

Infrastructure · Water · Environment · Buildings

Transmittal Letter

To:

Ms. Ruth Curley NYSDEC, Remedial Bureau B 625 Broadway, 12th Floor Albany, NY 12233 Copies:

Charles Trione, Lockheed Martin James Zigmont, CDM Peter Milionis, ARCADIS Greg Rys, NYSDOH

Dale Truskett, Lockheed Martin Kay Armstrong, Armstrong & Assoc.

Virginia Robbins, BS&K Richard Zigenfus, ConMed

File

rom:		Date

Lisa Collins March 29, 2012

Subject: ARCADIS Project No.: 2011 Annual Groundwater Collection and NJ001039.0001

Treatment System Operation, Maintenance &

Monitorin	ng Report								
We are ser ⊠ Attach	nding you: ed		☐ Under Sep	earate Cover	Via _	the Following Ite	ems:		
☐ Shop □ ☐ Prints ☑ Other:] Plans] Samples			Specifications Copy of Letter		☐ Change ☑ Reports	
Copies	Date			Des	cript	ion			Action*
1	3/29/12	Maintenance				Freatment System Oper Lockheed Martin Fre			AS
☐ AN A	Approved Approved As I As Requested		☐ CR ☐ F ☐ FA	Correct and File For Approva		bmit	Ref	submit urn view and Co	 Copies
	ethod ostal Service d/Registered		Courier/Hand Deliv	•		FedEx Priority Overnight FedEx Standard Overnight		☐ FedEx 2 ☐ FedEx E	2-Day Delivery Economy
Comments	s:								

ARCADIS

Clifton Park New York 12065

855 Route 146 Suite 210

Tel 518 250 7300

Fax 518 250 7301

Former Lockheed Martin French Road Facility Utica, New York
March 2012

Todd Carignan Project Engineer

I langum

Jeffrey Bonsteel Associate Project Manager

te Milionis

Peter Milionis, P.G. Project Manager

Moh Mohiuddin, Ph.D., P.E., BCEE Principal Engineer/Engineer of Record NY PE License #074527-1 2011 Annual Groundwater Collection and Treatment System Operation, Maintenance, and Monitoring Report

Former Lockheed Martin French Road Facility, Utica, New York

Prepared for:

Lockheed Martin Corporation

Prepared by:
ARCADIS of New York, Inc.
855 Route 146
Suite 210
Clifton Park
New York 12065
Tel 518.4518.250.7300
Fax 518.250.7301

Our Ref.:

NJ001039.0001

Date:

March 2012

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

Table of Contents

Ac	ronyms		iii
1.	Introd	luction	1
	1.1	System Upgrades	1
2.	Grour	ndwater Collection and Treatment System Description	2
	2.1	Major System Components	2
3.	2011 I	Remedial Operational Objectives	4
4.	Opera	tion and Maintenance Activities	5
	4.1	Daily Routine System Inspections	5
	4.2	Monthly Routine System Inspections	5
	4.3	Quarterly System O&M and Inspections	7
	4.4	Non-Routine Operation and Maintenance Activities	7
	4.5	Alarm Conditions and System Modifications	9
5.	Analy	tical Monitoring Activities	10
	5.1	System-Effluent Monitoring	10
	5.2	System-Influent Monitoring	11
	5.3	Stormwater Monitoring	12
6.	Syste	m Performance Results	12
	6.1	Groundwater Recovery/Extracted Liquid Flowrate	13
	6.2	Air Stripper Performance	13
	6.3	Air Stripper Emissions	13
	6.4	Water Treatment Chemical Monitoring	14
	6.5	Stormwater Monitoring	14
	6.6	Groundwater Elevation Measurements	15
7.	2012	Goals and Recommendations	15
	7.1	Goals	15
	7.2	Recommendations	16

Table of Contents

8.	References		18
Tal	bles		
	1	Groundwater Collection and Treatment System Operation Summary	
	2	Groundwater Collection and Treatment System Effluent Analytical Sampling Results	
	3	Groundwater Collection and Treatment System Influent Groundwater Concentrations	
	4	Stormwater Analytical Sampling Results	
	5	Groundwater Collection and Treatment System Flowrates	
	6	Vapor Phase Analytical Sampling Results	
	7	Summary of Estimated Air Stripper Emissions	
	8	Water Treatment Chemical Consumption Summary	
	9	Groundwater Elevation Measurements	
Fig	jures		
	1	Site Location Map	
	2	Site Plan and Groundwater Collection and Treatment System Layout	
Ар	pendices		
	Α	Record Drawings	
	В	Monthly O&M Checklists	
	С	Alarm-Response Log Sheets	

Acronyms

Acronyms

CB catch-basin

cfm cubic feet per minute
CO "Order on Consent"

CVOCs chlorinated volatile organic compounds

DAR Division of Air Resources

ft feet

GCTS groundwater collection and treatment system

gpm gallons per minute

HDPE high-density polyethylene

HOA hand-off-auto hp horsepower

in inch

In. W.C. inches of water column

lb pounds
MH manhole

NYSDEC New York State Department of Environmental Conservation

NYSDOH New York State Department of Health

O&M operations and maintenance

OM&M operation, maintenance, and monitoring

PLC programmable logic controller

PVC polyvinyl chloride

QAPP Quality Assurance Project Plan

RCP Reinforced-concrete pipe

RL reporting limits

SCFM standard cubic feet per minute

SCH schedule

SOP standard operating procedure

SPDES State Pollutant Discharge Elimination System
USEPA United States Environmental Protection Agency

VOA volatile organic analysis
VOCs volatile organic compounds
WTC water treatment chemical

Former Lockheed Martin French Road Facility, Utica, New York

1. Introduction

This *Groundwater Collection and Treatment System Operation, Maintenance, and Monitoring Report* was prepared by ARCADIS for Lockheed Martin Corporation (Lockheed Martin), in accordance with the DRAFT *Site Management Plan for the Solvent Dock Area* (ARCADIS 2009) at the Former Lockheed Martin French Road Facility (herein referred to as the "site") in Utica, New York (Figure 1). All work was performed in accordance with the October 3, 2008 "Order on Consent" (CO 6-20080321-5) issued by the New York State Department of Environmental Conservation (NYSDEC). This report summarizes the operation, maintenance, and monitoring (OM&M) of the groundwater collection and treatment system (GCTS) between January 1 - December 31, 2011. The data summary includes a review of influent and effluent system sampling, analysis of key operating parameters (e.g. flow rates, pressures, system run-time, and maintenance activities), and any modifications and recommendations related to continued system operation and monitoring.

1.1 System Upgrades

In March 2011, Lockheed Martin finished implementing upgrades to the GCTS, in accordance with the NYSDEC-approved *Groundwater Collection and Treatment System 100% Design Work Plan* (ARCADIS 2010). As part of these upgrades, the following major GCTS modifications were made:

- A third manhole, MH-3 was installed;
- The existing air stripper was replaced with a new and more efficient model;
- Vapor phase carbon treatment was installed post the new air stripper unit;
- The control system and logic were upgraded in relation to the equipment modifications noted above; and
- Water treatment chemical (WTC) was integrated into the system in order to control mineral deposits, most notably calcium carbonate and manganese.

Remedial operation and progress achieved by ARCADIS during this reporting period are summarized in the following sections.

Former Lockheed Martin French Road Facility, Utica, New York

2. Groundwater Collection and Treatment System Description

The GCTS is designed to collect groundwater contaminated with chlorinated volatile organic compounds (CVOCs) from the former Solvent Dock Area and former northern-perimeter ditch area and transport it to a treatment building where the VOCs are removed by a low-profile air stripper. Following treatment, groundwater is discharged via gravity to the local municipal storm drain under a NYSDEC "State Pollutant Discharge Elimination System" (SPDES) permit (permit No. NY-0121894). The system is designed to operate automatically and requires only periodic inspections and maintenance. An automated system operation log is sent daily via e-mail to the project engineer to verify operation. A more detailed explanation of the GCTS appears below.

Groundwater in the former Solvent Dock area (MH-2 and MH-3) and former northern-perimeter ditch area (MH-1) is captured by separate perforated-pipelines and flows via gravity to collection manholes. Groundwater is then pumped (batch mode) from each manhole through subsurface double walled pipelines to the GCTS building for treatment before being discharged to the local municipal stormwater collection system. The groundwater is treated with a low-profile air stripper, which removes the dissolved-phase CVOCs.

During air stripping, contaminated water enters the air stripper at the top and ambient air enters from the bottom. The groundwater flows over four trays in series where CVOCs are transferred from the aqueous phase (i.e., water) to the vapor phase (i.e., counter-current air stream). The air stream (off-gas) is treated using granular activated carbon before discharge to the atmosphere. A GCTS site plan is illustrated in Figure 2, and the GCTS process and instrumentation diagram record drawing showing sampling locations is provided in Appendix A.

2.1 Major System Components

Major components of the system are as follows:

- MH-1: 6-ft diameter and 13-ft deep pre-cast concrete pumping-manhole equipped with the following components:
 - Two ³/₄ horsepower (hp) submersible pumps;
 - Five associated float-switches;
 - 2-in/4-in diameter double walled HDPE discharge-piping; and

Former Lockheed Martin French Road Facility, Utica, New York

- Gravity Collection Drain 670 feet (ft) of 8-inch (in) diameter perforated high-density polyethylene (HDPE) pipe installed in a 4–6-ft deep, stone-filled collection trench located parallel to the former northern-perimeter ditch.
- MH-2: 6-ft diameter and 18-ft deep pre-cast concrete pumping-manhole equipped with the following components:
 - Two ³/₄ hp submersible pumps;
 - Five associated float-switches:
 - 2-in/4-in diameter double wall HDPE discharge piping; and
 - Gravity Collection Drain 70 ft of 6-in diameter perforated HDPE-pipe installed in a 16-ft deep, stone-filled collection trench located adjacent to the former Solvent Dock area;
- MH-3: 6-ft diameter and 17-ft deep pre-cast concrete pumping-manhole equipped with the following components:
 - Two ³/₄ hp submersible pumps;
 - Five associated float-switches:
 - 2-in/4-in diameter double wall HDPE discharge piping; and
 - Gravity Collection Drain 70 ft of 6-in diameter perforated HDPE-pipe installed in a 16-ft deep, stone-filled collection trench located adjacent to the facility stormwater drainage line within the former Solvent Dock area.
- Pre-Engineering Metal Building: A 24-ft 8-in by 20-ft pre-engineered metal treatment-building set on a concrete foundation and slab equipped with a secondary containment- dike and floor sump;
- Programmable Logic Controller (PLC) and motor control panels for the air stripper, duct heater, and manhole pumps;
- Air Stripper: Low profile, stainless steel air stripper rated for a maximum flowrate of 120 gallons per minute (gpm);
- Liquid Phase Discharge: 60-ft of 4-in diameter schedule (SCH)-40 polyvinyl chloride (PVC) gravity-discharge pipe from the air stripper effluent to the local municipal stormwater collection and drainage system [30-in diameter reinforced-concrete pipe (RCP)];

Former Lockheed Martin French Road Facility, Utica, New York

- Duct Heater: Inline duct heater rated at 600 standard cubic feet per minute (SCFM);
- Vapor Phase Treatment Vessels: 2-1000 pound (lb) activated carbon vessels
 that discharge the treated air stripper off-gas through an exhaust-duct made of
 PVC (interior) and stainless steel (exterior) that extends approximately 28-ft
 above the ground surface; and
- Chemical Feed System: Aries Chemical sequestering agent 2908 is injected into the influent groundwater stream for mineral deposit control using a LMI chemical feed pump model AA941-353 BI, equipped with a LMI Digi-Pulse Meter model FM-200 rated for 0.05-5.0 ml/stroke. [Note: Approval for the WTC was received from NYSDEC on April 13, 2011. Usage of the WTC began on April 20, 2011.]

Record drawings for the GCTS are included in Appendix A. System components are described in more detail in the *Operational, Maintenance, and Monitoring Manual* (ARCADIS 2011).

3. 2011 Remedial Operational Objectives

The GCTS' overall remedial goal is to reduce the potential for groundwater contaminated with CVOCs to infiltrate the facility's storm drainage system (Figure 2) before its contents eventually discharge to Nail Creek. The GCTS' operational objectives are to:

- Maintain and operate the system continuously without significant downtime;
- Demonstrate the GCTS' effectiveness in preventing infiltration of CVOC contaminated groundwater into the site facility's storm drain;
- Demonstrate that the air stripper is removing CVOCs from the influent groundwater streams before being discharged into the local county storm drain system, in compliance with the site's SPDES permit;
- Demonstrate that vapor phase discharge from the air stripper complies with NYSDEC Division of Air Resources (DAR-1); and
- Achieve the site specific goal of 95 percent (%) mass removal of target VOCs (i.e., TCE and daughter products including 1, 2-DCE) in the system vapor effluent.

Former Lockheed Martin French Road Facility, Utica, New York

4. Operation and Maintenance Activities

The GCTS operated nearly continuously between January 1 - December 31, 2011 (run time was approximately 88%, or 348 of 365 days), with minor scheduled routine maintenance and/or operational interruptions due to system alarm conditions. It should be noted that the planned implementation of the system upgrades during the January and February reporting periods resulted in most of the system down time for the 2011 reporting period. The cumulative run time for the second, third, and fourth quarters was approximately 97%.

The system was inspected either by physical site inspections, remote computer monitoring, and/or via review of the daily system operation e-mails during the reporting period. System operating-parameters are recorded during monthly site inspections and compliance sampling events. The GCTS operational summary is provided in Table 1.

4.1 Daily Routine System Inspections

Daily remote system monitoring of the system was performed during 2011. Monitoring included review of the daily system operational e-mails to confirm that the system was operational, that all system variables were within their allowable ranges, and that no alarm conditions were present.

4.2 Monthly Routine System Inspections

This section summarizes the activities completed during the operations and maintenance (O&M) monthly site visits. These activities were recorded on the "Monthly O&M Checklists" (attached as Appendix B).

Air Stripper:

- Observe the air stripper for any visible leaks;
- Clean air stripper aeration trays and sump (as required);
- Observe the blower for proper operation;
- Inspect the air stripper trays via the glass door and record and noted deposits;
 and

Former Lockheed Martin French Road Facility, Utica, New York

- Record the gauge pressure and level readings on the log sheet for the following:
 - Air stripper sump;
 - o Differential pressure across the air stripper trays; and
 - o Air stripper-sump water level.

Flow Meters:

- Observe the flow meters to ensure they are operating properly and cleaned them, as necessary; and
- Record the monthly and permanent totalizer readings.

Vapor Phase Equipment:

- Inspect the duct heater for proper operation;
- Record pre-duct heater and carbon vessel temperatures;
- Inspect the carbon vessels for any signs of leaks; and
- Record pressures before the lead vessel, and between the lead and lag vessels.

Control Panels:

- Test hand-off-auto (HOA) switches for proper operation; and
- Test power and pump-run lights.

Water Treatment Chemical:

- Inspect chemical feed pump and associated tubing for any signs of leaks;
- Record and date remaining chemical level in drum on a monthly basis; and
- Track chemical consumption and dosing rates on a monthly basis.

Pumping Manhole Inspections:

- Check the HDPE double-walled pipe for flow entering the manhole from the outer containment pipe, which could indicate a discharge pipe leak;
- Check the floats to ensure they are hanging properly and unobstructed;

Former Lockheed Martin French Road Facility, Utica, New York

- Observe groundwater in the manhole for any unusual odors, water clarity, etc; and
- If the pump(s) are running, listen for unusual sounds and inspect the discharge piping in the manhole for leaks.

Miscellaneous O&M:

- Observe all treatment-building piping for signs of leaks;
- Exercise MH-1, MH-2, and MH-3 influent ball valves to clean any mineral deposits in order to maintain full operational range of the valve;
- Check the building unit heaters and thermostats, adjust as necessary; and
- Inspect all health and safety related equipment and replace as necessary.

4.3 Quarterly System O&M and Inspections

This section describes activities completed during the O&M quarterly critical device testing. These activities were recorded on the "Monthly/Quarterly O&M Checklists" (attached as Appendix B). The system was temporarily turned on and off for several hours, per event in February, April, July, and October 2011 to perform critical-device testing. These devices were tested for proper operation as described in the *OM&M Manual* (ARCADIS 2011) standard operating procedures (SOPs). Below is summary of each event:

- February 2011 All critical devices were calibrated and tested during the startup and shakedown of the system. Each device was successfully brought into operation. Specific details of device testing results and date completed can be found in the Remediation System Startup Checklist – Operational Readiness Review (ARCADIS 2011).
- April 4 and 5, 2011 All critical devices passed.
- July 7 and 8, 2011 All critical devices passed.
- October 7, 2011 All critical devices passed.

4.4 Non-Routine Operation and Maintenance Activities

The following non-routine system O&M activities were performed between January 1 and December 31, 2011:

Former Lockheed Martin French Road Facility, Utica, New York

- An oily substance was identified on the water surface within manhole MH-2 during the monthly site inspection on March 22, 2011. Upon making this observation, ARCADIS notified Lockheed Martin and NYSDEC, and temporarily turned off the pumps in the manhole in order to investigate the source. ARCADIS collected a sample of the oily substance on March 23, 2011 and submitted the sample to TestAmerica Laboratories for a petroleum fingerprint analysis. The analytical results indicated that the sample was a close match to generic motor oil, indicating that the source was most likely attributed to the manhole pump non-contact cooling oil. The source of the oil was later confirmed when one of the original pumps ("pump B) oil fill/drain plug was found partially deteriorated and no oil was present in pump (i.e. the total volume of oil had leaked out into manhole). The MH-2, Pump B replacement pump was reinstalled on April 20, 2011. In addition, the manhole and system components within MH-2 were pressure washed to remove any residual oil. The oil/water mixture was then removed from the manhole and disposed of offsite in accordance with Lockheed Martin and regulatory policies and procedures.
- As a result of the MH-2 Pump B failure, a replacement pump for the MH-1 Pump B was also installed on April 20, 2011 as a preventative measure because this pump was equipped with the same type of oil plug that had failed in the other pump.
- On June 24, 2011, fouling of the chemical feed injection port was identified. The fouling consisted of the WTC solidifying in discharge tubing and the injection port. The injection port and adjacent tubing were cleaned and reinstalled. Additionally, the low chemical feed flow set point was modified from 8 to 50 cycles in order to minimize nuisance alarms.
- On November 26, 2011, the MH-2 Pump A was found to be recirculating water back into the manhole through Pump B due to a faulty check valve. The check valve was removed, cleaned, and replaced on December 8, 2011.
- On December 15, 2011, an intrinsically safe relay switch for MH-1's low float switch was found to be faulty. This was replaced on December 29, 2011.

Several changes to critical device set points were made during the 2011 reporting period as a result of the new system installation. The latest set points (i.e. operational and alarm) have been documented in the OM&M Plan, revised Tables (ARCADIS 2012).

Former Lockheed Martin French Road Facility, Utica, New York

4.5 Alarm Conditions and System Modifications

Several fatal alarm conditions occurred between January 1 - December 31, 2011. The cause of each system alarm and corresponding corrective action are summarized in Table 1. Alarm logs and response sheets are provided in Appendix C. Below is a summary of fatal alarms and corrective actions including and system modifications that were made during the reporting period:

- On January 31 through February 19, and March 14 through March 26, 2011, during the initial operational period of the new upgraded system, several low (Process 32) and high (Process 42) air stripper sump alarms were observed. As a corrective action, several adjustments were made to the air stripper blower damper setting and liquid phase gravity discharge stack height.
- On February 8, 2011 (during the startup and shakedown period) high precarbon temperature alarm (Process 46) was observed following any automatic system shutdown. A time delay was placed in the PLC so that the duct heater shutoff 2 minutes prior to the blower in order to remove most of the residual heat from the duct heater.
- On February 24 and 26, 2011, a low pre-carbon temperature alarm (Process 47) was observed. The corrective action for this condition included reprogramming the PLC so that the duct heater shut off concurrently with the blower, and modified the programming to ignore the alarm condition when the system was not actively processing water.
- On June 11 and July 9, 2011 power outages occurred. The system was restarted after a physical inspection in both instances.
- As a result of the power outages on June 11 and July 9, 2011, low pre-carbon temperature alarms (Process 47) were observed on June 12 and July 12, 2011, respectively. These alarm conditions were the result of the duct heater losing power and required a local reset at its main control panel.
- On November 21, 2011, the PLC reset to manual and the site configuration file (i.e. line logic and operational set points) was found to be corrupted. The PLC was reconfigured with the latest backup site configuration file, and the system was restarted on November 23, 2011. The PLC manufacturer indicated that the most likely cause of the faulty PLC was linked back to an interrupted remote re-configuration of the PLC that occurred the week prior.
- On December 8, 11, and 13, 2011, high pre-carbon temperature alarms (Process 46) were observed. Following a review of the data logger files and

Former Lockheed Martin French Road Facility, Utica, New York

physical inspections of the duct heater and temperature transmitters, no apparent causes of the alarms could be determined. As a result, the high alarm set point was increased from 105 to 110 F. The system was restarted and monitored remotely for normal and safe operation.

- On December 14, 2011, a high air flowrate alarm (Process 45) was observed. A possible cause for the alarm condition was due to possible drifting of the flow transmitter and/or moisture on the Pitot tube. As a result of the alarm condition a high alarm set point was increased from 1000 to 1100 cubic feet per minute (cfm).
- Several non-fatal alarms were observed during the 2011 reporting period, including failed daily fax logs and low flow meter flows, these non-fatal alarms and the associated corrective actions (if applicable) are documented in Appendix C.

5. Analytical Monitoring Activities

This section summarizes the monthly GCTS compliance sampling and monitoring activities completed during the reporting period.

5.1 System-Effluent Monitoring

The treatment system discharges to an Oneida County storm drain under the terms of an SPDES permit (permit No. NY-0121894). As required by the SPDES permit, effluent grab-water samples were collected monthly from the treatment system. One effluent grab-sample was collected monthly from the treatment-system-effluent sampling-port SP-100 (designated by NYSDEC as "Outfall #2"), located on the 4-in diameter air stripper liquid phase effluent line. The location of sampling port SP-100 is shown on drawing M-1 in Appendix A.

Samples were collected in 40-millimeter volatile organic analysis (VOA) vials supplied by a New York State Department of Health (NYSDOH)-certified laboratory. The sampling protocol for the effluent sample is included in the *Site-Specific Quality Assurance Project Plan* (QAPP) (ARCADIS 2009b). The samples were shipped on the day of collection via overnight delivery to TestAmerica Laboratories, Inc. in Amherst, New York. One laboratory trip-blank accompanied each water sample. All samples were analyzed for VOCs by United States Environmental Protection Agency (USEPA) Method 8260. The SPDES permit also requires monthly collection and analysis of a grab sample for pH. The pH is measured locally using a site-dedicated pH meter.

Former Lockheed Martin French Road Facility, Utica, New York

The system-effluent samples contained no detectable concentrations of VOCs above their respective laboratory reporting limits (RL) (as shown in Table 2) during the entire reporting period, with the exception of the February 2011 sample. This sample exhibited a concentration of 0.47 μ g/L of trichloroethene. Although detected above laboratory RLs, this detection was significantly below the SPDES effluent limit of 10 μ g/L.

The SPDES permit limits the systems effluent average daily discharge flow (over the course of a monthly reporting period) to 45 gpm. Effluent flow did not exceed this average during the reporting period. In addition, the pH recorded during the 2011 reporting period ranged from 6.9 to 8.2 standard units, and remained within the SPDES effluent limits of 6.5 to 8.5 standard units.

5.2 System-Influent Monitoring

Influent-water samples were collected as part of quarterly monitoring activities in February, April, July, and October 2011. Influent samples were collected from each influent-line (MH-1, MH-2, and MH-3) sampling-tap on the 2-in diameter influent lines before the influent water entered the air stripper. The sampling protocol and delivery method followed were identical to those for the SPDES compliance sampling.

The primary site-related CVOCs detected for MH-1 were:

- 1,1-Dichloroethane (4.20 μg/L in February, 2.7 μg/L in April, 8.5 μg/L in July, and 5.9 μg/L in October);
- cis-1,2-Diclhoroethene (30 μg/L in February, 19 μg/L in April, 43 μg/L in July, and 33 μg/L in October);
- Tetrachloroethene (23 μg/L in February, 18 μg/L in April, 26 μg/L in July, and 19 μg/L in October); and
- Trichloroethene (57 μg/L in February, 27 μg/L in April, 57 μg/L in July, and 29 μg/L in October).

The primary site-related CVOCs detected for MH-2 were:

1,1-Dichloroethane (1.9 µg/L in February, 3.5 µg/L in July, 2.6 µg/L, and 3 µg/L in October);

Former Lockheed Martin French Road Facility, Utica, New York

- cis-1,2-Diclhoroethene (7.6 μg/L in February, 12 μg/L in July, and 16 μg/L in October);
- Tetrachloroethene (2.6 µg/L in February, 2.8 µg/L in July, and 3.6 µg/L in October); and
- Trichloroethene (4.6 μg/L in February, 7.7 μg/L in July, and 7.5 μg/L in October).

The primary site-related CVOCs detected for MH-3 were:

- cis-1,2-Diclhoroethene (3.7 μg/L in January, 2.3 μg/L in February, 3.5 μg/L in April, 3.8 μg/L in July, and 3.1 μg/L in October);
- Tetrachloroethene (1.2 μg/L in January, 1.1 μg/L in February, 12 μg/L in April, 21 μg/L in July, and 23 μg/L in October); and
- Trichloroethene (4.2 μg/L in January, 5.6 μg/L in February, 9 μg/L in April, 19 μg/L in July, and 13 μg/L in October).

System influent analytical sampling results are summarized in Table 3.

5.3 Stormwater Monitoring

As outlined in the *Operational, Maintenance, and Monitoring Manual* (ARCADIS 2011), quarterly stormwater samples were collected from 3 catch basin (CB) locations at the site (identified as CB-1, CB-2, and CB-3; as shown on Figure 2). The quarterly stormwater samples contained no detectable concentrations of VOCs above their respective laboratory RLs (as shown in Table 4), with the exception of the April 2011 sample from stormwater sampling location CB-3. This sample exhibited a concentration of tetrachloroethene (0.51 μ g/L). Although detected above laboratory RLs, these detections were below the applicable SPDES effluent limitations.

6. System Performance Results

Operational data collected during monthly system-operation inspections are summarized in the following sections.

Former Lockheed Martin French Road Facility, Utica, New York

6.1 Groundwater Recovery/Extracted Liquid Flowrate

The groundwater recovery/extraction-liquid flowrates for the 2011 reporting period are summarized in Table 5. These data include the average and cumulative recovered-groundwater and manhole-pump run-times. Total extracted-groundwater flow readings were collected from the totalizing flow-meters FT 101 (MH-1), FT 102 (MH-2) and FT 103 (MH-3). The average monthly system groundwater extraction flowrates from January - December 2011 are included in Table 5. The total flow recorded for manhole MH-1 was approximately 3,244,140 gallons, with a corresponding average recovery rate of 6.5 gpm. The total flow recorded for manhole MH-2 was approximately 561,515 gallons, with a corresponding average recovery rate of 1.1 gpm. The total flow recorded for manhole MH-3 was approximately 1,355,108 gallons, with a corresponding average recovery rate of 2.7 gpm. The resulting total annual flow for the GCTS was approximately 5,176,015 gallons of groundwater. The total flows recorded correspond to an average recovery rate of approximately 10.4 gpm over the entire 2011 reporting period.

6.2 Air Stripper Performance

The air stripper vapor flowrate was calculated using the differential pressure (post-carbon vessels) recorded during each monthly sampling event which is converted to volumetric flowrate using a transmitter. The vapor flowrate ranged from 583 to 784 standard cubic feet per minute (scfm) during the 2011 reporting period. These flow ranges correspond to a weighted average of approximately 672 cfm over the entire 2011 reporting period. The air stripper sump pressures ranged from 25 to 29 inches of water column (in.W.C.) during the 2011 reporting period. Monthly air stripper performance data are summarized in Table 5.

6.3 Air Stripper Emissions

The GCTS removed an estimated 21.3 lbs of total VOCs from groundwater during the 2011 reporting period. This value was calculated from the quarterly pre-carbon vapor analytical data and the average monthly air stripper effluent vapor flowrate. Quarterly estimated mass removal rate data are summarized in Table 6.

VOC removal efficiency of the carbon vessels was tracked throughout the 2011 reporting period. Both cumulative and target VOC percent removal was calculated by comparing the quarterly vapor influent, mid-carbon, and post-carbon analytical results. As noted in Section 3.0, the site specific goal for vapor phase treatment is a 95% mass

Former Lockheed Martin French Road Facility, Utica, New York

removal of target VOCs. Both the mid-carbon and effluent percent removals for target VOCs were calculated at 100% for the first three quarters of reporting period. A reduction in mass removal (88%) was calculated for the fourth quarter sampling event...

The VOC concentrations emitted in the air stripper (pre-carbon, mid-carbon, and post-carbon) were below the allowable annual-guideline concentration (AGC) values (as provided in NYSDEC DAR 1 tables) for each detectable compound. Short-term guideline concentration (SGC) values are not applicable as performance samples are only collected quarterly. Individual VOCs emitted and their estimated maximum allowable-mass flow-concentrations, as per NYSDEC DAR 1 guidance, are shown in Table 7.

6.4 Water Treatment Chemical Monitoring

As required under the terms of an SPDES permit (permit no. NY0121894), the volume WTC discharged on an annual basis is reported to NYSDEC in the December Monthly Discharge Monitoring Report. The total amount of WTC (i.e., Sequestering Agent - Aries 2908) discharged through the site Outfall 002 during the 2011 reporting was approximately 604 lbs. The total amount of WTC discharged corresponds to an average dosing rate of 17.6 ppm over the entire 2011 reporting period. Monthly WTC consumption, dosing rates, and date of recording are summarized in Table 8.

6.5 Stormwater Monitoring

As presented in Section 5.3, the quarterly stormwater samples contained no detectable concentrations of VOCs above their respective laboratory RLs (as shown in Table 4), with the exception of the April 2011 sample from stormwater sampling location CB-3. This sample exhibited a concentration of tetrachloroethene (0.51 μ g/L). Although detected above laboratory RLs, this detection was below the applicable SPDES effluent limitations.

The general absence of constituents detected in the stormwater samples collected at the site continues to indicate that the GCTS is operating as designed and preventing the migration of impacted groundwater into the stormwater system at the locations sampled.

Former Lockheed Martin French Road Facility, Utica, New York

6.6 Groundwater Elevation Measurements

Groundwater elevation measurements are collected from site monitoring wells and piezometers as part of the quarterly O&M program. Groundwater elevations for the reporting period are included on Table 9.

As noted in previous reports for the site (including the *Corrective Measures Study Report*, ARCADIS, 2009a), the complexity of the groundwater elevations, due to the presence of the GCTS as well as the facility building, utility corridors, and natural conditions, makes contouring groundwater elevations difficult and inconclusive. However, based on the review of current elevation measurements, operation of the treatment system continues to maintain control of movement of groundwater and modified the direction of groundwater flow in select areas of the site.

7. 2012 Goals and Recommendations

The information presented in this report indicates that the systems will continue to operate as designed and outlined within the NYSDEC approved *Groundwater Collection and Treatment System 100% Design Work Plan* (ARCADIS 2010), and *Operational, Maintenance, and Monitoring Manual* (ARCADIS 2011). The recommendations and action items planned for during the 2012 reporting period are described in the sections below.

