts to clear flow alarm condition following SOP and manufacturers troubleshooting sections ARCADIS contacted Aries Chemical to ask for troubleshooting assistance and also to order a replacement multifunction valve. Aries Chemical discussed the alarm condition with the onsite ARCADIS personnel and was unable to determine any obvious reasons why the alarm would not clear?

6/23/11 - Looking into if Aries Chemical can provide a technician tomorrow to come out to the site to look at the pump and flow monitoring device. In addition, we are planning on temporarily taking the pump offline to inspect the discharge tubing and injection port for fouling/partial blockage that may be reducing the flow and triggering the alarm condition.

6/24/11 - Inspect injection tubing and port, identify fouling (sequestering agent solidified/crystallized) within injection port where it line ties into manifold. Clean and reinstall. Cleared alarm but it reoccurred after a few cycles. Discuss pump settings with Aries Chemical and they pointed out that we should adjust(decrease sensitivity) the alarm setpoint (i.e. if no or lesser flow is detected after 8 continuous cycles the internal flow alarm (E2) is triggered). The reason Aries recommended this is because this system is a batch type with varying dosing rates, thus we do not have a continuous flow and/or flowrate passing through the flow monitoring device, which Aries believes may be triggering the E2 alarm. Corrective action was to adjust low flow setpoint alarm from the factory default value of 8 to 50 cycles (Note: full alarm set point range is 8 to 220 cycles). Alarm cleared and pump operated alarm free for several cycles.







THE ARCADIS GCTS SYSTEM IN LOCKHEED UTICA @ 13:14:53 ON 06/24/2011 SER NO 9539 : SETUP VER 1 : ROM 2.1996 : MODEL A2

## System Status:

AUTO P53 : LAST SHUTDOWN @ 10:54:37 ON 06/24/2011 BY LSL100 FAX REPORT INITIATED BY PROCESS 53



| MH1 HH is OFF | MH1 H2 is OFF | MH1 H1 is OFF              | MH1 LO is ON  |
|---------------|---------------|----------------------------|---------------|
| MH1_LL is ON  | MH2_HH is OFF | MH2_H2 is OFF              | MH2_H1 is OFF |
| MH2_LO is ON  | MH2_LL is ON  | MH3_HH is OFF              | MH3_H2 is OFF |
| MH3_H1 is OFF | MH3_LO is ON  | MH3_LL is ON               | WFS106 is OFF |
| MOTION is OFF | LSH106 is ON  | $LSH\overline{1}00$ is OFF | LSL100 is ON  |
| FT_200 is ON  | LSH200 is OFF |                            |               |



| MH1_P1 |    |     | MH1_P2              | is | OFF |
|--------|----|-----|---------------------|----|-----|
| MH3_P1 | is |     | MH3_P2              |    |     |
| LA MH1 | is | OFF | FA_101              | is | OFF |
| LA MH3 | is | OFF | FA 103              | is | OFF |
| LSH106 | is | ON  | $WF\overline{S}106$ | is | OFF |
| FA 106 |    |     | FA 200              | is | ON  |
| TAL400 | is | OFF | PA_400              | is | OFF |
|        |    |     |                     |    |     |

| MH2 P1 |    |     | MH2 P2     |    |     |
|--------|----|-----|------------|----|-----|
| в 100  |    |     | DH 300     |    |     |
| LA_MH2 | is | OFF | FA_102     |    |     |
| PA_106 |    |     | $LA_{100}$ |    |     |
| TA_100 | is | OFF | FA_105     |    |     |
| MOTION |    |     | TAH400     | is | OFF |
| LSH200 | is | OFF |            |    |     |

### Analog Inputs:

| FT 101 is 0.00  | GPM            | TOTAL FLOW is | 51975808 | GAL |          |     |
|-----------------|----------------|---------------|----------|-----|----------|-----|
| FT_102 is 0.00  | GPM            | TOTAL FLOW is | 9212057  | GAL |          |     |
| FT_103 is 20.42 | GPM            | TOTAL FLOW is | 615548   | GAL |          |     |
| FT_105 is 20.39 | GPM            | TOTAL FLOW is | 2435722  | GAL |          |     |
| PT_106 is 26.95 | IWC            | LIMITS are L: | 15.00    | IWC | н: 34.00 | IWC |
| TT_400 is 81.5  | DEG            | LIMITS are L: | 60.0     | DEG | н: 110.0 | DEG |
| PT_400 is 8.6   | IWC            | LIMITS are L: | 1.0      | IWC | н: 25.0  | IWC |
| TT_100 is 73.3  | DEG            | LIMITS are L: | 40.0     | DEG | н: 110.0 | DEG |
| FT_106 is 616.7 | $\mathbf{CFM}$ | LIMITS are L: | 400.0    | CFM | Н:       | CFM |

| 6                           |
|-----------------------------|
| 1 S S F X X / S F X 9000000 |
|                             |
|                             |

INJSPD 2

2.9 PCT PRO

| Alarm Response Log Sheet, Groundwater Collection and        |                    |              | Date:          | 7/13/2011 |  |
|-------------------------------------------------------------|--------------------|--------------|----------------|-----------|--|
| Treatment System, Solvent Dock Area, Former Lockheed Martin |                    |              | Time:          | 13:30     |  |
| French Road Facility, Utica, New York                       |                    | Technician:  | CD             |           |  |
| ALARM F                                                     | RESPONSE / Co      | ORRECTIVE AC | TION LOG SHEET |           |  |
| Date:                                                       | 7/9/11             | Time:        | 6:58:00        |           |  |
| Alarm Co                                                    | ondition:          |              |                |           |  |
| Low level                                                   | in the air strippe | er sump.     |                |           |  |
|                                                             |                    |              |                |           |  |
|                                                             |                    |              |                |           |  |

#### Cause of Alarm:

Power outage occurred. This caused the status of various discrete inputs to change to the OFF position, regardless of actual site conditions. The low level sensor, as well as the three low-low level floats for the three pumping manholes each were displayed as being in the lowered position; not consistent with actual site conditions.

#### **Corrective Action:**

System restarted at 8:56 on 7/11/11.



|  |   |  |   |  | ٠ |  |
|--|---|--|---|--|---|--|
|  | 2 |  | 7 |  |   |  |
|  |   |  |   |  |   |  |
|  |   |  |   |  |   |  |
|  |   |  |   |  | ٠ |  |
|  |   |  |   |  |   |  |
|  |   |  | i |  |   |  |
|  |   |  | 1 |  |   |  |
|  |   |  |   |  |   |  |
|  |   |  |   |  |   |  |

#### TODD CARIGNAN



THE ARCADIS GCTS SYSTEM IN LOCKHEED UTICA @ 10:30:00 ON 07/11/2011 SER NO 9539 : SETUP VER 1 : ROM 2.1996 : MODEL A2

### System Status:

AUTO P25 : LAST SHUTDOWN @ 07:08:32 ON 07/09/2011 BY LSL100



| MH1 HH is OFF | MH1 H2 is OFF               | MH1 H1 is ON               | MH1 LO is ON  |
|---------------|-----------------------------|----------------------------|---------------|
| MH1_LL is ON  | MH2_HH is OFF               | MH2_H2 is OFF              | MH2_H1 is OFF |
| MH2_LO is ON  | MH2_LL is ON                | MH3_HH is OFF              | MH3_H2 is OFF |
| MH3_H1 is ON  | MH3_LO is ON                | MH3_LL is ON               | WFS106 is OFF |
| MOTION is OFF | LSH $\overline{1}06$ is OFF | $LSH\overline{1}00$ is OFF | LSL100 is ON  |
| FT_200 is OFF | LSH200 is OFF               |                            |               |

## Discrete Outputs:

| MH1_P1 is ON  | MH1_P2 is OFF              | MH2_P1 is ON  | MH2_P2 is OFF |
|---------------|----------------------------|---------------|---------------|
| MH3 P1 is ON  | MH3 P2 is ON               | B 100 is ON   | DH 300 is ON  |
| LA_MH1 is OFF | FA $\overline{101}$ is OFF | LA_MH2 is OFF | FA_102 is OFF |
| LA MH3 is OFF | FA 103 is OFF              | PA 106 is OFF | LA 100 is OFF |
| LSH106 is OFF | WFS106 is OFF              | TA_100 is OFF | FA_105 is OFF |
| FA 106 is OFF | FA 200 is OFF              | MOTION is OFF | TAH400 is OFF |
| TAL400 is OFF | PA_400 is OFF              | LSH200 is OFF | TAH400 IS OFF |

### Analog Inputs:

| FT_101 is 40.05              | GPM | TOTAL FLOW is | 52088804 | GAL |          |     |
|------------------------------|-----|---------------|----------|-----|----------|-----|
| FT <sup>-</sup> 102 is 17.63 | GPM | TOTAL FLOW is | 9232128  | GAL |          |     |
| FT <sup>-</sup> 103 is 25.64 | GPM | TOTAL FLOW is | 680968   | GAL |          |     |
| FT <sup>-105</sup> is 78.69  | GPM | TOTAL FLOW is | 2622950  | GAL |          |     |
| PT <sup>-</sup> 106 is 30.01 | IWC | LIMITS are L: | 15.00    | IWC | н: 34.00 | IWC |
| TT <sup>400</sup> is 62.1    | DEG | LIMITS are L: | 60.0     | DEG | н: 110.0 | DEG |
| PT <sup>400</sup> is 6.6     | IWC | LIMITS are L: | 1.0      | IWC | н: 25.0  | IWC |
| TT <sup>-100</sup> is 75.5   | DEG | LIMITS are L: | 40.0     | DEG | Н: 110.0 | DEG |
| FT_106 is 509.6              | CFM | LIMITS are L: | 400.0    | CFM | Н:       | CFM |



INJSPD 11.6 PCT PRO

| Alarm R  | esponse Log Sh    | eet, Groundwa | Date:                    | 7/13/2011 |       |  |
|----------|-------------------|---------------|--------------------------|-----------|-------|--|
| Treatme  | nt System, Solv   | ent Dock Area | , Former Lockheed Martin | Time:     | 13:35 |  |
| French I | Road Facility, Ut | ica, New York | Technician:              | CD        |       |  |
| ALARM    | RESPONSE / CO     | DRRECTIVE AC  | CTION LOG SHEET          |           |       |  |
| Date:    | 7/12/11           | Time:         | 22:13:00                 |           |       |  |
| Alarm C  | ondition:         |               |                          |           |       |  |
| Low pre- | carbon temperatu  | ure.          |                          |           |       |  |
|          |                   |               |                          |           |       |  |
|          |                   |               |                          |           |       |  |

#### Cause of Alarm:

Power outage occurred several days earlier. Even though system was restarted remotely, a local reset button must be pressed for the duct heater to restart following a power reset.

#### **Corrective Action:**

System restarted 12:53 on 7/13/11. Low temperature alarm temporarily changed from 60 F to 50 F while site visit is scheduled for 7/14/11 to initiate local reset of duct heater.



|  |   |  |   |  | ٠ |  |
|--|---|--|---|--|---|--|
|  | 2 |  | 7 |  |   |  |
|  |   |  |   |  |   |  |
|  |   |  |   |  |   |  |
|  |   |  |   |  | ٠ |  |
|  |   |  |   |  |   |  |
|  |   |  | i |  |   |  |
|  |   |  | 1 |  |   |  |
|  |   |  |   |  |   |  |
|  |   |  |   |  |   |  |

#### TODD CARIGNAN



THE ARCADIS GCTS SYSTEM IN LOCKHEED UTICA @ 13:30:00 ON 07/13/2011 SER NO 9539 : SETUP VER 1 : ROM 2.1996 : MODEL A2

### System Status:

AUTO P21 : LAST SHUTDOWN @ 22:23:14 ON 07/12/2011 BY TT\_400



| MH1 HH is OFF | MH1 H2 is OFF               | MH1 H1 is OFF              | MH1 LO is ON                |
|---------------|-----------------------------|----------------------------|-----------------------------|
| MH1_LL is ON  | MH2_HH is OFF               | MH2_H2 is OFF              | MH2_H1 is OFF               |
| MH2_LO is ON  | MH2_LL is ON                | MH3_HH is OFF              | MH3_H2 is OFF               |
| MH3_H1 is ON  | MH3_LO is ON                | MH3_LL is ON               | WFS $\overline{1}06$ is OFF |
| MOTION is OFF | LSH $\overline{1}06$ is OFF | $LSH\overline{1}00$ is OFF | LSL100 is ON                |
| FT_200 is OFF | LSH200 is OFF               |                            |                             |

## Discrete Outputs:

| FA_106 is OFF FA_200 is OFF MOTION is OFF TAH400 | is OFF |
|--------------------------------------------------|--------|
| TAL400 is OFF PA_400 is OFF LSH200 is OFF        | is OFF |

### Analog Inputs:

| FT_101 is 3  | 39.32 | GPM            | TOTAL ] | FLOW           | is             | 52106478 | GAL |    |       |                |
|--------------|-------|----------------|---------|----------------|----------------|----------|-----|----|-------|----------------|
| FT_102 is (  | 0.00  | GPM            | TOTAL 1 | FLOW           | is             | 9232868  | GAL |    |       |                |
| FT_103 is 2  | 23.37 | GPM            | TOTAL 1 | FLOW           | is             | 690310   | GAL |    |       |                |
| _FT_105 is ! | 59.00 | GPM            | TOTAL 1 | FLOW           | is             | 2649868  | GAL |    |       |                |
| PT_106 is 2  | 29.15 | IWC            | LIMITS  | $\mathbf{are}$ | $\mathbf{L}:$  | 15.00    | IWC | Н: | 34.00 | IWC            |
| TT_400 is 0  |       | DEG            | LIMITS  | $\mathbf{are}$ | $\mathbf{L}$ : | 50.0     | DEG | Н: | 110.0 | DEG            |
| PT_400 is [  | 7.0   | IWC            | LIMITS  | $\mathbf{are}$ | $\mathbf{L}:$  | 1.0      | IWC | Н: | 25.0  | IWC            |
| TT_100 is [  | 76.6  | DEG            | LIMITS  | $\mathbf{are}$ | $\mathbf{L}:$  | 40.0     | DEG | Н: | 110.0 | DEG            |
| FT_106 is !  | 555.1 | $\mathbf{CFM}$ | LIMITS  | $\mathbf{are}$ | $\mathbf{L}$ : | 400.0    | CFM | Н: |       | $\mathbf{CFM}$ |



INJSPD 9.0 PCT

T PRO

Alarm Response Log Sheet, Groundwater Collection and Treatment System, Solvent Dock Area, Former Lockheed Martin French Road Facility, Utica, New York

| Date:       | 7/19/2011 |
|-------------|-----------|
| Time:       | 9:30      |
| Technician: | TC        |

#### ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

| Date: | 7/18/11 | Time: | 17:41:54 |
|-------|---------|-------|----------|
|       | 7/19/11 | _     | 6:34:08  |
|       |         |       |          |

#### Alarm Condition:

Process 57 - Low Flow Aggregate

Process 29 - Low Flow MH-1

#### Cause of Alarm:

Scaling on flowmeter paddlewheel sensor.

#### **Corrective Action:**

Staff onsite today and will inspect/clean sensors.







THE ARCADIS GCTS SYSTEM IN LOCKHEED UTICA @ 17:41:54 ON 07/18/2011 SER NO 9539 : SETUP VER 1 : ROM 2.1996 : MODEL A2

## System Status:

AUTO P57 : LAST SHUTDOWN @ 22:23:14 ON 07/12/2011 BY TT\_400 FAX REPORT INITIATED BY PROCESS 57



| MH1 HH is OFF | MH1 H2 is OFF              | MH1 H1 is OFF               | MH1 LO is ON  |
|---------------|----------------------------|-----------------------------|---------------|
| MH1_LL is ON  | MH2_HH is OFF              | MH2_H2 is OFF               | MH2_H1 is OFF |
| MH2_LO is OFF | MH2_LL is ON               | MH3_HH is OFF               | MH3_H2 is OFF |
| MH3_H1 is OFF | MH3_LO is ON               | MH3_LL is ON                | WFS106 is OFF |
| MOTION is OFF | $LSH\overline{1}06$ is OFF | LSH $\overline{1}00$ is OFF | LSL100 is ON  |
| FT_200 is OFF | LSH200 is OFF              |                             |               |



| MH1_P1 |    |     | MH1_P2              |    |     |
|--------|----|-----|---------------------|----|-----|
| MH3_P1 | is | ON  | MH3_P2              | is | OFF |
| LA_MH1 | is | OFF | $FA_{101}$          | is | OFF |
| LA MH3 | is |     | FA_103              |    |     |
| LSH106 | is | OFF | $WF\overline{S}106$ | is | OFF |
| FA_106 |    |     | FA_200              |    |     |
| TAL400 | is | OFF | PA_400              | is | OFF |

| MH2_P1 :<br>B_100 :<br>LA_MH2 :<br>PA_106 :<br>TA_100 :<br>MOTION : | is<br>is<br>is<br>is | ON<br>OFF<br>OFF<br>OFF<br>OFF | $\begin{array}{c} MH2 \_ P2 \\ DH \_ 300 \\ FA \_ 102 \\ LA \_ 100 \\ FA \_ 105 \\ TAH400 \end{array}$ | is<br>is<br>is<br>is | ON<br>OFF<br>OFF<br>ON |
|---------------------------------------------------------------------|----------------------|--------------------------------|--------------------------------------------------------------------------------------------------------|----------------------|------------------------|
| MOTION :<br>LSH200 :                                                |                      |                                | TAH400                                                                                                 | is                   | OFF                    |

### Analog Inputs:

| FT 101 is 0.00  | GPM | TOTAL FLOW is | 52130888 | GAL |          |                |
|-----------------|-----|---------------|----------|-----|----------|----------------|
| FT_102 is 0.00  | GPM | TOTAL FLOW is | 9239453  | GAL |          |                |
| FT 103 is 19.56 | GPM | TOTAL FLOW is | 708235   | GAL |          |                |
| FT_105 is 0.06  | GPM | TOTAL FLOW is | 2693761  | GAL |          |                |
| PT_106 is 27.17 | IWC | LIMITS are L: | 15.00    | IWC | н: 34.00 | IWC            |
| TT_400 is 77.4  | DEG | LIMITS are L: | 60.0     | DEG | Н: 110.0 | DEG            |
| PT_400 is 8.0   | IWC | LIMITS are L: | 1.0      | IWC | н: 25.0  | IWC            |
| TT_100 is 79.4  | DEG | LIMITS are L: | 40.0     | DEG | Н: 110.0 | $\mathbf{DEG}$ |
| FT_106 is 622.4 | CFM | LIMITS are L: | 400.0    | CFM | Н:       | CFM            |

|            | •••••      |      |                                       | ************* | <br>************** |
|------------|------------|------|---------------------------------------|---------------|--------------------|
|            |            |      | · · · · · · · · · · · · · · · · · · · |               |                    |
| · · · · ·  |            |      |                                       |               | <br>               |
| . <u>A</u> |            |      |                                       |               | <br>Q              |
| . Y        | 10.010     | 1002 |                                       |               |                    |
|            | T T T. /   |      |                                       |               | <br>               |
|            | ********** |      |                                       |               | <br>               |

INJSPD 0

0.8 PCT PRO







THE ARCADIS GCTS SYSTEM IN LOCKHEED UTICA @ 06:34:08 ON 07/19/2011 SER NO 9539 : SETUP VER 1 : ROM 2.1996 : MODEL A2

## System Status:

AUTO P29 : LAST SHUTDOWN @ 22:23:14 ON 07/12/2011 BY TT\_400 FAX REPORT INITIATED BY PROCESS 29



| MH1 HH is OFF | MH1 H2 is OFF | MH1 H1 is ON               | MH1 LO is ON  |
|---------------|---------------|----------------------------|---------------|
| MH1_LL is ON  | MH2_HH is OFF | MH2_H2 is OFF              | MH2_H1 is OFF |
| MH2_LO is ON  | MH2_LL is ON  | MH3_HH is OFF              | MH3_H2 is OFF |
| MH3_H1 is OFF | MH3_LO is ON  | MH3_LL is ON               | WFS106 is OFF |
| MOTION is OFF | LSH106 is OFF | $LSH\overline{1}00$ is OFF | LSL100 is ON  |
| FT_200 is OFF | LSH200 is OFF |                            |               |



| MH1_P1 |    |     | MH1_P2 |    |     | <b>MH2_P</b> :     |
|--------|----|-----|--------|----|-----|--------------------|
| MH3_P1 |    |     | MH3_P2 |    |     | $B_1\overline{0}0$ |
| LA_MH1 |    |     | FA_101 | is | ON  | LA_MH:             |
| LA_MH3 | is | OFF | FA_103 | is | OFF | PA_10              |
| LSH106 | is | OFF | WFS106 | is | OFF | TA_10              |
| FA 106 |    |     | FA 200 | is | OFF | MOTIO              |
| TAL400 | is | OFF | PA_400 | is | OFF | LSH20              |
|        |    |     |        |    |     |                    |

| 2 P1             |    |     | MH2 P2                |    |     |
|------------------|----|-----|-----------------------|----|-----|
| $1\overline{0}0$ | is | ON  | $DH_{\overline{3}00}$ |    |     |
| _MH2<br>_106     | is | OFF | FA_102                | is | OFF |
| $_{106}$         | is | OFF | $LA_{100}$            |    |     |
| 100              | is | OFF | FA_105                |    |     |
| TION             |    |     | TAH400                | is | OFF |
| H200             | is | OFF |                       |    |     |
|                  |    |     |                       |    |     |

### Analog Inputs:

| FT 101 is 0.00  | GPM            | TOTAL FLOW is | 52133381 | GAL |          |     |
|-----------------|----------------|---------------|----------|-----|----------|-----|
| FT_102 is 0.02  | GPM            | TOTAL FLOW is | 9239453  | GAL |          |     |
| FT_103 is 0.00  | GPM            | TOTAL FLOW is | 710122   | GAL |          |     |
| FT_105 is 0.00  | GPM            | TOTAL FLOW is | 2697801  | GAL |          |     |
| PT_106 is 24.42 | IWC            | LIMITS are L: | 15.00    | IWC | н: 34.00 | IWC |
| TT_400 is 89.6  | DEG            | LIMITS are L: | 60.0     | DEG | н: 110.0 | DEG |
| PT_400 is 11.4  | IWC            | LIMITS are L: | 1.0      | IWC | н: 25.0  | IWC |
| TT_100 is 74.3  | DEG            | LIMITS are L: | 40.0     | DEG | н: 110.0 | DEG |
| FT_106 is 848.7 | $\mathbf{CFM}$ | LIMITS are L: | 400.0    | CFM | Н:       | CFM |

|       |      |             |                   | <br> |
|-------|------|-------------|-------------------|------|
|       |      |             | <del>.</del>      | <br> |
|       |      |             |                   | <br> |
| ¥⊷ t. | 2121 | 6 M F - E - | ******            | ~~   |
| - C   |      |             | A. A. S. S. M. A. | <br> |
|       |      |             |                   | <br> |

INJSPD

0.0 PCT PRO

| Alarm Response Log Sheet, Groundwater Collection and        |
|-------------------------------------------------------------|
| Treatment System, Solvent Dock Area, Former Lockheed Martin |
| French Road Facility, Utica, New York                       |

| Date:       | 8/2/2011 |
|-------------|----------|
| Time:       | 12:00    |
| Technician: | TC       |

#### ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Date: 8/2/11 Time: 1:30:30

#### Alarm Condition:

Process 57 - Low Flow Aggregate (FT-105)

Cause of Alarm:

Flow registered after 15 second delay with M-3 online.