7.1 Goals

The GCTS 2011 remedial and operational goals will be unchanged from those noted in section 3.0. The operational data to be collected includes:

- Quarterly influent-water samples will be collected during the first monthly sampling event of each quarter (i.e., January, April, July, and October);
- Quarterly groundwater-elevation measurements will be collected at all accessible site monitoring-wells and piezometers;
- Quarterly storm-water samples will be collected from the pipe running beneath
 the manufacturing building and traversing east towards the public storm-drain
 pipe. These samples will be collected at catch-basin (CB) locations CB-1, CB-2,
 and CB-3. Samples will be analyzed for VOCs by USEPA Method 8260 and

Former Lockheed Martin French Road Facility, Utica, New York

collected and submitted to the laboratory in accordance with procedures outlined in the QAPP:

- Monthly effluent SPDES compliance samples, including tracking the WTC dosing rates;
- Continued demonstration that VOCs concentrations in the GCTS air stripper exhaust (i.e., post-carbon) remain below the NYSDEC DAR 1 guidance values before being discharged to the atmosphere;
- Continued to track the carbon performance in order to maintain the minimum
 95% removal goal for target VOCs in the vapor effluent; and
- Daily review of GCTS operation email logs and prompt response to system alarms.

7.2 Recommendations

The following recommendations and action items are planned for implementation during the next reporting period (January–December 2012):

- Continued operation of the GCTS;
- Continued system compliance sampling, including monitoring the pH of the system effluent;
- Continued preventive maintenance and failure-mode-effects analyses to improve system reliability;
- Perform a carbon changeout in the first quarter of 2012, in response to the noted reduction in carbon efficiency during the fourth quarter of 2011;
- Perform the Whole Effluent Toxicity (WET) testing on the system effluent in response to the NYSDEC letter, dated January 11, 2012, and modify the SPDES permit appropriately;
- Review current SPDES flow and pH limits, and make a determination on whether adjustments to the permit should be requested based on the 2011 data;

Former Lockheed Martin French Road Facility, Utica, New York

- Develop a standard operating procedure (SOP) for confined entry's performed during any non-routine manhole maintenance activity;
- Conduct an Arc Flash study of the GCTS electrical system; and
- Modification of the OM&M Manual as needed to include new system enhancements/modifications.

Former Lockheed Martin French Road Facility, Utica, New York

8. References

- ARCADIS. 2012. Revised Tables of the Groundwater Collection and Treatment System Operations, Maintenance, and Monitoring Manual, Solvent Dock Area. January.
- ARCADIS. 2011. Remediation System Startup Checklist Operational Readiness Review. April.
- ARCADIS. 2011. Groundwater Collection and Treatment System Operations, Maintenance, and Monitoring Manual, Solvent Dock Area. March.
- ARCADIS. 2010. Groundwater Collection and Treatment System 100% Design Work Plan, Solvent Dock Area. February.
- ARCADIS. 2009a. Corrective Measures Study Report. March.
- ARCADIS. 2009b. Quality Assurance Project Plan. August.
- ARCADIS. 2009c. DRAFT Site Management Plan. October.
- ARCADIS. 2008. Solvent Dock Area and West Lot Site Health and Safety Plan.

 November.
- New York State Department of Environmental Conservation (NYSDEC). 1998.

 Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values. June.
- NYSDEC. 2008. Order on Consent Index Number CO 6-20080321-5. October 3.

Tables

Table 1. Groundwater Collection and Treatment System Operation Summary, Former Lockheed Martin French Road Facility, Utica, NY.

Date	Shutdown	Date/Time Online	Off (days)	- Process	Description Historical data (pre- 2009) ha	Suspected Cause of Alarm	Corrective Action
June 1996	1/47/00 0:05	1/47/00 0:04	0.05	45		s not been included in this table.	Adjusted low temperature alarm setting from 40 to 32 F to account fo
1/17/2009	1/17/09 8:25	1/17/09 9:34	0.05	45	High/low air temperature.	Low ambient air temperature.	low ambient temperature.
8/3/2009 9/4/2009	7/31/09 9:58 9/1/09 15:09	8/3/09 14:38 9/4/09 12:47	3.2	40 NA	Wall louver fault. Power outage	Power outage due to inclement weather. Power outage due to inclement weather.	Restart system and observe proper operation following storm event. Restart system and observe proper operation following storm event.
2009 % Run	Time Summary	Days Offline	Days Online	% Run Time		,	
	1	6.1	357.86	98%	Low Air Flow/System PLC left in	T	
1/25/2010	1/25/10 17:53	1/27/10 7:57	1.6	46/Other	manual mode accidentally	Blower influent damper/tray and/or demister pad fouled	Adjust blower damper/Restart system remotely
3/2/2010	3/2/10 17:55	3/3/10 11:31	0.7	42	High level air stripper sump.	Blower influent damper in need of adjustment following air stripper tray cleaning.	Damper adjusted to allow more air flow.
4/7/2010	4/7/10 12:00	4/7/10 18:00	0.3	NA	Quarterly System Testing	NA .	NA
4/15/2010	4/15/10 8:00	4/15/10 19:30	0.5	NA	Annual Stripper Cleaning	NA Low back pressure due to recent stripper cleaning which	NA .
4/22/2010	4/22/10 6:20	4/22/10 11:08	0.2	42	High Air Stripper Sump Level	results in gravity discharge issues.	Adjust blower damper to increase air flow/sump pressure.
4/25/2010	4/25/10 19:08	4/26/10 9:39	0.6	42	High Air Stripper Sump Level	Low back pressure due to recent stripper cleaning which results in gravity discharge issues.	Adjust blower damper to increase air flow/sump pressure.
4/27/2010	4/27/10 8:53	4/27/10 14:58	0.3	42	High Air Stripper Sump Level	Low back pressure due to recent stripper cleaning which	Adjust blower damper to increase air flow/sump pressure.
.,_,,_	.,2.,,		0.0			results in gravity discharge issues. Low back pressure due to recent stripper cleaning which	
4/29/2010	4/29/10 16:35	4/30/10 7:41	0.6	42	High Air Stripper Sump Level	results in gravity discharge issues.	Adjust blower damper to increase air flow/sump pressure.
5/28/2010	5/28/10 16:35	5/31/10 9:40	2.7	NA	Power outage	Power outage due to inclement weather. Electric meter damaged as a result.	Inspect system, temporarily bypass faulty E-meter, perform critical conspection, restart system and monitor for proper operation.
6/1/2010	6/1/10 14:42	6/2/10 8:55	0.8	42	High Air Stripper Sump Level	Low back pressure due to recent stripper cleaning which	Adjust blower damper to increase air flow/sump pressure.
0/1/2010	3/1/10 14.42	0/2/10 0.00	0.0	72	MH-1 offline for testing phase, air	results in gravity discharge issues.	rajust blower damper to increase all new/oump pressure.
7/12/2010	7/12/10 16:00	7/16/10 14:31	3.9	0	stripper left in auto with MH-2	NA	NA
44/0/0040	44/0/40 00:00	44/0/40 40:45	0.0	44	online. High Pressure in Air Stripper	Discuss de con constitue de con	Adicat six string on blown down
11/2/2010	11/2/10 22:22	11/3/10 13:45	0.6	41	Sump.	Blower damper adjustment.	Adjust air stripper blower damper.
11/10/2010 11/11/2010	11/10/10 11:42 11/11/10 9:52	11/10/10 20:23 11/11/10 16:21	0.4	48 48	Manual system shutdown/LOTO Manual system shutdown/LOTO	Implementing GCTS system upgrades. Implementing GCTS system upgrades.	Restart system after completing work. Restart system after completing work.
11/11/2010	11/11/10 9:32	11/11/10 18:49	0.1	41	High Pressure in Air Stripper	Blower damper adjustment.	Adjust air stripper blower damper.
					Sump. High Pressure in Air Stripper		
11/11/2010	11/11/10 19:18	11/12/10 9:08	0.6	41	Sump.	Blower damper adjustment.	Adjust air stripper blower damper.
11/12/2010	11/12/10 9:18	11/12/10 12:43	0.1	41	High Pressure in Air Stripper Sump.	Blower damper adjustment.	Adjust air stripper blower damper.
11/12/2010	11/12/10 12:55	11/12/10 13:04	0.0	41	High Pressure in Air Stripper	Fouled air stripper trays.	Clean air stripper trays and adjust air stripper blower damper.
11/12/2010	11/18/10 10:23	11/18/10 19:22		48	Sump. Manual system shutdown/LOTO	Implementing GCTS system upgrades.	Restart system after completing work.
			0.4			Power failure due to a system shutdown for system	
11/19/2010	11/19/10 9:44	11/19/10 17:06	0.3	40	Wall louver damper motor fault.	inspection during construction phase.	Restart system after inspection.
11/29/2010 ⁽³⁾	11/29/10 12:53	12/31/10 23:59	23.5	NA	Air Stripper taken permanently offline.	Implementing GCTS system upgrades.	Install temporary air stripper.
2010 % Run	Time Summary	Days Offline	Days Online	% Run Time			
	1	38.4	326.6	89%	Air Stripper taken permanently	I	
1/1/2011 ⁽⁴⁾	1/1/11 0:00	1/24/11 23:59	22.7	NA	offline.	Implementing GCTS system upgrades.	Periodically operated system.
1/31/2011 2/2/2011	1/31/11 4:30 2/2/11 7:09	1/31/11 16:02 2/2/11 11:21	0.5	32 42	Low Air Stripper Sump Level High Air Stripper Sump Level	Narrow sump elevation operating range. Narrow sump elevation operating range.	Restarted system remotely. Adjusted blower damper and/or liquid effluent pipe elevation.
2/8/2011	2/8/11 2:53	2/8/11 8:52	0.2	42	High Air Stripper Sump Level	Narrow sump elevation operating range.	Adjusted blower damper and/or liquid effluent pipe elevation.
2/8/2011	2/8/11 13:59	2/8/11 19:11	0.2	46	High Pre-Carbon Temperature	Residual heat in duct heater raising pre-carbon temperature following blower/duct heater shutdown.	Modified programming so that duct heater shuts off 2 minutes prior blower.
2/8/2011	2/8/11 19:51	2/9/11 8:17	0.5	32	Low Air Stripper Sump Level	Narrow sump elevation operating range.	Adjusted blower damper and/or liquid effluent pipe elevation.
2/11/2011	2/11/11 5:06	2/11/11 11:46	0.3	32	Low Air Stripper Sump Level	Narrow sump elevation operating range.	Adjusted blower damper and/or liquid effluent pipe elevation.
2/13/2011	2/13/11 18:01 2/19/11 10:31	2/17/11 16:03 2/21/11 9:42	3.9	32 32	Low Air Stripper Sump Level Low Air Stripper Sump Level	Narrow sump elevation operating range. Narrow sump elevation operating range.	Adjusted blower damper and/or liquid effluent pipe elevation. Adjusted blower damper and/or liquid effluent pipe elevation.
						Following end-cycle of manhole pumpdown and 10	
2/24/2011	2/24/11 0:08	2/24/11 8:47	0.4	47	Low Pre-Carbon Temperature	minute continuation of blower operation, air stream generated by blower with duct heater off causing pre-	Restart system.
						carbon temperature to drop. Following end-cycle of manhole pumpdown and 10	
2/26/2011	2/26/11 3:23	2/26/11 10:58	0.3	47	Low Pre-Carbon Temperature	minute continuation of blower operation, air stream generated by blower with duct heater off causing pre-	Restart system.
						carbon temperature to drop.	
0/06/0044	2/26/44 42:46	2/20/44 40:22	1.0	47	Low Dro Corbon Town creture	Following end-cycle of manhole pumpdown and 10 minute continuation of blower operation, air stream	Modified programming so that duct heater shuts off in parallel with
2/26/2011	2/26/11 13:46	2/28/11 10:22	1.9	47	Low Pre-Carbon Temperature	generated by blower with duct heater off causing pre- carbon temperature to drop.	blower and pre-carbon temperature alarms are ignored when blowe not operating.
3/14/2011	3/14/11 0:33	3/14/11 10:31	0.4	32	Low Air Stripper Sump Level	Narrow sump elevation operating range.	Adjusted blower damper and/or liquid effluent pipe elevation.
3/14/2011	3/14/11 23:53	3/15/11 9:14	0.4	32	Low Air Stripper Sump Level	Narrow sump elevation operating range.	Adjusted blower damper and/or liquid effluent pipe elevation.
3/20/2011	3/20/11 7:16 3/23/11 6:47	3/20/11 12:35 3/23/11 11:42	0.2	32 42	Low Air Stripper Sump Level High Air Stripper Sump Level	Narrow sump elevation operating range. Narrow sump elevation operating range.	Adjusted blower damper and/or liquid effluent pipe elevation. Adjusted blower damper and/or liquid effluent pipe elevation.
3/26/2011	3/26/11 3:21	3/26/11 9:37	0.3	32	Low Air Stripper Sump Level	Narrow sump elevation operating range.	Adjusted blower damper and/or liquid effluent pipe elevation.
3/26/2011	3/26/11 21:38	3/29/11 9:52	2.5	32	Low Air Stripper Sump Level	Narrow sump elevation operating range.	Adjusted blower damper and/or liquid effluent pipe elevation. Will reexisting high level sensor with tethered float to allow wider operating
	0.20.1.2.00						range in sump.
6/11/2011	6/11/11 16:53	6/12/11 11:40	0.8	NA 47	Power outage	Power outage due to inclement weather. Duct heater requires local reset following power outage	Restart system after inspection. Low temperature setpoint temporarily lowered until local restart cou
6/12/2011	6/12/11 23:00	6/13/11 7:15	0.3	47	Low Pre-Carbon Temperature	therefore not operating.	initiated on 6/13/11.
7/9/2011	7/9/11 6:58	7/11/11 8:56	2.1	NA	Power outage	Power outage.	Restart system.
7/12/2011	7/12/11 22:13	7/13/11 12:53	0.6	47	Low Pre-Carbon Temperature	Duct heater requires local reset following power outage	Duct heater locally reset.
			1 0.0		PLC Reset to "Manual" for	therefore not operating. System reset automatically, exact cause unknown.	
11/21/2011	11/21/11 16:23	11/23/11 12:00	1.8	NA	unknown reason, identified during	Suspect cause due to bad remote system	Log into the system remotely and reconfigures the PLC with the lat
					remote login following no daily fax receipt.	reconfiguration due to faulty/interuped remote connection.	GCTS File #17.
12/8/2011	12/8/11 10:06	12/9/11 21:00	1.5	46	High Pre-Carbon Temperature	Unknown	Monitor system and temperatures remotely.
12/11/2011	12/11/11 20:06	12/11/11 20:13	0.0	46	High Pre-Carbon Temperature	Unknown	Review datalogger file/site inspection to verify transmitter readings
.=, : :/ /_ UII	.2,,	, . , , , , , 20.10	0.0	10	g 15 Sanson Temperature		versus field gauge.
12/14/2011	12/12/11 1:17	12/12/11 9:49	0.4	45	High Air Flowrate	Potential drifting associated with transmitter calibration.	Adjust high flow alarm setpoint
	ļ				1		
10/10/0044	40/40/44 0:50	40/40/44 0:00	0.0	40	High Dro Corbon Town	Potential drifting appointed with transposition as I'll and	Adjust high temperature clarm cotheint
12/13/2011	12/13/11 3:50	12/13/11 8:06	0.2	46	High Pre-Carbon Temperature	Potential drifting associated with transmitter calibration.	Adjust high temperature alarm setpoint
2011 9/ D.m.	Time Summan	Davis Offlir	Davis Online	% Dun Tim			
2011 % Run	Time Summary	Days Offline	Days Online	% Run Time			
2011 First Quarter	1/1/11 - 1/24/11 ⁽⁴⁾ 1/25/11 - 3/31/11	22.7 14.3	1.3 50.7	5% 78%	-		
	First Quarter Total	37.1	51.9	58%	†		
2011 Sec	ond Quarter	1.1	89.9	99%]		
2011 Th	ird Quarter	2.7	89.3	97%	1		

2.7

3.8

2.0

46.71

89.3

88.2

29.0

348.29

97%

96%

94%

2011 Third Quarter 2011 Fourth Quarter

Current Month

2011 Cumulative

^{1.} Table does not include brief (less than 3 hours [0.1 days]) system shutdowns for routine operation and maintenance activities.

^{2.} Table does not include non-fatal alarms (i.e. low liquid flow, low air flow, etc) observed during the reporting period.

^{3.} Between 11/29/10 and 12/31/10, temporary system was operational approximately 10 hours (7AM to 5PM) per weekday excluding 12/24/10, 12/30/10, and 12/31/10. System offline for nights and weekends due to lack of safety controls/interlocks and freezing weather conditions.

^{4.} Between 1/1/11 and 1/24/11, the upgraded system was operated on the following dates: 1/13, 1/14, 1/17, 1/18 and 1/20. An average daily run time of

⁶ hours has been estimated for those dates.

Table 2. Groundwater Collection and Treatment System Effluent Analytical Sampling Results, Former Lockheed Martin French Road Facility, Utica, NY.

Volatile Organic ⁽¹⁾ Compounds (µg/L)	SPDES Effluent Limitations (ug/L)	1/8/2009	2/5/2009	3/4/2009	4/1/2009	5/5/2009	6/2/2009	7/1/2009	8/14/2009	9/4/2009	10/9/2009	11/4/2009	12/11/2009	1/12/2010	2/3/2010	3/3/2010	4/7/2010	5/5/2010	6/3/2010	7/8/2010	8/5/2010	9/7/2010	10/6/2010	11/10/2010	12/22/2010	1/28/2011	2/23/2011	3/22/2011	4/5/2011	5/12/2011	6/2/2011	7/7/2011	8/11/2011	9/8/2011	10/11/2011	11/1/2011	12/1/2011
1,1,1-Trichloroethane	10	< 1.0	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82
1,1-Dichloroethane	10	< 1.0	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38
1,2-Dichlorobenzene	10	< 1.0	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79
1,3-Dichlorobenzene	-	< 1.0	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78
1,4-Dichlorobenzene	-	< 1.0	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84
Benzene	-	< 1.0	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41
Chlorobenzene	-	< 1.0	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75
Chloroethane	10	< 1.0	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32
cis-1,2-Dichloroethene	10	< 1.0	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81
Ethylbenzene	5	< 1.0	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74
m-Xylene & p-Xylene	-	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-Xylene	-	< 1.0	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76
Tetrachloroethene	10	< 1.0	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36
Toluene	5	< 1.0	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51
trans-1,2-Dichloroethene	10	< 1.0	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.42	< 0.42	< 0.42	< 0.42	< 0.42	< 0.42	< 0.42	< 0.42	< 0.42	< 0.42	< 0.42	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90
Trichloroethene	10	< 1.0	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	0.69	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	0.47	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46
Vinyl Chloride	10	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Xylenes, total	15	< 3.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
pH (S.U.) ⁽²⁾	8.5	8.36	7.31	7.10	7.47	7.61	7.43	7.00	7.08	7.84	7.07	7.04	7.13	8.13	8.51	8.51	8.53	8.62 ⁽⁴⁾	7.19	8.5	8.1	8.3	7.8	8.1	8.0	8.1	8.2	8.1	8.1	6.9	6.8	8.1	8.2	7.9	7.8	7.8	7.7
Oil & Grease (mg/L) ⁽³⁾	-	NS	NS	NS	NS	NS	< 5.0	2.5 J	< 5.0	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS

Notes

1. Analyzed using United States Environmental Protection Agency (USEPA) Method 8260.

2. Analyzed in field.

3. Analyzed using United States Environmental Protection Agency (USEPA) Method 1664 A.

4. Several pH measurements were collected in May 2010, ranging from 7.83 to 8.62.

BOLD indicates detected concentrations.

Definitions:

< - less than laboratory detection limit listed

- No Standard

NS - Not Sampled For

mg/L - milligrams per liter

S.U. - Standard Units µg/L - micrograms per liter

Table 3. Groundwater Collection and Treatment System Influent Groundwater Concentrations, Former Lockheed Martin French Road Facility, Utica, NY.

Volatile Organic ⁽¹⁾						MH-1										MH-2							MH-3		
Compounds (µg/L)	2/4/2009	1/12/2010	4/7/2010	7/8/2010	10/6/2010	12/22/2010	2/23/2011	4/5/2011	7/7/2011	10/11/2011	2/4/2009	1/12/2010	4/7/2010	7/8/2010	10/6/2010	12/22/2010	2/23/2011	4/5/2011 ⁽²⁾	7/7/2011	10/11/2011	1/28/2011	2/23/2011	4/5/2011	7/7/2011	10/11/2011
1,1,1-Trichloroethane	< 1.0	< 0.40	< 0.40	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 1.0	< 0.40	< 0.40	< 0.82	< 0.82	< 0.82	< 0.82	-	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82
1,1-Dichloroethane	8.4	9	6	6	6.2	3.6	4.2	2.7	8.5	5.9	1.6	11	2	2.4	2.6	1.9	1.5	-	3.5	3	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38
1,2-Dichlorobenzene	< 1.0	< 0.50	< 0.50	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 1.0	< 0.50	< 0.50	< 0.79	< 0.79	< 0.79	< 0.79	-	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79
1,3-Dichlorobenzene	< 1.0	< 0.40	< 0.40	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 1.0	< 0.40	< 0.40	< 0.78	< 0.78	< 0.78	< 0.78	-	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78
1,4-Dichlorobenzene	< 1.0	< 0.40	< 0.40	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 1.0	< 0.40	< 0.40	< 0.84	< 0.84	< 0.84	< 0.84	-	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84
Benzene	< 1.0	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 1.0	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	-	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41
Chlorobenzene	< 1.0	< 0.40	< 0.40	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 1.0	< 0.40	< 0.40	< 0.75	< 0.75	< 0.75	< 0.75	-	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75
Chloroethane	0.70 J	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.32	< 0.32	< 0.32	< 0.32	< 1.0	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.32	-	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32
cis-1,2-Dichloroethene	39	44	28	42	35	21	30	19	43	33	10	47	12	14	13	12	7.6	-	12	16	3.7	2.3	3.5	3.8	3.1
Ethylbenzene	< 1.0	< 0.40	< 0.40	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 1.0	< 0.40	< 0.40	< 0.74	< 0.74	< 0.74	< 0.74	-	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74
m-Xylene & p-Xylene	-	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	-	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	-	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-Xylene	-	< 0.40	< 0.40	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	-	< 0.40	< 0.40	< 0.76	< 0.76	< 0.76	< 0.76	-	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76
Tetrachloroethene	31	31	27	29	21	8.4	23	18	26	19	3.8	28	3.5	9.3	7.5	4.5	2.6	-	2.8	3.6	1.2	1.1	12	21	23
Toluene	< 1.0	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.51	< 0.51	< 0.51	< 0.51	< 1.0	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.51	-	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51
trans-1,2-Dichloroethene	< 1.0	< 0.42	< 0.42	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	0.22 J	< 0.42	< 0.42	< 0.90	< 0.90	< 0.90	< 0.90	-	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90
Trichloroethene	64	51	55	49	33	11	57	27	57	29	6.7	53	7.5	18	14	8.4	4.6	-	7.7	7.5	4.2	5.6	9	19	13
Vinyl Chloride	0.50 J	0.41 J	< 1.0	< 1.0	< 1.0	0.99 J	1.3	< 1.0	< 1.0	< 1.0	1.0 J	< 1.0	1.4	2.3	1.8	1.5	1.5	-	6.1	4.5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Xylenes, total	< 3.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 3.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	-	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

- 1. Analyzed using United States Environmental Protection Agency (USEPA) Method 8260.
- 2. Manhole MH-2 not sampled during Second Quarter 2011 event due to manhole being offline for pump replacement.

BOLD indicates detected concentrations.

Definitions:

- < less than laboratory detection limit listed
- "-" Analyte Not Analyzed For
- J Indicates concentration is estimated

μg/L - micrograms per liter

Table 4. Stormwater Analytical Sampling Results, Former Lockheed Martin French Road Facility, Utica, NY.

Volatile Organic ⁽¹⁾	SPDES Effluent				СВ	3-1							CI	3-2							CB-3	3			
Compounds (µg/L)	Limitations (µg/L)	1/12/2010	4/7/2010	7/8/2010	12/22/2010	2/23/2011	4/5/2011	7/7/2011	10/11/2011	1/12/2010	4/7/2010	7/8/2010	12/22/2010	2/23/2011	4/5/2011	7/7/2011	10/11/2011	1/12/2010	4/7/2010	7/8/2010	12/22/2010	2/23/2011	4/5/2011	7/7/2011	10/11/2011
1,1,1-Trichloroethane	10	< 0.40	< 0.40	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.40	< 0.40	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.40	< 0.40	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82
1,1-Dichloroethane	10	< 0.75	< 0.75	< 0.75	< 0.75	< 0.38	< 0.38	< 0.38	< 0.38	< 0.75	< 0.75	< 0.75	< 0.75	< 0.38	< 0.38	< 0.38	< 0.38	< 0.75	< 0.75	0.85	< 0.75	< 0.38	< 0.38	< 0.38	< 0.38
1,2-Dichlorobenzene	10	< 0.50	< 0.50	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.50	< 0.50	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.50	< 0.50	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79
1,3-Dichlorobenzene	-	< 0.40	< 0.40	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.40	< 0.40	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.40	< 0.40	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78
1,4-Dichlorobenzene	-	< 0.40	< 0.40	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.40	< 0.40	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.40	< 0.40	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84
Benzene	-	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41
Chlorobenzene	-	< 0.40	< 0.40	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.40	< 0.40	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.40	< 0.40	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75
Chloroethane	10	< 0.40	< 0.40	< 0.40	< 0.40	< 0.32	< 0.32	< 0.32	< 0.32	< 0.40	< 0.40	< 0.40	< 0.40	< 0.32	< 0.32	< 0.32	< 0.32	< 0.40	< 0.40	< 0.40	< 0.40	< 0.32	< 0.32	< 0.32	< 0.32
cis-1,2-Dichloroethene	10	< 0.40	< 0.40	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.40	< 0.40	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.40	< 0.40	1.9	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81
Ethylbenzene	5	< 0.40	< 0.40	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.40	< 0.40	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.40	< 0.40	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74
m-Xylene & p-Xylene	-	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-Xylene	-	< 0.40	< 0.40	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.40	< 0.40	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.40	< 0.40	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76
Tetrachloroethene	10	< 0.40	< 0.40	< 0.40	< 0.40	< 0.36	< 0.36	< 0.36	< 0.36	< 0.40	< 0.40	< 0.40	< 0.40	< 0.36	< 0.36	< 0.36	< 0.36	< 0.40	< 0.40	< 0.40	< 0.40	< 0.36	0.51	< 0.36	< 0.36
Toluene	5	< 0.60	< 0.60	< 0.60	< 0.60	< 0.51	< 0.51	< 0.51	< 0.51	< 0.60	< 0.60	< 0.60	< 0.60	< 0.51	< 0.51	< 0.51	< 0.51	< 0.60	< 0.60	< 0.60	< 0.60	< 0.51	< 0.51	< 0.51	< 0.51
trans-1,2-Dichloroethene	10	< 0.42	< 0.42	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.42	< 0.42	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.42	< 0.42	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90
Trichloroethene	10	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	0.69	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46
Vinyl Chloride	10	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Xylenes, total	15	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

1. Analyzed using United States Environmental Protection Agency (USEPA) Method 8260.

BOLD indicates detected concentrations.

Definitions:

< - less than laboratory detection limit listed

μg/L - micrograms per liter

Table 5. Groundwater Collection and Treatment System Flowrates, Former Lockheed Martin French Road Facility, Utica, NY.

			MH-1			MH-2			MH-3		Δir	Stripper Para	meters
Monthly Flowrate (gpm)	ite Flo	anent ow	Flow Per Reporting Period (gallons)	Monthly Flowrate (gpm)	Permanent Flow (gallons)	Flow Per Reporting Period (gallons)	Monthly Flowrate (gpm)	Permanent Flow (gallons)	Flow Per Reporting Period (gallons)	Monthly Flowrate (gpm)	Sump Pressure (In. W.C.)	Differential Pressure (In. W.C.)	Vapor Phase Flowrate (scfm) ⁽⁴⁾
10.3	43,85	7,473	468,600	8.8	7,785,023	79,245	1.5	-	-	-	14.0	1.0	1,398
6.0	44,07	4,280	216,807	5.4	7,808,539	23,516	0.6	-	-	-	14.0	1.0	1,398
10.5	44,42	6,462	352,182	9.1	7,864,104	55,565	1.4	-	-	-	15.0	1.0	1,398
13.1	44,87	9,781	453,319	11.2	7,940,717	76,613	1.9	-	-	-	14.0	1.0	1,398
8.2	45,23	6,249	356,468	7.3	7,988,022	47,305	1.0	-	-	-	14.0	1.0	1,398
6.8	45,47	0,774	234,525	5.8	8,029,087	41,065	1.0	-	-	-	15.0	1.5	1,712
5.7	45,66	6,782	196,008	4.7	8,069,377	40,290	1.0	-	-	-	15.0	1.5	1,712
5.4	45,94	0,852	274,070	4.3	8,137,891	68,514	1.1	-	-	-	14.0	1.5	1,712
5.0	46,06	0,707	119,855	4.0	8,169,666	31,775	1.1	-	-	-	14.0	1.5	1,712
5.6	46,28	9,841	229,134	4.5	8,222,822	53,156	1.1	-	-	-	14.5	1.0	1,398
6.4	46,49	4,959	205,118	5.5	8,255,829	33,007	0.9	-	-	-	14.5	1.0	1,398
5.2	46,72	2,959	228,000	4.3	8,306,229	50,400	0.9	-	-	-	14.0	1.3	1,594
7.3	-	-	3,334,086	6.2	-	600,451	1.1	-	-	-	14.3	1.2	1,519
7.4	47,04	1,049	318,090	6.9	8,327,089	20,860	0.5	-	-	-	18.0	1.2	1,531
7.8	47,25	4,345	213,296	6.7	8,360,703	33,614	1.1	-	-	-	24.0	1.0	1,398
5.4	47,44	2,614	188,269	4.7	8,388,371	27,668	0.7	-	-	-	11.0	1.7	1,823
12.2			528,099	10.5	8,472,644	84,273	1.7	-	-	-	12.0	1.5	1,712
6.5			232,150	5.8	8,502,591	29,947	0.7	-	-	-	17.5	2.7	2,297
5.2			185,488	4.4	8,532,668	30,077	0.7	-	-	-	16.1	2.7	2,297
6.8			258,250	5.3	8,609,557	76,889	1.6	-	-	-	15.5	2.4	2,166
6.3			216,463	5.2	8,654,977	45,420	1.1	_	-	-	15.9	2.2	2,073
5.9		-	232,191	4.9	8,702,394	47,417	1.0	-	-	-	18.5	1.9	1,927
7.1	49,32	-	232,481	5.8	8,754,812	52,418	1.3	-	-	-	17.0	2.0	1,977
9.3			315,324	7.8	8,813,835	59,023	1.5	-	-	-	22.0	0.9	1,289
7.7	50,10		458,256	6.4	8,908,258	94,423	1.3	-	_	_	17.0	NA ²	NA ²
7.4	-		3,378,357	6.2	-	602,029	1.1	_	_	_	17.0	1.8	1,863
1.5	50,14		41,597	0.8	8,930,851	22,593	0.4	15,202	_	_	25.9	-	718
10.5			289,350	7.7	8,976,813	45,962	1.2	74,384	59182.0	1.6	26.0	-	742
16.3			508,625	13.1	9,102,550	125,737	3.2	75,425	1041.0	0.0	26.2	_	681
8.6		-	839,572	6.5	-	194,292	1.5	-	60,223	0.5	26.0	_	714
7.2		5.909	145,021	7.2	9,102,790	240	0.0	75,475	50	0.0	29.0	_	663
17.4			523,679	9.8	9,161,683	58,893	1.1	418,444	342,969	9.2	26.5	-	553
12.2			225,111	7.4	9,189,679	27,996	0.9	533,094	114,650	2.9	26.5	_	618
13.9		-,000	893,811	8.6	-	87,129	0.8	-	457,619	4.4	27.3	_	611
8.3	_	5 707	241,008	4.8	9,227,668	37,989	0.8	672,141	139,047	2.8	25.2	_	636
6.4			167,738	3.3	9,265,879	38,211	0.8	787,406	115,265	2.3	26.5	_	651
12.9			265,124	6.6	9,342,539	76,660	1.9	966,290	178,884	4.4	28.5	-	609
8.9		-	673,870	4.8	3,0 4 2,008	152,860	1.1		433,196	3.1	26.7	-	632
13.2		3 1/16	374,577	7.9	9,400,121	57,582	1.2	1,161,318	195,028	4.1	27.0		715
									-			<u> </u>	
10.6			187,999	6.2	9,435,095	34,974	1.2	1,258,735	97,417	3.2	27.0	-	784
9.7		5,456	274,311	6.3	9,469,773	34,678	0.8	1,370,360	111,625	2.6	27.0	-	739
	_	-			-	-		-				-	746 676
	11.3	11.3	11.3 -	11.3 - 836,887	11.3 - 836,887 6.9	11.3 - 836,887 6.9 -	11.3 - 836,887 6.9 - 127,234	11.3 - 836,887 6.9 - 127,234 1.1	11.3 - 836,887 6.9 - 127,234 1.1 -	11.3 - 836,887 6.9 - 127,234 1.1 - 404,070	11.3 - 836,887 6.9 - 127,234 1.1 - 404,070 3.3	11.3 - 836,887 6.9 - 127,234 1.1 - 404,070 3.3 27.0	11.3 - 836,887 6.9 - 127,234 1.1 - 404,070 3.3 27.0 -

- 1. 2009 Totals include data between 12/8/2008 and 12/11/2009.
- 2. Existing air stripper taken offline on 11/29/10 and temporary air stripper in operation through end of 2010 while system upgrades were being implemented. System back online last week in February 2011.
- 3. New air stripper brought online on 1/25/11, and was operated intermittently on the dates of 1/13, 1/14, 1/17, 1/18 and 1/20.
- 4. Prior to 2011, vapor phase flowrate calculated using the Air Velocity Measurement formula as provided in the Dwyer Instruments catalog. Differential pressure used in the blower intake pipe, and constants for temperature (70°F) and barometric pressure (29.92 in.Hg.) were assumed. Following the beginning of 2011, the vapor phase flowrate has been obtained from flow transmitter FT-106.
- 5. Manhole MH-2 offline for pump replacement from 3/22/11 to 4/20/11.

Definitions:

gpm - gallons per minute
In. W.C. - Inches of Water Column

cfm - cubic feet per minute

NA - Not applicable

ARCADIS

Table 6. Vapor Phase Analytical Sampling Results, Former Lockheed Martin French Road Facility, Utica, NY.

							Pre-0	Carbon												Mid-Ca	rbon											Effluent				
Volatile Organic ⁽¹⁾ Compound	ls	Value		Val	lue			Value		Value			Value		Value		l V	alue		Va	alue		Value			Value	Val	lue		Value		Value		Value		Value
(μg/m³)	1/28/2011	Q used Re	porting 2 Limit 2	/23/2011 Q uso	ed Rep	porting 4/4/	/2011 Q	used Report	rting 7/7/2011	1 Q used	Reporting Limit	10/12/2011 Q	used Reporting for Limit	1/28/2011	Q used Re	eporting 2/23/	/2011 Q U	sed Re	eporting 4/4/20	011 Q u	sed Reporting for Limit	7/7/2011 Q	used	Reporting 1	10/12/2011 Q	used Reporting	1/28/2011 Q us				porting 4 Limit 4	/4/2011 Q used	Reporting 7/7/2011	Q used Reporting		used Reporting
		calcs	Lilling	cal	lcs			calcs	iit	calcs	Lilling		calcs		calcs	Lillie	C	alcs	Lillin	Ca	alcs		calcs	Lilling		calcs	cal			calcs	-1111110	calcs	Limit	calcs		calcs
1,1,1-Trichloroethane	< 0.83	0	0.83	< 0.83) <	< 0.83	0.83	0 0.8	< 0.83	0	0.83	< 0.83	0 0.83	< 0.83	0	0.83 < 0).83	0	0.83 < 0.8	83	0 0.83	< 0.83	0	0.83	< 0.83	0 0.83	< 0.83	0.83	< 0.83	0	0.83	< 0.83 0	0.83 < 0.83	0 0.83	< 0.83	0 0.83
1,1,2,2-Tetrachloroethane	< 1.00	0	1	< 1.0	_		1.00	0 1	< 1.00		1	< 1.00	0 1	< 1.00	0		.00	0	1 < 1.0		0 1	< 1.00	0	1	< 1.00	0 1	< 1.00) 1	< 1.00	0		< 1.00 0	1 < 1.00	0 1	< 1.00	0 1
1,1,2-Trichloroethane	< 0.83	- V	0.83	< 0.83			0.83	0 0.8	10.00		0.83	< 0.83	0 0.83	< 0.83).83		0.83 < 0.8		0 0.83	< 0.83	0	0.83	< 0.83	0 0.83	< 0.83	0.83	< 0.83			< 0.83 0	0.83 < 0.83	0 0.83	< 0.83	0 0.83
1,1-Dichloroethane	< 0.62	+ +	0.62		8		19	19	71	71	+	41	41	0.49	J 0.49).62		0.62 < 0.6		0 0.62	0.66	0.66	0.0	10	10	< 0.62	0.62				< 0.62 0	0.62 < 0.62	0 0.62		17
1,1-Dichloroethene 1,2,4-Trichlorobenzene	< 0.60	0	0.6	< 0.60	_		0.60	0 0.0	6 0.81		11	0.48 J < 1.10	0.48	< 0.60 < 1.10	0	- 10	0.60	-	0.6 < 0.6		0 0.6	< 0.60	0	0.6	< 0.60	0 0.6	< 0.60	0.6	< 0.60	 	-	< 0.60 0	0.6 < 0.60	0 0.6	0.48 J	0.48
1,2,4-Trimethylbenzene	< 1.10	1	1.1	< 1.1 C	6		1.10 1.6	0 1.	1.3		1.1	< 0.75	0 0.75	< 1.10 1.9	1.9		.10	2.1	1.1 < 1.1	10	3	< 1.10	0	1.1	< 1.10 < 0.75	0 0.75	< 1.10 (1.5) (1.5)	5 1.1	< 1.10 3.7	37		< 1.10 0 1.3 1.3	1110	3 3	< 1.10 < 0.75	0 0.75
1,2-Dibromoethane	< 1.20	0	12	< 1.2			1.20	0 1:		1.0	1.2	< 1.20	0 0.73	< 1.9	0		.20	0	1.2 < 1.2	20	0 12	< 1.20	0	12	< 1.20	0 0.73	< 1.20) 1.2		0.7		< 1.20 0	1.2 < 1.20	0 1.2	< 1.20	0 0.73
1,2-Dichlorobenzene	< 0.92	0	0.92	< 0.92	_		0.92	0 0.9			0.92	< 0.92	0 0.92	< 0.92	0).92		0.92 < 0.9		0 0.92	< 0.92	0	0.92	< 0.92	0 0.92	< 0.92	0.92	10	0 0		< 0.92 0	0.92 < 0.92	0 0.92		0 0.92
1,2-Dichloroethane	< 0.62	0	0.62	< 0.62			0.62	0 0.6			0.62	< 0.62	0 0.62	< 0.62	0	<u> </u>	0.62		0.62 < 0.6	62	0 0.62	< 0.62	0	0.62	< 0.62	0 0.62	< 0.62	0 0.62		 		< 0.62 0	0.62 < 0.62	0 0.62	< 0.62	0 0.62
1,2-Dichloropropane	< 0.70	0	0.7	< 0.70			0.70	0 0.	7 < 0.70	0	0.7	< 0.70	0 0.7	< 0.70	0	0.7 < 0).70	0	0.7 < 0.7	70	0 0.7	< 0.70	0	0.7	< 0.70	0 0.7	< 0.70	0.7	< 0.70	0		< 0.70 0	0.7 < 0.70	0 0.7	< 0.70	0 0.7
1,3,5-Trimethylbenzene	< 0.75	0	0.75	1.5 1.	.5	< (0.75	0 0.7	'5 < 0.75	0	0.75	< 0.75	0 0.75	0.8	0.8	0.	.8	0.8	1		1	4.4	4.4		< 0.75	0 0.75	0.65 J 0.6	65	1.4	1.4		0.65 J 0.65	1.3	1.3	< 0.75	0 0.75
1,3-butadiene	< 0.34	0	0.34	< 0.34) <	< 0.34 < 0	0.34	0 0.3	< 0.34	0	0.34	< 0.34	0 0.34	< 0.34	0	0.34 < 0).34	0	0.34 <0.3	34	0 <0.34	< 0.34	0	0.34	< 0.34	0 0.34	< 0.34	0.34	< 0.34	0	0.34	< 0.34 0	0.34 < 0.34	0 0.34	< 0.34	0 0.34
1,3-Dichlorobenzene	< 0.92	0	0.92	< 0.92) <	< 0.92 < 0	0.92	0 0.9	2 < 0.92	2 0	0.92	< 0.92	0 0.92	< 0.92	0	0.92 < 0).92	0	0.92 < 0.9	92	0 0.92	< 0.92	0	0.92	< 0.92	0 0.92	< 0.92	0.92	< 0.92	0	0.92	< 0.92 0	0.92 < 0.92	0 0.92	< 0.92	0 0.92
1,4-Dichlorobenzene	< 0.92	0	0.92	< 0.92) <	< 0.92 < 0	0.92	0 0.9	2 < 0.92	2 0	0.92	< 0.92	0 0.92	< 0.92	0	0.92 < 0).92	0	0.92 < 0.9	92	0 0.92	< 0.92	0	0.92	< 0.92	0 0.92	< 0.92	0.92	< 0.92	0	0.92	< 0.92 0	0.92 < 0.92	0 0.92	< 0.92	0 0.92
1,4-Dioxane	< 1.10		1.1	< 1.1	_		1.10	0 1.	1 \ 1.10		1.1	< 1.10	0 1.1	2.3	2.3		.10	<u> </u>	1.1 < 1.1		0 1.1	1.3	1.3		< 1.10	0 1.1	1.6 1.	.6	< 1.10			< 1.10 0	1.1 < 1.10	0 1.1	< 1.10	0 1.1
2,2,4-trimethylpentane	< 0.71		0.71	0.76 0.7	76		0.71	0 0.7	. , , , , ,		0.71	< 0.71	0 0.71	< 0.71				0.66	< 0.7	-	0 0.71	< 0.71	0	0.71	< 0.71	0 0.71	< 0.71	0.71	0.81	0.81		< 0.71 0	0.71 < 0.71	0 0.71	< 0.71	0 0.71
4-ethyltoluene	0.6	J 0.6		1.1 1. 21 2	.1		0.75	0 0.7	75 < 0.75	0	0.75	< 0.75	0 0.75	0.6	J 0.6		95 C	0.95	7.5		2.2	3.5 25	3.5		< 0.75 3.5	0 0.75	< 0.75 0	0 < 0.75	0.95	0.95		0.8 0.8 8.5 8.5		0.95	< 0.75	0 0.75
Acetone Allyl chloride	< 0.48		0.48	<u> </u>	-	<u> </u>	0.48	0 0.4	17	17	0.48	< 0.48	0 0.48	< 0.48	20),48	0	0.48 < 0.4		0 0.48	< 0.48	25 0	0.48	< 0.48	0 0.48	100 10 < 0.48	0.48		21	0.48	8.5 8.5 < 0.48 0		0 0.48	4.4 < 0.48	0 0.48
Benzene	< 0.46		0.49	 	.5			0.91	0.39		0.40	0.46	0.46	2	2			0.81	0.46 < 0.4 < 0.4		0 0.49	< 0.49	0	0.46	< 0.49	0 0.49	1.1	.1 0.49		1.2		< 0.49 0	0.48 < 0.48	0 0.49		0 0.48
Benzyl chloride	< 0.49	 	0.43	< 0.88			0.88	0 0.8	8 < 0.88		0.88	< 0.88	0.73	< 0.88	0).88	7.01	0.88 < 0.8	-	0 0.88	< 0.49	0	0.88	< 0.49	0 0.43	< 0.88	0.43	< 0.88	1.2		< 0.88 0	0.43 < 0.49	0 0.43	< 0.88	0 0.43
Bromodichloromethane	< 1.00	0	0.00	< 1.0			1.00	0 1	< 1.00		1	< 1.00	0 1	< 1.00	0		.00	0	1 < 1.0		0 1	< 1.00	0	1	< 1.00	0 1	< 1.00	0 1	< 1.00	0	0.00	< 1.00 0	1 < 1.00	0 1	< 1.00	0 1
Bromoform	< 1.60	0	1.6	< 1.6) <	< 1.6 < 1	1.60	0 1.	6 < 1.60	0	1.6	< 1.60	0 1.6	< 1.60	0	1.6 < 1	.60	0	1.6 < 1.6	60	0 1.6	< 1.60	0	1.6	< 1.60	0 1.6	< 1.60	1.6	< 1.60	0	1.6	< 1.60 0	1.6 < 1.60	0 1.6	< 1.60	0 1.6
Bromomethane	< 0.59	0	0.59	< 0.59) <	< 0.59 < 0	0.59	0 0.5	9 < 0.59	0	0.59	< 0.59	0 0.59	< 0.59	0	0.59 < 0).59	0	0.59 < 0.5	59	0 0.59	< 0.59	0	0.59	< 0.59	0 0.59	< 0.59	0.59	< 0.59	0 (0.59	< 0.59 0	0.59 < 0.59	0 0.59	< 0.59	0 0.59
Carbon disulfide	< 0.47	0	0.47	< 0.47) <	< 0.47 < 0	0.47	0 0.4	7 0.32	J 0.32		< 0.47	0 0.47	< 0.47	0	0.47 < 0).47	0	0.47 < 0.4	47	0 0.47	0.32 J	0.32		0.85	0.85	< 0.47	0.47	< 0.47	0 (0.47	< 0.47 0	0.47 0.47	0.47	0.38 J	0.38
Carbon tetrachloride	< 0.96	0	0.96	0.77 J 0.7	77	< (0.96	0 0.9	0.9	J 0.9		0.38 J	0.38	0.77	J 0.77	< 0).96	0	0.96 < 0.9	96	0 0.96	< 0.96	0	0.96	< 0.96	0 0.96	< 0.96	0.96	< 0.96	0	0.96	< 0.96 0	0.96 < 0.96	0 0.96	< 0.96	0 0.96
Chlorobenzene	< 0.70	0	0.7	0.66 J 0.6	66	< (0.70	0 0.	7 < 0.70	0	0.7	< 0.70	0 0.7	< 0.70	0	0.7 < 0).70	0	0.7 < 0.7	70	0 0.7	< 0.70	0	0.7	< 0.70	0 0.7	< 0.70	0.7	< 0.70	0	0.7	< 0.70 0	0.7 < 0.70	0 0.7	< 0.70	0 0.7
Chloroethane	< 0.40	0	0.4		.2	< (0.40	0 0.	4 < 0.40	0	0.4	0.86	0.86	< 0.40	0	<u> </u>).40	0	0.4 < 0.4	40	0 0.4	< 0.40	0	0.4	0.46	0.46	< 0.40	0.4	< 0.40	0	0.4	< 0.40 0	0.4 < 0.40	0 0.4	0.54	0.54
Chloroform	< 0.74	0	0.74	5.7 5.	.,	1	10	10	8.5			1.3	1.3	8.9	8.9).74		0.74 < 0.7		0 0.74	< 0.74	0	0.74	3.7	3.7	< 0.74	0.74	< 0.74	-		< 0.74 0	0.74 < 0.74	0 0.74	4.2	4.2
Chloromethane	1.2	1.2	0.0	0.84 0.8	84		0.31	0 0.3	1 10.01		0.31	0.01	0.57	1.2	1.2		•	0.57	< 0.3	-	0 0.31	< 0.31	0	0.31	0.59	0.59	1.3 1.	.~	0.8	0.8		0.94 0.94	1.2	1.2	0.92	0.92
cis-1,2-Dichloroethene	< 0.60	0	0.6	220 22	20		140	140	840		0.60	210	210	24	24	<u> </u>	0.60	0	0.6 < 0.6		0 0.6	0.44 J	0.44	0.60	63	63	9.7 J 9.		< 0.60	+		< 0.60 0	0.6 < 0.60	0 0.6	32	32
cis-1,3-Dichloropropene	< 0.69 < 0.52	0	0.69	< 0.69) <	. 0.00	0.69	0 0.6	9 < 0.69	0	0.69	< 0.69	0 0.69	< 0.69	0		0.69		0.69 < 0.6 0.52 < 0.5		0 0.69	< 0.69 < 0.52	0	0.69	< 0.69 < 0.52	0 0.69	< 0.69 C	0.69	< 0.69 < 0.52			< 0.69 0 < 0.52 0	0.69 < 0.69 0.52 0.66	0 0.69	< 0.69 < 0.52	0 0.69
Cyclohexane Dibromochloromethane	< 1.30	0	1.3	< 1.3) <		1.30	0 0.5	3 < 1.30	0	1.3	< 0.52	0 0.32	< 0.52	0		.30	0	1.3 < 1.3		0 0.52	< 1.30	0	1.3	< 1.30	0 0.52	< 0.52) 1.3	< 0.52			< 1.30 0	1.3 < 1.30	0.00	< 1.30	0 0.32
Ethyl acetate	< 0.92	0	0.92	< 0.92		0.92 < 0	0.92	0 0.9	2 < 0.92	0	0.92	< 0.92	0 0.92	< 0.92	0).92	0	0.92 < 0.9		0 0.92	< 0.92	0	0.92	< 0.92	0 0.92	< 0.92	0.92	< 0.92	0	0.92	< 0.92 0	0.92 < 0.92	0 0.92	< 0.92	0 0.92
Ethylbenzene	2.8	2.8	0.02		.3	1,).71	0.71	< 0.66		0.66	< 0.66	0 0.66	0.97	0.97		.5	4.5	8.2		8.2	7.5	7.5		0.71	0.71	0.97 0.9	97	2.4	2.4	0.02	1.5 1.5	1.8	1.8	< 0.66	0 0.66
Freon 11	< 0.86	0	0.86	1.7 1.	.7		6	6	1.8	1.8		1.1	1.1	3.1	3.1	< 0).86	0	0.86 < 0.8	86	0 0.86	9.9	9.9		1.5	1.5	< 0.86	0.86	< 0.86	0	0.86	< 0.86 0	0.86 < 0.86	0 0.86	1.9	1.9
Freon 113	< 1.20	0	1.2	110 11	10	6	60	60	170	170		83	83	1.2	1.2	< 1	.20	0	1.2 < 1.2	20	0 1.2	< 1.20	0	1.2	16	16	< 1.20) 1.2	< 1.20	0	1.2	< 1.20 0	1.2 < 1.20	0 1.2	22	22
Freon 114	< 1.10	0	1.1	< 1.1) <	< 1.1 < 1	1.10	0 1.	1 < 1.10	0	1.1	< 1.10	0 1.1	< 1.10	0	1.1 < 1	.10	0	1.1 < 1.1	10	0 1.1	< 1.10	0	1.1	< 1.10	0 1.1	0.85 J 0.8	85	< 1.10	0	1.1	< 1.10 0	1.1 < 1.10	0 1.1	< 1.10	0 1.1
Freon 12	0.65	J 0.65		2.8 2.	.8	3	3.4	3.4	2.7	2.7		1.6	1.6	3.6	3.6	4.	.2	4.2	4		4	5.7	5.7		3.8	3.8	4.3 4.	.3	2.9	2.9		2.5 2.5	3.7	3.7	4.3	4.3
Heptane	< 0.62	0	0.62	0.92 0.9	92	< (0.62	0 0.6	< 0.62	2 0	0.62	< 0.62	0 0.62	0.62	0.62	0.7	79 0	0.79	< 0.6	62	0 0.62	< 0.62	0	0.62	< 0.62	0 0.62	< 0.62	0.62	< 0.62	0	0.62	< 0.62 0	0.62 < 0.62	0 0.62	< 0.62	0 0.62
Hexachloro-1,3-butadiene	< 1.60	0	1.6	< 1.6			1.60	0 1.	4 1.00		1.6	< 1.60	0 1.6	< 1.60	0		.60	0	1.6 < 1.6		0 1.6	< 1.60	0	1.6	< 1.60	0 1.6	< 1.60	0 1.6	< 1.60			< 1.60 0	1.6 < 1.60	0 1.6	< 1.60	0 1.6
Hexane	< 0.54	0	0.54	< 0.54			0.54	0 0.5	< 0.54		0.54	0.75	0.75	0.9	0.9).54		0.54 < 0.5		0 0.54	< 0.54	0	0.54	< 0.54	0 0.54	< 0.54	0.54	< 0.54			< 0.54 0	0.54 < 0.54	0 0.54	< 0.54	0 0.54
Isopropyl alcohol	< 0.37 7.9	<u> </u>	0.37		.3			5.4	< 0.37		0.37	< 0.37	0 0.37	< 0.37	- 			5.3	< 0.3	37	0 0.37	< 0.37	75	0.37	< 0.37	0 0.37	< 0.37	0.37	-	 		4.2 4.2	< 0.37	0 0.37	1 3.37	0 0.37
m&p-Xylene	< 1.20	7.9	1.2	8.5 8. < 1.2	.5		1.20	2.3	1.6 2 < 1.20	1.0	1.2	0.75 J < 1.20	0.75	< 1.20	2.4		.20 J	0	1.2 < 1.2	20	0 12	< 1.20	75	1.2	3.1 < 1.20	0 12	< 1.20	12	9.9 < 1.20	9.9	1.2	7.2 7.2 < 1.20 0	1.2 < 1.20	0 1.2	< 1.30 < 1.20	0 1.3
Methyl Butyl Ketone Methyl Ethyl Ketone	10	10	1.4	2.7 2.	.7		2.5	2.5	< 0.90		0.9	1.2	1.2	3.1	31	<u> </u>).90	0	0.9 1.9) .	1.9	< 1.20 1.7	17	1.4	0.87 J	0 1.2	22 2	2 1.2	< 0.90	0	0.9	2 2	1.2 < 1.20	1.9	1.5	1.5
Methyl Isobutyl Ketone	< 1.20	0	1.2	< 1.2) <		1.20	0 1.:	2 < 1.20		1.2	< 1.20	0 1.2	< 1.20	0		.20	0	1.2 < 1.2	20	0 1.2	< 1.20	0	1.2	< 1.20	0 1.2	< 1.20) 1.2	< 1.20	0	1.2	< 1.20 0	1.2 < 1.20	0 1.2	< 1.20	0 1.2
Methyl tert-butyl ether	< 0.55	0	0.55	< 0.55) <	< 0.55 < 0	0.55	0 0.5	55 < 0.55		0.55	< 0.55	0 0.55	< 0.55	0).55		0.55 < 0.5	55	0 0.55	< 0.55	0	0.55	< 0.55	0 0.55	< 0.55	0.55	< 0.55	0 (0.55	< 0.55 0	0.55 < 0.55	0 0.55	< 0.55	0 0.55
Methylene chloride	< 0.53	0	0.53	1.8 1.	.8	1	1.8	1.8	1.8	1.8		0.56	0.56	0.6	0.6	0.	.6	0.6	< 0.5	53	0 0.53	1.4	1.4		1.3	1.3	< 0.53	0.53	0.64	0.64		1.2 1.2	2.4	2.4	0.95	0.95
o-Xylene	1.4	1.4		3.1 3.	.1	0.).66	0.66	0.62	J 0.62		< 0.66	0 0.66	0.71	0.71	5.	.2	5.2	5.7	7	5.7	30	30		1.6	1.6	0.88 0.8	88	3.8	3.8		1.8 1.8	2.5	2.5	< 0.66	0 0.66
Propylene	< 0.26	0	0.26	< 0.26) <	< 0.26 < 0	0.26	0 0.2	< 0.26	0	0.26	< 0.26	0 0.26	< 0.26	0	0.26 < 0).26	0	0.26 < 0.2	26	0 0.26	< 0.26	0	0.26	< 0.26	0 0.26	< 0.26	0.26	< 0.26	0	0.26	< 0.26 0	0.26 < 0.26	0 0.26	< 0.26	0 0.26
Styrene	0.52	J 0.52		< 0.65) <	< 0.65 < 0	0.65	0 0.6	is < 0.65	0	0.65	< 0.65	0 0.65	0.48	J 0.48	< 0).65	0	0.65 < 0.6	65	0 0.65	< 0.65	0	0.65	< 0.65	0 0.65	0.65 0.6	65	< 0.65	0	0.65	< 0.65 0	0.65 < 0.65	0 0.65	< 0.65	0 0.65
Tetrachloroethylene	0.83	J 0.83		110 11	10		180	180	460			140	140	8.8	8.8		.00	0	1 < 1.0	00	0 1	1.5	1.5		< 1.00	0 1	1.9 1.			J 0.83		< 1.00 0	1 < 1.00	0 1	1.2	1.2
Tetrahydrofuran	72	72			.4		5.1	5.1	< 0.45		0.45	0.96	0.96	12	12	<u> </u>	.5	5.5	8.4	1 8	8.4	4.2	4.2		6.5	6.5	110 11	10	6.3	6.3		6 6	3.7	3.7	9.7	9.7
Toluene	5.7	5.7	0.5	7.2 7.			2.3	2.3	1.5	1.5	 	1.9	1.9	4	4	2	21 J	21	21		21	39	39		2.2	2.2	2.1 2.	.1	8.1	8.1		1.4 1.4	2.5	2.5	+	0.69
trans-1,2-Dichloroethene	< 0.60	0	0.6	0.0	64		1.5	1.5	1.1	1.1	0.00	1.4	1.4	1 1	1 1	< 0	0.60	0	0.6 < 0.6	60	0 0.6	< 0.60	0	0.6	1.1	1.1	< 0.60	0.6	< 0.60	0	0.6	< 0.60 0	0.6 < 0.60	0 0.6	0.44 J	0.44
trans-1,3-Dichloropropene	< 0.69	J 0.71	0.69		50 <		0.69	0 0.6			0.69	< 0.69	0 0.69	< 0.69	32		0.69		0.69 < 0.6		0 0.69	< 0.69	3.2	0.69	< 0.69	0 0.69	< 0.69					< 0.69 0	0.69 < 0.69 0.82 < 0.82	0 0.69		0 0.69
Trichloroethene	0.71 < 0.54	J 0.71	0.54				0.54	220	1,200			180	0 0.54	32	02).82		0.82 < 0.8		0 0.82 0 0.54	3.2	0	0.54	0.49 J < 0.54	 		'	< 0.82			< 0.82 0 < 0.54 0	0.02	0 0.82		0.02
Vinyl acetate Vinyl Bromide	< 0.54 < 0.67			< 0.54 C) <		0.54	0 0.5			0.54 0.67	< 0.54 < 0.67	0 0.54	< 0.54 < 0.67			0.54		0.54 < 0.5 0.67 < 0.6		0 0.54	< 0.54 < 0.67	0			0 0.54 0 0.67	< 0.54 C	0.54						0 0.54		0 0.54 0 0.67
Vinyl Bromide Vinyl chloride	< 0.67	0		-) <		0.67 2.3		3	- 	0.07	< 0.67 1.7		< 0.67				2.3			1.6	2.6			< 0.67 2.3	2.3	< 0.67					< 0.67 0 1 1		3.2		3.7
Cumulative VOCs (µg/m³)		134.31	U.U8	885.99				2.3 5.48	3	2781.34	1		3.96		138.44	U.UU Z.	126.2		1.6	84.5			231.32		l .	123.57	283.2		Z.1	79.53		40.99	3.2	44.18		106.3
Cumulative VOCs (µg/m²) Cum % Remov		NA		005.9s				0.40 NA		NA			3.96 VA	+	NA		86%		+	87%			92%			82%	263.2 NA			91%		94%		98%		84%
Target VOCs (µg/m³)		1.54		680.64				11.5		2501.1			31.4	 	65.8		Ω /		+	0			5.14			64.59	32.6			0.83		0		0		33.64
Target % Remov	al	NA		NA				NA		NA			VA	†	NA		1009	%	- 	1009			100%			88%	NA		+	100%		100%		100%		94%
Cumulative VOCs (g/da	v)	3.91		25.78		+		6.84	+	71.67			0.50	1			100	-	L	100		<u> </u>		<u> </u>			1771		I		l	.0070	<u> </u>			
Garria attro 1003 (g/da	, /			20.70		1	.0		1				.	1																						

Notes:

1. Samples analyzed for VOCs using USEPA Method TO-15.

2. Cumulative VOCs calculated using only detected concentrations.

3. Target VOCs calculated using only detected concentrations of the following compounds: 1,1-dichloroethene, cis-1,2-dichloroethene, tetrachloroethylene, trans-1,2-dichloroethene, and trichloroethene.

BOLD indicates detected concentrations.

Definitions:
< - less than reporting limit listed

J - indicates concentration is estimated µg/m³ - micrograms per cubic meter

Table 7. Summary of Estimated Air Stripper Emissions, Former Lockheed Martin French Road Facility, Utica, NY.