#### **Corrective Action:**

Log into remotely and inspect flow/temporarily cycle alternate MH-3 pump to trigger flow sensor on 8/2/11. FT-105 registering flow with MH-3 online. Will inspect aggregate flow sensor position during next O&M visit to ensure that sensor is installed at the correct depth within the pipeline.







THE ARCADIS GCTS SYSTEM IN LOCKHEED UTICA @ 01:30:30 ON 08/02/2011 SER NO 9539 : SETUP VER 1 : ROM 2.1996 : MODEL A2

## System Status:

AUTO P57 : LAST SHUTDOWN @ 22:23:14 ON 07/12/2011 BY TT\_400 FAX REPORT INITIATED BY PROCESS 57



| MH1 HH is OFF | MH1 H2 is OFF              | MH1 H1 is OFF              | MH1 LO is ON  |
|---------------|----------------------------|----------------------------|---------------|
| MH1_LL is ON  | MH2_HH is OFF              | MH2_H2 is OFF              | MH2_H1 is OFF |
| MH2_LO is ON  | MH2_LL is ON               | MH3_HH is OFF              | MH3_H2 is OFF |
| MH3_H1 is OFF | MH3_LO is ON               | MH3_LL is ON               | WFS106 is OFF |
| MOTION is OFF | $LSH\overline{1}06$ is OFF | $LSH\overline{1}00$ is OFF | LSL100 is ON  |
| FT_200 is OFF | LSH200 is OFF              |                            |               |



| MH1_P1 |    |     | MH1_P2                |    |     |
|--------|----|-----|-----------------------|----|-----|
| MH3_P1 | is |     | MH3_P2                |    |     |
| LA_MH1 | is | OFF | $FA_{\overline{1}01}$ | is | OFF |
| LA MH3 | is |     | FA_103                |    |     |
| LSH106 | is | OFF | $WF\overline{S}106$   | is | OFF |
| FA 106 |    |     | FA 200                |    |     |
| TAL400 | is | OFF | PA_400                | is | OFF |

### Analog Inputs:

| FT 101 is 0.00             | GPM | TOTAL FLOW is | 52200382 | GAL |          |     |
|----------------------------|-----|---------------|----------|-----|----------|-----|
| FT_102 is 0.00             | GPM | TOTAL FLOW is | 9254839  | GAL |          |     |
| FT <sup>103</sup> is 19.66 | GPM | TOTAL FLOW is | 755328   | GAL |          |     |
| FT_105 is 0.00             | GPM | TOTAL FLOW is | 2811929  | GAL |          |     |
| PT_106 is 27.96            | IWC | LIMITS are L: | 15.00    | IWC | н: 34.00 | IWC |
| TT_400 is 76.8             | DEG | LIMITS are L: | 60.0     | DEG | Н: 110.0 | DEG |
| PT_400 is 8.9              | IWC | LIMITS are L: | 1.0      | IWC | н: 25.0  | IWC |
| TT_100 is 76.7             | DEG | LIMITS are L: | 40.0     | DEG | н: 110.0 | DEG |
| FT_106 is 652.6            | CFM | LIMITS are L: | 400.0    | CFM | Н:       | CFM |

| Analog Outputs:                                         |                  |              |                                   |
|---------------------------------------------------------|------------------|--------------|-----------------------------------|
| E. E. A. L. L. S. C 605 E. A. L. L. S. A. L. C. X 90000 | 1 226            |              | 6 F 5 7 6 F 6 7 8 8 8 8 8         |
|                                                         | 2 <b>87 9</b> 49 | and a second | a in a state of the second second |

INJSPD

1.2 PCT PRO

| Date:       | 8/2/2011 |
|-------------|----------|
| Time:       |          |
| Technician: | CD/TC    |

#### ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Date: 8/2/11 Time:

#### Alarm Condition:

Inconsistant daily and alarm fax reports since remedial enhancement construction upgrades completed in First Quarter.

#### Cause of Alarm:

Daily and alarm fax reports unsuccessful due to ProControl's modem not properly sensing when a phone line connection becomes disconnected (i.e. a hangup). When the modem senses that a phone line connection is present, a report or alarm fax will not be initiated.

#### **Corrective Action:**

Onsite troubleshooting conducted by Telecommunication Concepts, Inc. on 6/22/11 indicated that the materials used for the exterior/below-grade phone line installation presented the potential for phone line depletion. Attached is a guote pertaining to replacement of the phone line.

Follow-up testing conducted on 7/8/11 revealed that the quality of the phone line currently is fine, and that instead the ProControl modem may not be responding correctly to hangups. Troubleshooting of the fax-out sequence included temporarily changing the fax reporting frequency to once every 30 minutes, which resulted in a 100% success rate up until the very early morning of the following day (i.e. fax reports continuously successful at the desired 30 minute interval for greater than 16 hours until failing at 1:00-2:00 am). Once a fax report failure occurred, the fax report sequence would not return to schedule until a phoneline connection was attempted with the ProControl, thereby resetting the modem to allow for proper acknowledgement of a phoneline disconnection. Explanation as to why the modem would not properly sense a hangup during the early morning hours is unclear, although a potential contributing factor includes line noise caused by certain facility communications operations that occur during that time period. To serve as a modem reset action (by attempting a phoneline connection with), the SSDS ProControl fax report procedure was modified to call the GCTS phone number (in addition to its regular dial-out number) at 5:00 am. Initial observations indicate that GCTS daily and alarm fax reports are being sent with a high success rate. Should this not prove to be a sufficient solution for the modem deficiency, a modem replacement will be considered.

A verbal quote including parts and labor was obtained from EOS Research, Ltd of \$125.00 on 7/13/11. This would require the temporary removal the PLC so that it could be shipped via overnight the EOS, thus resulting a temporary shutdown of the system for approximately 2.5 days.

# **Telecommunication Concepts, Inc.** 329 Oriskany Blvd Whitesboro, NY 13492

### Quote Number: 1094

Quote Date: Jun 24, 2011 Page: 1

Voice: 315-736-8523 Fax: 315-736-8524

#### Quoted To:

Arcadis PO Box 66 6723 Towpath Rd Syracuse, NY 13214-0066

| Customer ID | Good Thru | Payment Terms | Sales Rep |
|-------------|-----------|---------------|-----------|
| TA1810      | 7/24/11   | Net 10 Days   |           |

| Quantity | Item     | Description                               | Unit Price | Amount |
|----------|----------|-------------------------------------------|------------|--------|
| 3.00     | Svc Call | Install underground cable between Guard   | 90.00      | 270.00 |
|          |          | shack & shed at Conmed. Terminate & test. |            |        |
| 25.00    | WAD6PR24 | Wire Aerial Duct 6 PR 24                  | 4.00       | 100.00 |
| 2.00     | JF4684   | Jack Surface Md 4C                        | 5.95       | 11.90  |
| 2.00     | PLF104LR | Plug LC 4C for Solid Wire                 | 1.00       | 2.00   |
|          |          |                                           |            |        |
|          |          |                                           |            |        |
|          |          |                                           |            |        |
|          |          |                                           |            |        |
|          |          |                                           |            |        |
|          |          |                                           |            |        |
|          |          |                                           |            |        |
|          |          |                                           |            |        |
|          |          |                                           |            |        |
|          |          |                                           |            |        |
|          |          |                                           |            |        |
|          |          |                                           |            |        |
|          |          |                                           |            |        |
|          |          |                                           |            |        |
|          |          |                                           |            |        |
|          |          |                                           |            |        |
|          |          |                                           |            |        |
|          |          |                                           |            |        |
|          |          |                                           |            |        |
|          |          |                                           |            |        |
|          |          |                                           |            |        |
|          |          |                                           | Subtotal   | 383.90 |
|          |          |                                           | Sales Tax  | 33.59  |
|          |          |                                           | TOTAL      | 417.49 |

| Alarm Response Log Sheet, Groundwater Collection and        |
|-------------------------------------------------------------|
| Treatment System, Solvent Dock Area, Former Lockheed Martin |
| French Road Facility, Utica, New York                       |

| Date:       | 9/8/2011 |
|-------------|----------|
| Time:       | 12:00    |
| Technician: | TC       |

#### ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Date: 9/7/11 Time: 19:58:29 PM

#### Alarm Condition:

Process 53 - Sequestering Agent Low Flow Alarm FA-200 (FT-200)

Cause of Alarm:

Sequestering agent drum was empty.

**Corrective Action:** Changeout drum on 9/8/11.







THE ARCADIS GCTS SYSTEM IN LOCKHEED UTICA @ 19:58:29 ON 09/07/2011 SER NO 9539 : SETUP VER 1 : ROM 2.1996 : MODEL A2

## System Status:

AUTO P53 : LAST SHUTDOWN @ 17:30:21 ON 08/11/2011 BY FT\_106 FAX REPORT INITIATED BY PROCESS 53



| MH1 HH is OFF | MH1 H2 is OFF | MH1 H1 is ON                | MH1 LO is ON  |
|---------------|---------------|-----------------------------|---------------|
| MH1_LL is ON  | MH2_HH is OFF | MH2_H2 is OFF               | MH2_H1 is OFF |
| MH2_LO is ON  | MH2_LL is ON  | MH3_HH is OFF               | MH3_H2 is OFF |
| MH3_H1 is ON  | MH3_LO is ON  | MH3_LL is ON                | WFS106 is OFF |
| MOTION is OFF | LSH106 is OFF | LSH $\overline{1}00$ is OFF | LSL100 is ON  |
| FT_200 is ON  | LSH200 is OFF |                             |               |

MH2\_P2 is OFF DH\_300 is ON

FA\_102 is ON LA\_100 is OFF FA\_105 is ON

TAH400 is OFF



| MH1_P1 is ON  | MH1_P2 is OFF               | MH2_P1 is ON             |
|---------------|-----------------------------|--------------------------|
| MH3_P1 is OFF | MH3_P2 is ON                | $B_1\overline{0}0$ is ON |
| LA_MH1 is OFF | $FA_{\overline{1}01}$ is ON | LA_MH2 is OFF            |
| LA_MH3 is OFF | FA_103 is ON                | PA_106 is OFF            |
| LSH106 is OFF | WF $\overline{S}106$ is OFF | TA_100 is OFF            |
| FA_106 is OFF | FA_200 is ON                | MOTION is OFF            |
| TAL400 is OFF | PA_400 is OFF               | LSH200 is OFF            |
|               |                             |                          |

### Analog Inputs:

| FT_101 is 38.93<br>FT_102 is 18.32<br>FT_103 is 21.78                                                      | GPM<br>GPM<br>GPM                      | TOTAL FLOW is<br>TOTAL FLOW is<br>TOTAL FLOW is | 9331270                                 | GAL<br>GAL<br>GAL                      |                                                   |                                 |
|------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------|-----------------------------------------|----------------------------------------|---------------------------------------------------|---------------------------------|
| FT_105 is 72.44<br>PT_106 is 31.11<br>TT_400 is 76.6<br>PT_400 is 7.3<br>TT_100 is 73.6<br>FT_106 is 563.5 | GPM<br>IWC<br>DEG<br>IWC<br>DEG<br>CFM | TOTAL FLOW is                                   | 3297409<br>15.00<br>60.0<br>1.0<br>40.0 | GAL<br>IWC<br>DEG<br>IWC<br>DEG<br>CFM | H: 34.00<br>H: 110.0<br>H: 25.0<br>H: 110.0<br>H: | IWC<br>DEG<br>IWC<br>DEG<br>CFM |

| · · · | ••• |     | • • |     |     | ٠. | ۰. | ••• |   |    |    |    |   |    |    | ٠. | ۰. | ٠. | ٠. | ••• |   |    | ٠. | •   |    | 10 |    | ٠. | ٠. |   |    |    |    | · · · | ٠. | ٠. | ٠. |    |    |    | ٠. | ۰. |
|-------|-----|-----|-----|-----|-----|----|----|-----|---|----|----|----|---|----|----|----|----|----|----|-----|---|----|----|-----|----|----|----|----|----|---|----|----|----|-------|----|----|----|----|----|----|----|----|
|       | •   |     |     | •   |     | •  | •  | •   |   | 2  | 2  |    | 1 |    |    | •  | ٠. | •  | •  | •2  | - | 20 | ٠. | - 2 | •  | 95 |    | ٠. | •  | • | ۰. | 24 |    |       | •  | •  | •  | •  | ٠. | 2  | ٠. |    |
|       | •   | 1   |     | •   |     | ٠. | ٠. | •   |   | з  | P  |    |   |    |    | •  | ٠. | •  | ۰. |     |   |    | ۰. | - 2 | 0  | 95 |    | ٠. | •  | • | ٠. |    |    |       |    | •  | •  | •  | ۰. |    | ٠. |    |
|       | 1.1 | с.  | 1.1 | ÷., | i.N | ۰. | 14 | 2   | - |    | ۰. |    |   | π. |    | 1  | 4. | ۰. | Ν. | ς.  |   |    |    | R.  | v. |    |    | -  |    | Ń |    | 1  | 24 |       |    | ÷. | м. | •  | 0  |    | ٠. |    |
|       | зê  | -   | F.) | ٠   | 1   |    | e  |     | D | ÷  | 1  | P. | 2 |    | F. |    | Ε. | •  | 1  |     |   | а. |    | 12  |    | 0  | D/ | E  | •  |   | r  |    | ۰. |       |    |    | 0  | 0  | ۰. | 20 | 1  |    |
| 34    | 92  |     | E)  | P.  |     | 0. |    |     |   | r. |    | Γ. |   |    |    |    | ۰. | •  |    | £., |   | с. |    | х.  |    |    |    | Г. |    |   | 22 |    |    |       | ۰. |    | ۰. | Ľ, | ۰. | 20 | ۰. |    |
|       | 10  |     |     |     |     |    | ۰. |     |   |    |    |    |   | 2  |    | ۰. | •  | •0 | •7 | -   |   | 2  | ۰. | 1   |    | -  | э  |    | ۲. |   |    | -  |    |       |    |    |    | ς, | ۰. | 24 | •  |    |
|       | •   | 0.0 |     | ۰.  | 1   |    | •  | 0   | 0 | ۰. | ٠. | ٠. |   |    |    | с. | ÷  | •  | •0 | 0   | 0 | 20 |    | •0  | 0  | 04 |    | ю. | •  | 0 | ۰. | 14 |    | 1     | 10 | ÷  | 0  | 0  | ۰. | 20 | ×  |    |

INJSPD 11.4 PCT PRO

| Alarm Response Log Sheet, Groundwater Collection and        |
|-------------------------------------------------------------|
| Treatment System, Solvent Dock Area, Former Lockheed Martin |
| French Road Facility, Utica, New York                       |

| Date:       | 9/17/2011 |
|-------------|-----------|
| Time:       | 12:30     |
| Technician: | TC        |

#### ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Date: 9/17/11 Time: 10:58:03

#### Alarm Condition:

Process 56 - Low Flow Aggregate (FT-105)

Cause of Alarm:

Flow registered after 15 second delay with M-2 online.

#### **Corrective Action:**

Log into remotely and inspect flow, flowmeter registering flow. Will inspect aggregate flow sensor position during next O&M visit to ensure that sensor is installed at the correct depth within the pipeline and is clean of scale/debris.







SYSTEM IN LOCKHEED UTICA @ 10:58:03 ON 09/17/2011 : ROM 2.1996 : MODEL A2 THE ARCADIS GCTS SER NO 9539 : SETUP VER 1

## vstem Status:

LAST SHUTDOWN @ 14:00:23 ON 09/16/2011 BY KEYPAD AUTO P56 : FAX REPORT INITIATED BY PROCESS 56



| MH1 HH is OFF | MH1 H2 is OFF              | MH1 H1 is OFF               | MH1 LO is OFF |
|---------------|----------------------------|-----------------------------|---------------|
| MH1_LL is ON  | MH2_HH is OFF              | MH2_H2 is OFF               | MH2_H1 is OFF |
| MH2_LO is ON  | MH2_LL is ON               | MH3_HH is OFF               | MH3_H2 is OFF |
| MH3_H1 is OFF | MH3_LO is ON               | MH3_LL is ON                | WFS106 is OFF |
| MOTION is OFF | $LSH\overline{1}06$ is OFF | LSH $\overline{1}00$ is OFF | LSL100 is ON  |
| FT_200 is OFF | LSH200 is OFF              |                             |               |



| MH1_P1 |    |     | MH1_P2 |    |     |
|--------|----|-----|--------|----|-----|
| MH3_P1 |    |     | MH3_P2 |    |     |
| LA_MH1 | is |     | FA_101 |    |     |
| LA MH3 |    |     | FA_103 | is | OFF |
| LSH106 |    |     | WFS106 | is | OFF |
| FA_106 |    |     | FA_200 |    |     |
| TAL400 | is | OFF | PA_400 | is | OFF |

| MH2_P1<br>B_100<br>LA_MH2<br>PA_106<br>TA_100<br>MOTION | is<br>is<br>is<br>is | ON<br>OFF<br>OFF<br>OFF | MH2_P2<br>DH_300<br>FA_102<br>LA_100<br>FA_105<br>TAH400 | is<br>is<br>is<br>is | ON<br>OFF<br>OFF<br>ON |
|---------------------------------------------------------|----------------------|-------------------------|----------------------------------------------------------|----------------------|------------------------|
| MOTION<br>LSH200                                        |                      |                         | TAH400                                                   | is                   | OFF                    |

### Analog Inputs:

| FT_101 is 0.00            | GPM | TOTAL FLOW is | 52642187 | GAL |          |     |
|---------------------------|-----|---------------|----------|-----|----------|-----|
| FT_102 is 21.00           | GPM | TOTAL FLOW is | 9359167  | GAL |          |     |
| FT <sup>103</sup> is 0.00 | GPM | TOTAL FLOW is | 1037789  | GAL |          |     |
| FT_105 is 0.00            | GPM | TOTAL FLOW is | 3580368  | GAL |          |     |
| PT_106 is 29.12           | IWC | LIMITS are L: | 15.00    | IWC | н: 34.00 | IWC |
| TT_400 is 79.8            | DEG | LIMITS are L: | 60.0     | DEG | Н: 110.0 | DEG |
| PT_400 is 9.9             | IWC | LIMITS are L: | 1.0      | IWC | н: 25.0  | IWC |
| TT_100 is 68.9            | DEG | LIMITS are L: | 40.0     | DEG | н: 110.0 | DEG |
| FT_106 is 726.9           | CFM | LIMITS are L: | 400.0    | CFM | Н:       | CFM |

|             | <br> | <br>                                                                                                               |      |                     |
|-------------|------|--------------------------------------------------------------------------------------------------------------------|------|---------------------|
|             | <br> | <br>                                                                                                               |      |                     |
|             | <br> | <br>                                                                                                               |      |                     |
| - 1. K 🖬 🗛  |      | <br>A 100 YO 100 |      | 79 NB - 1997 - 1997 |
| ं अन्य हर   | <br> |                                                                                                                    |      | <b>K</b>            |
| 10 C - 10 C |      | <br>A & A & A                                                                                                      | **** |                     |
|             | <br> |                                                                                                                    |      |                     |
|             | <br> | <br>                                                                                                               |      |                     |

0.0 PCT PRO INJSPD

| Alarm Response Log Sheet, Groundwater Collection and        |
|-------------------------------------------------------------|
| Treatment System, Solvent Dock Area, Former Lockheed Martin |
| French Road Facility, Utica, New York                       |

| Date:       | 9/26/2011 |
|-------------|-----------|
| Time:       | 20:16     |
| Technician: | TC        |

#### ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Date: 9/26/11 Time: 1:00:53

#### Alarm Condition:

Process 53 - Sequestering Agent Low Flow Alarm FA-200 (FT-200)

#### Cause of Alarm:

Not all air bubbles were purged within the suction line while re-priming the pump following the drum changeout on 9/8/11.

#### **Corrective Action:**

Log into remotely and clear alarm on 9/26/11 and see if alarm condition returns. If alarm returns the pump will be reprimed.







THE ARCADIS GCTS SYSTEM IN LOCKHEED UTICA @ 01:00:53 ON 09/26/2011 SER NO 9539 : SETUP VER 1 : ROM 2.1996 : MODEL A2

## System Status:

AUTO P53 : LAST SHUTDOWN @ 14:00:23 ON 09/16/2011 BY KEYPAD FAX REPORT INITIATED BY PROCESS 53



| MH1_HH is OFF | MH1_H2 is OFF | MH1_H1 is OFF               | MH1_LO is ON                |
|---------------|---------------|-----------------------------|-----------------------------|
| MH1_LL is ON  | MH2_HH is OFF | MH2_H2 is OFF               | MH2_H1 is OFF               |
| MH2_LO is ON  | MH2_LL is ON  | MH3_HH is OFF               | MH3_H2 is OFF               |
| MH3_H1 is OFF | MH3_LO is ON  | MH3_LL is ON                | WFS $\overline{1}06$ is OFF |
| MOTION is OFF | LSH106 is OFF | LSH $\overline{1}00$ is OFF | LSL100 is ON                |
| FT_200 is ON  | LSH200 is OFF |                             |                             |



| MH1_P1 |    |     | MH1_P2              |    |     |
|--------|----|-----|---------------------|----|-----|
| MH3_P1 | is | ON  | MH3_P2              | is | OFF |
| LA_MH1 | is | OFF | $FA_{101}$          | is | OFF |
| LA_MH3 | is | OFF | FA_103              | is | OFF |
| LSH106 |    |     | $WF\overline{S}106$ | is | OFF |
| FA 106 |    |     | FA 200              |    |     |
| TAL400 | is | OFF | PA_400              | is | OFF |

### Analog Inputs:

| FT 101 is 0.00  | GPM | TOTAL FLOW is | 52712745 | GAL |          |     |
|-----------------|-----|---------------|----------|-----|----------|-----|
| FT_102 is 0.00  | GPM | TOTAL FLOW is | 9372454  | GAL |          |     |
| FT_103 is 18.95 | GPM | TOTAL FLOW is | 1078927  | GAL |          |     |
| FT_105 is 18.93 | GPM | TOTAL FLOW is | 3697810  | GAL |          |     |
| PT_106 is 28.45 | IWC | LIMITS are L: | 15.00    | IWC | н: 34.00 | IWC |
| TT_400 is 85.2  | DEG | LIMITS are L: | 60.0     | DEG | Н: 110.0 | DEG |
| PT_400 is 9.2   | IWC | LIMITS are L: | 1.0      | IWC | н: 25.0  | IWC |
| TT_100 is 72.3  | DEG | LIMITS are L: | 40.0     | DEG | Н: 110.0 | DEG |
| FT_106 is 700.6 | CFM | LIMITS are L: | 400.0    | CFM | Н:       | CFM |

| 6                           |
|-----------------------------|
| 1 5 F F F F ( 7 F F 9666666 |
|                             |
|                             |

INJSPD

2.8 PCT PRO

Alarm Response Log Sheet, Groundwater Collection and Treatment System, Solvent Dock Area, Former Lockheed Martin French Road Facility, Utica, New York 
 Date:
 10/20/2011

 Time:
 20:00

 Technician:
 TMC

#### ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

| Date: | 10/15/11 | Time: | 10:40:00 |
|-------|----------|-------|----------|
|       | 10/19/11 |       | 14:29:00 |

#### Alarm Condition:

Process - 57 - FA-105 (Low Flow Alarm Aggregate Flowmeter FT-105)

Process - 56 - FA-105 (Low Flow Alarm Aggregate Flowmeter FT-105)

#### Cause of Alarm:

Suspect alarm conditions caused by low velocity in 3" diameter header pipe when only one MH pump in batching resulting in a delay for flow to registrar greater than 5 gpm before the alarm is trigger.

#### **Corrective Action:**

Increase time delay for alarm from 15 seconds to 30 seconds.

Continue to inspect the flowmeter on a monthly basis.







THE ARCADIS GCTS SYSTEM IN LOCKHEED UTICA @ 10:40:59 ON 10/15/2011 SER NO 9539 : SETUP VER 1 : ROM 2.1996 : MODEL A2

## System Status:

AUTO P57 : LAST SHUTDOWN @ 10:59:21 ON 10/11/2011 BY KEYPAD FAX REPORT INITIATED BY PROCESS 57



| MH1 HH is OFF | MH1 H2 is OFF              | MH1 H1 is OFF               | MH1 LO is ON  |
|---------------|----------------------------|-----------------------------|---------------|
| MH1_LL is ON  | MH2_HH is OFF              | MH2_H2 is OFF               | MH2_H1 is OFF |
| MH2_LO is ON  | MH2_LL is ON               | MH3_HH is OFF               | MH3_H2 is OFF |
| MH3_H1 is ON  | MH3_LO is ON               | MH3_LL is ON                | WFS106 is OFF |
| MOTION is OFF | $LSH\overline{1}06$ is OFF | LSH $\overline{1}00$ is OFF | LSL100 is ON  |
| FT_200 is OFF | LSH200 is OFF              |                             |               |



| MH1_P1 |    |     | MH1_P2                |    |     |
|--------|----|-----|-----------------------|----|-----|
| MH3_P1 | is |     | MH3_P2                |    |     |
| LA_MH1 | is | OFF | $FA_{\overline{1}01}$ | is | OFF |
| LA_MH3 | is |     | FA_103                |    |     |
| LSH106 |    |     | $WF\overline{S}106$   | is | OFF |
| FA 106 |    |     | FA 200                |    |     |
| TAL400 | is | OFF | PA_400                | is | OFF |

| MH2_P1<br>B_100<br>LA_MH2<br>PA_106<br>TA_100<br>MOTION | is<br>is<br>is<br>is<br>is | ON<br>OFF<br>OFF<br>OFF<br>OFF | MH2_P2<br>DH_300<br>FA_102<br>LA_100<br>FA_105<br>TAH400 | is<br>is<br>is<br>is | ON<br>OFF<br>OFF<br>ON |
|---------------------------------------------------------|----------------------------|--------------------------------|----------------------------------------------------------|----------------------|------------------------|
| LSH200                                                  | is                         | OFF                            |                                                          |                      |                        |

### Analog Inputs:

| FT 101 is 0.00               | GPM            | TOTAL FLOW is | 52913478 | GAL |          |     |
|------------------------------|----------------|---------------|----------|-----|----------|-----|
| FT_102 is 0.00               | GPM            | TOTAL FLOW is | 9406984  | GAL |          |     |
| FT <sup>-</sup> 103 is 18.68 | GPM            | TOTAL FLOW is | 1176926  | GAL |          |     |
| FT_105 is 5.86               | GPM            | TOTAL FLOW is | 4013349  | GAL |          |     |
| PT_106 is 27.05              | IWC            | LIMITS are L: | 15.00    | IWC | н: 34.00 | IWC |
| TT_400 is 83.3               | DEG            | LIMITS are L: | 60.0     | DEG | н: 110.0 | DEG |
| PT_400 is 10.5               | IWC            | LIMITS are L: | 1.0      | IWC | н: 25.0  | IWC |
| TT_100 is 68.1               | DEG            | LIMITS are L: | 40.0     | DEG | н: 110.0 | DEG |
| FT_106 is 759.6              | $\mathbf{CFM}$ | LIMITS are L: | 400.0    | CFM | Н:       | CFM |

|                                 |      | <br>••••••       |   |   |
|---------------------------------|------|------------------|---|---|
|                                 |      | <br>······       |   |   |
| E - E - E - E - E - E - E - E - |      | <br>             |   |   |
| · 2                             | 2751 |                  |   | C |
| 3X7 (1)                         |      | <br>Sec. 2. 4. 4 |   |   |
|                                 |      |                  |   |   |
|                                 |      | <br>             | • |   |

INJSPD

1.2 PCT PRO







THE ARCADIS GCTS SYSTEM IN LOCKHEED UTICA @ 14:29:02 ON 10/19/2011 SER NO 9539 : SETUP VER 1 : ROM 2.1996 : MODEL A2

## System Status:

AUTO P56 : LAST SHUTDOWN @ 16:14:05 ON 10/17/2011 BY KEYPAD FAX REPORT INITIATED BY PROCESS 56



| MH1_HH is OFF | MH1_H2 is OFF          | MH1_H1 is OFF | MH1_LO is ON  |
|---------------|------------------------|---------------|---------------|
| MH1_LL is ON  | MH2_HH is OFF          | MH2_H2 is OFF | MH2_H1 is ON  |
| MH2_LO is ON  | MH2_LL is ON           | MH3_HH is OFF | MH3_H2 is OFF |
| MH3_H1 is OFF | MH3_LO is ON           | MH3_LL is ON  | WFS106 is OFF |
| MOTION is OFF | LSH <b>1</b> 06 is OFF | LSH100 is OFF | LSL100 is ON  |
| FT_200 is OFF | LSH200 is OFF          |               |               |



| MH1_P1 |    |     | MH1_P2              |    |     |
|--------|----|-----|---------------------|----|-----|
| MH3_P1 | is | OFF | MH3_P2              | is | OFF |
| LA_MH1 | is | OFF | FA_101              | is | OFF |
| LA_MH3 | is | OFF | FA_103              | is | OFF |
| LSH106 |    |     | $WF\overline{S}106$ | is | OFF |
| FA 106 |    |     | FA 200              |    |     |
| TAL400 | is | OFF | PA_400              | is | OFF |

### Analog Inputs:

| FT_101 is 0.00                                                                          | GPM                             | TOTAL FLOW is                                                                 | 52954376                                        | GAL                             |                                 |                   |
|-----------------------------------------------------------------------------------------|---------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------|---------------------------------|-------------------|
| FT_102 is 21.05                                                                         | GPM                             | TOTAL FLOW is                                                                 | 9411847                                         | GAL                             |                                 |                   |
| FT <sup>103</sup> is 0.00                                                               | GPM                             | TOTAL FLOW is                                                                 | 1196616                                         | GAL                             |                                 |                   |
| FT_105 is 11.51                                                                         | GPM                             | TOTAL FLOW is                                                                 | 4075785                                         | GAL                             |                                 |                   |
| PT_106 is 28.08                                                                         | IWC                             | LIMITS are L                                                                  | : 15.00                                         | IWC                             | н: 34.00                        | IWC               |
| TT <sup>400</sup> is 77.5                                                               | DEG                             | LIMITS are L                                                                  | : 60.0                                          | DEG                             | н: 110.0                        | DEG               |
| PT_400 is 9.4                                                                           | IWC                             | LIMITS are L                                                                  | : 1.0                                           | IWC                             | н: 25.0                         | IWC               |
| TT <sup>-100</sup> is 68.4                                                              | DEG                             | LIMITS are L                                                                  | : 40.0                                          | DEG                             | н: 110.0                        | DEG               |
| FT_106 is 698.1                                                                         | CFM                             | LIMITS are L                                                                  | : 400.0                                         | CFM                             | Н:                              | CFM               |
| FT_105 is 11.51<br>PT_106 is 28.08<br>TT_400 is 77.5<br>PT_400 is 9.4<br>TT_100 is 68.4 | GPM<br>IWC<br>DEG<br>IWC<br>DEG | TOTAL FLOW is<br>LIMITS are L<br>LIMITS are L<br>LIMITS are L<br>LIMITS are L | 4075785<br>: 15.00<br>: 60.0<br>: 1.0<br>: 40.0 | GAL<br>IWC<br>DEG<br>IWC<br>DEG | H: 110.0<br>H: 25.0<br>H: 110.0 | DEG<br>IWC<br>DEG |

|       |      |             |                   | <br> |
|-------|------|-------------|-------------------|------|
|       |      |             | <del>.</del>      | <br> |
|       |      |             |                   | <br> |
| ¥⊷ t. | 2121 | 6 M F - E - | ******            | ~~   |
| - C   |      |             | A. A. S. S. M. A. | <br> |
|       |      |             |                   | <br> |

INJSPD 1.6

1.6 PCT PRO

| Alarm Response Log Sheet, Groundwater Collection and<br>Freatment System, Solvent Dock Area, Former Lockheed Martin |                                       |                | Date:<br>Time: | 11/2/2011<br>9:00 |     |
|---------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------|----------------|-------------------|-----|
|                                                                                                                     | French Road Facility, Utica, New York |                |                | Technician:       | TMC |
| ALARM RES                                                                                                           | SPONSE / COR                          | RECTIVE ACTION | ON LOG SHEET   |                   |     |
| Date:                                                                                                               | 10/28/11                              | Time:          | 13:40:00       |                   |     |
| Alarm Cond                                                                                                          | lition:                               |                |                |                   |     |
| Process 29 -                                                                                                        | MH-1 Low Flow                         | vrate          |                |                   |     |
|                                                                                                                     |                                       |                |                |                   |     |

#### Cause of Alarm:

Mineral scale build up on the paddlewheel sensor.

Possible air pockets causing turbulent flow during initial pump startup until manifold is completely flooded.

#### **Corrective Action:**

Inspect and clean flowmeter on 11/1/11, a small amount of mineral scaling was noted on the paddlewheel.

Increase time delay for alarm from 30 seconds to 60 seconds.







THE ARCADIS GCTS SYSTEM IN LOCKHEED UTICA @ 13:40:38 ON 10/28/2011 SER NO 9539 : SETUP VER 1 : ROM 2.1996 : MODEL A2

## System Status:

AUTO P29 : LAST SHUTDOWN @ 16:14:05 ON 10/17/2011 BY KEYPAD FAX REPORT INITIATED BY PROCESS 29



| MH1 HH is OFF | MH1 H2 is OFF | MH1 H1 is OFF              | MH1 LO is ON  |
|---------------|---------------|----------------------------|---------------|
| MH1_LL is ON  | MH2_HH is OFF | MH2_H2 is OFF              | MH2_H1 is ON  |
| MH2_LO is ON  | MH2_LL is ON  | MH3_HH is OFF              | MH3_H2 is OFF |
| MH3_H1 is OFF | MH3_LO is ON  | MH3_LL is ON               | WFS106 is OFF |
| MOTION is OFF | LSH106 is OFF | $LSH\overline{1}00$ is OFF | LSL100 is ON  |
| FT_200 is OFF | LSH200 is OFF |                            |               |



|        |    | OFF | MH1_P2              |    |     |
|--------|----|-----|---------------------|----|-----|
|        |    |     |                     |    |     |
| LA MH1 | is |     | FA_101              |    |     |
| LA MH3 | is | OFF | FA 103              | is | OFF |
| LSH106 | is | OFF | $WF\overline{S}106$ | is | OFF |
| FA 106 | is | OFF | FA 200              | is | OFF |
| TAL400 | is | OFF | PA_400              | is | OFF |
|        |    |     |                     |    |     |

| MH2_P1             |    |     | MH2_P2                |    |     |
|--------------------|----|-----|-----------------------|----|-----|
| $B_1\overline{0}0$ | is | ON  | $DH_{\overline{3}00}$ |    |     |
| LA MH2             |    |     | FA_102                |    |     |
| PA 106             | is | OFF | $LA^{100}$            |    |     |
| $TA^{100}$         | is | OFF | FA 105                | is | ON  |
| MOTION             | is | OFF | TAH400                | is | OFF |
| LSH200             | is | OFF |                       |    |     |
|                    |    |     |                       |    |     |

### Analog Inputs:

| FT_101 is 9.67<br>FT_102 is 17.63<br>FT_103 is 18.14<br>FT_105 is 41.24<br>PT_106 is 30.62<br>TT_400 is 77.7<br>PT_400 is 9.2<br>TT_100 is 67.5<br>FT_106 is 651 3 | GPM<br>GPM<br>GPM<br>IWC<br>DEG<br>IWC<br>DEG<br>CFM | TOTAL FLOW is 530431<br>TOTAL FLOW is 942833<br>TOTAL FLOW is 124071<br>TOTAL FLOW is 421650<br>LIMITS are L: 15.00<br>LIMITS are L: 60.0<br>LIMITS are L: 1.0<br>LIMITS are L: 40.0<br>LIMITS are L: 400.0 | GOGAL<br>GAL<br>GAL<br>IWC<br>DEG<br>IWC<br>DEG<br>DEG | H: 34.00<br>H: 110.0<br>H: 25.0<br>H: 110.0 | IWC<br>DEG<br>IWC<br>DEG<br>CEM |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------|---------------------------------|
| FT_106 is 651.3                                                                                                                                                    |                                                      | LIMITS are L: 400.0                                                                                                                                                                                         | CFM                                                    | H:                                          | CEM                             |
|                                                                                                                                                                    |                                                      |                                                                                                                                                                                                             |                                                        |                                             |                                 |

|     |      | <br>               |       | ************ |
|-----|------|--------------------|-------|--------------|
|     |      | <br>               |       | ***********  |
|     |      |                    |       |              |
| ·   |      | <br>10 C 10 C 10 C |       |              |
| - C | **** |                    | 8/2/2 |              |
|     |      | <br>               | ***** |              |
|     |      | <br>               |       |              |
|     |      | <br>               |       |              |

INJSPD 6.5 PCT PRO

| Alarm Response Log Sheet, Groundwater Collection and        | Date:       | 11/8/2011 |  |  |  |  |
|-------------------------------------------------------------|-------------|-----------|--|--|--|--|
| Treatment System, Solvent Dock Area, Former Lockheed Martin | Time:       | 10:25     |  |  |  |  |
| French Road Facility, Utica, New York                       | Technician: | TMC       |  |  |  |  |
| ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET                |             |           |  |  |  |  |
| Date: 11/8/11 Time: 5:30:00                                 |             |           |  |  |  |  |
| Alarm Condition:                                            |             |           |  |  |  |  |
| Daily scheduled system fax report was not received.         |             |           |  |  |  |  |
|                                                             |             |           |  |  |  |  |
|                                                             |             |           |  |  |  |  |

#### Cause of Alarm:

Faulty local phone connection resulted in a failed dialout by the PLC

#### **Corrective Action:**

Log into the system remotely and verify operation.

Initiate a fax now to test dialout connection/communication.