			Maximum	1/28/2011	2/23/2011	4/4/2011	7/7/2011	10/12/2011			Actual Annual
Volatile Organic Compounds ⁽¹⁾	AGC ⁽²⁾ (μg/m ³)	SGC ⁽²⁾ (µg/m³)	Effluent Concentration (μg/m³) ⁽³⁾	Result (µg/m3)	Result (µg/m3)	Result (µg/m3)	Result (µg/m3)	Result (µg/m3)	Maximum Emission Rate (lb/day) ⁽⁴⁾	Actual Annual Impact (µg/m³) ⁽⁵⁾	Impact Percentage of AGC (%)
1,1,1-Trichloroethane			0	0	0	0	0				
1,1,2,2-Tetrachloroethane			0	0	0	0	0				
1,1,2-Trichloroethane			0	0	0	0	0				
1,1-Dichloroethane	0.63	-	0	0	0	0	0		0.00E+00	0.00E+00	0.00
1,1-Dichloroethene			0	0	0	0	0		0.00E+00	0.00E+00	-
1,2,4-Trichlorobenzene			0	0	0	0	0		0.00E+00	0.00E+00	-
1,2,4-Trimethylbenzene	290	-	3.7	1.5	3.7	1.3	3.3	0	2.16E-04	2.63E-04	0.00
1,2-Dibromoethane			1.4	0	0	0	0		8.19E-05	9.94E-05	-
1,2-Dichlorobenzene			1.4	0	0	0	0		8.19E-05	9.94E-05	-
1,2-Dichloroethane	0.038	-	1.4	0	0	0	0		8.19E-05	9.94E-05	0.26
1,2-Dichloropropane			1.4	0	0	0	0		8.19E-05	9.94E-05	-
1,3,5-Trimethylbenzene	290	-	1.4	0.65 J	1.4	0.65 J	1.3	0	8.19E-05	9.94E-05	0.00
1,3-butadiene			0	0	0	0	0		0.00E+00	0.00E+00	-
1,3-Dichlorobenzene			0	0	0	0	0		0.00E+00	0.00E+00	1
1,4-Dichlorobenzene	0.09	-	0	0	0	0	0		0.00E+00	0.00E+00	0.00
1,4-Dioxane	0.13	3,000	1.6	1.6	0	0	0	0	9.36E-05	1.14E-04	0.09
2,2,4-trimethylpentane	3,300		0.81	0	0.81	0	0	0	4.74E-05	5.75E-05	0.00
4-ethyltoluene	-		0.95	0	0.95	0.8	0.95	0	5.55E-05	6.75E-05	
Acetone	28,000	180,000	100	100	27	8.5	6.2	4.4	5.85E-03	7.10E-03	0.00
Allyl chloride			0	0	0	0	0		0.00E+00	0.00E+00	•
Benzene	0.13	1,300	1.2	1.1	1.2	0	0	0	7.02E-05	8.52E-05	0.07
Benzyl chloride			0	0	0	0	0		0.00E+00	0.00E+00	1
Bromodichloromethane			0	0	0	0	0		0.00E+00	0.00E+00	-
Bromoform			0	0	0	0	0		0.00E+00	0.00E+00	-
Bromomethane			0	0	0	0	0		0.00E+00	0.00E+00	-
Carbon disulfide	700	6,200	0.47	0	0	0	0.47		2.75E-05	3.34E-05	0.00
Carbon tetrachloride			0	0	0	0	0		0.00E+00	0.00E+00	-
Chlorobenzene			0	0	0	0	0		0.00E+00	0.00E+00	-
Chloroethane			0	0	0	0	0		0.00E+00	0.00E+00	-
Chloroform	0.043	150	0	0	0	0	0		0.00E+00	0.00E+00	0.00
Chloromethane	90	22,000	1.3	1.3	0.8	0.94	1.2	0.92	7.60E-05	9.23E-05	0.00
cis-1,2-Dichloroethene	63	-	32	9.7 J	0	0	0	32	1.87E-03	2.27E-03	0.00
cis-1,3-Dichloropropene			0	0	0	0	0		0.00E+00	0.00E+00	-
Cyclohexane	6,000	-	0.66	0	0	0	0.66		3.86E-05	4.69E-05	0.00
Dibromochloromethane			0	0	0	0	0		0.00E+00	0.00E+00	•
Ethyl acetate			0	0	0	0	0		0.00E+00	0.00E+00	-
Ethylbenzene	1,000	54,000	2.4	0.97	2.4	1.5	1.8	0	1.40E-04	1.70E-04	0.00
Freon 11	1,000	68,000	0	0	0	0	0		0.00E+00	0.00E+00	0.00
Freon 113	180,000	960,000	0	0	0	0	0		0.00E+00	0.00E+00	0.00
Freon 114	17,000	-	0.85	0.85 J	0	0	0	0	4.97E-05	6.04E-05	0.00
Freon 12	12,000	-	4.3	4.3	2.9	2.5	3.7	4.3	2.51E-04	3.05E-04	0.00
Heptane	3,900	210,000	0	0	0	0	0		0.00E+00	0.00E+00	0.00
Hexachloro-1,3-butadiene			0	0	0	0	0		0.00E+00	0.00E+00	-
Hexane	700	-	0	0	0	0	0		0.00E+00	0.00E+00	0.00
Isopropyl alcohol	7,000	98,000	6.7	0	6.7	4.2	0	0	3.92E-04	4.76E-04	0.00
m&p-Xylene	100	4,300	9.9	2.7	9.9	7.2	8.4	0	5.79E-04	7.03E-04	0.00
Methyl Butyl Ketone			0	0	0	0	0		0.00E+00	0.00E+00	-
Methyl Ethyl Ketone	5,000	13,000	22	22	0	2	1.9	1.5	1.29E-03	1.56E-03	0.00
Methyl Isobutyl Ketone	1		0	0	0	0	0		0.00E+00	0.00E+00	-
Methyl tert-butyl ether	1 -	<u> </u>	0	0	0	0	0		0.00E+00	0.00E+00	-
Methylene chloride	2.1	14,000	2.4	0	0.64	1.2	2.4	0.95	1.40E-04	1.70E-04	0.01
o-Xylene	100	4,300	3.8	0.88	3.8	1.8	2.5	0	2.22E-04	2.70E-04	0.00
Propylene		 	0	0	0	0	0		0.00E+00	0.00E+00	-
Styrene	1,000	17,000	0.65	0.65	0	0	0	0	3.80E-05	4.62E-05	0.00
Tetrachloroethylene	1 250	1,000	1.9	1.9	0.83 J	0	0	1.2	1.11E-04	1.35E-04	0.01
Tetrahydrofuran	350	30,000	110	110	6.3	6	3.7	9.7	6.43E-03	7.81E-03	0.00
Toluene	5,000	37,000	8.1	2.1	8.1	1.4	2.5	0.69	4.74E-04	5.75E-04	0.00
trans-1,2-Dichloroethene	1		0	0	0	0	0		0.00E+00	0.00E+00	-
trans-1,3-Dichloropropene	1	44000	0	0	0	0	0		0.00E+00	0.00E+00	-
Trichloroethene	0.5	14,000	21	21	0	0	0	0	1.23E-03	1.49E-03	0.30
Vinyl acetate	+	_	0	0	0	0	0	ļ	0.00E+00	0.00E+00	-
Vinyl Bromide	1 .		0	0	0	0	0		0.00E+00	0.00E+00	-
Vinyl chloride	0.1	180,000	37	0	2.1	1	3.2	37	2.16E-03	2.63E-03	2.63

- 1. Volatile organic compounds shown are only those detected in effluent samples during 2011.
- 2. AGC and SGC values obtained from NYSDEC DAR-1 AGC/SGC Tables, dated 9/10/07.
- 3. Concentrations shown for each volatile organic compound are the maximum concentrations detected during 2011.
- 4. Maximum emission rate calculated using the maximum concentrations for each volatile organic compound and the average effluent flow rate (652 scfm) during 2011.
- 5. Actual annual impact calculated by following procedures described in NYSDEC DAR-1 Guidelines for the Control of Toxic Ambient Air Contaminants (NYSDEC 1991). Note effective stack height of 28 feet.

Definitions:

- < less than laboratory detection limit listed
- "-" indicates no guideline as been established
- AGC Annual Guideline Concentration J - Indicates concentration is estimated
- lb/day pounds per day Q - data qualifier
- SGC Short-term Guideline Concentration
- μg/m³ micrograms per cubic meter

Table 8. Water Treatment Chemical Consumption Summary, Former Lockheed Martin French Road Facility, Utica, NY.

Chemical Name - ARIES 2908

Chemical Specific Gravity - 1.04 to 1.09 1.065

Specific Weight of Water @ 60°F 8.3378 (lb/gallon)
Specific Weight of Chemical @ 60°F 8.8798 (lb/gallon)

Date	Drum #	Days	Volume in 30 Gallon Drum (gal.)	% Full	Δ Volume (gal.)	ΔLbs	Consumption Rate (lbs/day) ⁽¹⁾	MH-1 Total Flow (gallons)	MH-2 Total Flow (gallons)	MH-3 Total Flow (gallons)	∑ Total Flows (gallons)	Δ Total Flow	Dose Rate This Period (ppm) ⁽²⁾	Notes
4/20/2011	1	-	30	100%	-		-	51,271,950	9,102,881	224,649	60,599,480	-	-	Brought sequestering agent online for first time.
5/19/2011	1	29	18.5	62%	11.5	102.1	3.5	51,670,347	9,169,542	455,374	61,295,263	695,783	16.5	
6/2/2011	1	14	14.1	47%	4.4	39.1	2.8	51,837,640	9,189,887	534,242	61,561,769	266,506	16.5	
7/7/2011	1	35	12	40%	2.1	18.6	0.5	52,075,707	9,227,668	672,141	61,975,516	413,747	5.1	Under dosing due to CFP being offline due to noted past alarms.
8/11/2011	1	35	7	23%	5	44.4	1.3	52,243,445	9,265,879	787,928	62,297,252	321,736	15.5	
9/8/2011	1	28	0	0%	7	62.2	2.2	52,508,569	9,342,539	966,290	62,817,398	520,146	13.5	Drum #1 empty.
									NEW D	RUM BROUGHT	ONLINE			
9/9/2011	2	-	30	100%	-	-	-	52,552,901	9,347,402	986,141	62,886,444	-	-	Brought Drum #2 online.
9/26/2011	2	17	26	87%	4	35.5	2.1	52,717,931	9,374,727	1,081,024	63,173,682	287,238	13.9	Low sequestering agent flow alarm occurs due to solidified chemical. See noted 3.
10/6/2011	2	10	26	87%	0	0.0	0.0	52,842,625	9,395,515	1,142,812	63,380,952	207,270	0.0	See Note 3.
									NEW D	RUM BROUGHT	ONLINE			
10/6/2011	3	-	30	100%	-	-	-	52,842,625	9,395,515	1,142,812	63,380,952	-	-	Cleaned and inspected fittings/tubing; brought Drum #3 online.
11/1/2011	3	26	26	87%	4	35.5	1.4	53,071,145	9,435,095	1,258,735	63,764,975	384,023	10.4	Continue using 3rd drum.
12/1/2011	3	30	0	0%	26	230.9	7.7	53,349,688	9,469,794	1,371,989	64,191,471	426,496	61.0	3rd drum empty, reuse 2nd drum that was taken offline on 10/6/11
									NEW/PREVIC	OUS DRUM BRO	UGHT ONLINE	E		
12/1/2011	2	-	26	87%	-	-	-	53,349,688	9,469,794	1,371,989	64,191,471	-	-	3rd drum empty, reuse 2nd drum that was taken offline on 10/6/11
12/22/2011	2		22	73%	4	35.5	1.7	53,525,286	9,491,900	1,437,180	64,454,366	262,895	15.2	
2011 Total	-	246	-	-	68	603.8	-	-	-	-	-	3,854,886	17.6	Through 12/22/11

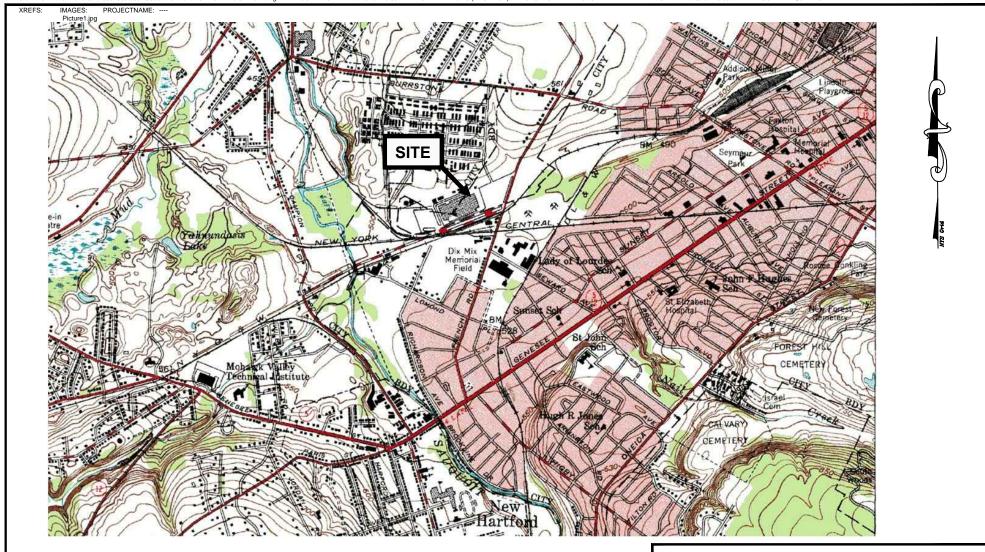
Notes:

¹⁾ Maximum allowable daily loading rate of 12.5 lbs/day per WTC Usage Form dated 4/11/11.

²⁾ Sequestering agent dosing rate is setup to be proportional to the aggregate flow transmitter value (not shown). However, this table utilizes the sum of the three individual pumping manhole flow transmitter values to calculate dose rate.

³⁾ Sequestering agent low flow alarm occurred on 9/26/11 due to partial solidification of chemical within suction/injection fittings and tubing. Inspection not conducted until 10/6/11, during which time the fittings and tubing were cleaned. Drum #2 was taken offline until vendor could troubleshoot observation, in the interim Drum #3 was brought online.

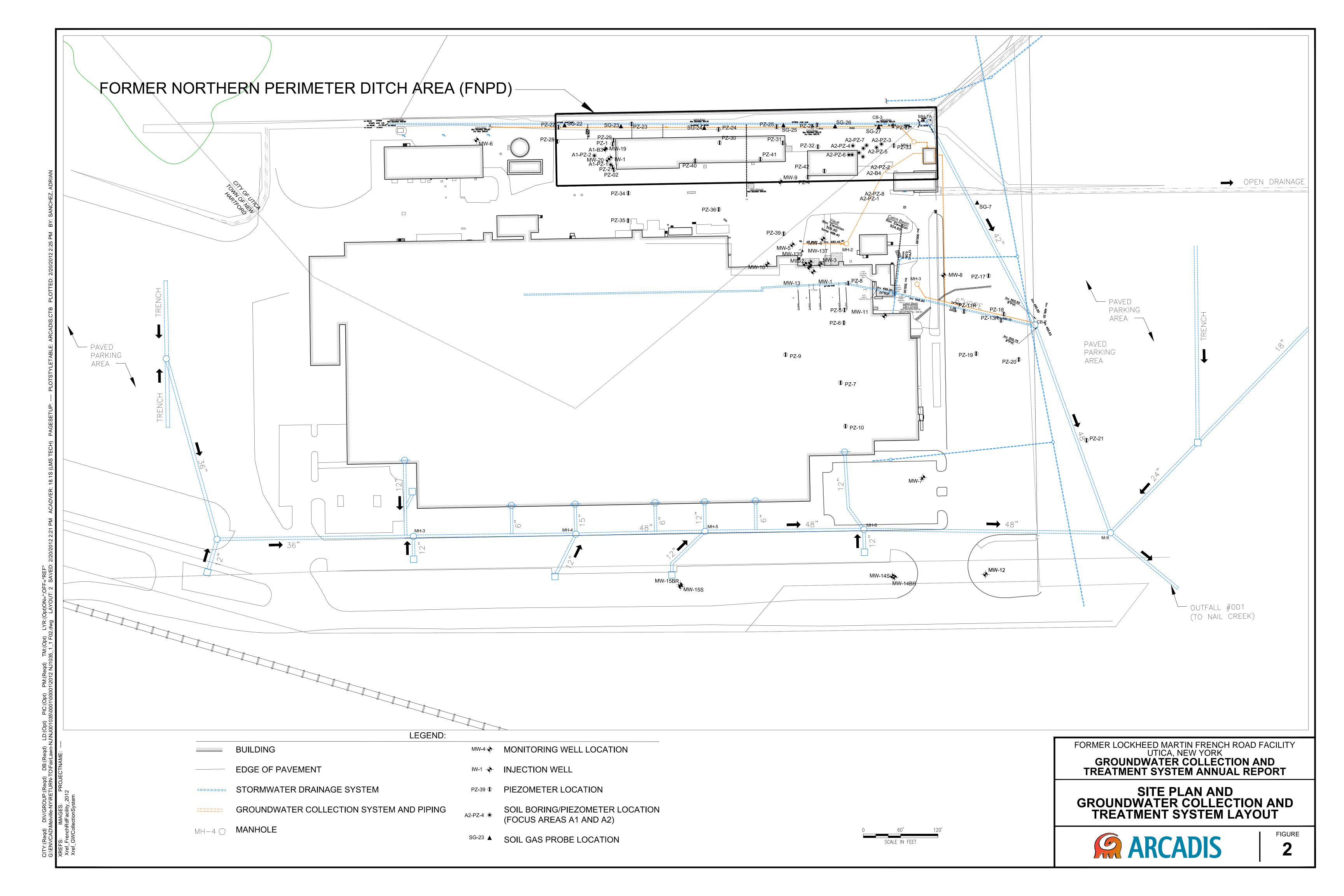
Table 9. Groundwater Elevation Measurements, Solvent Dock Area, Former Lockheed Martin French Road Facility, Utica, New York.


Monitoring Well	Top of PVC Riser Elevation	Depth to water (from top of PVC riser)	Groundwater Elevation (ft)	Depth to water (from top of PVC riser)	Groundwater Elevation (ft)	Depth to water (from top of PVC riser)	Groundwater Elevation (ft)	Depth to water (from top of PVC riser)	Groundwater Elevation (ft)
		February	23, 2011	April 1	, 2011	July 5	, 2011	Septembe	r 26, 2011
MW - 1	506.80	8.11	498.69	6.84	499.96	8.57	498.23	8.09	498.71
MW - 2	504.69	NM		4.05	500.64	5.89	498.80	5.42	499.27
MW - 3	509.30	10.58	498.72	9.30	500.00	10.98	498.32	10.58	498.72
MW - 4	506.73	NM		6.12	500.61	11.24	495.49	10.55	496.18
MW - 5	504.46	3.81	500.65	2.48	501.98	2.63	501.83	3.08	501.38
MW - 6	508.58	6.87	501.71	5.92	502.66	6.23	502.35	5.59	502.99
MW - 7	506.94	8.53	498.41	7.65	499.29	7.84	499.10	7.46	499.48
MW - 9	505.15	2.60	502.55	1.99	503.16	3.01	502.14	2.55	502.60
MW - 10	504.48	4.41	500.07	3.53	500.95	5.16	499.32	4.80	499.68
MW - 11	507.03	8.50	498.53	7.89	499.14	8.09	498.94	6.80	500.23
MW - 12	508.34	NM		10.90	497.44	12.08	496.26	NM	
MW - 13S	506.03	NM		5.40	500.63	DRY		6.68	499.35
MW - 13BR	506.28	NM		9.55	496.73	10.67	495.61	10.94	495.34
MW - 14S	507.85	9.86	497.99	10.22	497.63	12.57	495.28	10.35	497.50
MW - 14BR	507.95	29.25	478.70	28.02	479.93	25.46	482.49	23.55	484.40
MW - 15S	507.46	8.04	499.42	8.24	499.22	8.38	499.08	8.28	499.18
MW - 15BR	507.29	34.23	473.06	33.48	473.81	31.94	475.35	30.79	476.50
PZ - 2	508.95	1.78	507.17	6.23	502.72	3.08	505.87	NM	
PZ - 4	505.51	NM		NM		1.42	504.09	0.47	505.04
PZ - 5	508.29	9.13	499.16	8.99	499.30	8.94	499.35	8.83	499.46
PZ - 6	508.37	9.44	498.93	9.08	499.29	9.32	499.05	9.11	499.26
PZ - 7	508.36	8.98	499.38	8.80	499.56	9.00	499.36	8.89	499.47
PZ - 8	508.23	8.91	499.32	9.00	499.23	9.51	498.72	9.05	499.18
PZ - 9	508.08	8.22	499.86	7.88	500.20	8.02	500.06	7.86	500.22
PZ - 10	508.14	8.70	499.44	8.75	499.39	9.08	499.06	8.78	499.36
PZ - 11R	505.82	7.04	498.78	7.22	498.60	8.64	497.18	8.44	497.38
PZ - 13R	503.85	6.39	497.46	6.46	497.39	8.17	495.68	8.05	495.80
PZ - 17	504.05	5.66	498.39	5.68	498.37	6.17	497.88	6.47	497.58
PZ - 18	504.85	6.39	498.46	6.53	498.32	7.99	496.86	7.85	497.00
PZ - 19	504.60	6.60	498.00	6.65	497.95	7.36	497.24	7.09	497.51
PZ - 20	503.85	6.28	497.57	6.38	497.47	7.04	496.81	6.62	497.23
PZ - 21	505.70	8.90	496.80	DRY		DRY		DRY	
PZ - 22	508.57	6.73	501.84	7.30	501.27	7.94	500.63	7.56	501.01
PZ - 23	510.07	6.81	503.26	6.09	503.98	6.82	503.25	6.12	503.95
PZ - 24	507.83	10.23	497.60	10.52	497.31	10.92	496.91	10.74	497.09
PZ - 25	510.62	6.52	504.10	5.96	504.66	6.67	503.95	6.05	504.57
PZ - 26	510.95	9.07	501.88	8.72	502.23	9.21	501.74	8.99	501.96
PZ - 27	510.13	8.80	501.33	10.08	500.05	11.13	499.00	11.47	498.66
PZ - 28	504.12	3.49	500.63	3.53	500.59	3.93	500.19	3.04	501.08
PZ - 29	503.84	NM		2.36	501.48	2.43	501.41	2.12	501.72
PZ - 30	503.84	3.68	501.04	3.56	501.16	4.10	500.62	3.54	501.18
PZ - 31	505.17	1.46	503.71	2.10	503.07	2.33	502.84	1.46	503.71
PZ - 32	504.90	0.65	504.25	0.53	504.37	1.84	503.06	0.45	504.45
PZ - 33	510.00	DRY		DRY		6.82	503.18	DRY	
PZ - 34	510.00	2.30	501.58	2.34	501.54	3.11	500.77	2.41	501.47
PZ - 35	503.88	NM		0.98	503.00	2.09	500.77	1.04	502.94
PZ - 36		1.12	502.92	1.00	503.04	1.55	501.89	1.04	502.95
PZ - 30 PZ - 39	504.04	2.75	502.92	1.90	503.04	3.53	502.49	2.62	502.95
PZ - 39 PZ - 40	504.51	2.75 4.45	501.76	4.49	502.61	4.92	500.98	4.58	501.88
	506.46								
PZ - 41	506.27	4.12 NM	502.15	4.10	502.17	4.51	501.76	4.22	502.05
PZ - 42	505.18	NM NM		0.30	504.88	0.62	504.56	0.28	504.90
A1-PZ1	503.77	NM 1.02	 504.00	1.16	502.61	1.53	502.24	NM 2.00	 504.00
A1-PZ2	503.00	1.92	501.08	2.33	500.67	2.30	500.70	2.00	501.00
A2-PZ1	509.74	NM c.oo		3.49	506.25	4.35	505.39	3.87	505.87
A2-PZ2	509.46	6.89	502.57	6.41	503.05	6.63	502.83	6.08	503.38
A2-PZ3	509.46	1.69	507.77	2.98	506.48	3.06	506.40	NM	
A2-PZ4	509.40	0.40	509.00	0.81	508.59	1.86	507.54	0.65	508.75
A2-PZ5	510.03	2.13	507.90	7.68	502.35	7.88	502.15	5.81	504.22
A2-PZ6	509.74	1.21	508.53	0.54	509.20	3.25	506.49	1.20	508.54
A2-PZ7	509.59	1.63	507.96	5.74	503.85	6.27	503.32	NM	
A2-PZ8	509.70	0.75	508.95	0.80	508.90	5.72	503.98	0.74	508.96

All elevations are reported as feet mean sea level (ft msl)
Survey data is referenced horizontally to the NAD83 and projected on the New York State Plane Coordinate System (Central Zone)
The reference vertical benchmark is the finished floor elevation of the southeasterly corner of the Boiler House Building (Elevation 506.50 feet)
NI - Not Installed

NM - Not Measured

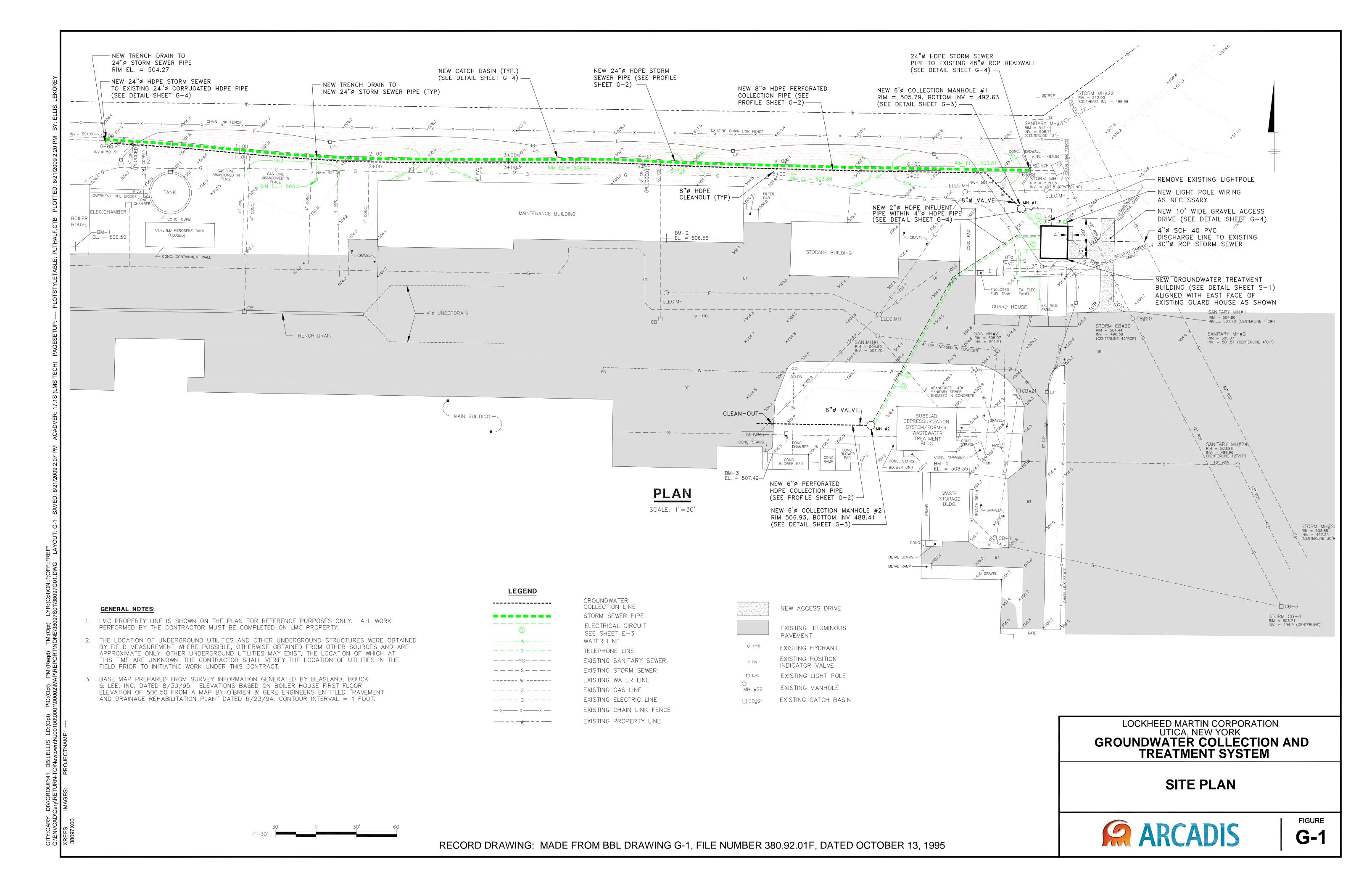
Figures

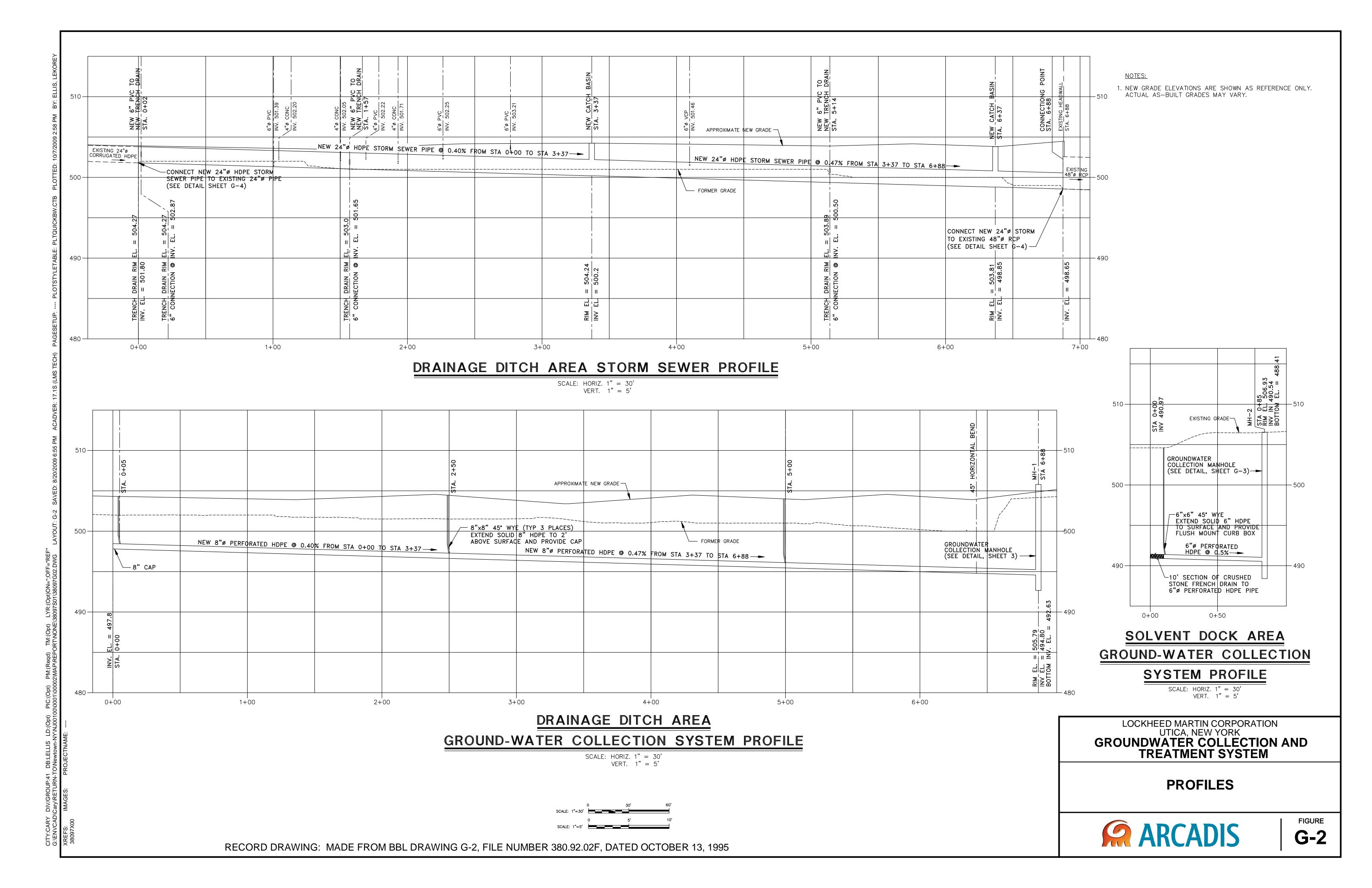

GROUNDWATER COLLECTION AND

TREATMENT SYSTEM ANNUAL REPORT FORMER LOCKHEED MARTIN, FRENCH ROAD PROPERTY UTICA, NEW YORK

SITE LOCATION MAP

FIGURE





Appendix A

Record Drawings

NOT TO SCALE

SPECIFICATIONS AND NOTES (APPLICABLE TO DRAWINGS G-1 THROUGH E-3)

- 1. AIR STRIPPER SYSTEM TO BE MANUFACTURED BY SHALLOWTRAY MODEL 3631, 316 AS SPECIFIED IN MATERIAL AND PERFORMANCE SPECIFICATION MP-04006.
- 2. ALL PVC PIPES SHALL BE SCHEDULE 80 TYPE II UNLESS OTHERWISE SPECIFIED.
- ALL PVC JOINTS TO BE SOLVENT WELDED.
- 4. ALL PVC PIPES SHALL BE SUPPORTED EVERY 5'-0" AND LOCATED 2'-0" (MAX) FROM JOINT LOCATIONS.
- 5. ALL CORRUGATED HDPE PIPE SHALL BE ADS N-12 SMOOTH INTERIOR OR EQUAL. ALL OTHER HDPE PIPE TO BE SDR-11 OR SDR-17 AS INDICATED.
- 6. ALL HDPE JOINTS TO BE BUTT FUSED.
- 7. ALL PIPE AND HOSE TO BE INSTALLED AND PRESSURE—TESTED AS PER MANUFACTURER'S SPECIFICATIONS. ZERO LEAKAGE IS ALLOWED FOR ALL JOINTS.
- 8. ALL PIPING AND MANIFOLDS TO BE LABELED WITH STENCIL OR ADHESIVE. FLOW ARROWS TO BE LABELED AT INLET AND DISCHARGE CONNECTIONS, PIPING AND DESCRIPTION (E.G., MANHOLE NO. 1 INFLUENT) SHALL ALSO BE CLEARLY LABELED AT ALL VALVE AND APPURTENANCE LOCATIONS.
- 9. FLOW METERS SHALL BE SIGNET ANALOG FLOW TOTALIZER, WHICH DISPLAYS FLOW RATE AND TOTALIZED FLOW VOLUME OR EQUAL. SIGNET INDICATOR SHALL BE A MODEL P57540. ASSOCIATED SIGNET SENSOR SHALL BE MODEL P51530-PO. FITTINGS AND DIAL RANGES ARE AS FOLLOWS:
 - A. MANHOLE NO. 1, 2 INCH DIAMETER INFLUENT LINE SENSOR FITTING - PV8T020 DIAL RANGE - 0-60 GPM
 - MANHOLE NO. 2, 2 INCH DIAMETER INFLUENT LINE SENSOR FITTING - PV8T020 DIAL RANGE - 0-30 GPM
 - C. SUMP PUMP 1-INCH DIAMETER INFLUENT LINE SENSOR FITTING - PV8T012 DIAL RANGE - 0-30 GPM
- 10. ALL FLOW METERS SHALL HAVE STRAIGHT PIPE PRECEDING (10 TIMES PIPE DIAMETER) AND FOLLOWING (5 TIMES PIPE DIAMETER) THEM.
- 11. ALL SAMPLE TAPS AND DRAIN VALVES SHALL CONSIST OF A 1/2"ø PIPE EXTENSION AND BALL VALVE OR EQUAL. SAMPLE TAPS AND DRAIN VALVES SHALL BE LOCATED AT LOCATIONS SHOWN ON THE DRAWINGS AND AT ALL LOW ELEVATIONS IN PROCESS PIPING.
- 12. ALL BALL VALVES TO BE PVC TRUE UNION TYPE WITH VITON SEALS BY TRUE BLUE OR EQUAL.
- 13. ALL BALL CHECK VALVES TO BE PVC, TRUE UNION TYPE WITH VITON SEALS BY PLASTO-MATIC OR EQUAL.
- 14. ALL PRESSURE GAUGES TO BE TRERICE MODEL NO. 450 LFB (WET) SILICONE-FILLED OR EQUAL. DIAL RANGES ARE AS FOLLOWS:
 - MANHOLE NO. 1 INFLUENT LINE (0-30 PSI)
- MANHOLE NO. 2 INFLUENT LINE (0-30 PSI) C. SUMP PUMP INFLUENT LINE -(0-15 PSI)
- 15. SUMP PUMP SHALL BE A GRUNDFOG MODEL BOSS 210-A STAINLESS STEEL TOP-DISCHARGE SUBMERSIBLE SUMP PUMP WITH AUTOMATIC FLOAT SWITCH.
- 16. MANHOLE NO. 1 PUMPS SHALL BE GOULDS PUMPS MODEL 3887 WITH VITON SEALS AND CAST IRON IMPELLER (3/4 HP, 230 VOLTS, 1,750 RPM, 1 PHASE) CAPABLE OF 20 GPM @ 23 FEET TDH (ONE PUMP) AND 40 GPM @ 28 FEET TDH (TWO PUMPS) OR EQUAL.
- 17. MANHOLE NO. 2 PUMPS SHALL BE GOULDS PUMPS MODEL 3887 WITH VITON SEALS AND CAST IRON IMPELLER (3/4 HP, 230 VOLTS, 1,750 RPM, 1 PHASE) CAPABLE OF 10 GPM @ 26 FEET TDH (ONE PUMP) AND 20 GPM @ 30 FEET TDH (TWO PUMPS) OR EQUAL.