THE ARCADIS GCTS SYSTEM IN LOCKHEED UTICA @ 09:36:57 ON 11/08/2011 SER NO 9539 : SETUP VER 1 : ROM 2.1996 : MODEL A2

## System Status:

AUTO P06 : LAST SHUTDOWN @ 16:14:05 ON 10/17/2011 BY KEYPAD FAX REPORT INITIATED BY REMOTE



| MH1_HH is OFF | MH1_H2 is OFF              | MH1_H1 is OFF              | MH1_LO is ON                |
|---------------|----------------------------|----------------------------|-----------------------------|
| MH1_LL is ON  | MH2_HH is OFF              | MH2_H2 is OFF              | MH2_H1 is OFF               |
| MH2_LO is ON  | MH2_LL is ON               | MH3_HH is OFF              | MH3_H2 is OFF               |
| MH3_H1 is OFF | MH3_LO is ON               | MH3_LL is ON               | WFS $\overline{1}06$ is OFF |
| MOTION is OFF | $LSH\overline{1}06$ is OFF | $LSH\overline{1}00$ is OFF | LSL100 is ON                |
| FT_200 is OFF | LSH200 is OFF              |                            |                             |



| MH1_P1 | is |     | MH1_P2              |    |     |
|--------|----|-----|---------------------|----|-----|
| MH3_P1 | is |     | MH3_P2              |    |     |
| LA_MH1 | is | OFF | $FA_{101}$          | is | OFF |
| LA MH3 |    |     | FA_103              | is | OFF |
| LSH106 |    |     | $WF\overline{S}106$ | is | OFF |
| FA_106 |    |     | FA_200              |    |     |
| TAL400 | is | OFF | PA_400              | is | OFF |

### Analog Inputs:

| FT 101 is 0.00 | GPM            | TOTAL FLOW is | 53126731 | GAL |          |     |
|----------------|----------------|---------------|----------|-----|----------|-----|
| FT_102 is 0.00 | GPM            | TOTAL FLOW is | 9441720  | GAL |          |     |
| FT_103 is 0.00 | GPM            | TOTAL FLOW is | 1279673  | GAL |          |     |
| FT_105 is 0.00 | GPM            | TOTAL FLOW is | 4333235  | GAL |          |     |
| PT_106 is 0.00 | IWC            | LIMITS are L: | 15.00    | IWC | н: 34.00 | IWC |
| TT_400 is 67.8 | DEG            | LIMITS are L: | 60.0     | DEG | Н: 110.0 | DEG |
| PT_400 is 0.0  | IWC            | LIMITS are L: | 1.0      | IWC | н: 25.0  | IWC |
| TT_100 is 62.8 | DEG            | LIMITS are L: | 40.0     | DEG | Н: 110.0 | DEG |
| FT_106 is 0.0  | $\mathbf{CFM}$ | LIMITS are L: | 400.0    | CFM | Н:       | CFM |



INJSPD 0.0 PCT PRO

| Alarm Response Log Sheet, Groundwater Collection and        |
|-------------------------------------------------------------|
| Treatment System, Solvent Dock Area, Former Lockheed Martin |
| French Road Facility, Utica, New York                       |

| Date:       | 11/14/2011 |
|-------------|------------|
| Time:       | 9:15       |
| Technician: | TMC        |

#### ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Date: 11/13/11 Time: 18:05:00

#### Alarm Condition:

Process - 56 - FA-105 (Low Flow Alarm Aggregate Flowmeter FT-105)

#### Cause of Alarm:

Possible air pockets causing turbulent flow during initial pump startup until manifold is completely flooded. Suspect alarm conditions caused by low velocity in 3" diameter header pipe when only one MH pump in batching resulting in a delay for flow to registrar greater than 5 gpm before the alarm is trigger.

#### **Corrective Action:**

Log into the system remotely and verify operation.

Continue to inspect the flowmeter on a monthly basis.

Continue to monitor the effectiveness of the sequestering agent.







THE ARCADIS GCTS SYSTEM IN LOCKHEED UTICA @ 18:05:49 ON 11/13/2011 SER NO 9539 : SETUP VER 1 : ROM 2.1996 : MODEL A2

## System Status:

AUTO P56 : LAST SHUTDOWN @ 16:14:05 ON 10/17/2011 BY KEYPAD FAX REPORT INITIATED BY PROCESS 56



| MH1 HH is OFF | MH1 H2 is OFF | MH1 H1 is OFF               | MH1 LO is ON  |
|---------------|---------------|-----------------------------|---------------|
| MH1_LL is ON  | MH2_HH is OFF | MH2_H2 is OFF               | MH2_H1 is OFF |
| MH2_LO is ON  | MH2_LL is ON  | MH3_HH is OFF               | MH3_H2 is OFF |
| MH3_H1 is OFF | MH3_LO is ON  | MH3_LL is ON                | WFS106 is OFF |
| MOTION is OFF | LSH106 is OFF | LSH $\overline{1}00$ is OFF | LSL100 is ON  |
| FT_200 is OFF | LSH200 is OFF |                             |               |



| is | OFF                        |                            |                                                              |                                                                                                                                                                      |
|----|----------------------------|----------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| is |                            |                            |                                                              |                                                                                                                                                                      |
| is | OFF                        | $FA_{101}$                 | is                                                           | OFF                                                                                                                                                                  |
| is |                            |                            |                                                              |                                                                                                                                                                      |
|    |                            | $WF\overline{S}106$        | is                                                           | OFF                                                                                                                                                                  |
|    |                            | FA 200                     | is                                                           | OFF                                                                                                                                                                  |
| is | OFF                        | PA_400                     | is                                                           | OFF                                                                                                                                                                  |
|    | is<br>is<br>is<br>is<br>is | is OFF<br>is OFF<br>is OFF | is OFFMH3_P2is OFFFA_101is OFFFA_103is OFFWFS106is OFFFA_200 | is OFF         MH3_P2 is           is OFF         FA_101 is           is OFF         FA_103 is           is OFF         WFS106 is           is OFF         FA_200 is |

| MH2_P1<br>B_100<br>LA_MH2<br>PA_106<br>TA_100<br>MOTION | is<br>is<br>is<br>is | ON<br>OFF<br>OFF<br>OFF<br>OFF | MH2_P2<br>DH_300<br>FA_102<br>LA_100<br>FA_105<br>TAH400 | is<br>is<br>is<br>is | ON<br>OFF<br>OFF<br>ON |
|---------------------------------------------------------|----------------------|--------------------------------|----------------------------------------------------------|----------------------|------------------------|
| LSH200                                                  | is                   | OFF                            |                                                          |                      |                        |

### Analog Inputs:

| FT 101 is 0.00               | GPM            | TOTAL FLOW is | 53161750 | GAL |          |     |
|------------------------------|----------------|---------------|----------|-----|----------|-----|
| FT <sup>-</sup> 102 is 19.56 | GPM            | TOTAL FLOW is | 9446206  | GAL |          |     |
| FT_103 is 0.00               | GPM            | TOTAL FLOW is | 1296653  | GAL |          |     |
| FT_105 is 10.87              | GPM            | TOTAL FLOW is | 4388122  | GAL |          |     |
| PT_106 is 28.72              | IWC            | LIMITS are L: | 15.00    | IWC | н: 34.00 | IWC |
| TT_400 is 94.2               | DEG            | LIMITS are L: | 60.0     | DEG | н: 110.0 | DEG |
| PT_400 is 9.0                | IWC            | LIMITS are L: | 1.0      | IWC | н: 25.0  | IWC |
| TT <sup>-</sup> 100 is 73.0  | DEG            | LIMITS are L: | 40.0     | DEG | н: 110.0 | DEG |
| FT_106 is 712.8              | $\mathbf{CFM}$ | LIMITS are L: | 400.0    | CFM | Н:       | CFM |
|                              |                |               |          |     |          |     |

| : ¥-    | 827   | \$115 | 19 HE HE. | 11001    | 2 I C 7 M (1993) |
|---------|-------|-------|-----------|----------|------------------|
| - A - F | 1 A A | 5 S   | <u> </u>  | 22.2 Cak | A                |
|         |       |       |           | <b></b>  |                  |

INJSPD

1.2 PCT PRO

| Alarm Response Log Sheet, Groundwater Collection and        |
|-------------------------------------------------------------|
| Treatment System, Solvent Dock Area, Former Lockheed Martin |
| French Road Facility, Utica, New York                       |

| Date:       | 11/15/2011 |
|-------------|------------|
| Time:       | 13:00      |
| Technician: | TMC        |

#### ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Date: 11/14/11 Time: 15:08:00

#### Alarm Condition:

Process - 55 - FA-105 (Low Flow Alarm Aggregate Flowmeter FT-105) with MH-1 online

#### Cause of Alarm:

Suspect alarm conditions caused by possible sediment and/or scaling on the paddlewheel sensor.

#### **Corrective Action:**

Log into the system remotely and verify operation.

11/15/11 - Remove and inspect flowmeter paddlewheel for scaling and clean as necessary.

Continue to inspect the flowmeter on a monthly basis.

Continue to monitor the effectiveness of the sequestering agent.







THE ARCADIS GCTS SYSTEM IN LOCKHEED UTICA @ 15:08:52 ON 11/14/2011 SER NO 9539 : SETUP VER 1 : ROM 2.1996 : MODEL A2

## System Status:

AUTO P55 : LAST SHUTDOWN @ 16:14:05 ON 10/17/2011 BY KEYPAD FAX REPORT INITIATED BY PROCESS 55



| MH1_HH is OFF | MH1_H2 is OFF              | MH1_H1 is ON               | MH1_LO is ON  |
|---------------|----------------------------|----------------------------|---------------|
| MH1_LL is ON  | MH2_HH is OFF              | MH2_H2 is OFF              | MH2_H1 is OFF |
| MH2_LO is ON  | MH2_LL is ON               | MH3_HH is OFF              | MH3_H2 is OFF |
| MH3_H1 is OFF | MH3_LO is ON               | MH3_LL is ON               | WFS106 is OFF |
| MOTION is OFF | $LSH\overline{1}06$ is OFF | $LSH\overline{1}00$ is OFF | LSL100 is ON  |
| FT_200 is OFF | LSH200 is OFF              |                            |               |



| MH1_P1 | is |     | MH1_P2              |    |     |
|--------|----|-----|---------------------|----|-----|
| MH3_P1 | is | OFF | MH3_P2              | is | OFF |
| LA_MH1 | is |     | $FA_{101}$          |    |     |
| LA MH3 |    |     | FA_103              | is | OFF |
| LSH106 |    |     | $WF\overline{S}106$ |    |     |
| FA_106 |    |     | FA_200              |    |     |
| TAL400 | is | OFF | PA_400              | is | OFF |

### Analog Inputs:

| FT_101 is 29.99        | GPM | TOTAL FLOW i | s 53166773 | GAL |          |                |
|------------------------|-----|--------------|------------|-----|----------|----------------|
| FT_102 is 0.00         | GPM | TOTAL FLOW i | s 9448315  | GAL |          |                |
| FT_103 is 0.00         | GPM | TOTAL FLOW i | s 1298737  | GAL |          |                |
| FT_105 is 0.00         | GPM | TOTAL FLOW i | s 4396229  | GAL |          |                |
| PT_106 is 29.00        | IWC | LIMITS are   | L: 15.00   | IWC | н: 34.00 | IWC            |
| TT <b>_400 is 89.7</b> | DEG | LIMITS are   | L: 60.0    | DEG | н: 110.0 | $\mathbf{DEG}$ |
| PT_400 is 8.2          | IWC | LIMITS are   | L: 1.0     | IWC | н: 25.0  | IWC            |
| TT <b>_100 is 67.3</b> | DEG | LIMITS are   | L: 40.0    | DEG | н: 110.0 | $\mathbf{DEG}$ |
| FT_106 is 650.6        | CFM | LIMITS are   | L: 400.0   | CFM | Н:       | CFM            |

|      | •.•   |     | •.• |          |            |    | ۰. | ۰. |   |   |    |    |    |   | •  | ٠. | ۰. | ۰. |     |    |     |    | ۰. |     |    |     | ۰. | •  |    |    |     | ٠.  |    |     |     |    |       |     |     | ٠. | ۰.  | ۰. | 7 |
|------|-------|-----|-----|----------|------------|----|----|----|---|---|----|----|----|---|----|----|----|----|-----|----|-----|----|----|-----|----|-----|----|----|----|----|-----|-----|----|-----|-----|----|-------|-----|-----|----|-----|----|---|
| 242  | - 24  | 0 C | ÷.  | ۰.       | 24         | ×  | 10 | с. | 0 | 0 | o  | ٠. | 1  | × |    |    | •  | •  | 0   | ۰. | 1   | х  | ÷  |     | ٠. | 1   | •  | 0  | ۰. | 24 | 1   |     | 0  | 0   | ۰.  | ٠. | 24    | 1   |     |    | •   | с. | ٠ |
| •••  | · •   | ÷., | Ŀ., | ۰.       | 14         |    | ×1 | •  | • |   | ۰. | ٠. | ٠. |   | ٠. |    | •  | •  | ۰.  | ۰. | -   | ×  | •  | ٠.  | ٠. | ••• | ÷  | •  | ۰. | ٠. | ••• | ••• | •  | ۰.  | ۰.  | ٠. | 17    | ••• | ٠.  |    | •   | •  |   |
| •.•  | · * • | л.  | ٠.  | <u>.</u> | 14         |    | 12 | ÷  | ÷ |   | ٢. | ۰. | -  |   | -  |    |    |    |     | Γ. | •   |    | 14 | 4.  | -  | -   | с  | ÷  | -  | ۰. | -   | -   |    |     | ۰.  | ÷  | 1.1   | -   | ٠., |    | . ۰ |    |   |
| •.•  | 28    | 2.5 | •   |          | ю          | r  | 2  | C1 | r |   | N  | æ  |    |   | P  |    | ٠. |    |     | Ν. | • • |    |    | Ρ.  | т  | ч.  |    |    |    | п  | Ľ   |     |    |     |     | 27 |       |     |     | •  |     |    | 2 |
| •    | e .   |     | Ε.  | c        | ν.         | C. |    | х  |   |   |    | Ε. |    |   |    |    | ۰. | •  |     | 10 | - 1 | P  |    |     | E. |     | 1  | а. |    |    | Γ.  |     |    | Η.  | -   | ĸ  | •0    | •   | 0   | ۰. | ٠.  | ٠. |   |
| - 21 |       |     |     |          |            | н  |    |    | н |   |    | υ  |    | ٠ | -  | 2. | ٠. | ٠. | -   |    |     | г. |    |     | н  |     | а. | ω, |    | ٠  | 0   |     |    | -   | - 1 |    | ٠     | •   |     | ۰. | ٠.  | ٠. |   |
| - 5  | •.•   | -   |     | •••      | <i>.</i> " |    | т, | 5  | • |   |    | 7  |    | c |    |    | ٠. | ۰. | •.• | 7  |     | ٠. | ۰. |     |    | г.  |    | 7  |    | 7  |     | ۰.  | 7  | ç   | 7   |    | а,    | ••• | ۰.  | ۰. | ۰.  | ۰. |   |
|      |       |     |     |          |            |    |    |    |   |   |    |    |    |   |    | Ξ. | ۰. | ۰. | •.• | ٠. | ·*. | ٠. | ۰. | •.• |    | . 4 |    |    |    |    |     |     | ٠. | •.• |     |    | . * . | ٠.  | ۰.  | ٠. | ۰.  | ٠. |   |

INJSPD 0.0

0.0 PCT PRO

| Alarm Response Log Sheet, Groundwater Collection and<br>Treatment System, Solvent Dock Area, Former Lockheed Martin<br>French Road Facility, Utica, New York | Date:<br>Time:<br>Technician: | 11/15/2011<br>7:45<br>TMC |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------|
| ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET                                                                                                                 |                               |                           |
| Date: <u>11/15/11</u> Time: <u>5:30:00</u>                                                                                                                   |                               |                           |
| Alarm Condition:                                                                                                                                             |                               |                           |
| Daily scheduled system fax report was not received.                                                                                                          |                               |                           |
|                                                                                                                                                              |                               |                           |
|                                                                                                                                                              |                               |                           |

#### Cause of Alarm:

Faulty local phone connection resulted in a failed dial out by the PLC

#### **Corrective Action:**

Log into the system remotely and verify operation.

Initiate a fax now to test dial out connection/communication.







THE ARCADIS GCTS SYSTEM IN LOCKHEED UTICA @ 08:31:48 ON 11/15/2011 SER NO 9539 : SETUP VER 1 : ROM 2.1996 : MODEL A2

## System Status:

AUTO P06 : LAST SHUTDOWN @ 16:14:05 ON 10/17/2011 BY KEYPAD FAX REPORT INITIATED BY REMOTE



| MH1_HH is OFF | MH1_H2 is OFF | MH1_H1 is OFF              | MH1_LO is ON                |
|---------------|---------------|----------------------------|-----------------------------|
| MH1_LL is ON  | MH2_HH is OFF | MH2_H2 is OFF              | MH2_H1 is OFF               |
| MH2_LO is ON  | MH2_LL is ON  | MH3_HH is OFF              | MH3_H2 is OFF               |
| MH3_H1 is OFF | MH3_LO is ON  | MH3_LL is ON               | WFS $\overline{1}06$ is OFF |
| MOTION is OFF | LSH106 is OFF | $LSH\overline{1}00$ is OFF | LSL100 is ON                |
| FT_200 is OFF | LSH200 is OFF |                            |                             |



| MH1_P1 | is |     | MH1_P2              |    |     |
|--------|----|-----|---------------------|----|-----|
| MH3_P1 | is |     | MH3_P2              |    |     |
| LA_MH1 | is | OFF | $FA_{101}$          | is | OFF |
| LA MH3 |    |     | FA_103              | is | OFF |
| LSH106 |    |     | $WF\overline{S}106$ | is | OFF |
| FA_106 |    |     | FA_200              |    |     |
| TAL400 | is | OFF | PA_400              | is | OFF |

| MH2_P1<br>B_100<br>LA_MH2<br>PA_106<br>TA_100<br>MOTION<br>LSH200 | is<br>is<br>is<br>is | OFF<br>OFF<br>OFF<br>OFF<br>OFF | MH2_P2<br>DH_300<br>FA_102<br>LA_100<br>FA_105<br>TAH400 | is<br>is<br>is<br>is | OFF<br>OFF<br>OFF<br>ON |
|-------------------------------------------------------------------|----------------------|---------------------------------|----------------------------------------------------------|----------------------|-------------------------|
| LSH200                                                            | is                   | OFF                             |                                                          |                      |                         |

### Analog Inputs:

| FT 101 is 0.00              | GPM            | TOTAL FLOW is | 53178291 | GAL |          |     |
|-----------------------------|----------------|---------------|----------|-----|----------|-----|
| FT_102 is 0.00              | GPM            | TOTAL FLOW is | 9448315  | GAL |          |     |
| FT <sup>103</sup> is 0.00   | GPM            | TOTAL FLOW is | 1303332  | GAL |          |     |
| FT <sup>-105</sup> is 0.00  | GPM            | TOTAL FLOW is | 4396229  | GAL |          |     |
| PT_106 is 0.12              | IWC            | LIMITS are L: | 15.00    | IWC | н: 34.00 | IWC |
| TT <sup>400</sup> is 96.6   | DEG            | LIMITS are L: | 60.0     | DEG | н: 110.0 | DEG |
| PT_400 is 0.0               | IWC            | LIMITS are L: | 1.0      | IWC | н: 25.0  | IWC |
| TT <sup>-</sup> 100 is 72.0 | DEG            | LIMITS are L: | 40.0     | DEG | н: 110.0 | DEG |
| FT_106 is 0.0               | $\mathbf{CFM}$ | LIMITS are L: | 400.0    | CFM | Н:       | CFM |
|                             |                |               |          |     |          |     |

|             | <br> | <br>                                                                                                               |      |                     |
|-------------|------|--------------------------------------------------------------------------------------------------------------------|------|---------------------|
|             | <br> | <br>                                                                                                               |      |                     |
|             | <br> | <br>                                                                                                               |      |                     |
| - 1. K 🖬 🗛  |      | <br>A 100 YO 100 |      | 79 NB - 1997 - 1997 |
| ं अन्य हर   | <br> |                                                                                                                    |      | <b>K</b>            |
| 10 C - 10 C |      | <br>A & A & A                                                                                                      | **** |                     |
|             | <br> |                                                                                                                    |      |                     |
|             | <br> | <br>                                                                                                               |      |                     |

INJSPD 0.0 P

0.0 PCT PRO

Alarm Response Log Sheet, Groundwater Collection and Treatment System, Solvent Dock Area, Former Lockheed Martin French Road Facility, Utica, New York

| Date:       | 11/21/2011 |
|-------------|------------|
| Time:       | 12:35      |
| Technician: | TMC        |

#### ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

| Date: | 11/20/11 | Time: | 8:11:00 |
|-------|----------|-------|---------|
|       | 11/21/11 |       | 9:09:00 |

#### Alarm Condition:

Process - 30 - FA-102 (Low Flow Alarm Aggregate Flowmeter FT-102) with MH-2 online

#### Cause of Alarm:

Suspect alarm conditions caused by possible sediment and/or scaling on the paddlewheel sensor.