- 18. DUCTWORK
- A. UNLESS SPECIFICALLY SHOWN OTHERWISE, DUCTWORK SHALL BE FABRICATED OF ASTM AA167 TYPE 316 STAINLESS STEEL, SCHEDULE 10.
- B. DUCTWORK JOINTS, FABRICATION, AND SUPPORTS SHALL BE IN ACCORDANCE WITH SMACNA DUCT CONSTRUCTION STANDARDS.
- C. ALL DUCTWORK TO BE AIR TIGHT.
- 19. POTABLE WATER LINE PIPING SHALL BE ASTM B88 TYPE L COPPER WITH ANSI/ASME B16.29 WROUGHT COPPER FITTINGS. JOINTS SHALL BE SOLDERED WITH GRADE 95TA SOLDER.
- 20. ITEMS OF SPECIFIC MANUFACTURERS SHALL BE INSTALLED IN STRICT ACCORDANCE WITH THE PRINTED INSTRUCTIONS AND/OR THE MANUFACTURERS REPRESENTATIVES
- 21. ALL WALL PENETRATIONS SHALL BE SEALED WITH SILICONE AND COORDINATED WITH BUILDING MANUFACTURER SO AS NOT TO VOID BUILDING WARRANTEE.
- 22. ALL EXPOSED METALLIC SURFACES SHALL BE CORROSION RESISTANT OR CORROSION RESISTANT PAINTED.
- 23. ALL EQUIPMENT SHALL BE SUPPLIED AS SHOWN ON THE DRAWINGS. ANY PROPOSED DEVIATION FROM THE DRAWING MUST BE APPROVED BY LMC'S REPRESENTATIVE.
- 24. CONCRETE COATING SYSTEM TO BE PROVIDED AS PER SPECIFICATION MP-03002.
- 25. CONTRACTOR TO PROVIDE AND MOUNT ON WALL A FULLY-CHARGED DRY CHEMICAL TYPE FIRE EXTINGUISHER WITH AN A, B, C, RATING KIDDE OR EQUAL.
- 26. ALL WORK SHALL BE IN ACCORDANCE WITH LOCAL BUILDING CODES AND LOCAL HEALTH DEPARTMENT REGULATIONS.
- 27. SLOP SINK SHALL BE MUSTEE UTILATUB MODEL 18F OR EQUAL PROVIDE WITH MANUFACTURERS FAUCET WITH SWING SPOUT 1-1/2" BASKET STRAINER AND P-TRAP.
- 28. NEW MANHOLES SHALL BE EXFILTRATION TESTED AS FOLLOWS: THE MANHOLE SHALL BE FILLED WITH POTABLE WATER FOR 8 HOURS AND WILL BE ACCEPTABLE IF, FOR A TWO-HOUR OBSERVATION PERIOD THE LEAKAGE RATE IN THE STRUCTURE IS BELOW ONE GALLON PER VERTICAL FOOT OF DEPTH OVER A CALCULATED 24-HOUR PERIOD, NO VISIBLE LEAKAGE OF ANY AMOUNT IS ACCEPTABLE.
- 29. DESIGN LOADS: ALL STRUCTURAL LOADS AND LOAD COMBINATIONS SHALL BE IN ACCORDANCE WITH THE NEW YORK STATE BUILDING CODE.
- 30. SEE MECHANICAL DRAWINGS FOR LOCATION OF ALL OPENINGS IN FLOOR AND WALLS NOT SHOWN ON STRUCTURAL DRAWINGS. THE CONTRACTOR SHALL VERIFY THE NUMBER, SIZE AND LOCATION OF ALL OPENINGS BEFORE POURING ANY CONCRETE.
- 31. ALL BACKFILL REQUIRED AS THE RESULT OF OVER EXCAVATION, UNLESS DIRECTED BY REPRESENTATIVES OF LMC, SHALL BE MADE WITH COMPACTED SPECIAL BACKFILL OR LEAN CONCRETE FILL.
- 32. BACKFILL AT WALLS SHALL BE PLACED AND COMPACTED SIMULTANEOUSLY ON BOTH SIDES.
- 33. BACKFILL SHALL NOT BE PLACED AGAINST FOUNDATION WALLS UNTIL 28-DAY DESIGN STRENGTH IS REACHED OR THE WALLS ARE ADEQUATELY BRACED.
- 34. ALL STEEL REINFORCING SHALL BE SECURELY WIRED TOGETHER IN THE FORMS.
- 35. ALL EXPOSED EDGES OF CONCRETE SHALL BE CHAMFERED 3/4-INCH.
- 36. ALL SURFACES AT RECENTLY POURED CONCRETE RECEIVING NEW CONCRETE SHALL BE PREPARED BY CLEANING, WETTING AND TREATMENT WITH A NEAT CEMENT GROUT.
- 37. TRENCH DRAIN SHALL CONSIST OF A 24" WIDE , 11" DEEP AND 39" LONG PRECAST CONCRETE DRAIN WITH CAST IRON GRATING, AND 6"Ø OUTLET.
- 38. PUMPING MANHOLES NO.1 AND NO.2 ARE ELECTRICALLY CLASSIFIED AS CLASS 1, DIVISION 1, GROUP D ATMOSPHERES.

PRESSURE RELIEF VALVE

COLLECTION MANHOLE SCHEDULE DESCRIPTION MH-1MH-2DIST. A 13'-1" 18'-5" DIST. B 0'-8" 0'-6" DIST. C 2'-0" 2'-0" TOP EL. D 505.79 506.93 INV. EL. E 494.66 490.44 BOT. EL. F 492.63 488.41 LSLL 494.13 489.91' LSL 495.13 491.41' LSH1 497.63 493.41' LSH2 499.63' 496.41 LSHH 502.13 499.41'

LOCKHEED MARTIN CORPORATION UTICA, NEW YORK **GROUNDWATER COLLECTION AND** TREATMENT SYSTEM

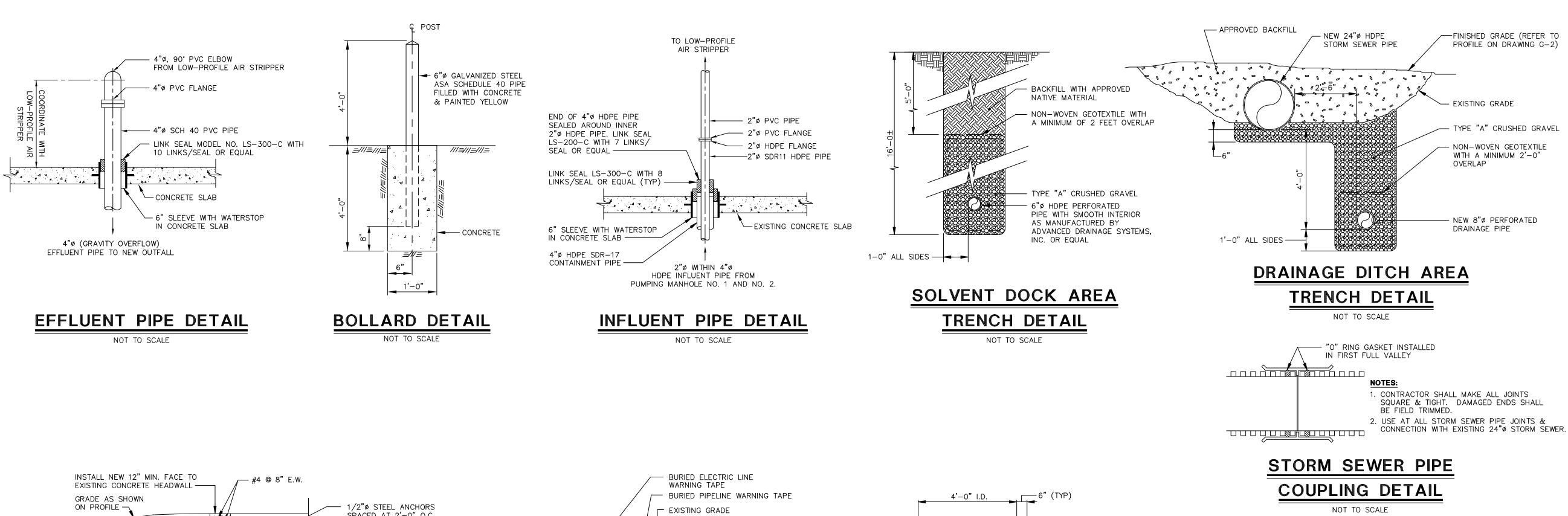
PUMPING MANHOLE DETAILS AND **SPECIFICATIONS**

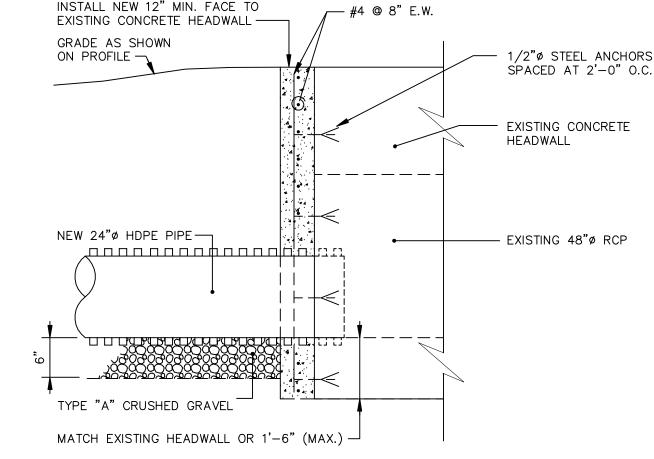
FIGURE G-3

LEGEND

 \rightarrow

BALL VALVE

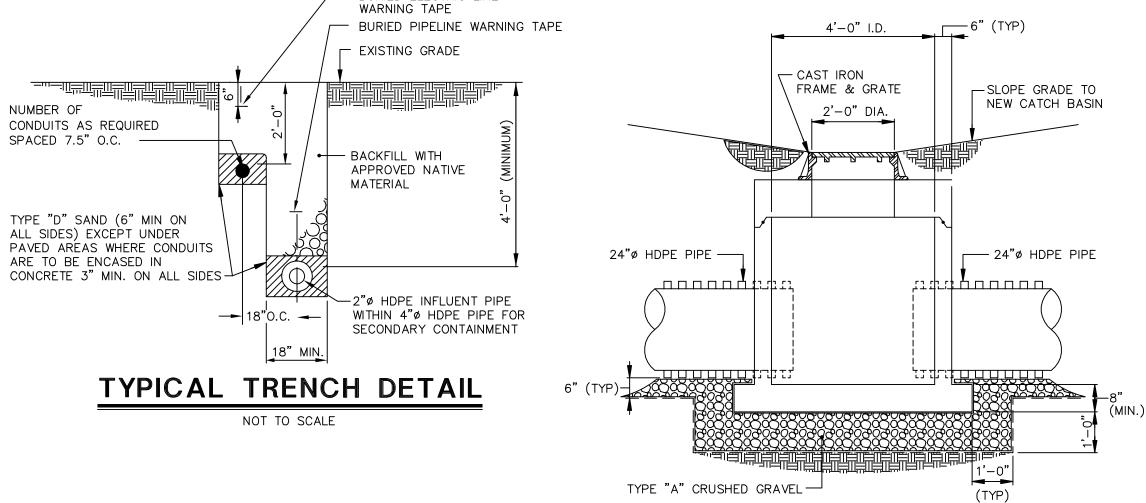

NUT UNION

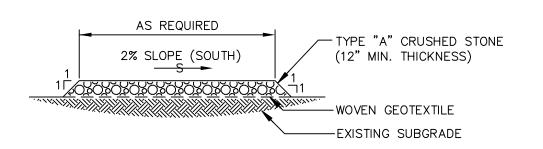

CHECK VALVE

POWER WIRING

SAMPLE/DRAIN TAP

NOT TO SCALE




NOT TO SCALE

NOT TO SCALE

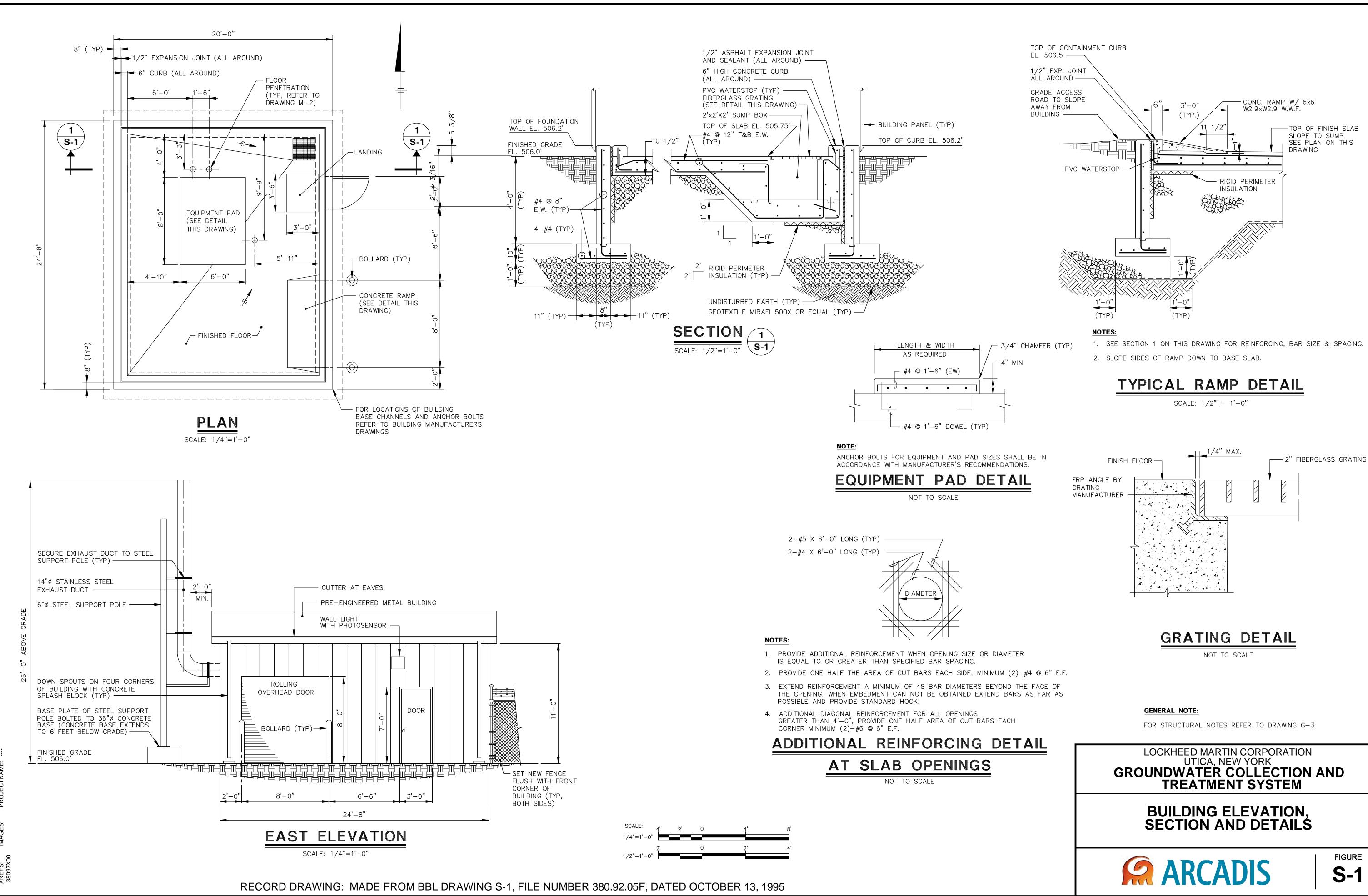
CATCH BASIN DETAIL

NOT TO SCALE

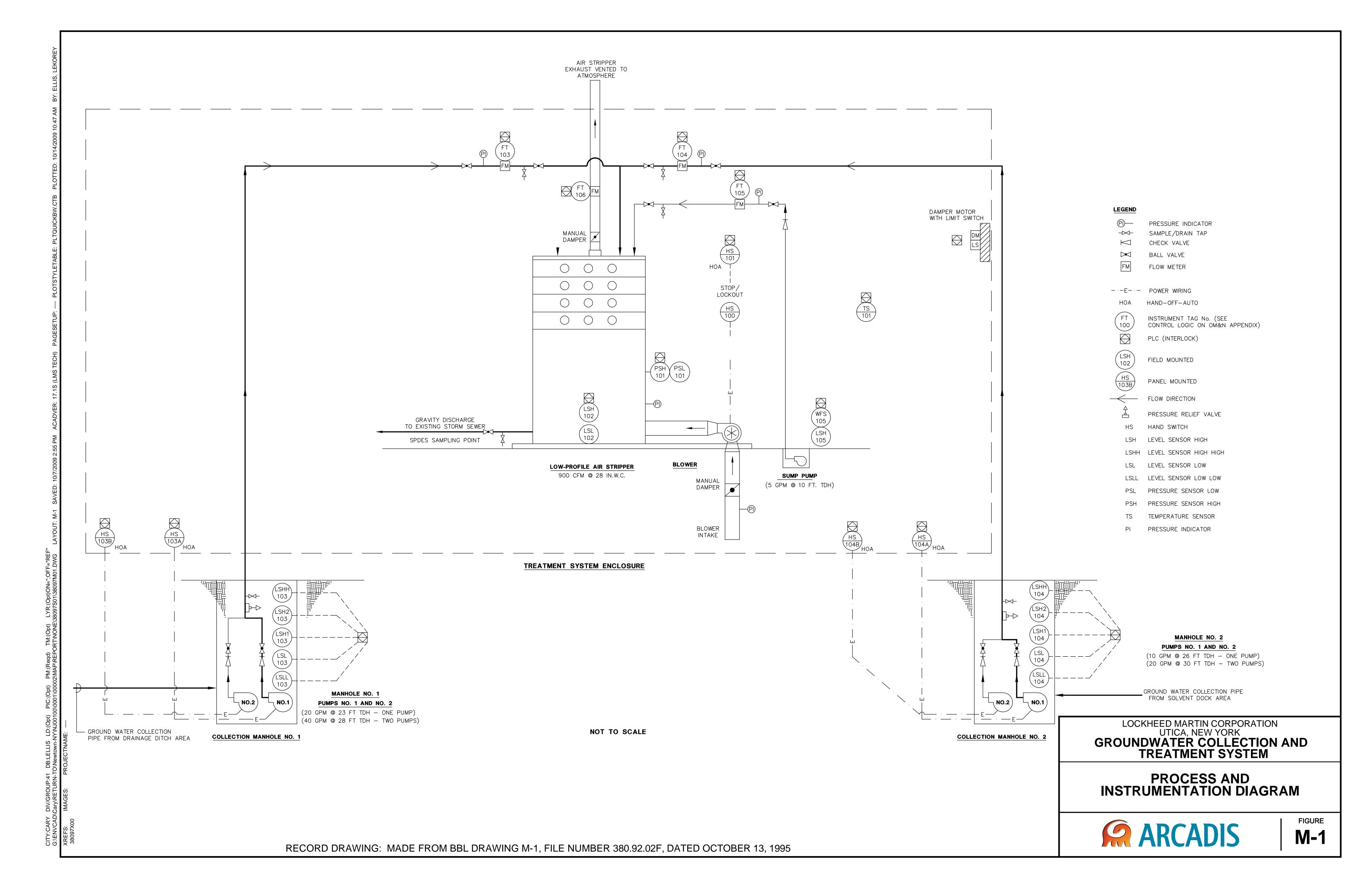
NOTES:

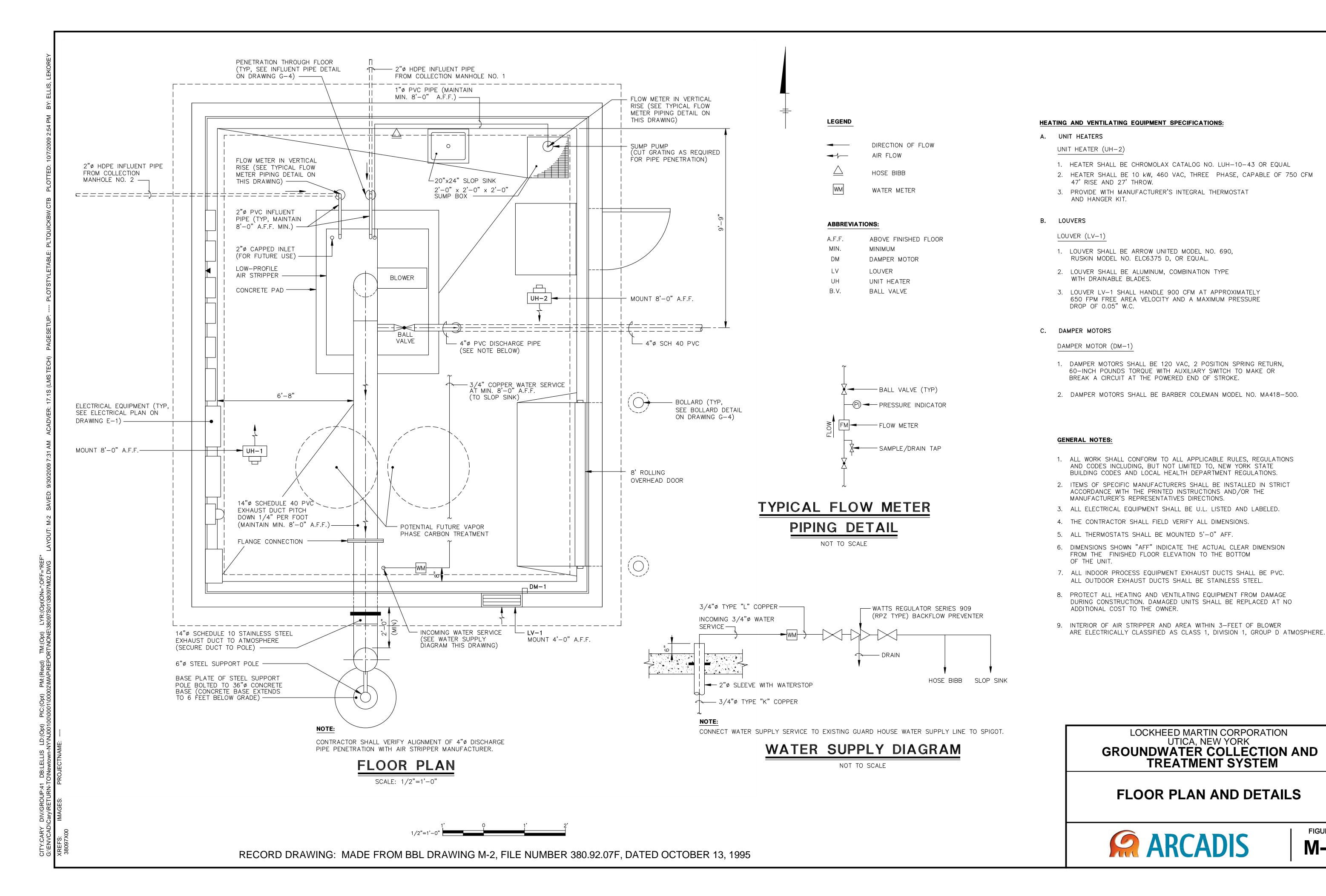
- 1. ROAD SUBGRADE SHALL BE STRIPPED OF NATIVE VEGETATION TO THE BOTTOM OF ROOT ZONE. THE SUBGRADE WILL THEN BE PROOF ROLLED WITH A SMOOTH DRUM VIBRATORY ROLLER WITH A MINIMUM STATIC WEIGHT OF 10 TONS.
- 2. AREAS THAT DO NOT PASS PROOF ROLLING WILL BE OVER EXCAVATED AND REPLACED WITH CRUSHED STONE AS DIRECTED BY LMC'S REPRESENTATIVE.
- 3. WOVEN GEOTEXTILE SHALL BE PLACED OVER THE PROPOSED ROAD SUBGRADE SO THAT IT IS FREE OF FOLD AND WRINKLES. MINIMUM OVERLAPS BETWEEN ROLLS OF GEOTEXTILE SHALL BE 3 FEET.
- 4. CRUSHED STONE WILL BE PLACED FROM TRUCKS ONTO EXISTING CRUSHED STONE AND THEN SPREAD ONTO THE GEOTEXTILE WITH A DOZER. UNDER NO CIRCUMSTANCE IS CONSTRUCTION EQUIPMENT TO DRIVE DIRECTLY ON THE GEOTEXTILE OR WITH LESS THAN 6-INCHES OF CRUSHED STONE OVER THE GEOTEXTILE.
- 5. AFTER COMPLETION OF FINISH GRADING ALL POINTS ON THE ROAD SURFACE SHALL BE ROLLED AT LEAST 4 TIMES WITH A SMOOTH DRUM VIBRATORY ROLLER WITH A MINIMUM STATIC WEIGHT OF AT LEAST 10 TONS.

GRAVEL ACCESS DRIVE DETAIL

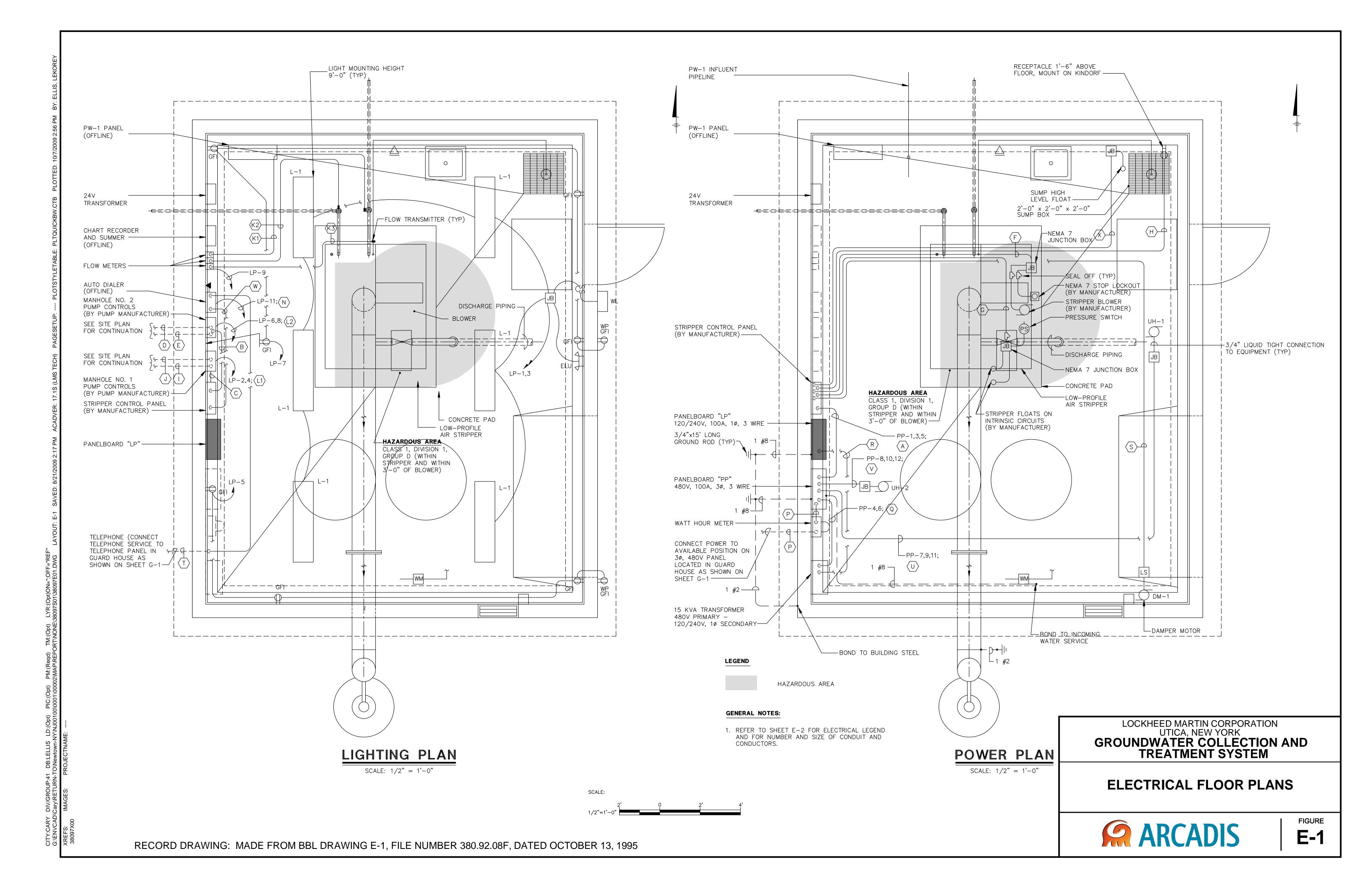

NOT TO SCALE

LOCKHEED MARTIN CORPORATION
UTICA, NEW YORK
GROUNDWATER COLLECTION AND
TREATMENT SYSTEM


MISCELLANEOUS DETAILS



G-4


FIGURE S-1

FIGURE

M-2

ONE-LINE DIAGRAM

NOT TO SCALE

SWITCH

			3 M 1 3 1 1
CIRCUIT	CONDUCTOR SIZE	CONDUIT SIZE	NAME
Α	3 #10, #10G	3/4" EMT	BLOWER, SUMP PUMP, AND STRIPPER CONTROL POWER FEED
В	8 #14	3/4" EMT	CONTROL PANEL TO MANHOLE NO. 2 PUMP CONTROLS
С	8 #14	3/4" EMT	CONTROL PANEL TO MANHOLE NO. 1 PUMP CONTROLS
D	6 #12, 2 #12G	1-1/2" EMT (INDOORS) 1" RGS (OUTDOORS)	MANHOLE NO. 2 PUMP POWER
E*	10 #12	1-1/2" EMT (INDOORS) 1" RGS (OUTDOORS)	MANHOLE NO. 2 LEVEL SWITCHES
F	3 #8, 1 #12G 2 #14	1-1/2" RGS	BLOWER POWER AND CONTROL
G [*]	8 #14	3/4" RGS	BLOWER PRESSURE SWITCH & LEVEL SWITCHES
Н	2 #12, 1 #12G	3/4" RGS	SUMP PUMP RECEPTACLE POWER
I	6 #12, 2 #12G	1" RGS	MANHOLE NO. 1 PUMP POWER
J*	10 #14	1" RGS	MANHOLE NO. 1 LEVEL SWITCHES
K1 K2 K3	MANUFACTURER'S CABLES	3/4" RGS	MANHOLE NO. 1 FLOW METER, MANHOLE NO. 2 FLOW METER, & SUMP PUMP FLOW METER

CIRCUIT	CONDUCTOR SIZE	CONDUIT SIZE	NAME
L1 L2	3 #10, 1 #10G	3/4" EMT	PUMP CONTROL PANEL POWER FEEDS
М	2 #12, 1 #12G	3/4" EMT	FLOW METER & CHART REC. POWER FEED
N	2 #12, 1 #12G	3/4" EMT	24V TRANSFORMER POWER FEED
0	3 TSP #16	3/4" EMT	FLOW SIGNALS
Р	3 #2, 1 #6G	1-1/2" EMT (RGS OUTDOORS)	BUILDING POWER
Ø	3 #8, 1 10G	1" SEAL TITE	TRANSFORMER FEED
R	3 #6, 1 #8G	1" SEAL TITE	PANEL LP FEED
S	2 #12, 1 #12G 2 #14	3/4" EMT	DAMPER MOTOR AND LIMIT SWITCH
Т	6 #22	1-1/2" RGS	TELEPHONE SERVICE
U	3 #10, 1 #10G	3/4" EMT	UNIT HEATER (UH-1)
٧	3 #10, 1 #10G	3/4" EMT	UNIT HEATER (UH-2)
w	10 #14	3/4" EMT	SUMP HIGH LEVEL

^{*} INDICATES INTRINSICALLY SAFE SYSTEM PER NEC-504

CONDUCTOR SCHEDULE

NOT TO SCALE

SCHEDULE PANELBOARD GROUND WATER TREATMENT BUILDING PANEL "PP" CIRCUITS 4 & 6 LOCATION : ___ MAIN BUS RATINGS : NQOD MINIMUM SHORTCIRCUIT INTERUPTING RATING RMS. SYMM. AMPS 3#6, 1#8 GND., 1"C MAIN BREAKER TRIP: AMPS , INCOMING FEED SURFACE MOUNTED NEMA 1 7.1 KVA **ENCLOSURE** ESTIMATED CONNECTED LOAD : CB CB DESCRIPTION DESCRIPTION |W-KW-HP| AMPS W-KW-HP INDOOR LIGHTING OUTDOOR LIGHTING RECEPTACLES (SOUTH) RECEPTACLES (NORTH) FLOW METER & CHART RECORDER SPARE SPARE SPARE

LOCATION :	GROUND W								CHEDUI FROM:		JARD HOUSE	PANEL CIRCUIT	
MAIN BUS RATINGS :												3	WIRE
MINIMUM SHORTCIRCU								RMS	S. SYMM. A	AMPS		I-LINE HCN	TYPE
MAIN BREAKER TRIP	:100 (SERVICE E	NTRANCE	RA	TED)	AI	MPS ,	INC	OMING FEE	D:	3#2, 1#6	GND., 1-1/2"C	
ESTIMATED CONNECT	ED LOAD :			_				ENC	LOSURE :		SURFACE MC	OUNTED NEMA 1	
			T		Γ			1 1		1			
DESCRIPTION	N	LOAD	СВ	CIR.				CIR.	СВ	LOAD		DESCRIPTION	
		W-KW-HP			Α	В	С		AMPS	W-KW-HF			
BLOWER, STRIPPER C	ONTROLS	15HP	45	1	<u> </u>	-		2			SPACE		
SUMP PUMP, & DAMI	PER MOTOR			3		•		4	35	15KVA	TRANSFOR	MER FEED	
			3	5			<u> </u>	6	2				
UNIT HEATER (UH-1)		10KW	30	7				8	30	10KW	UNIT HEAT	ER (UH-2)	
				9				10					
			3	11				12	7				

LEGEND

SPARE

SPARE

SPARE

SPARE

DENOTES FIXTURE TYPE

WL

EXTERIOR WALL PACK LIGHT FIXTURE

EMERGENCY LIGHT FIXTURE

S SINGLE POLE SWITCH

DUPLEX RECEPTACLE

GROUND FAULT CIRCUIT INTERRUPTER DUPLEX RECEPTACLE

JUNCTION BOX

MOTOR

CIRCUIT HOMERUN

TELEPHONE OUTLET

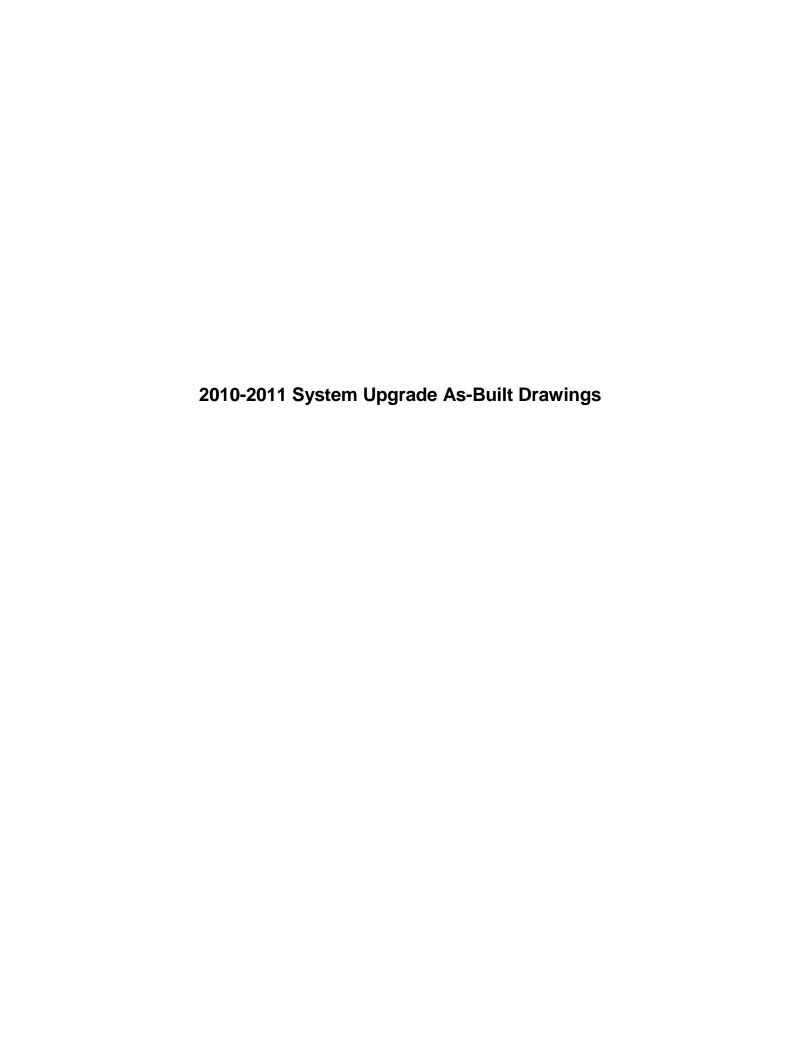
LIMIT SWITCH

CIRCUIT BREAKER

LOCKHEED MARTIN CORPORATION
UTICA, NEW YORK
GROUNDWATER COLLECTION AND
TREATMENT SYSTEM

SPARE

SPARE


SPARE

SPARE

ONE LINE DIAGRAM, CONDUCTOR AND PANELBOARD SCHEDULES

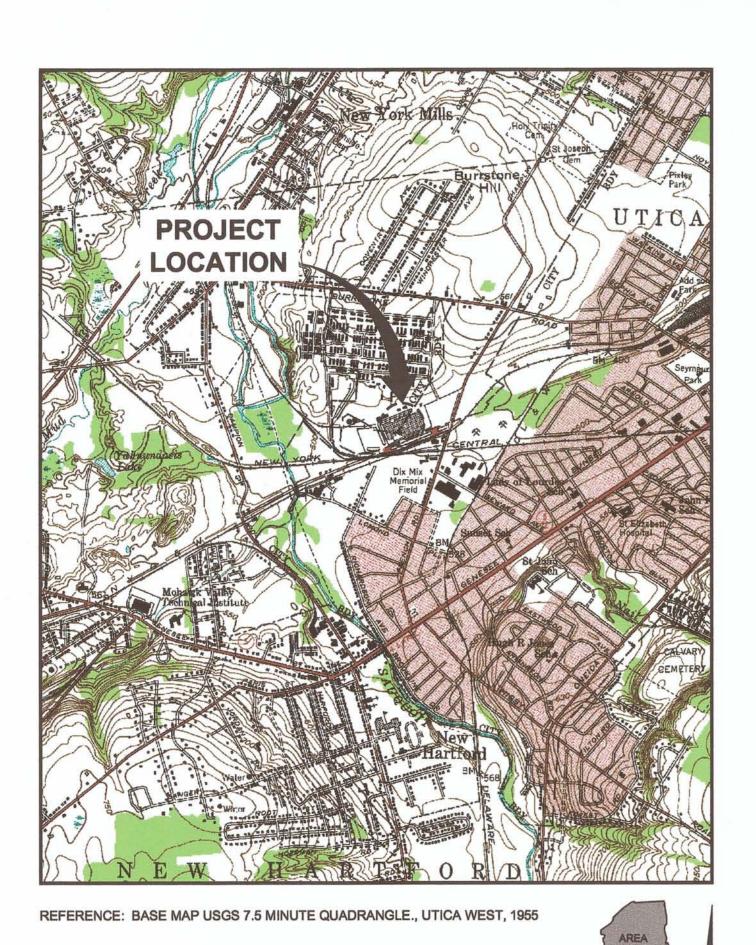


FIGURE **E-2**

RECORD DRAWINGS

GROUNDWATER COLLECTION AND TREATMENT SYSTEM AT FORMER LOCKHEED MARTIN FRENCH ROAD FACILITY

GRAPHIC SCALE

DATE ISSUED **MARCH 2011**

LOCKHEED MARTIN CORPORATION **UTICA, NEW YORK**

ARCADIS OF NEW YORK, INC.

INDEX TO DRAWINGS

G-1 SITE PLAN

G-2 PLAN & PROFILE OF MH-3 AND GROUNDWATER **COLLECTION TRENCH**

PUMPING MANHOLE DETAILS AND SPECIFICATIONS

PIPING AND TRENCHING DETAILS

GENERAL NOTES AND ABBREVIATIONS

LEGEND AND SYMBOLS

MECHANICAL

PIPING AND INSTRUMENTATION DIAGRAM

FLOOR PLAN AND DETAILS PROCESS FLOW DIAGRAM

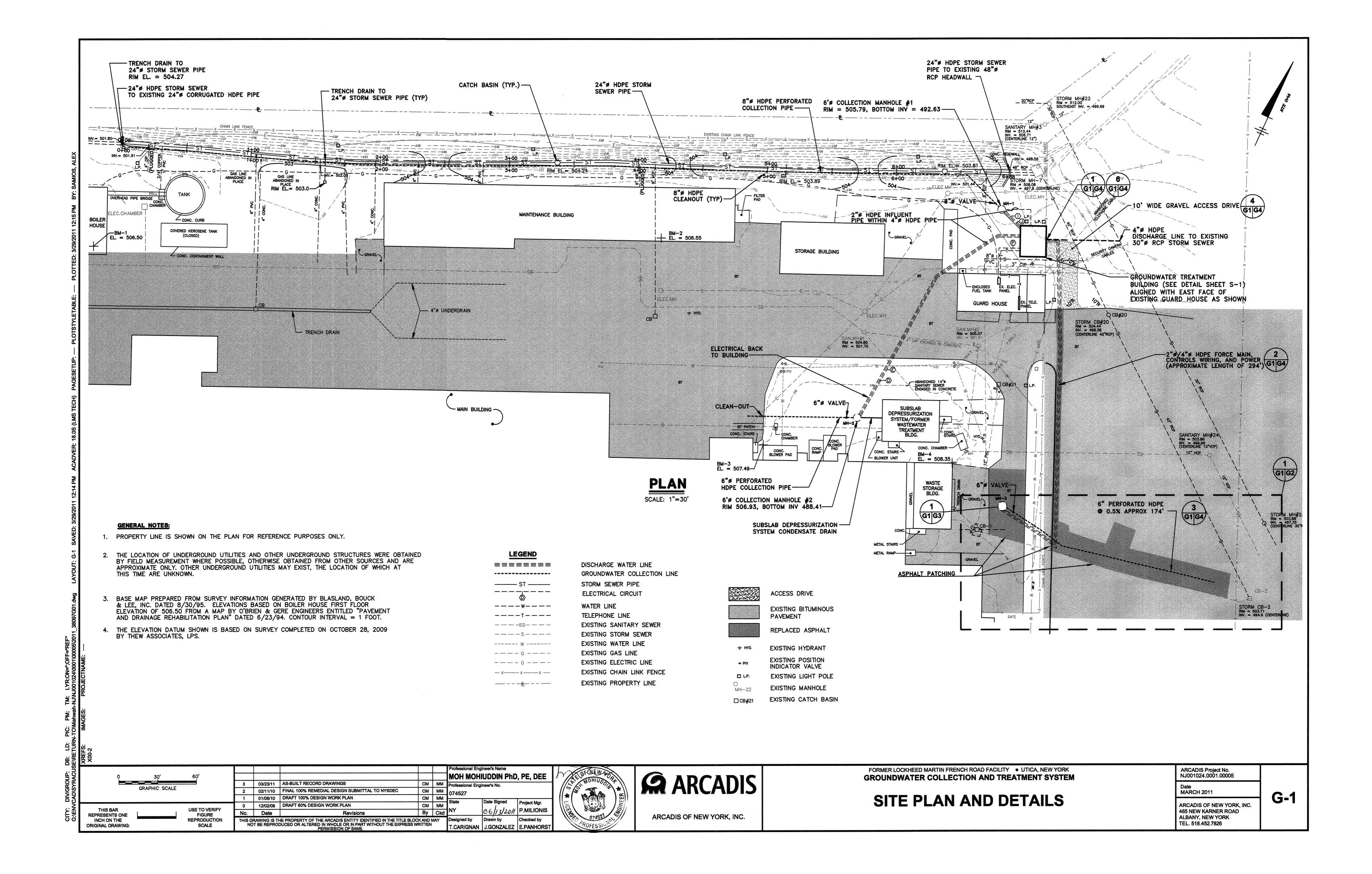
ELECTRICAL FLOOR PLANS

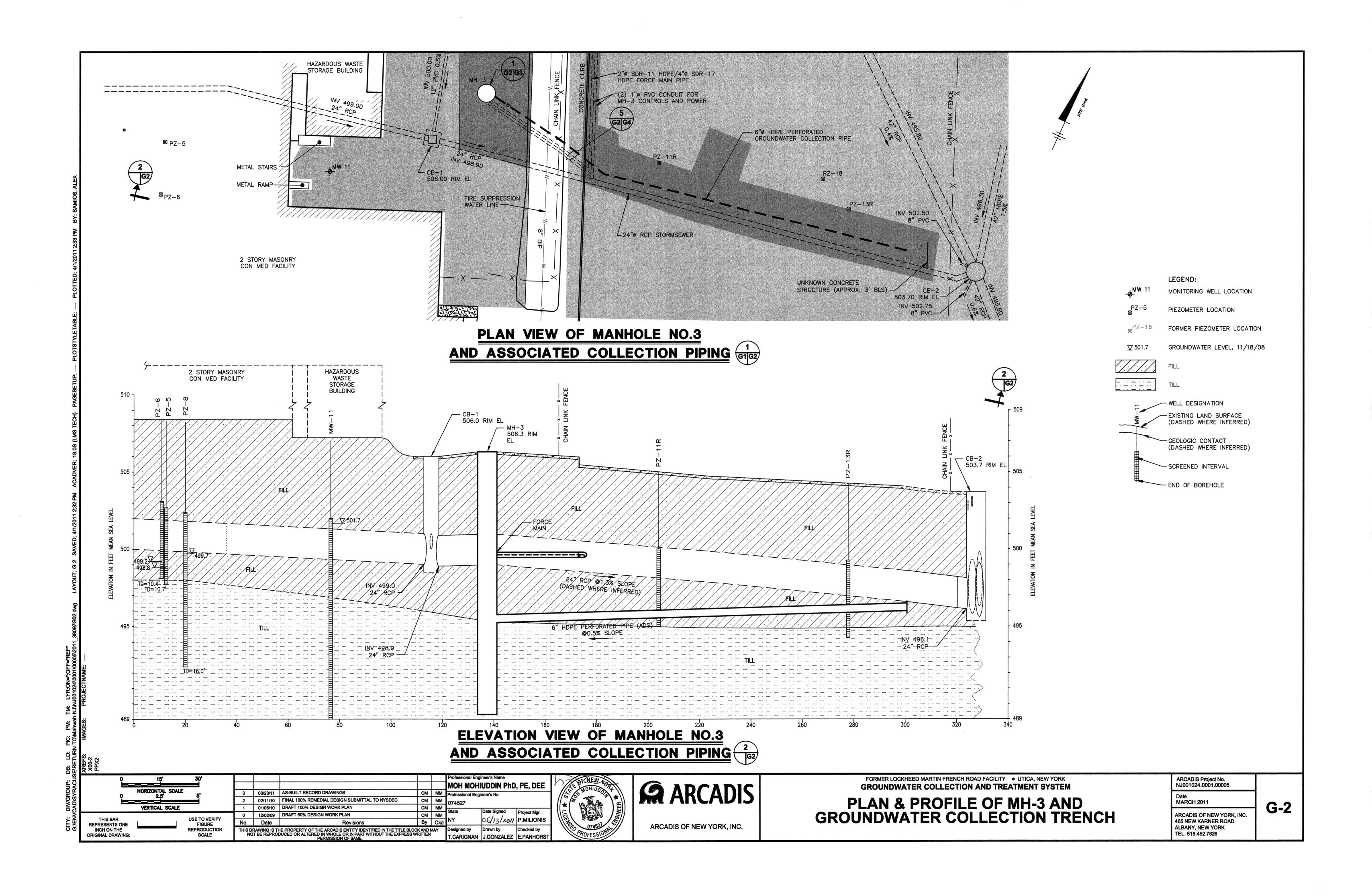
ONE LINE DIAGRAM, CONDUCTOR AND PANELBOARD

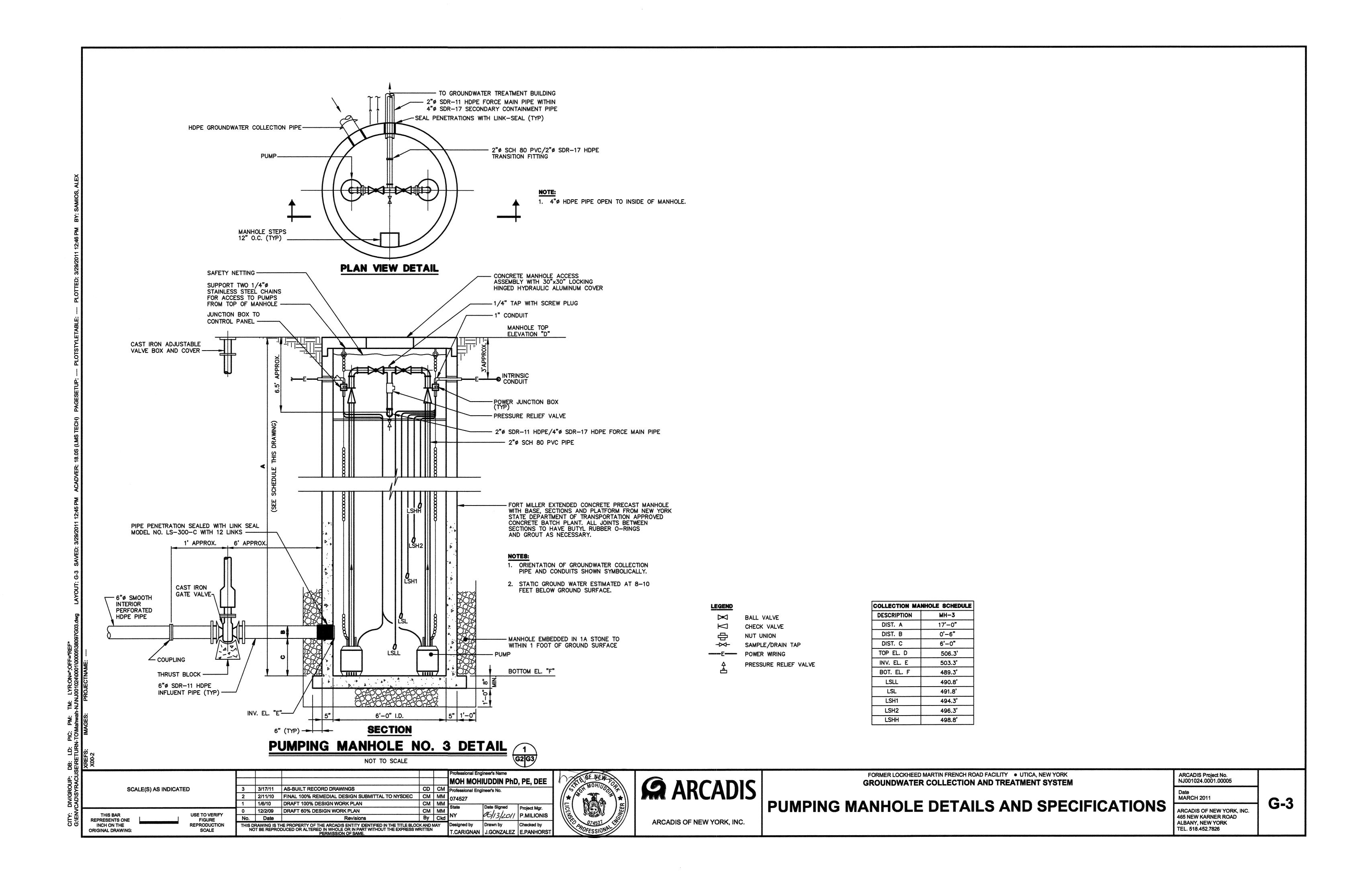
SCHEDULES

ELECTRICAL

CONTROL LOGIC

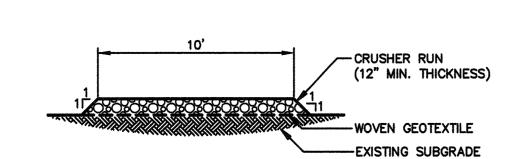

STRUCTURAL

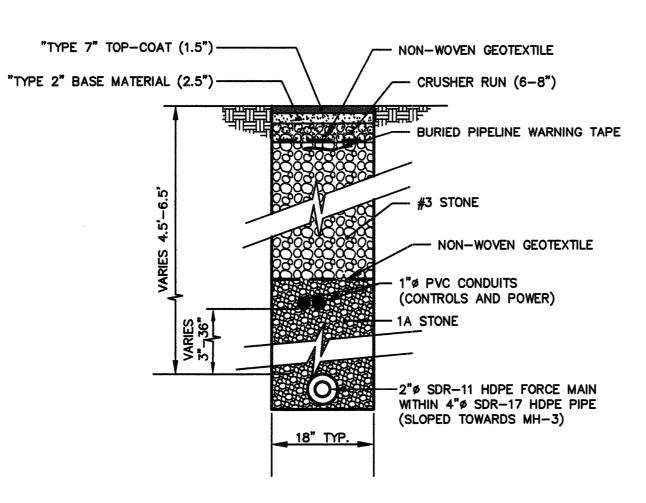

BUILDING ELEVATION SECTION AND DETAILS

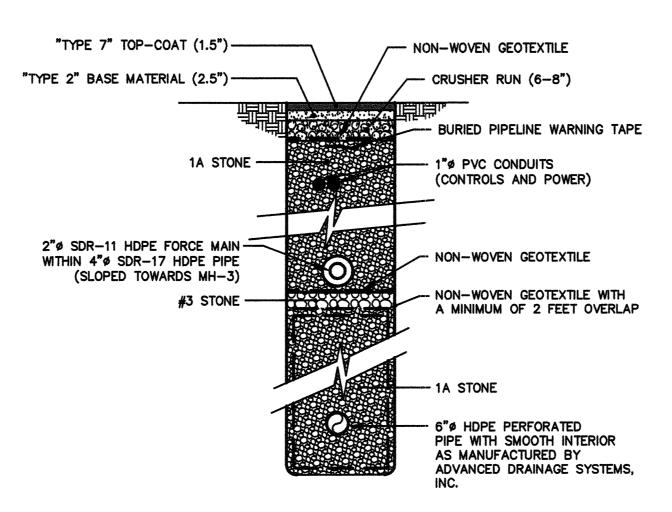

RECORD DRAWINGS


TO THE BEST OUR KNOWLEDGE, INFORMATION AND BELIEF, THESE RECORD DRAWINGS SUBSTANTIALLY REPRESENT THE PROJECT AS

DATE: 06/13/201/ BY:

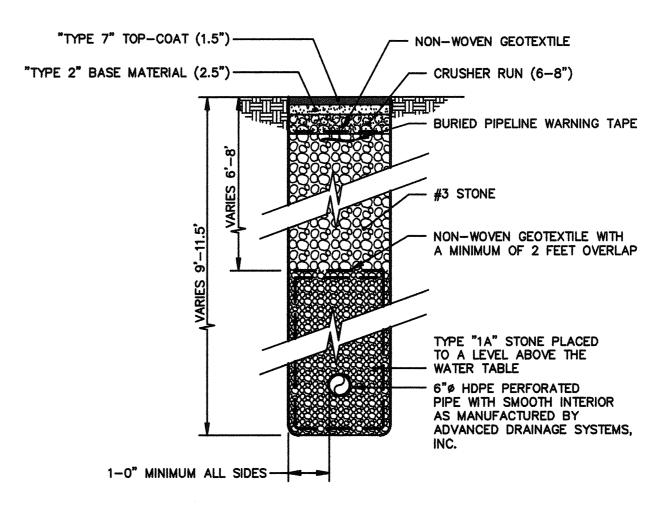






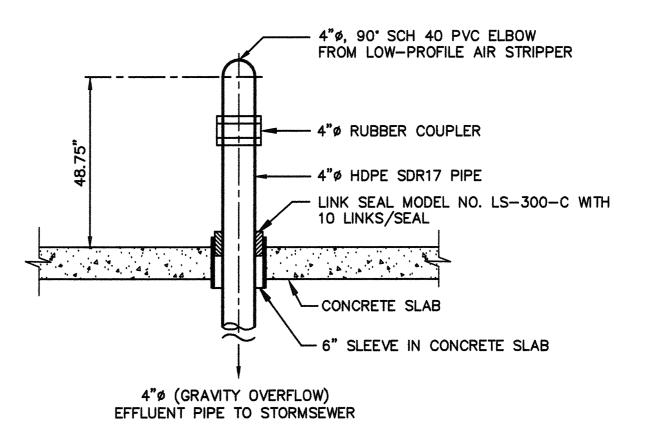
1. IN NON-PAVED AREAS, CRUSHER RUN, TYPE 2, AND TYPE 7
MATERIAL REPLACED WITH NATIVE MATERIAL.

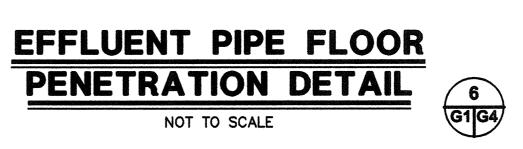

MANHOLE NO. 3 DISCHARGE TRENCH DETAIL (TYPICAL) NOT TO SCALE



NOTE:

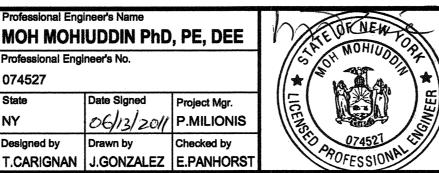
1. IN NON-PAVED AREAS, CRUSHER RUN, TYPE 2, AND TYPE 7
MATERIAL REPLACED WITH NATIVE MATERIAL.


COMBINED MANHOLE NO. 3 DISCHARGE AND COLLECTION TRENCH DETAIL (TYPICAL) NOT TO SCALE



1. IN NON-PAVED AREAS, CRUSHER RUN, TYPE 2, AND TYPE 7
MATERIAL REPLACED WITH NATIVE MATERIAL.

MANHOLE NO. 3 COLLECTION TRENCH DETAIL (TYPICAL) NOT TO SCALE



<u> </u>										_
							Professional Eng	ineer's Name		
							MOH MOH	UDDIN PhD	, PE, DEE	ĺ
		3	3/17/11	AS-BUILT RECORD DRAWINGS	CD	СМ	Professional Eng	neer's No.		ĺ
		2	2/11/10	FINAL 100% REMEDIAL DESIGN SUBMITTAL TO NYSDEC	СМ	MM	074527			ĺ
		1	1/6/10	DRAFT 100% DESIGN WORK PLAN	СМ	MM		Date Signed	D-1-114	
7:10 0.40	LICE TO VEDICY	0	12/2/09	DRAFT 60% DESIGN WORK PLAN	CM	MM		, ,	Project Mgr.	ĺ
THIS BAR REPRESENTS ONE	 USE TO VERIFY FIGURE	No.	Date	Revisions	Ву	Ckd	NY	06/13/2011	P.MILIONIS	ĺ
										i

THIS DRAWING IS THE PROPERTY OF THE ARCADIS ENTITY IDENTIFIED IN THE TITLE BLOCK AND MAY NOT BE REPRODUCED OR ALTERED IN WHOLE OR IN PART WITHOUT THE EXPRESS WRITTEN PERMISSION OF SAME.