#### **Corrective Action:**

Log into the system remotely and verify operation and bump paddlewheel with by manually turning on 2nd pump to increase velocity in pipe on 11/21/11, verify flowrate 22 gpm, place 2nd pump back to auto and flowrate remained at ~22 gpm.

Remove and inspect flowmeter paddlewheel for scaling and clean as necessary during the December Monthly OMM event.







THE ARCADIS GCTS SYSTEM IN LOCKHEED UTICA @ 08:11:02 ON 11/20/2011 SER NO 9539 : SETUP VER 1 : ROM 2.1996 : MODEL A2

## System Status:

AUTO P30 : LAST SHUTDOWN @ 16:14:05 ON 10/17/2011 BY KEYPAD FAX REPORT INITIATED BY PROCESS 30



| MH1_HH is OFF | MH1_H2 is OFF              | MH1_H1 is OFF              | MH1_LO is ON  |
|---------------|----------------------------|----------------------------|---------------|
| MH1_LL is ON  | MH2_HH is OFF              | MH2_H2 is OFF              | MH2_H1 is ON  |
| MH2_LO is ON  | MH2_LL is ON               | MH3_HH is OFF              | MH3_H2 is OFF |
| MH3_H1 is OFF | MH3_LO is ON               | MH3_LL is ON               | WFS106 is OFF |
| MOTION is OFF | $LSH\overline{1}06$ is OFF | $LSH\overline{1}00$ is OFF | LSL100 is ON  |
| FT_200 is OFF | LSH200 is OFF              |                            |               |



| MH1_P1 |    |     | MH1_P2 |    |     |
|--------|----|-----|--------|----|-----|
| MH3_P1 | is | OFF | MH3_P2 | is | OFF |
| LA_MH1 | is | OFF | FA_101 | is | OFF |
| LA MH3 |    |     | FA_103 | is | OFF |
| LSH106 |    |     | WFS106 | is | OFF |
| FA_106 |    |     | FA_200 |    |     |
| TAL400 | is | OFF | PA_400 | is | OFF |

| MH2_P1 is |       | MH2 P2                |    |     |
|-----------|-------|-----------------------|----|-----|
| B_100 is  |       | $DH_{\overline{3}00}$ |    |     |
| LA_MH2 is |       | FA_102                |    |     |
| PA_106 is |       | $LA_{100}$            |    |     |
| TA_100 is |       | FA_105                |    |     |
| MOTION is |       | TAH400                | is | OFF |
| LSH200 is | ; OFF |                       |    |     |

### Analog Inputs:

| FT 101 is 0.00            | GPM | TOTAL FLOW is | 53228268 | GAL |          |     |
|---------------------------|-----|---------------|----------|-----|----------|-----|
| FT_102 is 0.00            | GPM | TOTAL FLOW is | 9455096  | GAL |          |     |
| FT <sup>103</sup> is 0.00 | GPM | TOTAL FLOW is | 1322900  | GAL |          |     |
| FT_105 is 0.00            | GPM | TOTAL FLOW is | 4457147  | GAL |          |     |
| PT_106 is 25.64           | IWC | LIMITS are L: | 15.00    | IWC | н: 34.00 | IWC |
| TT_400 is 88.1            | DEG | LIMITS are L: | 60.0     | DEG | н: 110.0 | DEG |
| PT_400 is 11.5            | IWC | LIMITS are L: | 1.0      | IWC | н: 25.0  | IWC |
| TT_100 is 73.2            | DEG | LIMITS are L: | 40.0     | DEG | н: 110.0 | DEG |
| FT_106 is 921.2           | CFM | LIMITS are L: | 400.0    | CFM | Н:       | CFM |

|            | •••••      |      |                                       | ************* | <br>************** |
|------------|------------|------|---------------------------------------|---------------|--------------------|
|            |            |      | · · · · · · · · · · · · · · · · · · · |               |                    |
| · · · · ·  |            |      |                                       |               | <br>               |
| . <u>A</u> |            |      |                                       |               | <br>Q              |
| . Y        | 10.010     | 1002 |                                       |               |                    |
|            | T T T. /   |      |                                       |               | <br>               |
|            | ********** |      |                                       |               | <br>               |

INJSPD 0

0.0 PCT PRO







THE ARCADIS GCTS SYSTEM IN LOCKHEED UTICA @ 09:09:00 ON 11/21/2011 SER NO 9539 : SETUP VER 1 : ROM 2.1996 : MODEL A2

## System Status:

AUTO P30 : LAST SHUTDOWN @ 16:14:05 ON 10/17/2011 BY KEYPAD FAX REPORT INITIATED BY PROCESS 30



| MH1_HH is OFF | MH1_H2 is OFF              | MH1_H1 is OFF              | MH1_LO is ON  |
|---------------|----------------------------|----------------------------|---------------|
| MH1_LL is ON  | MH2_HH is OFF              | MH2_H2 is OFF              | MH2_H1 is ON  |
| MH2_LO is ON  | MH2_LL is ON               | MH3_HH is OFF              | MH3_H2 is OFF |
| MH3_H1 is OFF | MH3_LO is ON               | MH3_LL is ON               | WFS106 is OFF |
| MOTION is OFF | $LSH\overline{1}06$ is OFF | $LSH\overline{1}00$ is OFF | LSL100 is ON  |
| FT_200 is OFF | LSH200 is OFF              |                            |               |



| MH1_P1 |    |     | MH1_P2 |    |     |
|--------|----|-----|--------|----|-----|
| MH3_P1 | is |     | мн3_р2 |    |     |
| LA MH1 | is | OFF | FA_101 | is | OFF |
| LA_MH3 |    |     | FA_103 | is | OFF |
| LSH106 |    |     | WFS106 | is | OFF |
| FA 106 |    |     | FA 200 | is | OFF |
| TAL400 | is | OFF | PA_400 | is | OFF |
|        |    |     |        |    |     |

| MH2_P1             |    |     | MH2_P2                |    |     |
|--------------------|----|-----|-----------------------|----|-----|
| $B_1\overline{0}0$ |    |     | $DH_{\overline{3}00}$ | is | ON  |
| LA_MH2             |    |     | FA_102                |    |     |
| PA_106             |    |     | $LA_{100}$            |    |     |
| TA_100             | is | OFF | FA_105                |    |     |
| MOTION             | is | OFF | TAH400                | is | OFF |
| LSH200             | is | OFF |                       |    |     |

### Analog Inputs:

| FT 101 is 0.00         | GPM            | TOTAL FLOW is | 53235859 | GAL |          |     |
|------------------------|----------------|---------------|----------|-----|----------|-----|
| FT_102 is 21.54        | GPM            | TOTAL FLOW is | 9455307  | GAL |          |     |
| FT_103 is 0.00         | GPM            | TOTAL FLOW is | 1326114  | GAL |          |     |
| FT_105 is 10.59        | GPM            | TOTAL FLOW is | 4467461  | GAL |          |     |
| PT_106 is 30.40        | IWC            | LIMITS are L: | 15.00    | IWC | н: 34.00 | IWC |
| TT <b>_400 is 97.5</b> | DEG            | LIMITS are L: | 60.0     | DEG | н: 110.0 | DEG |
| PT_400 is 9.1          | IWC            | LIMITS are L: | 1.0      | IWC | н: 25.0  | IWC |
| TT_100 is 73.4         | DEG            | LIMITS are L: | 40.0     | DEG | н: 110.0 | DEG |
| FT_106 is 791.7        | $\mathbf{CFM}$ | LIMITS are L: | 400.0    | CFM | Н:       | CFM |

| Analog Outputs:  |             |         |             | <br>                              |
|------------------|-------------|---------|-------------|-----------------------------------|
| rstuatos computs | 800 B       |         |             | . <u></u>                         |
|                  | ÷ 🐥         | 2751    | 17 Y 9 K 10 | <br>1 a <b>- 2</b> a - Contractor |
|                  | - K. (1994) | A & S & |             | <b></b>                           |

INJSPD

1.6 PCT PRO

Alarm Response Log Sheet, Groundwater Collection and Treatment System, Solvent Dock Area, Former Lockheed Martin French Road Facility, Utica, New York

| Date:       | 11/23/2011 |
|-------------|------------|
| Time:       | 12:30      |
| Technician: | CD/TMC     |

#### ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Date: <u>11/21/11</u> Time: <u>16:23:00</u>

#### Alarm Condition:

PLC Reset to "Manual" for unknown reason, identified during remote login following no daily fax receipt.

#### Cause of Alarm:

Monday, 11/21/11 @ 16:23 – Something causes system to reset. I know the time and date because the earliest datalog entries are a "RESET" and "MANUAL" at that very time. No other events occurred until you logged in today. Noted events are below:

"BTD 6: Overflow" alarm box shows up repeatedly within the ProControl Software. Three clicks of okay and it would go away for a short period before returning.

All datalog information before 11/21/11 16:23 has been erased. Note: All logged data was downloaded and saved in the AM on 11/21/11 while drafting the monthly DMR.

Flow totalizers had been reset to zero at 11/21/11 16:23.

All analog input high/low alarm setpoints had been changed to 12/8.

#### **Corrective Action:**

Dan Zuck onsite 11/22/11 to inspect system locally, unable to log into local PLC interface.

TMC logs into the system remotely on 11/23/11 and observes the alarm condition noted above.

CD logs into the system remotely and reconfigures the PLC with the latest GCTS File #17 on 11/23/11.

Change all analog input alarm levels/timers to match the latest revised OMM Table 3.

Corrected totalizers. The last record of flow totalizers was provided in an alarm fax report about 1.5 hours before (11/21/11 14:56) the shutdown (11/21/11 16:23). These numbers were added to the current totalizers within the PLC.

Confirmed that totalizer logging period was still set to once every 6 hours. Also confirm datalogger setup for all analog and discrete I/O.

Restart system in "Auto" at 12:00 on 11/23/11 and watch each process control funciton/logic for proper operation/response.



|  |  |   |   | ٠ |
|--|--|---|---|---|
|  |  |   |   |   |
|  |  |   |   | ٠ |
|  |  |   |   |   |
|  |  | ¢ |   |   |
|  |  |   | 1 |   |
|  |  |   |   |   |
|  |  |   |   |   |

#### TODD CARIGNAN



#### THE ARCADIS SYSTEM IN UTICA\_NEW YORK @ 06:30:00 ON 11/24/2011 SER NO 9539 : SETUP VER 1 : ROM 2.1996 : MODEL A2

### System Status:

**AUTO P06 :** LAST SHUTDOWN @ 12:15:22 ON 11/23/2011 BY B\_100



| MH1_HH is OFF | MH1_H2 is OFF | MH1_H1 is OFF              | MH1_LO is ON                |
|---------------|---------------|----------------------------|-----------------------------|
| MH1_LL is ON  | MH2_HH is OFF | MH2_H2 is OFF              | MH2_H1 is OFF               |
| MH2_LO is ON  | MH2_LL is ON  | MH3_HH is OFF              | MH3_H2 is OFF               |
| MH3 H1 is OFF | MH3_LO is ON  | MH3 LL is ON               | WFS $\overline{1}06$ is OFF |
| MOTION is OFF | LSH106 is OFF | $LSH\overline{1}00$ is OFF | LSL100 is ON                |
| FT_200 is OFF | LSH200 is OFF |                            |                             |

MH2\_P2 is OFF DH\_300 is OFF

FA\_102 is OFF

LA\_100 is OFF

FA\_105 is OFF TAH400 is OFF

## Discrete Outputs:

| MH1_P1 is OFF    | MH1_P2 is OFF     | MH2_P1 is OFF             |
|------------------|-------------------|---------------------------|
| MH3_P1 is OFF    | MH3_P2 is OFF     | $B_1\overline{0}0$ is OFF |
| LA_MH1 is OFF    | $FA_{101}$ is OFF | LA_MH2 is OFF             |
| LA_MH3 is OFF    | FA_103 is OFF     | PA_106 is OFF             |
| LSH106 is OFF    | WFS106 is OFF     | TA_100 is OFF             |
| FA_106 is OFF    | FA_200 is OFF     | MOTION is OFF             |
| TAL $400$ is OFF | $PA_400$ is OFF   | LSH200 is OFF             |

## Analog Inputs:

| FT 101 is 0.00              | GPM            | TOTAL FLOW is | 53271106 | GAL |          |                |
|-----------------------------|----------------|---------------|----------|-----|----------|----------------|
| FT <sup>-102</sup> is 0.00  | GPM            | TOTAL FLOW is | 9461130  | GAL |          |                |
| FT <sup>-103</sup> is 0.00  | GPM            | TOTAL FLOW is | 1340470  | GAL |          |                |
| FT <sup>-105</sup> is 0.00  | GPM            | TOTAL FLOW is | 4519954  | GAL |          |                |
| PT <sup>-</sup> 106 is 0.24 | IWC            | LIMITS are L: | 8.00     | IWC | н: 34.00 | IWC            |
| TT <sup>400</sup> is 114.5  | DEG            | LIMITS are L: | 60.0     | DEG | н: 105.0 | DEG            |
| PT_400 is 0.0               | IWC            | LIMITS are L: | 1.0      | IWC | н: 25.0  | IWC            |
| TT <sup>-</sup> 100 is 72.8 | DEG            | LIMITS are L: | 40.0     | DEG | Н: 110.0 | DEG            |
| FT_106 is 0.0               | $\mathbf{CFM}$ | LIMITS are L: | 400.0    | CFM | Н:       | $\mathbf{CFM}$ |

Alarm Response Log Sheet, Groundwater Collection and Treatment System, Solvent Dock Area, Former Lockheed Martin French Road Facility, Utica, New York 
 Date:
 11/25/2011

 Time:
 10:00

 Technician:
 TMC

#### ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Date: 11/24/11 Time: 16:10:00

#### Alarm Condition:

Process - 56 - FA-105 (Low Flow Alarm Aggregate Flowmeter FT-105) with MH-2 online

#### Cause of Alarm:

Suspect alarm conditions caused by possible sediment and/or scaling on the paddlewheel sensor.

#### **Corrective Action:**

Remove and inspect flowmeter paddlewheel for scaling and clean as necessary during the December Monthly OMM event.







THE ARCADIS SYSTEM IN UTICA NEW YORK @ 18:10:30 ON 11/24/2011 SER NO 9539 : SETUP VER 1 : ROM 2.1996 : MODEL A2

## System Status:

AUTO P56 : LAST SHUTDOWN @ 12:15:22 ON 11/23/2011 BY B\_100 FAX REPORT INITIATED BY PROCESS 56



| MH1 HH is OFF | MH1 H2 is OFF | MH1 H1 is OFF              | MH1 LO is ON  |
|---------------|---------------|----------------------------|---------------|
| MH1_LL is ON  | MH2_HH is OFF | MH2_H2 is OFF              | MH2_H1 is OFF |
| MH2_LO is ON  | MH2_LL is ON  | MH3_HH is OFF              | MH3_H2 is OFF |
| MH3_H1 is OFF | MH3_LO is OFF | MH3_LL is ON               | WFS106 is OFF |
| MOTION is OFF | LSH106 is OFF | $LSH\overline{1}00$ is OFF | LSL100 is ON  |
| FT_200 is OFF | LSH200 is OFF |                            |               |



| MH1_P1 |    |     | MH1_P2              |    |     |
|--------|----|-----|---------------------|----|-----|
| MH3_P1 | is | OFF | MH3_P2              | is | OFF |
| LA_MH1 | is | OFF | FA_101              | is | OFF |
| LA_MH3 | is | OFF | FA_103              | is | OFF |
| LSH106 |    |     | $WF\overline{S}106$ | is | OFF |
| FA 106 |    |     | FA 200              |    |     |
| TAL400 | is | OFF | PA_400              | is | OFF |

### Analog Inputs:

| FT 101 is 0.00  | GPM            | TOTAL FLOW is | 53279491 | GAL |          |                |
|-----------------|----------------|---------------|----------|-----|----------|----------------|
| FT_102 is 18.88 | GPM            | TOTAL FLOW is | 9461907  | GAL |          |                |
| FT_103 is 0.00  | GPM            | TOTAL FLOW is | 1343488  | GAL |          |                |
| FT_105 is 8.39  | GPM            | TOTAL FLOW is | 4531697  | GAL |          |                |
| PT_106 is 29.64 | IWC            | LIMITS are L  | 8.00     | IWC | н: 34.00 | IWC            |
| TT_400 is 85.3  | DEG            | LIMITS are L  | 60.0     | DEG | н: 105.0 | $\mathbf{DEG}$ |
| PT_400 is 9.8   | IWC            | LIMITS are L  | 1.0      | IWC | н: 25.0  | IWC            |
| TT_100 is 73.6  | DEG            | LIMITS are L  | 40.0     | DEG | н: 110.0 | DEG            |
| FT_106 is 760.3 | $\mathbf{CFM}$ | LIMITS are L  | 400.0    | CFM | Н:       | CFM            |

|     |        |     |      | •.•. | • • • | •.• | · . | •.• |     | · . | • • |     | •.• |    |             |    | · . |    |    | ٠. | •.• |   | ÷., | •.• |          |    | · · · |     |    | • • | Ξ. |
|-----|--------|-----|------|------|-------|-----|-----|-----|-----|-----|-----|-----|-----|----|-------------|----|-----|----|----|----|-----|---|-----|-----|----------|----|-------|-----|----|-----|----|
|     |        |     |      | ÷.   |       | ÷   |     | ÷   | ÷.  |     | •   | 1   | -   | 51 |             | •  |     | ÷  |    | ٠. | ••• |   |     | ••• | •••      |    | •     | ••• | 24 | ••  | ۰. |
|     | elli 🖓 | 222 |      |      | с.    | ·   | ÷., | •.• |     | ÷   | a.  |     | 1   |    | 60          |    | ۰.  | Ν. |    | 4  |     | • | ۰.  | ы   | <u>۰</u> |    | ۰.    |     |    | 14  | ٠. |
|     |        |     | - 63 | -    | 12    |     | v   |     |     | ÷   | 25  | ÷., | 1   |    | <b>F</b> .) |    | с.  |    |    | r  | 12  |   | н   |     | м        | 77 | 1     |     | 0  | 64  |    |
| ಿಗೆ | -      | e . | - 2  | И.   |       | 14  |     | 4   | - 1 | ÷   |     |     | 2   | 81 | U.          | π. |     | ь. | Ε. |    | Γ.  | 4 |     | E.  |          | r  | ÷     | 2   | ÷  | 26  | b  |
|     |        |     | - 2  |      | -     |     |     |     | 1   | ÷   | 1   | ÷   |     |    |             |    |     |    | ÷. | к. | r.  | ٠ |     | ų   |          |    | ٠     |     | •  | 96  |    |
|     |        |     |      |      |       | 20  |     |     |     | ÷   | 24  |     | 20  |    | •           |    |     | Γ. | •  | ۰. | 2   | • | 0   | 20  | •        | •  |       |     | •  | 96  |    |
|     |        |     |      |      |       |     |     |     |     |     |     |     |     |    |             |    |     |    |    |    |     |   |     |     |          |    |       |     |    |     |    |

INJSPD 16.0 PCT PRO

| Date:       | 11/28/2011 |
|-------------|------------|
| Time:       | 3:30       |
| Technician: | TMC        |

### ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Date: <u>11/26/11</u> Time: <u>7:30:00</u>

#### Alarm Condition:

Process - 30 - FA-102 (Low Flow Alarm Aggregate Flowmeter FT-102) with MH-2 Pump #1 online

Cause of Alarm:

Suspect alarm conditions caused by faulty pump or in-well check valve.

#### **Corrective Action:**

Log into the system remotely on 11/28/11 and verify proper control operation and bump paddlewheel with by manually turning on Pump #2 to increase velocity in pipe on 11/21/11, verify flowrate 22 gpm, place Pump #2 pump back to auto/off and flowrate returned to 0 gpm.

Monitor water level in MH-2 via H1 level sensor, no change in level position in a 1 hour period with only Pump #1 online/cycle. Note: based on datalogger high level sensor usually changes state after 4-5 minutes.

Turn on Pump #2 on manually and let it pump down the water level to the Low Low level sensor. Low Low level sensor turned off Pump 1 and Pump 2 and triggered an alarm (logic check).