REPRODUCTION

FORMER LOCKHEED MARTIN FRENCH ROAD FACILITY • UTICA, NEW YORK **GROUNDWATER COLLECTION AND TREATMENT SYSTEM**

ARCADIS Project No. NJ001024.0001.00005
Date MARCH 2011
ARCADIS OF NEW YORK, INC. 465 NEW KARNER ROAD ALBANY, NEW YORK TEL. 518.452.7826

G-4

INCH ON THE

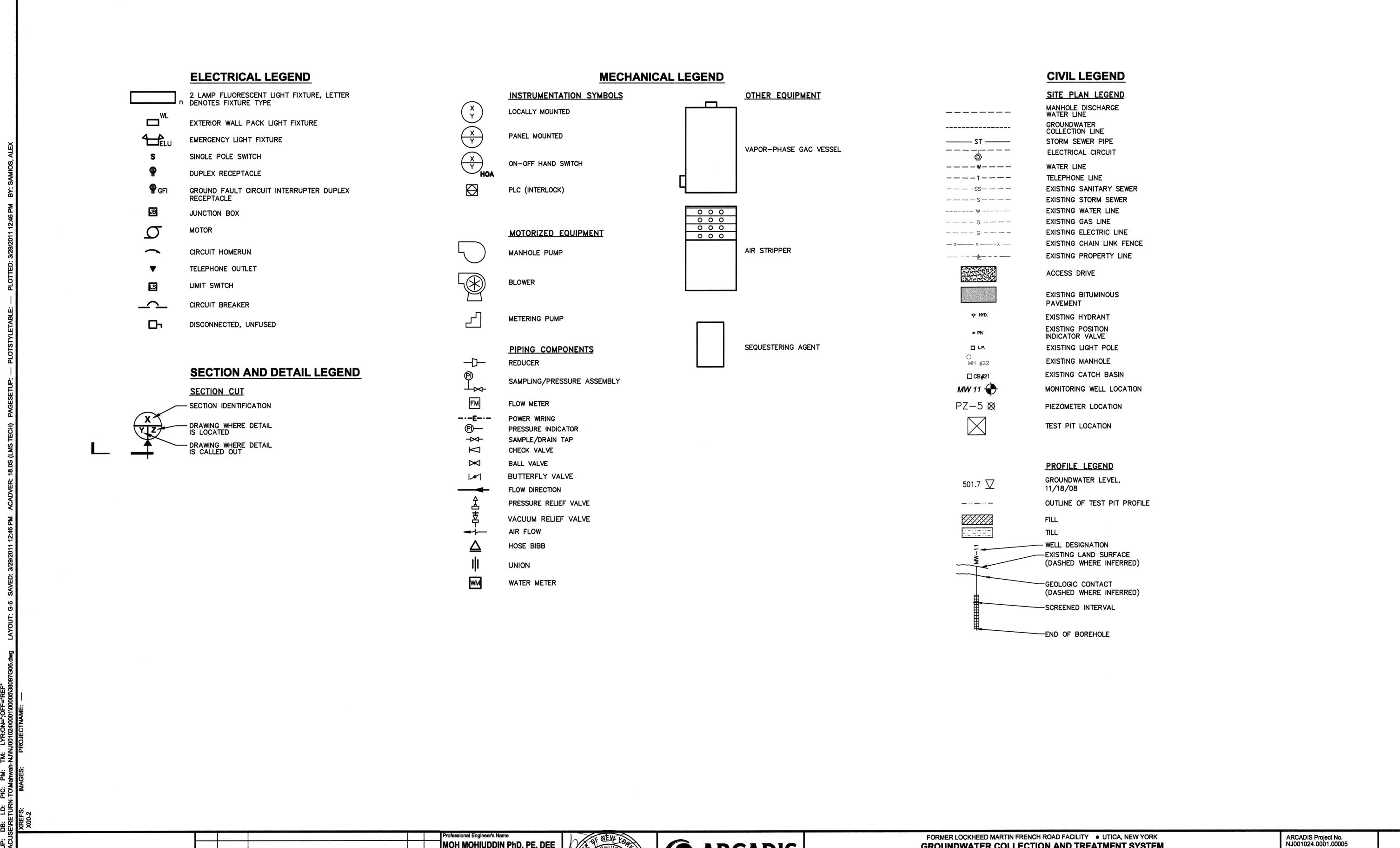
ORIGINAL DRAWING

- 1. AIR STRIPPER SYSTEM MANUFACTURED BY QED MODEL EZ-TRAY 12.4 STAINLESS STEEL FABRICATION.
- 2. ALL PIPING AND MANIFOLDS LABELED WITH STENCIL OR ADHESIVE. FLOW ARROWS LABELED AT INLET AND DISCHARGE CONNECTIONS, PIPING AND DESCRIPTION (E.G., MANHOLE NO. 3 INFLUENT) CLEARLY LABELED AT ALL VALVE AND APPURTENANCE LOCATIONS.
- 3. FLOW TRANSMITTERS ARE SIGNET ANALOG FLOW TOTALIZER, WHICH DISPLAYS FLOW RATE AND TOTALIZED FLOW VOLUME OR EQUAL. SIGNET INDICATOR ARE A MODEL 8511. ASSOCIATED SIGNET SENSORS ARE MODEL 3-2536-PO. FITTINGS AND DIAL RANGES ARE AS FOLLOWS:
 - A. MANHOLE NO. 1, 2 INCH DIAMETER INFLUENT LINE SENSOR FITTING - PV8T020 (SALVAGED FROM DEMOLITION) DIAL RANGE - 3-180 GPM
 - B. MANHOLE NO. 2, 2 INCH DIAMETER INFLUENT LINE SENSOR FITTING - PV8T020 (SALVAGED FROM DEMOLITION) DIAL RANGE - 3-180 GPM
 - C. MANHOLE NO. 3, 2 INCH DIAMETER INFLUENT LINE SENSOR FITTING - PV8T020 (NEW) DIAL RANGE - 3-180 GPM
 - D. COMBINED FLOW, 3 INCH DIAMETER INFLUENT LINE SENSOR FITTING - PV8T020 (NEW) DIAL RANGE - 7-400 GPM
 - E. SUMP PUMP 1-INCH DIAMETER INFLUENT LINE SENSOR FITTING - PV8T012 (EXISTING) DIAL RANGE - 3-180 GPM
- 4. ALL FLOW METERS HAVE STRAIGHT PIPE PRECEDING (10 TIMES PIPE DIAMETER) AND FOLLOWING (5 TIMES PIPE DIAMETER) THEM.
- 5. MANHOLE NO. 3 PUMPS ARE GOULDS PUMPS MODEL 3887 WITH VITON SEALS AND CAST IRON IMPELLER (3/4 HP, 230 VOLTS, 1,750 RPM, 1 PHASE) CAPABLE OF 50 GPM @ 25 FEET TDH (ONE PUMP) OR EQUAL.
- 6. DUCT HEATER IS HEAT EXCHANGE AND TRANSFER, INC. MODEL ADH-12-483 (12KW, 480V, 3 PHASE).
- 7. ALL SURFACES AT RECENTLY POURED CONCRETE RECEIVING NEW CONCRETE SHALL BE PREPARED BY CLEANING, WETTING AND TREATMENT WITH A NEAT CEMENT GROUT.
- 8. VAPOR PHASE CARBON VESSELS SIEMENS FB-1000 1,000 LB VESSELS. VESSELS UTILIZE SIEMENS VOCARB 36C VAPOR PHASE GRANULAR ACTIVATED CARBON.

ABBREVIATIONS:

- A.F.F ABOVE FINISHED FLOOR
- BV BALL VALVE
- BFV BUTTERFLY VALVE
- CMP CHEMICAL METERING PUMP
- FS FLOW SENSOR
- FT FLOW TRANSMITTER
- HS HAND SWITCH
- LEVEL INDICATOR LSH LEVEL SENSOR HIGH
- LSL LEVEL SENSOR LOW
- LV LOUVER
- MIN. MINIMUM
- PRESSURE INDICATOR
- PT PRESSURE TRANSMITTER
- SP SAMPLE PORT
- TEMPERATURE ELEMENT
- TEMPERATURE INDICATOR
- TEMPERATURE TRANSMITTER
- UNIT HEATER

MOH MOHIUDDIN PhD, PE, DEE CM MM 074527 2 3/18/11 AS-BUILT RECORD DRAWINGS 1 1/6/10 DRAFT 100% DESIGN WORK PLAN Date Signed Project Mgr. 0 12/2/09 DRAFT 60% DESIGN WORK PLAN CM MM 06/13/201/ P.MILIONIS REPRESENTS ONE THIS DRAWING IS THE PROPERTY OF THE ARCADIS ENTITY IDENTIFIED IN THE TITLE BLOCK AND MAY NOT BE REPRODUCED OR ALTERED IN WHOLE OR IN PART WITHOUT THE EXPRESS WRITTEN PERMISSION OF SAME. INCH ON THE REPRODUCTION ORIGINAL DRAWING T.CARIGNAN J.GONZALEZ E.PANHORS


FORMER LOCKHEED MARTIN FRENCH ROAD FACILITY • UTICA, NEW YORK **GROUNDWATER COLLECTION AND TREATMENT SYSTEM**

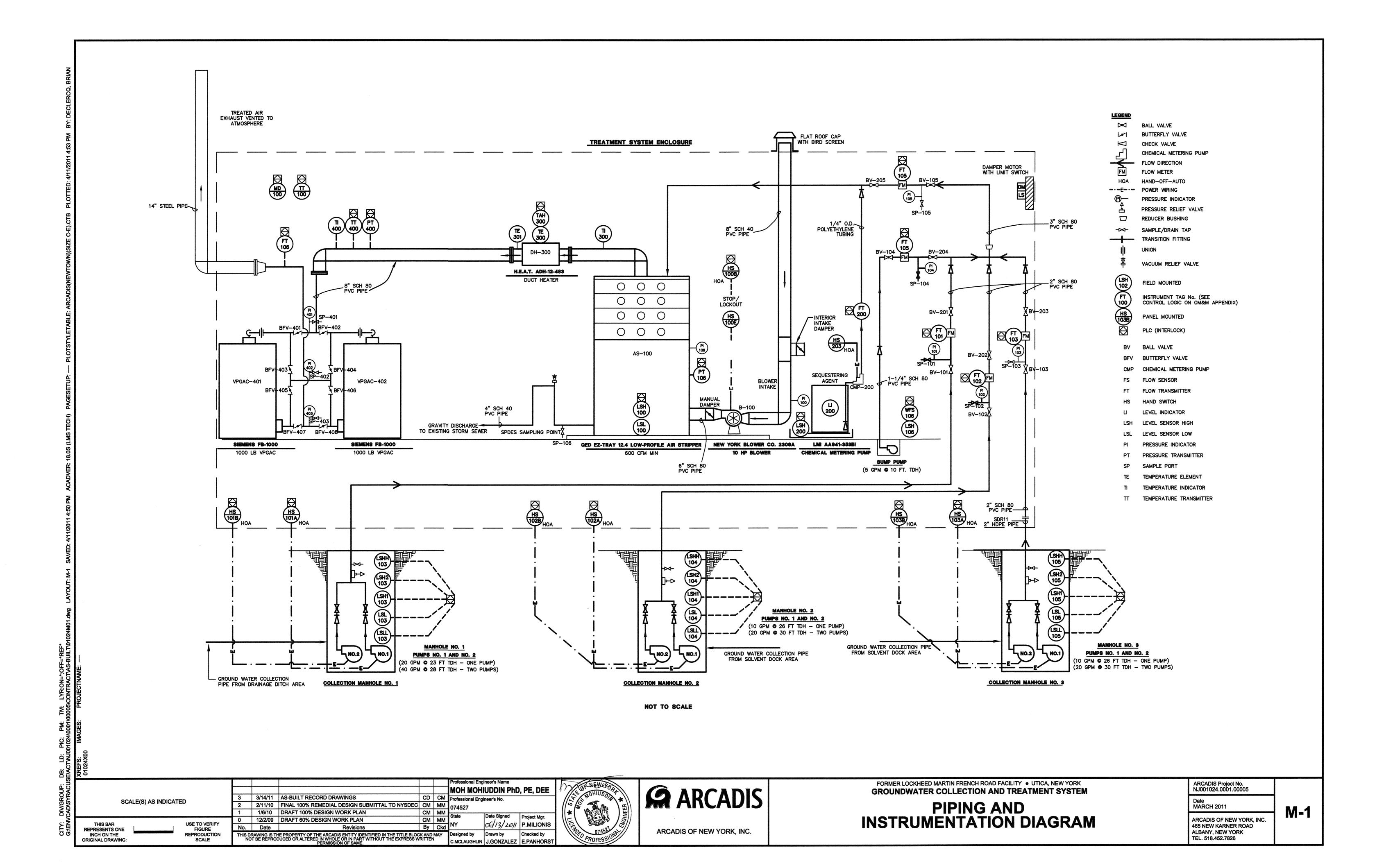
GENERAL NOTES AND ABBREVIATIONS

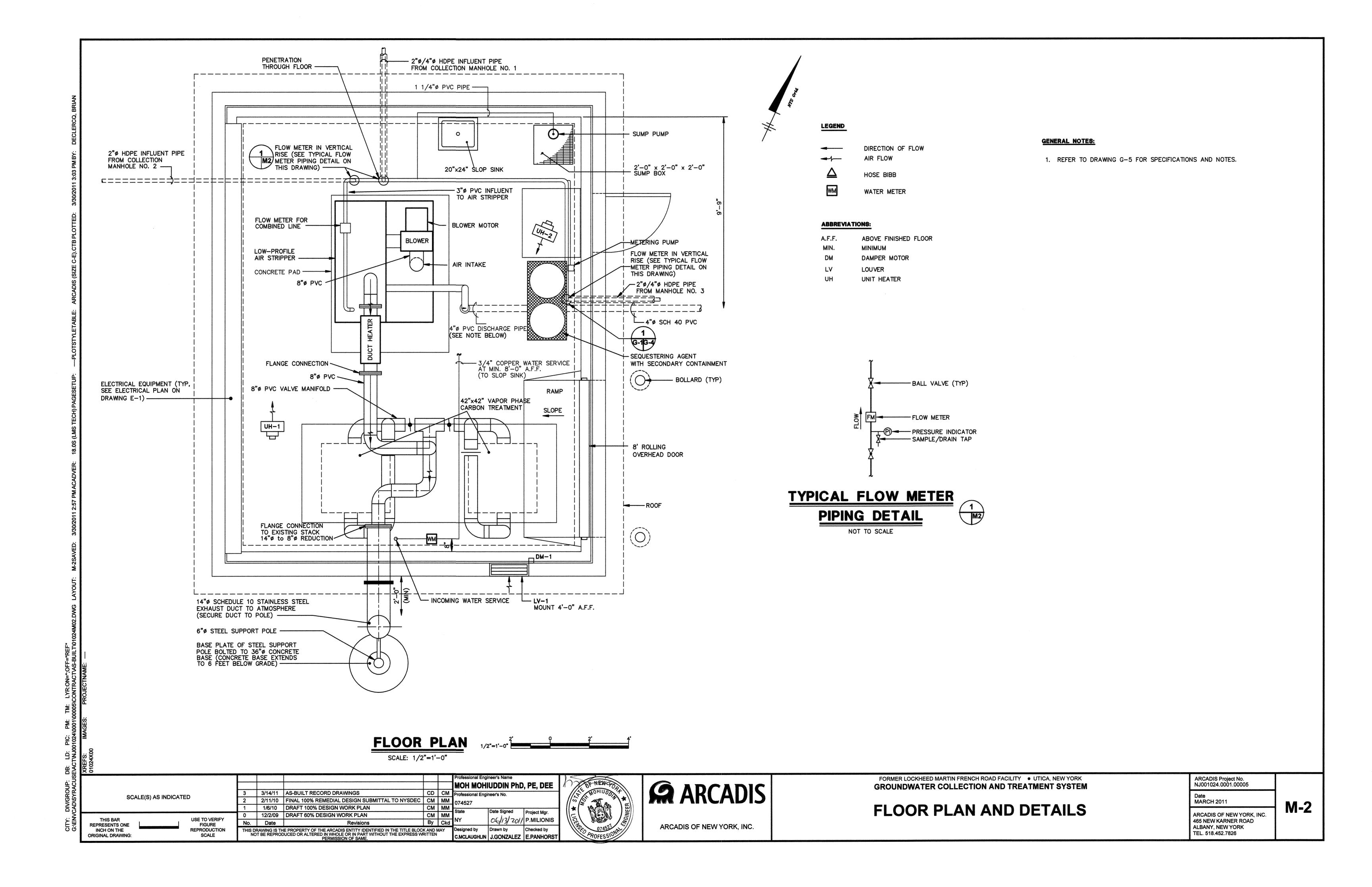
ARCADIS Project No. NJ001024.0001.00005

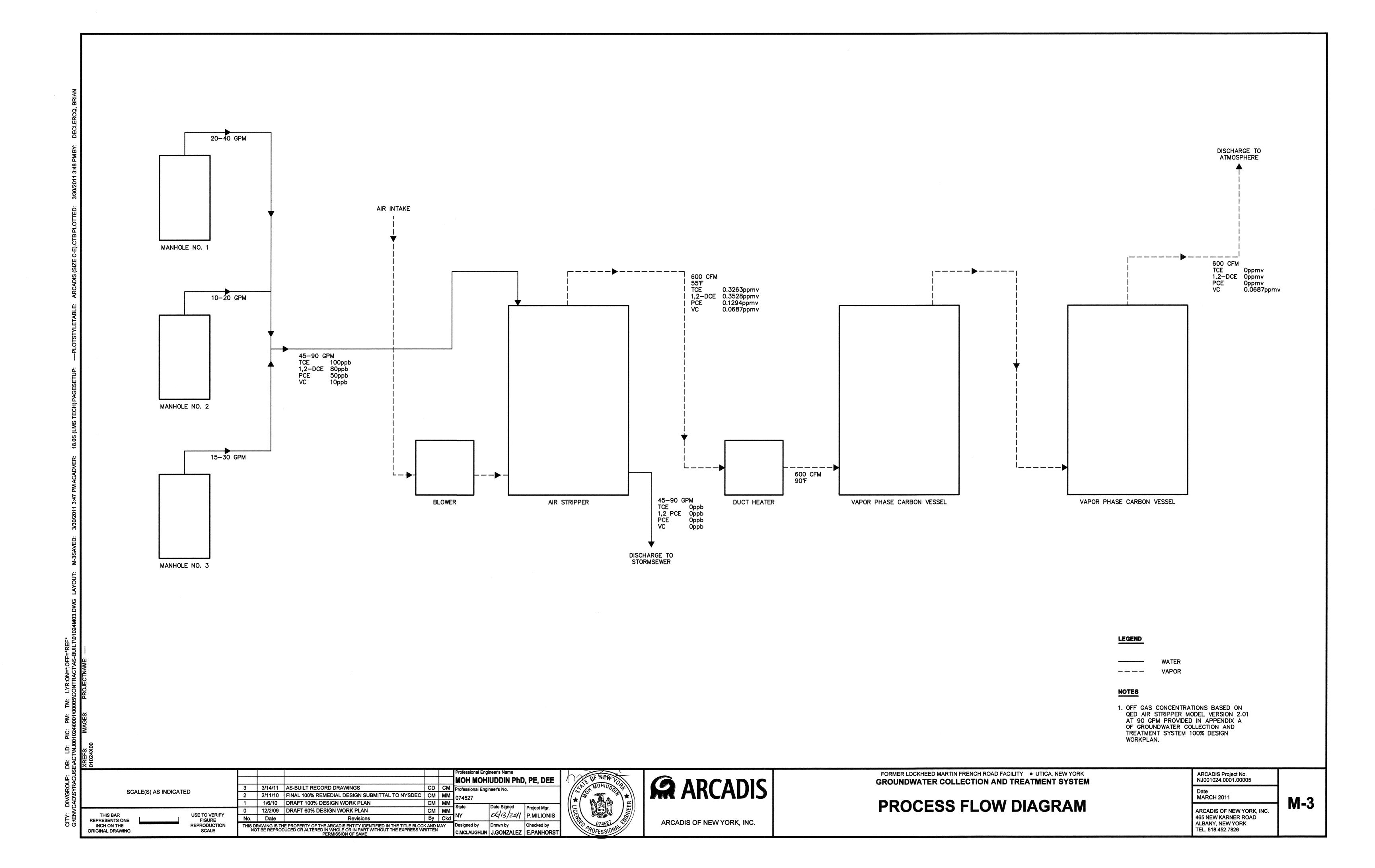
Date MARCH 2011 ARCADIS OF NEW YORK, INC. 465 NEW KARNER ROAD

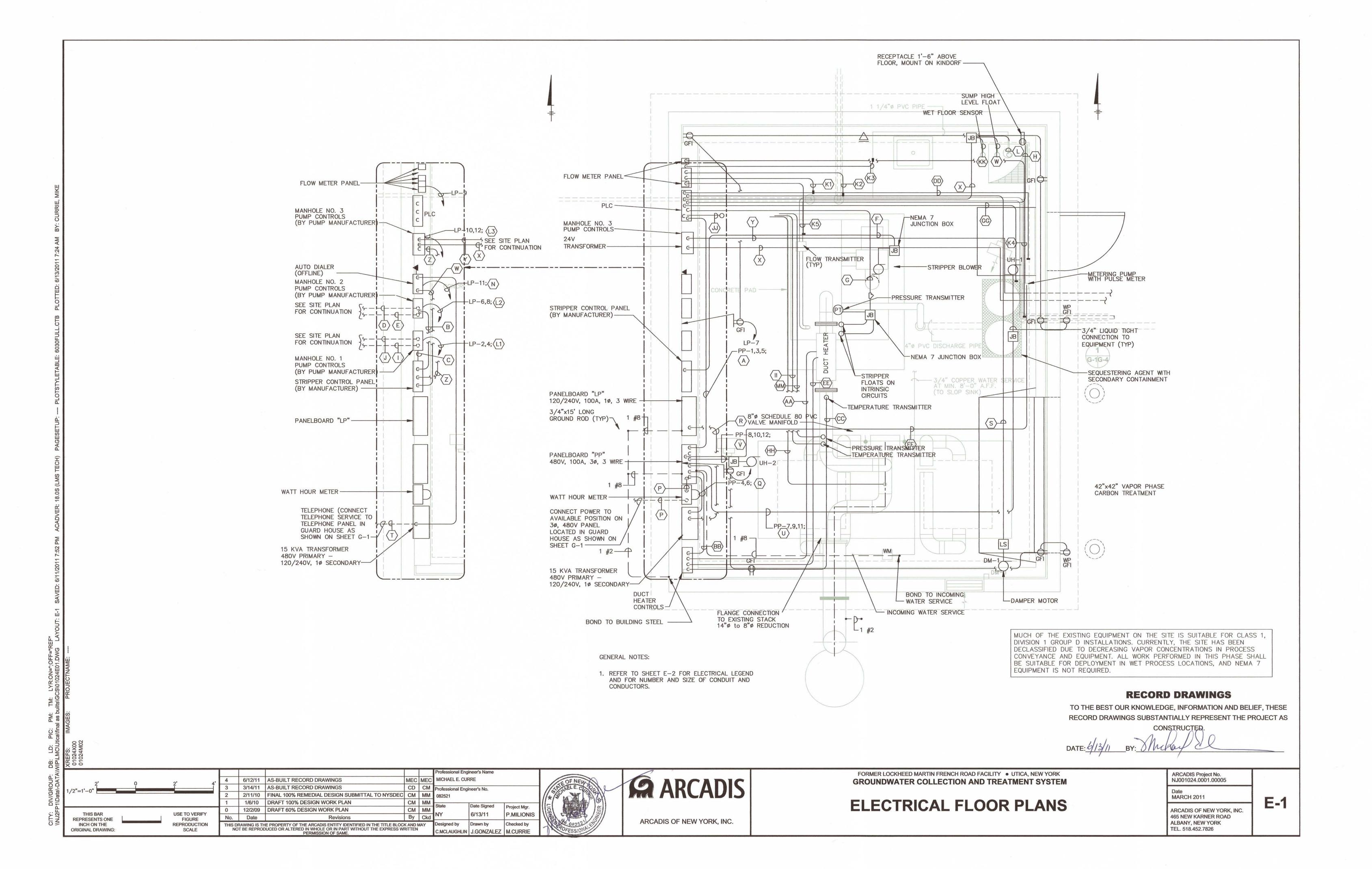
ALBANY, NEW YORK TEL. 518.452.7826

MOH MOHIUDDIN PhD, PE, DEE CM MM 074527 2 3/18/11 AS-BUILT RECORD DRAWINGS CM MM State 1 1/6/10 DRAFT 100% DESIGN WORK PLAN Date Signed Project Mgr. 0 12/2/09 DRAFT 60% DESIGN WORK PLAN CM MM 06/13/201/ P.MILIONIS THIS BAR USE TO VERIFY REPRESENTS ONE FIGURE THIS DRAWING IS THE PROPERTY OF THE ARCADIS ENTITY IDENTIFIED IN THE TITLE BLOCK AND MAY NOT BE REPRODUCED OR ALTERED IN WHOLE OR IN PART WITHOUT THE EXPRESS WRITTEN PERMISSION OF SAME. INCH ON THE REPRODUCTION ORIGINAL DRAWING: T.CARIGNAN J.GONZALEZ E.PANHORST




GROUNDWATER COLLECTION AND TREATMENT SYSTEM


LEGEND AND SYMBOLS


Date MARCH 2011
ARCADIS OF NEW YORK, IN 465 NEW KARNER ROAD ALBANY, NEW YORK


TEL. 518.452.7826

PUMP NO. 1 SHALL NOT OPERATE IF:

- 1. PUMP NO. 1 HOA SWITCH (HS-101A) IS IN AUTO POSITION, AND FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC
- 2. PUMP NO. 1 HOA SWITCH (HS-101A) IS IN OFF POSITION 3. MANHOLE NO. 1 LEVEL IS BELOW LOW LEVEL FLOAT (LSL-103)
- 4. MANHOLE NO. 1 LEVEL IS BELOW LOW-LOW LEVEL FLOAT (LSLL-103)
- PUMP NO. 1 SHALL OPERATE IF:
- 1. PUMP NO. 1 HOA SWITCH (HS-101A) IS IN AUTO POSITION AND MANHOLE NO. 1 LEVEL IS ABOVE HIGH-1 LEVEL FLOAT (LSH1-103) AND PUMP NO. 1 IS DESIGNATED BY PLC AS LEAD PUMP AND
- NO FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC 2. PUMP NO. 1 HOA SWITCH (HS-101A) IS IN AUTO POSITION AND MANHOLE
- NO. 1 LEVEL IS ABOVE HIGH-2 LEVEL FLOAT (LSH2-103) AND PUMP NO. 1 IS DESIGNATED BY PLC AS LAG PUMP AND NO FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC
- 3. PUMP NO. 1 HOA SWITCH (HS-102A) IS IN HAND POSITION

PUMP NO. 2 SHALL NOT OPERATE IF:

- 1. PUMP NO. 2 HOA SWITCH (HS-101B) IS IN AUTO POSITION, AND FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC
- 2. PUMP NO. 2 HOA SWITCH (HS-101B) IS IN OFF POSITION
- 3. MANHOLE NO. 1 LEVEL IS BELOW LOW LEVEL FLOAT (LSL-103)
- 4. MANHOLE NO. 1 LEVEL IS BELOW LOW-LOW LEVEL FLOAT (LSLL-103)

PUMP NO. 2 SHALL OPERATE IF:

- 1. PUMP NO. 2 HOA SWITCH (HS-101B) IS IN AUTO POSITION AND MANHOLE NO. 1 LEVEL IS ABOVE HIGH-1 LEVEL FLOAT (LSH1-103) AND PUMP NO. 2 IS DESIGNATED BY PLC AS LEAD PUMP AND NO FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC
- 2. PUMP NO. 2 HOA SWITCH (HS-101B) IS IN AUTO POSITION AND MANHOLE NO. 1 LEVEL IS ABOVE HIGH-2 LEVEL FLOAT (LSH2-103) AND PUMP NO. 2 IS DESIGNATED BY PLC AS LAG PUMP AND NO FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC
- 3. PUMP NO. 2 HOA SWITCH (HS-101B) IS IN HAND POSITION

LOGIC FOR AIR STRIPPER BLOWER (B-100)

BLOWER SHALL OPERATE IF:

1. BLOWER HOA SWITCH (HS-100) IS IN HAND POSITION 2. BLOWER HOA SWITCH (HS-100) IS IN AUTO POSITION AND [MANHOLE NO. 1 PUMP NO. 1 HOA SWITCH (HS-101A) IS IN AUTO POSITION AND MANHOLE NO. 1 PUMP NO. 1 HAS BEEN RUNNING WITHIN LAST TEN MINUTES] 3. BLOWER HOA SWITCH (HS-100) IS IN AUTO POSITION AND [MANHOLE NO. 1 PUMP NO. 2 HOA SWITCH (HS-101B) IS IN AUTO POSITION AND MANHOLE NO. 1 PUMP NO. 2 HAS BEEN RUNNING WITHIN LAST TEN MINUTES] 4. BLOWER HOA SWITCH (HS-100) IS IN AUTO POSITION AND [MANHOLE NO. 2 PUMP NO. 1 HOA SWITCH (HS-102A) IS IN AUTO POSITION AND MANHOLE NO. 2 PUMP NO. 1 HAS BEEN RUNNING WITHIN LAST TEN MINUTES! 5. BLOWER HOA SWITCH (HS-100) IS IN AUTO POSITION AND [MANHOLE NO. 2 PUMP NO. 2 HOA SWITCH (HS-102B) IS IN AUTO POSITION AND MANHOLE NO. 2 PUMP NO. 2 HAS BEEN RUNNING WITHIN LAST TEN MINUTES] 6. BLOWER HOA SWITCH (HS-100) IS IN AUTO POSITION AND [MANHOLE NO. 3 PUMP NO. 1 HOA SWITCH (HS-103A) IS IN AUTO POSITION AND MANHOLE NO. 3 PUMP NO. 1 HAS BEEN RUNNING WITHIN LAST TEN MINUTES] 7. BLOWER HOA SWITCH (HS-100) IS IN AUTO POSITION AND [MANHOLE NO. 3 PUMP NO. 2 HOA SWITCH (HS-103B) IS IN AUTO POSITION AND MANHOLE NO. 3 PUMP NO. 2 HAS BEEN RUNNING WITHIN LAST TEN MINUTES]

BLOWER SHALL NOT OPERATE IF:

- 1. BLOWER HOA SWITCH (HS-100) IS IN OFF POSITION 2. BLOWER HOA SWITCH (HS-100) IS IN AUTO POSITION AND FATAL ALARMS (SHOWN ON THIS DRAWING) HAVE BEEN INDICATED AT PLC FOR GREATER THAN TEN MINUTES
- 3. BLOWER HOA SWITCH (HS-100) IS IN AUTO POSITION AND NONE OF THE STATEMENTS LISTED ABOVE ARE TRUE