Dan Zuck onsite to inspect MH-2 Pump #1 breaker, not tripped, pump motot contact pulls in when pump is placed in "HAND". Following an Inspection of the MH-2 vault it appears that Pump #1 is operating and may be recirculating water back through Pump #2's intake thus indicating a faulty/dirty (e.g. stuck open) Pump #2 check valve or dead heading against a faulty/dirty (e.g. stuck closed, scaled up) Pump #1 check valve?

Pump #1 HOA switch turned to the "OFF" position for the time being until the pump and check valves can be inspected/repaired.

ARCADIS contacted Paragon Environmental for a quote and schedule for confined space inspection in order to inspect Pump #1 and the Pump #2 check valve.

In the interim ARCADIS will continue to monitor MH-2 water levels. Note: MH-2 pump(s) typically only cycle one a day or every other day so the next cycling event should be until late tomorrow, in which case Pump #2 should be the next pump to cycle within the programming so we shouldn't see a MH-2 low flow alarm until Wednesday at the earliest.







THE ARCADIS SYSTEM IN UTICA\_NEW YORK @ 07:30:14 ON 11/26/2011 SER NO 9539 : SETUP VER 1 : ROM 2.1996 : MODEL A2

# System Status:

AUTO P30 : LAST SHUTDOWN @ 12:15:22 ON 11/23/2011 BY B\_100 FAX REPORT INITIATED BY PROCESS 30



| MH1 HH is OFF | MH1 H2 is OFF | MH1 H1 is ON               | MH1 LO is ON  |
|---------------|---------------|----------------------------|---------------|
| MH1_LL is ON  | MH2_HH is OFF | MH2_H2 is OFF              | MH2_H1 is ON  |
| MH2_LO is ON  | MH2_LL is ON  | MH3_HH is OFF              | MH3_H2 is OFF |
| MH3_H1 is OFF | MH3_LO is ON  | MH3_LL is ON               | WFS106 is OFF |
| MOTION is OFF | LSH106 is OFF | $LSH\overline{1}00$ is OFF | LSL100 is ON  |
| FT_200 is ON  | LSH200 is OFF |                            |               |

 MH2\_P2
 is
 OFF

 DH\_300
 is
 ON

 FA\_102
 is
 ON

 LA\_100
 is
 OFF

 FA\_105
 is
 ON

 TAH400
 is
 OFF



| MH1_P1 is OFF | MH1_P2 is ON      | MH2_P1 is ON  |
|---------------|-------------------|---------------|
| MH3_P1 is OFF | MH3_P2 is OFF     | B_100 is ON   |
| LA_MH1 is OFF | $FA_{101}$ is OFF | LA_MH2 is OFF |
| LA_MH3 is OFF | FA_103 is OFF     | PA_106 is OFF |
| LSH106 is OFF | WFS106 is OFF     | TA_100 is OFF |
| FA_106 is OFF | FA_200 is ON      | MOTION is OFF |
| TAL400 is OFF | $PA_400$ is OFF   | LSH200 is OFF |
|               |                   |               |

# Analog Inputs:

| FT_101 is 27.52<br>FT_102 is 0.00 | GPM<br>GPM | TOTAL FLOW is 3<br>TOTAL FLOW is 3 | 9463275 | GAL<br>GAL |          |     |
|-----------------------------------|------------|------------------------------------|---------|------------|----------|-----|
| FT_103 is 0.00                    | GPM        | TOTAL FLOW is 1                    |         | GAL        |          |     |
| FT_105 is 19.60                   | GPM        | TOTAL FLOW is 4                    | 4554123 | GAL        |          |     |
| PT_106 is 30.10                   | IWC        | LIMITS are L: 8                    | 8.00    | IWC        | н: 34.00 | IWC |
| TT_400 is 86.4                    | DEG        | LIMITS are L: 6                    | 60.0    | DEG        | н: 105.0 | DEG |
| PT_400 is 9.8                     | IWC        | LIMITS are L: 1                    | 1.0     | IWC        | н: 25.0  | IWC |
| TT <sup>-</sup> 100 is 71.9       | DEG        | LIMITS are L: 4                    | 40.0    | DEG        | Н: 110.0 | DEG |
| FT_106 is 728.8                   | CFM        | LIMITS are L: 4                    | 400.0   | CFM        | Н:       | CFM |

|   |       | · · · · | ••• | · . | • • • |    | ٠. |     |    |     |   | ۰. | ٠. | ۰. | ٠. | ٠. | ••• |    |       | ٠. | • • |     |    |    | · . | ٠. | • • |   |    |    | · · · | ٠. | •.• |      |    |     |    | ٠. | •. |
|---|-------|---------|-----|-----|-------|----|----|-----|----|-----|---|----|----|----|----|----|-----|----|-------|----|-----|-----|----|----|-----|----|-----|---|----|----|-------|----|-----|------|----|-----|----|----|----|
|   |       |         |     |     | •••   |    | ۰. | -   | •  | 1   |   | •  | •  | ٠. | •  | •  | •2  | -  | 20    | ٠. | 10  | 0   | ۰. |    |     | •  | •0  | 0 | 21 |    |       | •  | •   |      | •  | 24  |    | ٠. | •  |
|   |       | ÷.,     | ••• | 26  | •••   |    |    | P   | •  |     |   | ٠. | •• | ٠. | ۰. | ۰. | 2   | ٠. |       |    |     | 9   | ٩. |    |     | •  | •   | 0 | ÷  |    |       | 6  | ••• |      | •  | ÷   |    | ٠. | ۰. |
|   | 361   |         | 20  |     | 2     |    | 7  | К.  | 2  | 7   | v | 15 | 1  | ۰. | ۰. | 21 | κ.  |    |       | ÷  | Π.  | v.  |    |    |     | н  | ÷   |   |    | ۰. | ۰.    | 2  | Ē   | w,   | ٠  | 2   |    | ٠. | 5  |
|   | ο.    | 1.1     | к.  |     | D     |    | r. | r   | P. |     |   | ۰. |    | ۰. | ۰. |    |     |    | 65    |    | 14  |     |    | P. |     |    |     | r |    | P. |       | 2  |     | 9    |    |     |    | ٠. | ۰. |
| æ | · · . |         | ۰.  | ы   | м     |    | п  |     | ю  |     |   |    | 2. | ٠. | ۰. | 1  |     |    | τ.    |    | Ο.  |     | 2  | 1  | С   | з. |     | v |    | 6  | ι.    |    |     |      | ۴. |     |    | ٠. | ٠. |
| 5 | · 77  | · · ·   | ·   |     | ٠.    |    |    | ٠., | Ξ. | . 1 | 2 |    | ۰. | ٠. | ۰. | ۰. | ~   | ٠. | М     | т. |     |     |    |    | r,  | ۰. | •7  |   | 7  |    |       | 27 | ۰.  |      | ٠. |     | 0  | ٠. | ٠. |
|   |       | · · · · | ••• | ٠.  | •.•   | ۰. | ٠. | •.• |    | - 2 |   | -  | ۰. | ٠. | ۰. | ۰. | •.• | ٠. | · * • | ٠. | 10  | •.• | Q4 | -  | μ.  | ٠. | •   |   |    |    | ٠.    | ۰. | ••  | ٠. ' | ٠. | . ۰ | ۰. | ۰. | •  |

INJSPD 100.0 PCT PRO

| Alarm Response Log Sheet, Groundwater Collection and        |
|-------------------------------------------------------------|
| Treatment System, Solvent Dock Area, Former Lockheed Martin |
| French Road Facility, Utica, New York                       |

| Date:       | 11/28/2011 |
|-------------|------------|
| Time:       | 16:00      |
| Technician: | TMC        |

Date: <u>11/27/11</u> Time: <u>5:06:00</u>

## Alarm Condition:

Process - 31 - FA-103 (Low Flow Alarm FT-103) with MH-3 Pump #1 online.

## Cause of Alarm:

Suspect alarm conditions caused by possible sediment and/or scaling on the paddlewheel sensor.

Note: Flow alarm occurred in the last minute of the pump cycle, otherwise FT-103 registered flow.

### **Corrective Action:**

Log into the system remotely on 11/28/11 and review datalogger file to verify pump operation and water levels during time that the alarm occurred.

Remove and inspect flowmeter paddlewheel for scaling and clean as necessary during the December Monthly OMM event.







THE ARCADIS SYSTEM IN UTICA NEW YORK @ 05:06:28 ON 11/27/2011 SER NO 9539 : SETUP VER 1 : ROM 2.1996 : MODEL Ã2

# System Status:

LAST SHUTDOWN @ 12:15:22 ON 11/23/2011 BY B\_100 AUTO P31 : FAX REPORT INITIATED BY PROCESS 31



| MH1 HH is OFF | MH1 H2 is OFF               | MH1 H1 is OFF              | MH1 LO is ON  |
|---------------|-----------------------------|----------------------------|---------------|
| MH1_LL is ON  | MH2_HH is OFF               | MH2_H2 is OFF              | MH2_H1 is ON  |
| MH2_LO is ON  | MH2_LL is ON                | MH3_HH is OFF              | MH3_H2 is OFF |
| MH3_H1 is OFF | MH3_LO is OFF               | MH3_LL is ON               | WFS106 is OFF |
| MOTION is OFF | LSH $\overline{1}06$ is OFF | $LSH\overline{1}00$ is OFF | LSL100 is ON  |
| FT_200 is ON  | LSH200 is OFF               |                            |               |

MH2\_P2 is OFF DH\_300 is ON

FA\_102 is ON

LA\_100 is OFF FA\_105 is ON

TAH400 is OFF



| ON  |
|-----|
| ON  |
| OFF |
|     |

|  | ¥ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|--|---|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|
|  |   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

| FT_101 is 0.00<br>FT_102 is 0.00<br>FT 103 is 0.00 | GPM<br>GPM<br>GPM | TOTAL FLOW is<br>TOTAL FLOW is<br>TOTAL FLOW is | 53306291<br>9463275<br>1354175             | GAL<br>GAL<br>GAL     |                      |                                  |
|----------------------------------------------------|-------------------|-------------------------------------------------|--------------------------------------------|-----------------------|----------------------|----------------------------------|
| FT_105 is 0.00<br>PT_106 is 28.54                  | GPM<br>THC        | TOTAL FLOW is                                   |                                            | GAL                   | H. 24 00             | THC                              |
| TT 400 is 82.8                                     | $\mathbf{IWC}$    | LIMITS are L:<br>LIMITS are L:                  |                                            | $\mathbf{IWC}$<br>DEG | н: 34.00<br>н: 105.0 | $\mathbf{IWC}$<br>$\mathbf{DEG}$ |
| PT_400 is 10.3                                     | IWC               | LIMITS are L:                                   |                                            | IWC                   | н: 25.0              | IWC                              |
| TT_100 is 73.8<br>FT_106 is 804.5                  | DEG<br>CFM        |                                                 | $\begin{array}{c} 40.0\\ 400.0\end{array}$ | DEG<br>CFM            | н: 110.0<br>н:       | DEG<br>CFM                       |

|                |       |        |                         |                                       |           | ************** |
|----------------|-------|--------|-------------------------|---------------------------------------|-----------|----------------|
|                |       |        | · · · · · · · · · · · · |                                       |           |                |
| 10 A 10        | 1.0.0 | 1.2.12 |                         |                                       | 11. X 17. | CY 19          |
| _ <b>2</b> ~ ∎ | 81 P. | 11.80  | e - 1 - 2               |                                       | 1113      | ¥              |
|                |       |        |                         |                                       |           |                |
|                |       |        |                         | · · · · · · · · · · · · · · · · · · · |           |                |

0.0 PCT PRO INJSPD

| Date:       | 12/14/2011 |
|-------------|------------|
| Time:       | 16:00      |
| Technician: | TMC        |

| Date: | 12/8/11  | Time: | 10:06:00 |
|-------|----------|-------|----------|
|       | 12/11/11 |       | 20:06:00 |
|       | 12/13/11 |       | 3:50:00  |

### Alarm Condition:

Process - 46, TAH400 (Pre Carbon High Temperature >105 F, via TT-400)

#### Cause of Alarm:

The data logger indicates that the blower was moving air through the piping during the time of each alarm. Therefore, it is unlikely that the actual air temperature was above 105F except if one the following conditions were occurring. Suspect alarm conditions include: 1, result of the transmitter TT-400 requiring re-calibration/zeroing; 2, original high set point made to close to actual normal operation conditions; 3, internal duct heater thermometer is malfunctioning and is maintaining temp set point higher than desired?

#### **Corrective Action:**

Log into the system remotely on 12/9/11 @ 21:00 and restart system.

Log into the system remotely on 12/11/11 @ 20:13 and restart system. Download datalogger files to review events prior to alarm occurrence.

Log into the system remotely on 12/13/11 @ 8:16 and restart system. Download datalogger files to review events prior to alarm occurrence. Temporarily adjust TAH400 high alarm set point to 110 F from 105 F.

Continue to monitor the system remotely and inspect instrument during the next OM&M site visit.







THE ARCADIS GCTS SYSTEM IN UTICA\_NEW YORK @ 03:50:08 ON 12/13/2011 SER NO 9539 : SETUP VER 1 : ROM 2.1996 : MODEL A2

# System Status:

SHUTD P-2 : LAST SHUTDOWN @ 10:00:10 ON 12/12/2011 BY FT\_106 FAX REPORT INITIATED BY PROCESS 46



| MH1 HH is OFF | MH1 H2 is OFF | MH1 H1 is OFF | MH1 LO is ON                |
|---------------|---------------|---------------|-----------------------------|
| MH1_LL is ON  | MH2_HH is OFF | MH2_H2 is OFF | MH2_H1 is OFF               |
| MH2_LO is ON  | MH2_LL is ON  | MH3_HH is OFF | MH3_H2 is OFF               |
| MH3_H1 is OFF | MH3_LO is ON  | MH3_LL is ON  | WFS $\overline{1}06$ is OFF |
| MOTION is OFF | LSH106 is OFF | LSH100 is OFF | LSL100 is ON                |
| FT_200 is OFF | LSH200 is OFF |               |                             |



| MH1 P1 : | is | OFF | MH1 P2              |    |     | MH2 P1        |
|----------|----|-----|---------------------|----|-----|---------------|
| MH3_P1 : | is | OFF | MH3_P2              |    |     | <u>в 10</u> 0 |
| LA_MH1 : | is | OFF | $FA_{101}$          |    |     | LA_MH2        |
| LA_MH3 : | is | OFF | FA_103              | is | ON  | PA_106        |
| LSH106 : | is | OFF | $WF\overline{S}106$ | is | OFF | $TA_{100}$    |
| FA_106 : |    |     | FA_200              | is | OFF | MOTION        |
| TAL400 : | is | OFF | PA_400              | is | OFF | LSH200        |
|          |    |     |                     |    |     |               |

| MH2_P1     |    |     | MH2_P2     |    |     |
|------------|----|-----|------------|----|-----|
| в 100      | is | ON  | DH 300     | is | ON  |
| LA MH2     | is | OFF | FA 102     | is | OFF |
| PA_106     | is | OFF | $LA_{100}$ |    |     |
| $TA^{100}$ | is | OFF | FA 105     | is | OFF |
| MOTION     | is | OFF | TAH400     | is | ON  |
| LSH200     | is | OFF |            |    |     |
|            |    |     |            |    |     |

# Analog Inputs:

| FT_101 is 0.00  | GPM | TOTAL FLOW is | 53448396 | GAL |          |     |
|-----------------|-----|---------------|----------|-----|----------|-----|
| FT_102 is 0.00  | GPM | TOTAL FLOW is | 9483141  | GAL |          |     |
| FT_103 is 0.00  | GPM | TOTAL FLOW is | 1408287  | GAL |          |     |
| FT_105 is 0.00  | GPM | TOTAL FLOW is | 4773784  | GAL |          |     |
| PT_106 is 29.64 | IWC | LIMITS are L: | 8.00     | IWC | н: 34.00 | IWC |
| TT_400 is 104.6 | DEG | LIMITS are L: | 60.0     | DEG | н: 105.0 | DEG |
| PT_400 is 10.0  | IWC | LIMITS are L: | 1.0      | IWC | н: 25.0  | IWC |
| TT_100 is 70.8  | DEG | LIMITS are L: | 40.0     | DEG | Н: 110.0 | DEG |
| FT_106 is 843.6 | CFM | LIMITS are L: | 400.0    | CFM | Н:       | CFM |

|                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <br> |  |
|----------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|
|                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <br> |  |
|                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |  |
| 0.00 B.A       | un and a | Sector Sect | <br> |  |
|                | *****    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <br> |  |
| 1. Y. H. H. H. |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <br> |  |
|                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <br> |  |
|                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |  |

INJSPD 0.0 P







THE ARCADIS GCTS SYSTEM IN UTICA\_NEW YORK @ 20:06:18 ON 12/11/2011 SER NO 9539 : SETUP VER 1 : ROM 2.1996 : MODEL A2

# System Status:

SHUTD P-2 : LAST SHUTDOWN @ 10:16:30 ON 12/08/2011 BY TT\_400 FAX REPORT INITIATED BY PROCESS 46



| MH1 HH is OFF | MH1 H2 is OFF | MH1 H1 is OFF | MH1 LO is ON                |
|---------------|---------------|---------------|-----------------------------|
| MH1_LL is ON  | MH2_HH is OFF | MH2_H2 is OFF | MH2_H1 is OFF               |
| MH2_LO is ON  | MH2_LL is ON  | MH3_HH is OFF | MH3_H2 is OFF               |
| MH3_H1 is OFF | MH3_LO is ON  | MH3_LL is ON  | WFS $\overline{1}06$ is OFF |
| MOTION is OFF | LSH106 is OFF | LSH100 is OFF | LSL100 is ON                |
| FT_200 is OFF | LSH200 is OFF |               |                             |



| MH1_P1 |    |     | MH1_P2              |    |     |
|--------|----|-----|---------------------|----|-----|
| MH3 P1 | is |     | MH3_P2              |    |     |
| LA_MH1 |    |     | $FA_{101}$          |    |     |
| LA_MH3 |    |     | FA_103              | is | OFF |
| LSH106 | is | OFF | $WF\overline{S}106$ | is | OFF |
| FA_106 |    |     | FA_200              |    |     |
| TAL400 | is | OFF | PA_400              | is | OFF |

# Analog Inputs:

| FT_101 is 0.00  | GPM | TOTAL FLOW is | 53439589 | GAL |          |     |
|-----------------|-----|---------------|----------|-----|----------|-----|
| FT_102 is 0.00  | GPM | TOTAL FLOW is | 9480970  | GAL |          |     |
| FT_103 is 0.00  | GPM | TOTAL FLOW is | 1404824  | GAL |          |     |
| FT_105 is 0.00  | GPM | TOTAL FLOW is | 4760171  | GAL |          |     |
| PT_106 is 29.33 | IWC | LIMITS are L: | 8.00     | IWC | н: 34.00 | IWC |
| TT_400 is 104.5 | DEG | LIMITS are L: | 60.0     | DEG | н: 105.0 | DEG |
| PT_400 is 10.3  | IWC | LIMITS are L: | 1.0      | IWC | н: 25.0  | IWC |
| TT_100 is 71.1  | DEG | LIMITS are L: | 40.0     | DEG | н: 110.0 | DEG |
| FT_106 is 853.2 | CFM | LIMITS are L: | 400.0    | CFM | Н:       | CFM |
|                 |     |               |          |     |          |     |

|                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <br> |  |
|----------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|
|                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <br> |  |
|                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |  |
| 0.00 B.A       | un and a | Sector Sect | <br> |  |
|                | *****    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <br> |  |
| 1. Y. H. H. H. |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <br> |  |
|                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <br> |  |
|                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |  |

INJSPD 0.01







THE ARCADIS GCTS SYSTEM IN UTICA\_NEW YORK @ 10:06:29 ON 12/08/2011 SER NO 9539 : SETUP VER 1 : ROM 2.1996 : MODEL A2

# System Status:

SHUTD P-2 : LAST SHUTDOWN @ 12:08:03 ON 12/02/2011 BY REMOTE FAX REPORT INITIATED BY PROCESS 46



| MH1 HH is OFF | MH1 H2 is OFF | MH1 H1 is OFF              | MH1 LO is ON                |
|---------------|---------------|----------------------------|-----------------------------|
| MH1_LL is ON  | MH2_HH is OFF | MH2_H2 is OFF              | MH2_H1 is OFF               |
| MH2_LO is ON  | MH2_LL is ON  | MH3_HH is OFF              | MH3_H2 is OFF               |
| MH3_H1 is ON  | MH3_LO is ON  | MH3_LL is ON               | WFS $\overline{1}06$ is OFF |
| MOTION is OFF | LSH106 is OFF | $LSH\overline{1}00$ is OFF | LSL100 is ON                |
| FT_200 is OFF | LSH200 is OFF |                            |                             |



| MH1_P1 |    |     | MH1_P2              |    |     |
|--------|----|-----|---------------------|----|-----|
| MH3_P1 |    |     | MH3_P2              |    |     |
| LA MH1 |    |     | $FA_{101}$          | is | OFF |
| LA_MH3 |    |     | FA_103              |    |     |
| LSH106 | is |     | $WF\overline{S}106$ |    |     |
| FA_106 |    |     | FA_200              |    |     |
| TAL400 | is | OFF | PA_400              | is | OFF |

# Analog Inputs:

| FT_101 is 0.00  | GPM            | TOTAL FLOW is | 53410149 | GAL |          |     |
|-----------------|----------------|---------------|----------|-----|----------|-----|
| FT_102 is 0.00  | GPM            | TOTAL FLOW is | 9478034  | GAL |          |     |
| FT_103 is 0.00  | GPM            | TOTAL FLOW is | 1394530  | GAL |          |     |
| FT_105 is 0.00  | GPM            | TOTAL FLOW is | 4718115  | GAL |          |     |
| PT_106 is 28.82 | IWC            | LIMITS are L: | 8.00     | IWC | н: 34.00 | IWC |
| TT_400 is 108.8 | DEG            | LIMITS are L: | 60.0     | DEG | н: 105.0 | DEG |
| PT_400 is 9.4   | IWC            | LIMITS are L: | 1.0      | IWC | н: 25.0  | IWC |
| TT_100 is 57.0  | DEG            | LIMITS are L  | 40.0     | DEG | Н: 110.0 | DEG |
| FT_106 is 807.7 | $\mathbf{CFM}$ | LIMITS are L  | 400.0    | CFM | Н:       | CFM |
| FT_106 is 807.7 | CFM            | LIMITS are L  | 400.0    | CFM | Н:       | CFM |

|                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <br> |  |
|----------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|
|                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <br> |  |
|                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |  |
| 0.00 B.A       | inin inin d | Sector Sect | <br> |  |
|                | *****       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <br> |  |
| 1. Y. H. H. H. |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <br> |  |
|                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <br> |  |
|                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |  |

INJSPD 0.0 PCT PRO

| Date:       | 12/14/2011 |
|-------------|------------|
| Time:       | 19:30      |
| Technician: | TMC        |

### ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Date: <u>12/12/11</u> Time: <u>0:14:00</u>

#### Alarm Condition:

Process - 56 - FA-105 (Low Flow Alarm Aggregate Flowmeter FT-105) with MH-2 online

### Cause of Alarm:

Suspect alarm conditions caused by possible sediment and/or scaling on the paddlewheel sensor.

## **Corrective Action:**

Remove and inspect flowmeter paddlewheel for scaling and clean as necessary during the next site visit.

Continue to monitor the effectiveness of the sequestering agent.







THE ARCADIS GCTS SYSTEM IN UTICA\_NEW YORK @ 00:14:15 on 12/12/2011 SER NO 9539 : SETUP VER 1 : ROM 2.1996 : MODEL A2

# System Status:

AUTO P56 : LAST SHUTDOWN @ 20:16:18 ON 12/11/2011 BY TT\_400 FAX REPORT INITIATED BY PROCESS 56



| MH1 HH is OFF | MH1 H2 is OFF | MH1 H1 is OFF | MH1 LO is OFF |
|---------------|---------------|---------------|---------------|
| MH1_LL is ON  | MH2_HH is OFF | MH2_H2 is OFF | MH2_H1 is OFF |
| MH2_LO is ON  | MH2_LL is ON  | MH3_HH is OFF | MH3_H2 is OFF |
| MH3_H1 is OFF | MH3_LO is ON  | MH3_LL is ON  | WFS106 is OFF |
| MOTION is OFF | LSH106 is OFF | LSH100 is OFF | LSL100 is ON  |
| FT_200 is OFF | LSH200 is OFF |               |               |



| MH1_P1 |    |     | MH1_P2              |    |     |
|--------|----|-----|---------------------|----|-----|
| MH3_P1 | is |     | MH3_P2              |    |     |
| LA_MH1 | is |     | $FA_{101}$          |    |     |
| LA_MH3 |    |     | FA_103              |    |     |
| LSH106 | is | OFF | $WF\overline{S}106$ | is | OFF |
| FA_106 |    |     | FA_200              |    |     |
| TAL400 | is | OFF | PA_400              | is | OFF |

# Analog Inputs:

| FT_101 is 0.00  | GPM | TOTAL FLOW is | 53442090 | GAL |          |     |
|-----------------|-----|---------------|----------|-----|----------|-----|
| FT_102 is 19.10 | GPM | TOTAL FLOW is | 9482377  | GAL |          |     |
| FT_103 is 0.00  | GPM | TOTAL FLOW is | 1405327  | GAL |          |     |
| FT_105 is 0.00  | GPM | TOTAL FLOW is | 4764384  | GAL |          |     |
| PT_106 is 30.34 | IWC | LIMITS are L: | 8.00     | IWC | н: 34.00 | IWC |
| TT_400 is 92.5  | DEG | LIMITS are L: | 60.0     | DEG | н: 105.0 | DEG |
| PT_400 is 9.9   | IWC | LIMITS are L: | 1.0      | IWC | н: 25.0  | IWC |
| TT_100 is 73.9  | DEG | LIMITS are L: | 40.0     | DEG | н: 110.0 | DEG |
| FT_106 is 818.6 | CFM | LIMITS are L: | 400.0    | CFM | Н:       | CFM |

|                                         | <br> |         |      |                   |
|-----------------------------------------|------|---------|------|-------------------|
|                                         | <br> | <u></u> |      |                   |
|                                         | <br> |         |      |                   |
| : .¥-                                   | <br> |         |      | 62.00 CO - CO - C |
| - C - C - C - C - C - C - C - C - C - C | <br> |         | 4446 |                   |
|                                         | <br> |         |      |                   |
|                                         |      |         |      |                   |

INJSPD

| Date:       | 12/14/2011 |
|-------------|------------|
| Time:       | 19:30      |
| Technician: | TMC        |

### ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Date: <u>12/12/11</u> Time: <u>1:17:00</u>

#### Alarm Condition:

Process - 45, FA-106 (Low or High Air Flow Alarm via FT-106)

#### Cause of Alarm:

Suspect alarm conditions due to flow exceeding the high set point value (1000 cfm), result most likely due two possibilities; 1, transmitter FT-106 may need to be re-calibrated/re-zeroed; 2, high set point to set to low/close to actual operation conditions.

# **Corrective Action:**

Log into the system remotely on 12/12/11 @ 9:49 and restart system.

Download datalogger files to review events prior to alarm occurrence. Temporarily adjust FA-106 high alarm set point to 1200 CFM from 1000 CFM.

Continue to monitor remotely and check instruments during next monthly OM&M site visit.







THE ARCADIS GCTS SYSTEM IN UTICA\_NEW YORK @ 01:17:37 on 12/12/2011 SER NO 9539 : SETUP VER 1 : ROM 2.1996 : MODEL A2

# System Status:

SHUTD P-3 : LAST SHUTDOWN @ 20:16:18 ON 12/11/2011 BY TT\_400 FAX REPORT INITIATED BY PROCESS 45



| MH1 HH is OFF | MH1 H2 is OFF              | MH1 H1 is OFF              | MH1 LO is ON  |
|---------------|----------------------------|----------------------------|---------------|
| MH1_LL is ON  | MH2_HH is OFF              | MH2_H2 is OFF              | MH2_H1 is OFF |
| MH2_LO is OFF | MH2_LL is ON               | MH3_HH is OFF              | MH3_H2 is OFF |
| MH3_H1 is ON  | MH3_LO is ON               | MH3_LL is ON               | WFS106 is OFF |
| MOTION is OFF | $LSH\overline{1}06$ is OFF | $LSH\overline{1}00$ is OFF | LSL100 is ON  |
| FT_200 is OFF | LSH200 is OFF              |                            |               |



| MH1_P1 |    |     | MH1_P2              |    |     |
|--------|----|-----|---------------------|----|-----|
| MH3_P1 | is |     | MH3_P2              |    |     |
| LA_MH1 |    |     | $FA_{101}$          |    |     |
| LA_MH3 |    |     | FA_103              | is | OFF |
| LSH106 | is | OFF | $WF\overline{S}106$ | is | OFF |
| FA_106 |    |     | FA_200              |    |     |
| TAL400 | is | OFF | PA_400              | is | OFF |

# Analog Inputs:

| FT_101 is 0.00  | GPM | TOTAL FLOW is | 53442090 | GAL |          |     |
|-----------------|-----|---------------|----------|-----|----------|-----|
| FT_102 is 0.00  | GPM | TOTAL FLOW is | 9483141  | GAL |          |     |
| FT_103 is 0.00  | GPM | TOTAL FLOW is | 1405333  | GAL |          |     |
| FT_105 is 0.00  | GPM | TOTAL FLOW is | 4764545  | GAL |          |     |
| PT_106 is 27.38 | IWC | LIMITS are L: | 8.00     | IWC | н: 34.00 | IWC |
| TT_400 is 79.9  | DEG | LIMITS are L: | 60.0     | DEG | н: 105.0 | DEG |
| PT_400 is 12.3  | IWC | LIMITS are L: | 1.0      | IWC | н: 25.0  | IWC |
| TT_100 is 70.1  | DEG | LIMITS are L: | 40.0     | DEG | н: 110.0 | DEG |
| FT_106 is 948.7 | CFM | LIMITS are L: | 400.0    | CFM | Н:       | CFM |
|                 |     |               |          |     |          |     |

|            |         |           | <br>              |              |  |
|------------|---------|-----------|-------------------|--------------|--|
|            |         |           |                   |              |  |
|            |         |           | <br>              |              |  |
| ·          | 202.63  |           | NY 1997           |              |  |
| - <b>-</b> | S S V . |           | <br>              |              |  |
|            |         | * * * ? * | <br>n en en ser a |              |  |
|            |         |           | <br>              | ************ |  |

INJSPD

| Alarm Response Log Sheet, Groundwater Collection and        |
|-------------------------------------------------------------|
| Treatment System, Solvent Dock Area, Former Lockheed Martin |
| French Road Facility, Utica, New York                       |

| Date:       | 12/14/2011 |
|-------------|------------|
| Time:       | 21:15      |
| Technician: | TMC        |

Date: 12/12/11 Time: 19:40:00

# Alarm Condition:

Process - 31, FA-103 (Low Flow Alarm Flowmeter FT-103) - Non-Fatal

## Cause of Alarm:

Suspect alarm conditions caused by possible sediment and/or scaling on the paddlewheel sensor.

# **Corrective Action:**

Remove and inspect flowmeter paddlewheel for scaling and clean as necessary during the next site visit.







SYSTEM IN UTICA NEW YORK @ 19:40:44 ON 12/12/2011 : ROM 2.1996 : MODEL A2 THE ARCADIS GCTS SER NO 9539 : SETUP VER 1

# vstem Status:

LAST SHUTDOWN @ 10:00:10 ON 12/12/2011 BY FT\_106 AUTO P31 : FAX REPORT INITIATED BY PROCESS 31



| MH1 HH is OFF | MH1 H2 is OFF          | MH1 H1 is OFF               | MH1 LO is ON                |
|---------------|------------------------|-----------------------------|-----------------------------|
| MH1_LL is ON  | MH2_HH is OFF          | MH2_H2 is OFF               | MH2_H1 is OFF               |
| MH2_LO is ON  | MH2_LL is ON           | MH3_HH is OFF               | MH3_H2 is OFF               |
| MH3_H1 is OFF | MH3_LO is ON           | MH3_LL is ON                | WFS $\overline{1}06$ is OFF |
| MOTION is OFF | LSH <b>1</b> 06 is OFF | LSH $\overline{1}00$ is OFF | LSL100 is ON                |
| FT_200 is OFF | LSH200 is OFF          |                             |                             |



| MH1_P1 is OFF               | MH1_P2 is ON      | MH2_P1 is OFF            | MH2_P2 is OFF               |
|-----------------------------|-------------------|--------------------------|-----------------------------|
| MH3_P1 is ON                | MH3_P2 is OFF     | $B_1\overline{0}0$ is ON | $DH_{\overline{3}}00$ is ON |
| LA_MH1 is OFF               | $FA_{101}$ is OFF | LA_MH2 is OFF            | FA_102 is OFF               |
| LA_MH3 is OFF               | FA_103 is ON      | PA_106 is OFF            | LA_100 is OFF               |
| LSH106 is OFF               | WFS106 is OFF     | $TA_{100}$ is OFF        | FA_105 is OFF               |
| FA_106 is OFF               | FA_200 is OFF     | MOTION is OFF            | TAH400 is OFF               |
| TA $\overline{L}400$ is OFF | $PA_400$ is OFF   | LSH200 is OFF            |                             |
|                             |                   |                          |                             |

# Analog Inputs:

| FT 101 is 29.91 | GPM            | TOTAL FLOW is | 53447263 | GAL            |          |                |
|-----------------|----------------|---------------|----------|----------------|----------|----------------|
| FT_102 is 0.00  | GPM            | TOTAL FLOW is | 9483141  | GAL            |          |                |
| FT_103 is 0.00  | GPM            | TOTAL FLOW is | 1407783  | GAL            |          |                |
| FT_105 is 45.91 | GPM            | TOTAL FLOW is | 4772136  | GAL            |          |                |
| PT_106 is 31.81 | IWC            | LIMITS are L: | 8.00     | IWC            | н: 34.00 | IWC            |
| TT_400 is 91.6  | DEG            | LIMITS are L: | 60.0     | DEG            | н: 105.0 | DEG            |
| PT_400 is 8.9   | IWC            | LIMITS are L: | 1.0      | IWC            | н: 25.0  | IWC            |
| TT_100 is 72.3  | DEG            | LIMITS are L: | 40.0     | DEG            | н: 110.0 | $\mathbf{DEG}$ |
| FT_106 is 703.8 | $\mathbf{CFM}$ | LIMITS are L: | 400.0    | $\mathbf{CFM}$ | Н:       | CFM            |
|                 |                |               |          |                |          |                |

| Analog Outputs: |                                              |             |              |
|-----------------|----------------------------------------------|-------------|--------------|
|                 | <br>10000 100 100                            |             |              |
|                 | 1. 1. C. | hand likely | <b>4-3</b> + |

INJSPD

6.8 PCT PRO

| Date:       | 12/20/2011 |
|-------------|------------|
| Time:       | 16:00      |
| Technician: | TMC        |

## ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

| Date: | 12/15/11 | Time: | 11:22:00 |
|-------|----------|-------|----------|
|       | 12/15/11 |       | 11:27:00 |

### Alarm Condition:

Process 29 - MH-1 Low Flow Alarm

Process 55 - Low Flow Aggregate with MH-1 online

# Cause of Alarm:

The discrete datalogger file indicated that at 3:40 am the MH-1 Low level float switch was toggling on/off every few seconds. Below are several possible causes of why the switch was sending the false signals. 1.Possible faulty/loose wire(s). 2. Faulty seal in the underground/manhole conduit/junction boxes allowing moisture to penetrate. 3. or the float switch may be faulty.

## **Corrective Action:**

Dan Zuck was just on site 12/15 to look at the MH-1 Low and High 1 float switches. Both switches were suspended freely/submerged under the water and in the upright/on positions. Each float switch was removed from the manhole and successfully tested by exercising the mechanical switch on and off while monitoring the inputs at the PLC. After testing the switches the system was restarted in "Auto" and was observed for 15 minutes, the switches appeared to function properly (i.e. turned on one of the manhole pumps which remained on until both switches were in the off/down position).

On 12/16 the Low Float input began to toggle on/off again at 2:35 am. TMC has Dan Zuck stop back onsite to temporarily place the Low Float in the on (upright position) for the weekend to test the sensor and PLC input. The Low Float remained in the "ON" position all weekend without any interruptions. Dan Zuck placed the float back into its normal float position on 12/19 at ~12:00 pm and the PLC input immediately began to toggle on/off every few seconds, as noted last week. Two spare floats were ordered from Emerick Associates (local Goulds/Flygt vendor) with a expected 12/21 delivery date. In the interim ARCADIS will continue to monitor MH-1 water levels and pump operation remotely.

ARCADIS is tentatively planning on replacing the Low Float on 12/22 or 12/23, depending on confined space staff availability.







THE ARCADIS GCTS SYSTEM IN UTICA\_NEW YORK @ 11:22:36 ON 12/15/2011 SER NO 9539 : SETUP VER 1 : ROM 2.1996 : MODEL Ã2

# Vstem Status:

AUTO P29 :

LAST SHUTDOWN @ 04:00:08 ON 12/13/2011 BY TT\_400 FAX REPORT INITIATED BY PROCESS 29



| MH1 HH is OFF | MH1 H2 is OFF              | MH1 H1 is ON               | MH1 LO is OFF |
|---------------|----------------------------|----------------------------|---------------|
| MH1_LL is ON  | MH2_HH is OFF              | MH2_H2 is OFF              | MH2_H1 is OFF |
| MH2_LO is ON  | MH2_LL is ON               | MH3_HH is OFF              | MH3_H2 is OFF |
| MH3_H1 is OFF | MH3_LO is ON               | MH3_LL is ON               | WFS106 is OFF |
| MOTION is OFF | $LSH\overline{1}06$ is OFF | $LSH\overline{1}00$ is OFF | LSL100 is ON  |
| FT_200 is OFF | LSH200 is OFF              |                            |               |



| MH1_P1           |    |     | MH1_P2               |    |     | MH2                       |
|------------------|----|-----|----------------------|----|-----|---------------------------|
| MH3_P1<br>LA MH1 |    |     | MH3_P2<br>FA 101     |    |     | $B_1\overline{0}$<br>LA M |
| LA MH3           |    |     | FA = 101<br>FA = 103 |    |     | PA 1                      |
| LSH106           |    |     | WFS106               |    |     | $TA^{-1}$                 |
| FA_106           |    |     | FA_200               |    |     | MOTI                      |
| TAL400           | is | OFF | PA_400               | is | OFF | LSH2                      |

| MH2_P1<br>B_100<br>LA_MH2<br>PA_106<br>TA_100<br>MOTION<br>LSH200 | is<br>is<br>is<br>is<br>is | ON<br>OFF<br>OFF<br>OFF<br>OFF | MH2_P2<br>DH_300<br>FA_102<br>LA_100<br>FA_105<br>TAH400 | is<br>is<br>is<br>is | ON<br>OFF<br>OFF<br>ON |
|-------------------------------------------------------------------|----------------------------|--------------------------------|----------------------------------------------------------|----------------------|------------------------|
|                                                                   |                            |                                |                                                          |                      |                        |

# Analog Inputs:

| FT_101 is |         | GPM | TOTAL FLOW | is             | 53463830 | GAL |    |       |     |
|-----------|---------|-----|------------|----------------|----------|-----|----|-------|-----|
| FT_102 is | s 0.00  | GPM | TOTAL FLOW | is             | 9485303  | GAL |    |       |     |
| FT_103 is | s 0.00  | GPM | TOTAL FLOW | is             | 1414189  | GAL |    |       |     |
| FT_105 is | s 0.00  | GPM | TOTAL FLOW | is             | 4796211  | GAL |    |       |     |
| PT_106 is | s 27.69 | IWC | LIMITS are | $\mathbf{L}$ : | 8.00     | IWC | н: | 34.00 | IWC |
| TT_400 is | s 81.6  | DEG | LIMITS are | $\mathbf{L}$ : | 60.0     | DEG | н: | 110.0 | DEG |
| PT_400 is | s 10.6  | IWC | LIMITS are | $\mathbf{L}$ : | 1.0      | IWC | н: | 25.0  | IWC |
| TT_100 is | s 72.9  | DEG | LIMITS are | $\mathbf{L}$ : | 40.0     | DEG | н: | 110.0 | DEG |
| FT_106 i: | s 869.9 | CFM | LIMITS are | $\mathbf{L}$ : | 400.0    | CFM | Н: |       | CFM |
| FT_106 1  | s 869.9 | CFM | LIMITS are | L:             | 400.0    | CFM | н: |       | CFM |

|                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <br> |  |
|----------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|
|                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <br> |  |
|                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |  |
| 0.00 B.A       | un and a | Sector Sect | <br> |  |
|                | *****    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <br> |  |
| 1. Y. H. H. H. |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <br> |  |
|                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <br> |  |
|                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |  |

INJSPD







THE ARCADIS GCTS SYSTEM IN UTICA\_NEW YORK @ 11:27:00 ON 12/15/2011 SER NO 9539 : SETUP VER 1 : ROM 2.1996 : MODEL A2

# System Status:

AUTO P08 : LAST SHUTDOWN @ 04:00:08 ON 12/13/2011 BY TT\_400 FAX REPORT INITIATED BY PROCESS 55



| MH1 HH is OFF | MH1 H2 is OFF | MH1 H1 is ON  | MH1 LO is ON                |
|---------------|---------------|---------------|-----------------------------|
| MH1_LL is ON  | MH2_HH is OFF | MH2_H2 is OFF | MH2_H1 is OFF               |
| MH2_LO is ON  | MH2_LL is ON  | MH3_HH is OFF | MH3_H2 is OFF               |
| MH3_H1 is OFF | MH3_LO is ON  | MH3_LL is ON  | WFS $\overline{1}06$ is OFF |
| MOTION is OFF | LSH106 is OFF | LSH100 is OFF | LSL100 is ON                |
| FT_200 is OFF | LSH200 is OFF |               |                             |



| MH1_P1 is               |       | MH1_P2 is               |     |
|-------------------------|-------|-------------------------|-----|
| _MH3_P1 is              |       | MH3_P2 is               |     |
| LA_MH1 is               |       | FA_ $\overline{1}01$ is |     |
| LA_MH3 is               |       | FA_103 is               |     |
| LSH106 is               |       | WFS106 is               |     |
| FA_106 is               |       | FA_200 is               |     |
| TA $\overline{L}400$ is | S OFF | PA_400 is               | OFF |

| MH2_P1<br>B_100<br>LA_MH2<br>PA_106<br>TA_100<br>TA_100 | is<br>is<br>is<br>is | ON<br>OFF<br>OFF<br>OFF | MH2_P2<br>DH_300<br>FA_102<br>LA_100<br>FA_105 | is<br>is<br>is<br>is | ON<br>OFF<br>OFF<br>ON |
|---------------------------------------------------------|----------------------|-------------------------|------------------------------------------------|----------------------|------------------------|
| MOTION<br>LSH200                                        | is                   | OFF                     | FA_105<br>TAH400                               |                      |                        |

# Analog Inputs:

| FT 101 is 0.00  | GPM            | TOTAL FLOW is | 53463858 | GAL |          |                |
|-----------------|----------------|---------------|----------|-----|----------|----------------|
| FT_102 is 0.00  | GPM            | TOTAL FLOW is | 9485303  | GAL |          |                |
| FT_103 is 0.00  | GPM            | TOTAL FLOW is | 1414189  | GAL |          |                |
| FT_105 is 0.00  | GPM            | TOTAL FLOW is | 4796230  | GAL |          |                |
| PT_106 is 28.24 | $\mathbf{IWC}$ | LIMITS are L: | 8.00     | IWC | н: 34.00 | IWC            |
| TT_400 is 81.8  | DEG            | LIMITS are L: | 60.0     | DEG | Н: 110.0 | DEG            |
| PT_400 is 10.0  | IWC            | LIMITS are L: | 1.0      | IWC | н: 25.0  | IWC            |
| TT_100 is 73.4  | DEG            | LIMITS are L: | 40.0     | DEG | Н: 110.0 | $\mathbf{DEG}$ |
| FT_106 is 798.7 | CFM            | LIMITS are L: | 400.0    | CFM | Н:       | CFM            |
|                 |                |               |          |     |          |                |

|                                         |           | <br>   |             |  |
|-----------------------------------------|-----------|--------|-------------|--|
|                                         |           | <br>   |             |  |
|                                         |           | <br>   |             |  |
| ·                                       | - 18 T V. | 198001 |             |  |
| - A - A - A - A - A - A - A - A - A - A |           |        | 7 7 T T T T |  |
|                                         |           | <br>   |             |  |
|                                         |           |        |             |  |

INJSPD

5.2 PCT PRO

| Date:       | 12/28/2011 |
|-------------|------------|
| Time:       | 21:00      |
| Technician: | TMC        |

| Date: | 12/15/11 | Time: | 11:22:00 |
|-------|----------|-------|----------|
|       | 12/15/11 |       | 11:27:00 |

### Alarm Condition:

Process 29 - MH-1 Low Flow Alarm

Process 55 - Low Flow Aggregate with MH-1 online

#### Cause of Alarm:

The discrete datalogger file indicated that at 3:40 am the MH-1 Low level float switch was toggling on/off every few seconds. Below are several possible causes of why the switch was sending the false signals. 1.Possible faulty/loose wire(s). 2. Faulty seal in the underground/manhole conduit/junction boxes allowing moisture to penetrate. 3. or the float switch may be faulty.

#### **Corrective Action:**

Dan Zuck was just on site 12/15 to look at the MH-1 Low and High 1 float switches. Both switches were suspended freely/submerged under the water and in the upright/on positions. Each float switch was removed from the manhole and successfully tested by exercising the mechanical switch on and off while monitoring the inputs at the PLC. After-testing the switches the system was restarted in "Auto" and was observed for 15 minutes, the switches appeared to function properly (i.e. turned on one of the manhole pumps which remained on until both switches were in the off/down position).

On 12/16 the Low Float input began to toggle on/off again at 2:35 am. TMC has Dan Zuck stop back onsite totemporarily place the Low Float in the on (upright position) for the weekend to test the sensor and PLC input. The Low Float remained in the "ON" position all weekend without any interruptions. Dan Zuck placed the float back into itsnormal float position on 12/19 at ~12:00 pm and the PLC input immediately began to toggle on/off every few seconds,as noted last week. Two spare floats were ordered from Emerick Associates (local Goulds/Flygt vendor) with a expected 12/21 delivery date. In the interim ARCADIS will continue to monitor MH-1 water levels and pump operationremotely.

ARCADIS is tentatively planning on replacing the Low Float on 12/22 or 12/23, depending on confined space staffavailability. Two spare floats have been obtained and will kept at the site as future spares.

TMC onsite 12/22/11 to inspect MH-1 float switches. Based on physical inspection the Low Float mechanical switch appeared to work properly. After completing the physical inspection the intrinsically safe relay (ISR) switch (GEMS Part# ST64101) which powers the float switch was inspected and found to be potentially faulty. This finding was based on the output current for each of the other float ISRs was found to be 14v and the Low Float output current was reading less than 5v. As a result the Low Low Float PLC input was swapped with the faulty Low so that the pumps could operate normally over the holiday weekend until a new replacement ISR could be obtained. Two new ISRs were ordered on 12/27 and received on 12/28.

TMC scheduled to be onsite 12/29/11 to replace the presumed faulty Low Float ISR. If the new ISR doesn't solve the problem then the next step will be to replace the Low Float in parallel with the check valve cleaning tentatively scheduled for 12/30/11.

| Date:       | 12/30/2011 |
|-------------|------------|
| Time:       | 13:00      |
| Technician: | TMC        |

| Date: | 12/15/11 | Time: | 11:22:00 |
|-------|----------|-------|----------|
|       | 12/15/11 |       | 11:27:00 |

### Alarm Condition:

Process 29 - MH-1 Low Flow Alarm

Process 55 - Low Flow Aggregate with MH-1 online

### Cause of Alarm:

The discrete datalogger file indicated that at 3:40 am the MH-1 Low level float switch was toggling on/off every few seconds. Below are several possible causes of why the switch was sending the false signals. 1.Possible faulty/loose wire(s). 2. Faulty seal in the underground/manhole conduit/junction boxes allowing moisture to penetrate. 3. or the float switch may be faulty.

#### **Corrective Action:**

Dan Zuck was just on site 12/15 to look at the MH-1 Low and High 1 float switches. Both switches were suspendedfreely/submerged under the water and in the upright/on positions. Each float switch was removed from the manholeand successfully tested by exercising the mechanical switch on and off while monitoring the inputs at the PLC. Aftertesting the switches the system was restarted in "Auto" and was observed for 15 minutes, the switches appeared tofunction properly (i.e. turned on one of the manhole pumps which remained on until both switches were in theoff/down position).

On 12/16 the Low Float input began to toggle on/off again at 2:35 am. TMC has Dan Zuck stop back onsite totemporarily place the Low Float in the on (upright position) for the weekend to test the sensor and PLC input. The Low Float remained in the "ON" position all weekend without any interruptions. Dan Zuck placed the float back into itsnormal float position on 12/19 at ~12:00 pm and the PLC input immediately began to toggle on/off every few seconds,as noted last week. Two spare floats were ordered from Emerick Associates (local Goulds/Flygt vendor) with a expected 12/21 delivery date. In the interim ARCADIS will continue to monitor MH-1 water levels and pump operationremotely.

ARCADIS is tentatively planning on replacing the Low Float on 12/22 or 12/23, depending on confined space staffavailability. Two spare floats have been obtained and will kept at the site as future spares.

TMC onsite 12/22/11 to inspect MH-1 float switches. Based on physical inspection the Low Float mechanical switchappeared to work properly. After completing the physical inspection the intrinsically safe relay (ISR) switch (GEMS-Part# ST64101) which powers the float switch was inspected and found to be potentially faulty. This finding wasbased on the output current for each of the other float ISRs was found to be 14v and the Low Float output current was reading less than 5v. As a result the Low Low Float PLC input was swapped with the faulty Low so that the pumpscould operate normally over the holiday weekend until a new replacement ISR could be obtained. Two new ISRs wereordered on 12/27 and received on 12/28.

TMC scheduled to be onsite 12/29/11 to replace the presumed faulty Low Float ISR. If the new ISR doesn't solve the problem then the next step will be to replace the Low Float in parallel with the check valve cleaning tentatively scheduled for 12/30/11.

TMC onsite 12/29/11, MH-1 Low Float ISR successfully replaced, float operating normally.

| Date:       | 12/23/2011 |
|-------------|------------|
| Time:       | 16:00      |
| Technician: | TMC        |

### ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Date: <u>12/23/11</u> Time: <u>13:44:00</u>

#### Alarm Condition:

Process - 29 - FA-101 (Low Flow Alarm Aggregate Flowmeter FT-101) with MH-1 Pump #2 online

## Cause of Alarm:

Suspect alarm conditions caused by faulty pump or in-well check valve or motor overload.

#### **Corrective Action:**

Log into the system remotely on 12/23/11 to verify proper logic and bump paddlewheel with by manually turning on Pump #1 to increase velocity in pipe, verify flowrate 38 gpm, place Pump #2 pump back to auto/off and flowrate returned to 0 gpm.

Dan Zuck onsite to inspect MH-1 Pump #2 breaker, not tripped, pump motor contact pulls in when pump is placed in "HAND". Following an Inspection of the MH-1 vault it appears that Pump #2 is operating and may be recirculating water back through Pump #1's intake thus indicating a faulty/dirty (e.g. stuck open) Pump #1 check valve or dead heading against a faulty/dirty (e.g. stuck closed, scaled up) Pump #2 check valve?

Pump #2 HOA switch turned to the "OFF" position for the time being until the pump and check valves can be inspected/repaired.

ARCADIS contact to contact subcontractors to schedule for a confined space entry/inspection in order to inspect Pump #1 and the Pump #2 check valves.

In the interim ARCADIS will continue to monitor MH-1 water levels.







THE ARCADIS GCTS SYSTEM IN UTICA\_NEW YORK @ 13:44:48 ON 12/23/2011 SER NO 9539 : SETUP VER 1 : ROM 2.1996 : MODEL A2

# System Status:

AUTO P29 : LAST SHUTDOWN @ 14:25:06 ON 12/22/2011 BY B\_100 FAX REPORT INITIATED BY PROCESS 29



| MH1 HH is OFF | MH1 H2 is OFF | MH1 H1 is ON               | MH1 LO is ON  |
|---------------|---------------|----------------------------|---------------|
| MH1_LL is ON  | MH2_HH is OFF | MH2_H2 is OFF              | MH2_H1 is OFF |
| MH2_LO is ON  | MH2_LL is ON  | MH3_HH is OFF              | MH3_H2 is OFF |
| MH3_H1 is OFF | MH3_LO is ON  | MH3_LL is ON               | WFS106 is OFF |
| MOTION is OFF | LSH106 is OFF | $LSH\overline{1}00$ is OFF | LSL100 is ON  |
| FT_200 is OFF | LSH200 is OFF |                            |               |

OFF ON OFF OFF ON OFF



| MH1_P1 is OFF              | MH1_P2 is ON                | MH2_P1 is OFF | MH2_P2 is |
|----------------------------|-----------------------------|---------------|-----------|
| MH3_P1 is OFF              | MH3_P2 is OFF               | B_100 is ON   | DH_300 is |
| LA_MH1 is OFF              | FA_101 is ON                | LA_MH2 is OFF | FA_102 is |
| LA_MH3 is OFF              | FA_103 is OFF               | PA_106 is OFF | LA_100 is |
| LSH106 is OFF              | WFS106 is OFF               | TA_100 is OFF | FA_105 is |
| $LS\overline{H}106$ is OFF | WF $\overline{S}106$ is OFF | TA_100 is OFF | FA_105 is |
| FA_106 is OFF              | FA_200 is OFF               | MOTION is OFF | TAH400 is |
| TAL400 is OFF              | PA_400 is OFF               | LSH200 is OFF |           |

# Analog Inputs:

| TT_400 is 72.8       DEG LIMITS are L: 60.0       DEG H:         PT_400 is 12.8       IWC LIMITS are L: 1.0       IWC H:         TT_100 is 71.2       DEG LIMITS are L: 40.0       DEG H: | 110.0<br>25.0<br>110.0 | IWC<br>DEG<br>IWC<br>DEG<br>CEU |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------------------|
| —                                                                                                                                                                                         |                        | CFM                             |

|                 |             |                                                                                                                 | <br>         |              |
|-----------------|-------------|-----------------------------------------------------------------------------------------------------------------|--------------|--------------|
|                 |             |                                                                                                                 | <br>         |              |
|                 |             |                                                                                                                 | <br>         |              |
| - 1. S. B. M.   | VID. 27 187 | 200 C 100 | <br>-        | N N          |
|                 |             |                                                                                                                 | <br>ALC 1. 1 | (*********** |
| - C ( - E - C ) | ***         |                                                                                                                 | <br>         |              |
|                 |             |                                                                                                                 | <br>         |              |
|                 |             |                                                                                                                 | <br>         |              |

INJSPD 0

0.0 PCT MAN

| Date:       | 12/30/2011 |
|-------------|------------|
| Time:       | 12:30      |
| Technician: | TMC        |

### ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Date: 12/23/11 Time: 13:44:00

#### Alarm Condition:

Process - 29 - FA-101 (Low Flow Alarm Aggregate Flowmeter FT-101) with MH-1 Pump #2 online

#### Cause of Alarm:

Suspect alarm conditions caused by faulty pump or in-well check valve or motor overload.

#### **Corrective Action:**

Log into the system remotely on 12/23/11 to verify proper logic and bump paddlewheel with by manually turning on Pump #1 to increase velocity in pipe, verify flowrate 38 gpm, place Pump #2 pump back to auto/off and flowrate returned to 0 gpm.

Dan Zuck onsite to inspect MH-1 Pump #2 breaker, not tripped, pump motor contact pulls in when pump is placed in "HAND". Following an Inspection of the MH-1 vault it appears that Pump #2 is operating and may be recirculating water back through Pump #1's intake thus indicating a faulty/dirty (e.g. stuck open) Pump #1 check valve or dead heading against a faulty/dirty (e.g. stuck closed, scaled up) Pump #2 check valve?

Pump #2 HOA switch turned to the "OFF" position for the time being until the pump and check valves can be inspected/repaired.

ARCADIS contact to contact subcontractors to schedule for a confined space entry/inspection in order to inspect Pump #1 and the Pump #2 check valves.

In the interim ARCADIS will continue to monitor MH-1 water levels.

TMC onsite 12/29/11 to replace MH-1 Low Float ISR and to inspect suspected stuck check valve. Following replacement of the ISR MH-1 was placed back in normal operation. 100% recirculation back through the Pump #1 intake was noted when Pump #2 was online. The Pump #1 CV was lightly tapped with a plastic rod from outside the MH and the check ball dislodged from the stuck open position, thus allowing Pump #2 to operate normally.

A quote for confined space entry/CV cleaning was received from Royal Environmental. ARCADIS to continue development of possible SOP for all confined space entries onsite.

ARCADIS will continue to monitor MH-1 pumps for proper operation.

 Date:
 12/30/2011

 Time:
 14:00

 Technician:
 TMC

## ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Date: 12/30/11 Time: 8:35:00

#### Alarm Condition:

Process - 57 - FA-105 (Low Flow Alarm Aggregate Flowmeter FT-105 with MH-3 online)

## Cause of Alarm:

Possible air pockets causing turbulent flow within the 3" dia. Manifold.

Lower velocity in 3" diameter header pipe when only one MH-3 pump is batching (18-19 gpm), thus resulting in a flow of less than 3 gpm for a period greater than 30 seconds (alarm time delay set point) during the initial startup of batch cycle.

## **Corrective Action:**

Consider replacing paddle wheel flow sensor with a more accurate/high sensitivity magmeter type (see attached spec sheet).







THE ARCADIS GCTS SYSTEM IN UTICA\_NEW YORK @ 08:35:16 on 12/30/2011 SER NO 9539 : SETUP VER 1 : ROM 2.1996 : MODEL A2

# System Status:

AUTO P57 : LAST SHUTDOWN @ 09:44:22 ON 12/29/2011 BY REMOTE FAX REPORT INITIATED BY PROCESS 57



| MH1 HH is OFF | MH1 H2 is OFF | MH1 H1 is OFF              | MH1 LO is ON  |
|---------------|---------------|----------------------------|---------------|
| MH1_LL is ON  | MH2_HH is OFF | MH2 <sup>_</sup> H2 is OFF | MH2_H1 is OFF |
| MH2_LO is ON  | MH2_LL is ON  | MH3_HH is OFF              | MH3_H2 is OFF |
| MH3_H1 is OFF | MH3_LO is ON  | MH3_LL is ON               | WFS106 is OFF |
| MOTION is OFF | LSH106 is OFF | LSH100 is OFF              | LSL100 is ON  |
| FT_200 is OFF | LSH200 is OFF |                            |               |



| MH1_P1 is    |     | MH1_P2 is OFF               |
|--------------|-----|-----------------------------|
| _MH3_P1 is   |     | MH3_P2 is OFF               |
| LA_MH1 is    |     | FA_ $\overline{1}01$ is OFF |
| LA_MH3 is    |     | FA_103 is OFF               |
| LSH106 is    | OFF | WFS106 is OFF               |
| FA_106 is    |     | FA_200 is OFF               |
| TAL $400$ is | OFF | $PA_400$ is OFF             |

# Analog Inputs:

| FT_101 is 0.00  | GPM | TOTAL FLOW is | 53613097 | GAL |          |     |
|-----------------|-----|---------------|----------|-----|----------|-----|
| FT_102 is 0.00  | GPM | TOTAL FLOW is | 9504590  | GAL |          |     |
| FT_103 is 16.97 | GPM | TOTAL FLOW is | 1472019  | GAL |          |     |
| FT_105 is 0.00  | GPM | TOTAL FLOW is | 4987838  | GAL |          |     |
| PT_106 is 30.49 | IWC | LIMITS are L: | 8.00     | IWC | н: 34.00 | IWC |
| TT_400 is 89.7  | DEG | LIMITS are L: | 60.0     | DEG | Н: 110.0 | DEG |
| PT_400 is 11.1  | IWC | LIMITS are L: | 1.0      | IWC | н: 25.0  | IWC |
| TT_100 is 62.8  | DEG | LIMITS are L: | 40.0     | DEG | н: 110.0 | DEG |
| FT_106 is 850.0 | CFM | LIMITS are L: | 400.0    | CFM | Н:       | CFM |

| Analog Outputs:                                               |                                                        |                                                                                                                 |            |                  |
|---------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------|------------------|
| ##\$\$ <u>\${{{{{}}}}}2,2,2,2,2,1,1,2,1,1,2,2,2,2,2,2,2,2</u> |                                                        |                                                                                                                 |            |                  |
| a sa na kana kana ka mana kana kana kana ka                   | : x→ 200                                               | 61 (D O E                                                                                                       | 1111991    | 19 S & R. (1995) |
|                                                               | - 10 - 1 <b>1</b> - 10 - 10 - 10 - 10 - 10 - 10 - 10 - | And the second secon | andred Sta | <b></b>          |

INJSPD