LOGIC FOR MANHOLE NO. 2

PUMP NO. 1 SHALL NOT OPERATE IF:

- 1. PUMP NO. 1 HOA SWITCH (HS-102A) IS IN AUTO POSITION, AND FATAL
- ALARMS (SHOWN BELOW) ARE INDICATED AT PLC 2. PUMP NO. 1 HOA SWITCH (HS-102A) IS IN OFF POSITION
- 3. MANHOLE NO. 2 LEVEL IS BELOW LOW LEVEL FLOAT (LSL-104)
- 4. MANHOLE NO. 2 LEVEL IS BELOW LOW-LOW LEVEL FLOAT (LSLL-104)

PUMP NO. 1 SHALL OPERATE IF:

- 1. PUMP NO. 1 HOA SWITCH (HS-102A) IS IN AUTO POSITION AND MANHOLE NO. 2 LEVEL IS ABOVE HIGH-1 LEVEL FLOAT (LSH1-104) AND PUMP NO. 1 IS DESIGNATED BY PLC AS LEAD PUMP AND
- NO FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC
- 2. PUMP NO. 1 HOA SWITCH (HS-102A) IS IN AUTO POSITION AND MANHOLE NO. 2 LEVEL IS ABOVE HIGH-2 LEVEL FLOAT (LSH2-104) AND PUMP NO. 1 IS DESIGNATED BY PLC AS LAG PUMP AND NO FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC
- 3. PUMP NO. 1 HOA SWITCH (HS-102A) IS IN HAND POSITION

PUMP NO. 2 SHALL NOT OPERATE IF:

- 1. PUMP NO. 2 HOA SWITCH (HS-102B) IS IN AUTO POSITION, AND FATAL
- ALARMS (SHOWN BELOW) ARE INDICATED AT PLC 2. PUMP NO. 2 HOA SWITCH (HS-102B) IS IN OFF POSITION
- 3. MANHOLE NO. 2 LEVEL IS BELOW LOW LEVEL FLOAT (LSL-104)
- 4. MANHOLE NO. 2 LEVEL IS BELOW LOW-LOW LEVEL FLOAT (LSLL-104)
- PUMP NO. 2 SHALL OPERATE IF:
- 1. PUMP NO. 2 HOA SWITCH (HS-102B) IS IN AUTO POSITION AND MANHOLE NO. 2 LEVEL IS ABOVE HIGH-1 LEVEL FLOAT (LSH1-104) AND PUMP NO. 2 IS DESIGNATED BY PLC AS LEAD PUMP AND NO FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC
- 2. PUMP NO. 2 HOA SWITCH (HS-102B) IS IN AUTO POSITION AND MANHOLE NO. 2 LEVEL IS ABOVE HIGH-2 LEVEL FLOAT (LSH2-104) AND PUMP NO. 2 IS DESIGNATED BY PLC AS LAG PUMP AND NO FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC
- 3. PUMP NO. 2 HOA SWITCH (HS-102B) IS IN HAND POSITION

LOGIC FOR DUCT HEATER (DH-300)

DUCT HEATER SHALL OPERATE IF:

1. DUCT HEATER HEAT ON/OFF SWITCH IS IN ON POSITION AND BLOWER HOA SWITCH (HS-100) IS IN AUTO POSITION AND BLOWER (B-100) IS RUNNING

DUCT HEATER SHALL NOT OPERATE IF:

1. DUCT HEATER HEAT ON/OFF SWITCH IS IN OFF POSITION 2. DUCT HEATER HEAT ON/OFF SWITCH IS IN ON POSITION AND BLOWER HOA SWITCH (HS-100) IS IN AUTO POSITION AND BLOWER (B-100) IS NOT

LOGIC FOR CHEMICAL METERING PUMP (CMP-200)

CHEMICAL METERING PUMP SHALL OPERATE IF:

1. AGGREGATE FLOW TRANSMITTER (FT-105) IS REGISTERING AN INSTANTANEOUS FLOWRATE

CHEMICAL METERING PUMP SHALL NOT OPERATE IF:

1. AGGREGATE FLOW TRANSMITTER (FT-105) IS NOT REGISTERING AN INSTANTANEOUS FLOWRATE

LOGIC FOR MANHOLE NO. 3

PUMP NO. 1 SHALL NOT OPERATE IF:

- 1. PUMP NO. 1 HOA SWITCH (HS-103A) IS IN AUTO POSITION, AND FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC
- 2. PUMP NO. 1 HOA SWITCH (HS-103A) IS IN OFF POSITION
- 3. MANHOLE NO. 3 LEVEL IS BELOW LOW LEVEL FLOAT (LSL-105)
- 4. MANHOLE NO. 3 LEVEL IS BELOW LOW-LOW LEVEL FLOAT (LSLL-105)

PUMP NO. 1 SHALL OPERATE IF:

- 1. PUMP NO. 1 HOA SWITCH (HS-103A) IS IN AUTO POSITION AND MANHOLE NO. 3 LEVEL IS ABOVE HIGH-1 LEVEL FLOAT (LSH1-105) AND PUMP NO. 1 IS DESIGNATED BY PLC AS LEAD PUMP AND NO FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC
- 2. PUMP NO. 1 HOA SWITCH (HS-103A) IS IN AUTO POSITION AND MANHOLE NO. 3 LEVEL IS ABOVE HIGH-2 LEVEL FLOAT (LSH2-105) AND PUMP NO. 1 IS DESIGNATED BY PLC AS LAG PUMP AND NO FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC
- 3. PUMP NO. 1 HOA SWITCH (HS-103A) IS IN HAND POSITION

PUMP NO. 2 SHALL NOT OPERATE IF:

- 1. PUMP NO. 2 HOA SWITCH (HS-103B) IS IN AUTO POSITION, AND FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC
- 2. PUMP NO. 2 HOA SWITCH (HS-103B) IS IN OFF POSITION
- 3. MANHOLE NO. 3 LEVEL IS BELOW LOW LEVEL FLOAT (LSL-105)
- 4. MANHOLE NO. 3 LEVEL IS BELOW LOW-LOW LEVEL FLOAT (LSLL-105)

PUMP NO. 2 SHALL OPERATE IF:

- 1. PUMP NO. 2 HOA SWITCH (HS-103B) IS IN AUTO POSITION AND MANHOLE NO. 3 LEVEL IS ABOVE HIGH-1 LEVEL FLOAT (LSH1-105) AND PUMP NO. 2 IS DESIGNATED BY PLC AS LEAD PUMP AND NO FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC
- 2. PUMP NO. 2 HOA SWITCH (HS-103B) IS IN AUTO POSITION AND MANHOLE NO. 3 LEVEL IS ABOVE HIGH-2 LEVEL FLOAT (LSH2-105) AND PUMP NO. 2 IS DESIGNATED BY PLC AS LAG PUMP AND NO FATAL
- 3. PUMP NO. 2 HOA SWITCH (HS-103B) IS IN HAND POSITION

FATAL ALARMS:

- 1. HIGH AIR STRIPPER SUMP PRESSURE (PT-106)
- 2. LOW AIR STRIPPER SUMP PRESSURE (PT-106)

ALARMS (SHOWN BELOW) ARE INDICATED AT PLC

- 3. HIGH AIR STRIPPER SUMP LEVEL (LSH-100)
- 4. LOW AIR STRIPPER SUMP LEVEL (LSL-100)
- 5. HIGH AIR FLOWRATE (FT-106)
- 6. LOW AIR FLOWRATE (FT-106)
- 7. PRE-CARBON HIGH TEMPERATURE (TT-400)
- 8. PRE-CARBON LOW TEMPERATURE (TT-400) 9. PRE-CARBON HIGH PRESSURE (PT-400)
- 10. PRE-CARBON LOW PRESSURE (PT-400)
- 11. BUILDING WET FLOOR SENSOR ALARM (WFS-106)

NOTES:

- 1. CONTROLS WERE MODIFIED FROM AN ELECTRICAL CIRCUIT RELAY. BASED CONTROL SYSTEM TO A MICROPROCESSOR BASED (PROGRAMMABLE LOGIC CONTROLLER) CONTROLS BY AZTECH TECHNOLOGIES, INC, IN DECEMBER 2007.
- 2. MODIFIED CONTROL DETAILS AND LINE DRAWINGS/SCHEMATIC ARE PROVIDED IN THE APPENDIX OF OM&M MANUAL.
- 3. PLC PROGRAMMING WILL BE PERFORMED BY ARCADIS.

RECORD DRAWINGS

TO THE BEST OUR KNOWLEDGE, INFORMATION AND BELIEF, THESE RECORD DRAWINGS SUBSTANTIALLY REPRESENT THE PROJECT AS

FORMER LOCKHEED MARTIN FRENCH ROAD FACILITY • UTICA, NEW YORK **GROUNDWATER COLLECTION AND TREATMENT SYSTEM**

NJ001024.0001.00005

MARCH 2011 ARCADIS OF NEW YORK, INC. 465 NEW KARNER ROAD ALBANY, NEW YORK TEL. 518.452.7826

ARCADIS Project No.

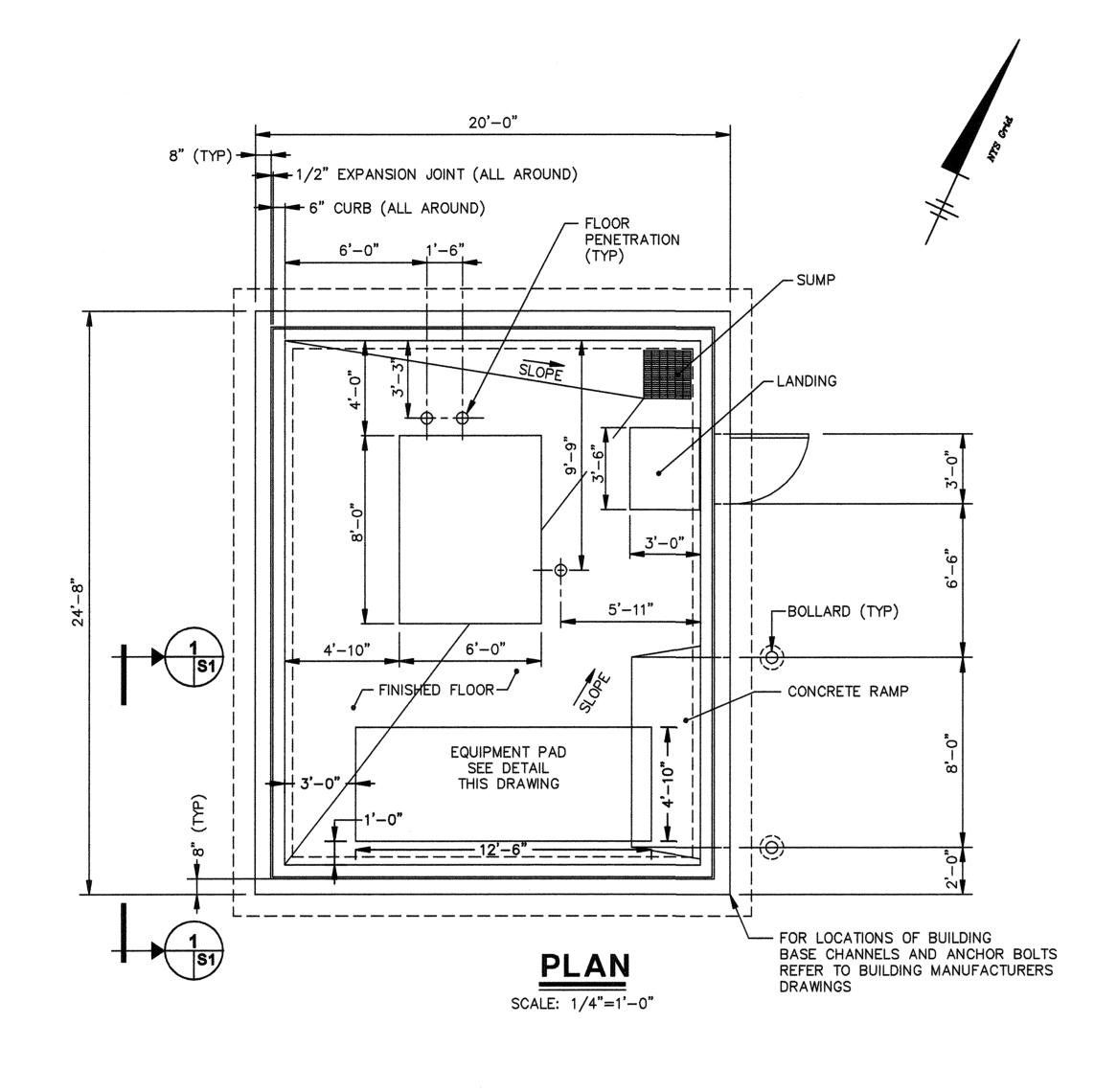
E-3

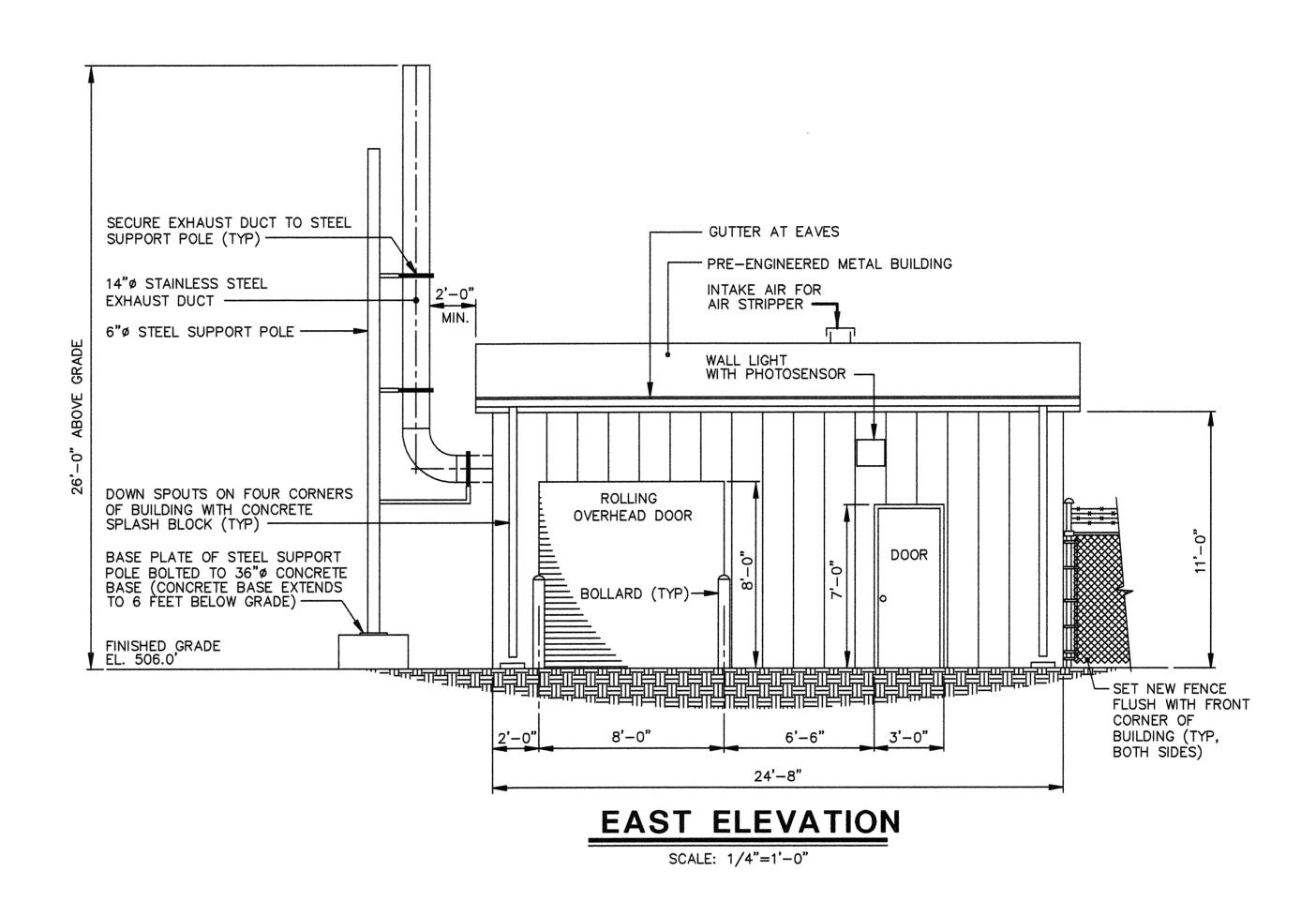
6/12/11 AS-BUILT RECORD DRAWINGS 3/14/11 AS-BUILT RECORD DRAWINGS SCALE(S) AS INDICATED 2/11/10 FINAL 100% REMEDIAL DESIGN SUBMITTAL TO NYSDEC CM MM 082521 1/6/10 DRAFT 100% DESIGN WORK PLAN 12/2/09 DRAFT 60% DESIGN WORK PLAN USE TO VERIFY REPRESENTS ONE FIGURE THIS DRAWING IS THE PROPERTY OF THE ARCADIS ENTITY IDENTIFIED IN THE TITLE BLOCK AND MAY NOT BE REPRODUCED OR ALTERED IN WHOLE OR IN PART WITHOUT THE EXPRESS WRITTEN PERMISSION OF SAME. REPRODUCTION

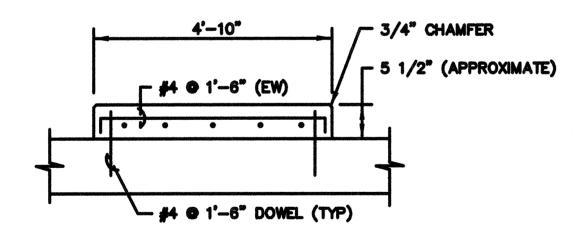
THIS BAR

INCH ON THE

ORIGINAL DRAWING

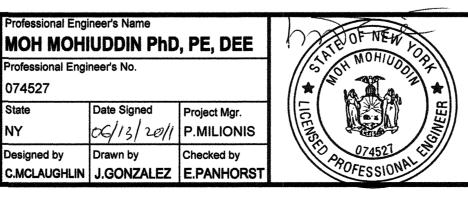

MEC MEC MICHAEL E. CURRE CD CM P ssional Engineer's No. CM MM Date Signed CM MM 6/13/11 P.MILIONIS By Ckd Drawn by Checked by


C.MCLAUGHLIN J.GONZALEZ M.CURRIE


A ARCADIS

ARCADIS OF NEW YORK, INC.

CONTROL LOGIC



SCALE: 4' 2' 0 4' 8'

SCALE(S) AS INDICATED

FORMER LOCKHEED MARTIN FRENCH ROAD FACILITY • UTICA, NEW YORK

GROUNDWATER COLLECTION AND TREATMENT SYSTEM

BUILDING	ELE	VATION,
SECTION	AND	DETAILS

RCADIS Project No. J001024.0001.00005	
 ate ARCH 2011	

Appendix B

Monthly O&M Checklists

Monthly OM&M Log Sheet, Groundwater Collection and Treatment System, Solvent Dock Area, Former Lockheed Martin French Road Facility, Utica, New York
 Date:
 3/22/2011

 Time:
 0915

 Technician:
 D. Zuck/D. Nodine

C1	/C7	ΓEΝ	л	CТ	۸٦	ГП	
J I	3		VI ·	3 I	AI	LU	

System operationa	il? (PLC scre	en indicating system in "AUTO" or "MANUAL")	Auto
System currently c	ycling?	No	3
Alarms? (list)	None		

AIR STRIPPER PARAMETERS (record while air stripper is running)

Parameter	Value	Units
Air stripper sump pressure [PI-106]	28	(in. W.C.)
Air stripper sump water elevation (record from site gauge)	14.5 -> 14.75	(inches)
Blower intake line vacuum [PI-100]	-1.5	(in. W.C.)
Main damper position (record distance from center of wingnut to outside of blower housing)	2	(inches)
Interior dilution damper position (0" is shut, 3" is open)	3/8	(inches)

Is white "POWER ON" light on air stripper control panel lit? (Y/N)

Is air stripper hand-off-auto switch [HS-100] in "AUTO" position? (Y/N)

Note scaling inside liquid effluent pipe from access port

Note scaling observed inside air stripper via clear tray access door

Some

FLOWMETER / PUMP PARAMETERS

Are white power lights lit on MH-1, MH-2, and MH-3 control panels? (Y/N)

Are pump hand-off-auto switches [HS-101A, HS-101B, HS-102A, HS-102B, HS-103A, and HS-103B] in "auto" position? (Y/N)

All But HS-103A + 103B

Parameter	MH-1 [FT-101]	MH-2 [FT-102]	MH-3 [FT-103]	Sump [FT-104]	Cumulative [FT-105]
Date/Time	3/22/11 1018 -				→
Instantaneous Flowrate [gpm]	21.56	27.12	NA	NA	38.47
Permanent Flow (gallons)	11,294,008	1,952,453	78,745	1513	873,020
Total Flow (gallons)	1,297,828	288,715	78,745	199	872,881
Pump 1 Running (Y/N)?	Y	Y	N	-	-
Pump 2 Running (Y/N)?	N	N	N	-	-

⁻ Flowrate, Permanent Flow, and Total Flow can be viewed locally from wall-mounted flow transmitters FT-101 through FT-105 using up/down arrows.

VAPOR PHASE PARAMETERS (record while air stripper is running)

Is duct heater "HEAT ON/OFF" light lit? (Y/N) Y (located on duct heater control panel door)

Is duct heater "HI TEMP" alarm light on? (Y/N) N (located on duct heater control panel door)

ADDITIONAL NOTES

Blower Velocity: 4069 (cfm)
Effluent Velocity: 2188 (cfm)

Flowrate Via PLC:			
FT-101	20.27 (gpm)		
FT-102	25.30 (gpm)		
FT-103	0.00 (gpm)		
FT-105	39.96 (gpm)		

Monthly OM&M Checklist, Groundwater Collection and Treatment System, Solvent Dock Area, Former Lockheed Martin French Road Facility, Utica, New York

 Date:
 3/22/2011

 Time:
 0915

 Technician:
 D. Zuck/D. Nodine

VAPOR PHASE PARAMETERS (continued)

Parameter	PID Tag	Value	Units	Notes
Pre-Duct Heater Temperature	TI-300	68	(°F)	
Pre-Carbon Temperature	TI-400	90	(°F)	
Duct Heater Temperature Setpoint	-	91	(°F)	(located in green on duct heat control panel)
Duct Heater Temperature Transmitter	-	86	(°F)	(located in red on duct heat control panel)
Pre-Carbon Pressure	PI-401	10	(in. W.C.)	
Mid-Carbon Pressure	PI-402	4.5	(in. W.C.)	
Effluent Pressure	PI-403	2	(in. W.C.)	

TRANSMITTER READINGS (record from ProControl)

Parameter	PID Tag	Value	Units	Notes
Air Stripper Sump Pressure	PT-106	26.16	(in. W.C.)	
Vapor Flowrate	FT-106	668	(cfm)	
Pre-Carbon Temperature	TT-400	93.9	(°F)	
Pre-Carbon Pressure	PT-400	4.3	(in. W.C.)	
Building Temperature	TT-100	58.6	(°F)	

⁻ Press the "I/O" up/down arrows on the ProControl screen until the desired transmitter value is displayed.

SEQUESTERING AGENT (record while air stripper is running)

Parameter	Status	Notes
Is pump operating? (Y/N)	N	
Is low flow alarm present? (Y/N)	N	
Is pump in external mode? (Y/N)	N	
If in external mode, record one set of mA	4 (mA)	(display screen should automatically be switching back and
and stroke speed values	NA (spm)	forth between mA and stroke speed)
Stroke length	NA	(record from local stroke length knob on pump)
Sequestering agent drum level [LI-200]		
Sequestering agent didni lever [Li-200]	Full	
Quantity of additional full drums	1	

Inspect sequestering agent components for signs of leaking or wear (tubing [suction, injection, bleed return], injection check valve fitting, spill pallet, etc.)

MONTHLY OM&M TASKS

Task	Notes
Monthly liquid effluent sample collected? (Y/N)	Υ
pH of effluent sample	8.10 / Temp: 9.3 °C
Model of pH meter	Hanna 991001
Calibration notes / method used	Cal 7.00 & 4.00: OK

Monthly OM&M Checklist, Groundwater Collection and Treatment System, Solvent Dock Area, Former Lockheed Martin French Road Facility, Utica, New York

 Date:
 3/22/2011

 Time:
 0915

 Technician:
 D. Zuck/D. Nodine

MONTHLY OM&M TASKS (continued)

Task	Notes
Liquid flow sensors cleaned? (Y/N)	Υ
Monthly manhole inspections conducted? (Y/N)	Υ
Leaking/dripping of water observed from double- walled HDPE discharge pipe located inside manhole? (Y/N)	No
Do level floats appear to be in good condition and hanging freely? (Y/N)	Yes
Observe groundwater inside each manhole and note odor and appearance	MH-1, MH-3: None/Clear water MH-2: Shows sheans & Oil Blebs on water surface
Is confined space entry signage present at each manhole? (Y/N)	Yes, Should be replaced @ MH-1 None, @ MH-23
With pump(s) running, visually inspect discharge piping, pipe fittings, and pressure relief valve for leaks	Working on MH-1 & MH-2 Off on MH-2&3
With pump(s) running, listen for any unusual sounds	None
Inspect condition of collection line gate valve protection flush-mount covers for each manhole	OK
With system running, visually inspect all piping within the treatment system for leaks, signs of distress, or any other notable observations	None
Treatment system valves exercised? (Y/N) (should be conducted with system in-between batch cycles)	Yes
List any notable observations	Well Oil Check: MW-4: Clean / MW-3: Clean / MW-2: Clean / MW-13BR: Clean / MW-5: Clean

HEALTH AND SAFETY

Item	Status
Is fire extinguisher charged, unobstructed, and possessing an inspection tag? (Y/N)	Υ
Is eyewash/shower station operational and unobstructed? (Y/N)	Υ
Is interior emergency lighting operational? (Y/N)	Υ
Is first aid kit present and in good condition? (Y/N)	Υ
Is lockout/tagout equipment available? (Y/N)	Υ
Have electrical GFIs been tested and reset? (Y/N)	Υ
Do all electrical panels have 36" of open floor space in front of them? (Y/N)	Υ
Are both the OM&M Manual and HASP onsite? (Y/N) (note dates for each)	HASP 11/08 OM&M 12/10
Is emergency spill kit available? (Y/N)	Υ
Is H&S signage including emergency contact list, eye protection hearing protection, and automatic equipment present? (Y/N)	
Is current SPDES permit onsite? (Y/N) (note date)	Y 11/10

Monthly OM&M Log Sheet, Groundwater Collection and Treatment System, Solvent Dock Area, Former Lockheed Martin French Road Facility, Utica, New York
 Date:
 4/5/2011

 Time:
 9:15

 Technician:
 DZ/DN

SYSTEM STATUS

System operation	nal? (PLC scre	een indicating system in "AUTO" or "MANUAL")	AUTO
System currently	cycling?	Yes	
Alarms? (list)	None		

AIR STRIPPER PARAMETERS (record while air stripper is running)

Parameter	Value	Units
Air stripper sump pressure [PI-106]	29	(in. W.C.)
Air stripper sump water elevation (record from site gauge)	17.75	(inches)
Blower intake line vacuum [PI-100]	0.5	(in. W.C.)
Main damper position (record distance from center of wingnut to outside of blower housing)	2	(inches)
Interior dilution damper position (0° is shut, 90° is open)	10	(°)

Is white "POWER ON" light on air stripper control panel lit?

Is air stripper hand-off-auto switch [HS-100B] in "AUTO" position?

Note scaling inside liquid effluent pipe from access port

Note scaling observed inside air stripper via clear tray access door

Present

FLOWMETER / PUMP PARAMETERS

Are white power lights lit on MH-1, MH-2, and MH-3 control panels? (Y/N) yes, except MH-2

Are pump hand-off-auto switches [HS-101A, HS-101B, HS-102A, HS-102B, HS-103A, and HS-103B] in "auto" position? (Y/N) yes, except 102s

Dovometer	MH-1	MH-2	MH-3	Sump	Cumulative
Parameter	[FT-101]	[FT-102]	[FT-103]	[FT-104]	[FT-105]
Date/Time		4	4/5/2011 10:30		
Instantaneous Flowrate [gpm]	45.76	0	29.02	0	74.33
Permanent Flow (gallons)	11,452,117	1,955,047	78,749	1,513	1,012,904
Pump 1 Running (Y/N)?	N	N	Y	N	NA
Pump 2 Running (Y/N)?	Y	N	Y	NA	NA

⁻ Flowrate and Permanent Flow can be viewed locally from wall-mounted flow transmitters FT-101 through FT-105 using up/down arrows.

VAPOR PHASE PARAMETERS (record while air stripper is running)

Is duct heater "HEAT ON/OFF" light lit? (Y/N)	Υ	(located on duct heater control panel door)
Is duct heater "HI TEMP" alarm light on? (Y/N)	N	(located on duct heater control panel door)

Monthly OM&M Checklist, Groundwater Collection and Treatment System, Solvent Dock Area, Former Lockheed Martin French Road Facility, Utica, New York

Date:	4/5/2011
Time:	13:00
Technician:	DZ/DN

VAPOR PHASE PARAMETERS (continued)

Parameter	PID Tag	Value	Units	Notes
Pre-Duct Heater Temperature	TI-300	70	(°F)	
Pre-Carbon Temperature	TI-400	103	(°F)	
Duct Heater Temperature Setpoint	_	91	(°F)	(located in green on duct heat control panel)
Duct Heater Temperature Transmitter	-	90	(°F)	(located in red on duct heat control panel)
Pre-Carbon Pressure	PI-401	10	(in. W.C.)	
Mid-Carbon Pressure	PI-402	4.5	(in. W.C.)	
Effluent Pressure	PI-403	0.5	(in. W.C.)	

TRANSMITTER READINGS (record from ProControl)

Parameter	PID Tag	Value	Units	Notes
Air Stripper Sump Pressure	PT-106	26.7	(in. W.C.)	
Vapor Flowrate	FT-106	632 - 694	(cfm)	
Pre-Carbon Temperature	TT-400	99.5	(°F)	
Pre-Carbon Pressure	PT-400	2.7	(in. W.C.)	
Building Temperature	TT-100	65.3	(°F)	

⁻ Press the "I/O" up/down arrows on the ProControl screen until the desired transmitter value is displayed.

SEQUESTERING AGENT (record while air stripper is running)

Parameter	Status	Notes
Is pump operating? (Y/N)	N	
Is low flow alarm present? (Y/N)	N	
Is pump in external mode? (Y/N)	N	
If in external mode, record one set of mA	- (mA)	(display screen should automatically be switching back and
and stroke speed values	- (spm)	forth between mA and stroke speed)
Stroke length	ı	(record from local stroke length knob on pump)
Sequestering agent drum level [LI-200]		
Ocquestering agent druin level [Li-200]	FULL	
Quantity of additional full drums	ONE	

Inspect sequestering agent components for OK signs of leaking or wear (tubing [suction, injection, bleed return], injection check valve fitting, spill pallet, etc.)

MONTHLY OM&M TASKS

Task	Notes
Monthly liquid effluent sample collected? (Y/N)	yes, @ 12:56
pH of effluent sample	8.05
Model of pH meter	Hanna 991001
Calibration notes / method used	2-point span calibration at pH 4 and pH 7; okay.

Monthly OM&M Checklist, Groundwater Collection and Treatment System, Solvent Dock Area, Former Lockheed Martin French Road Facility, Utica, New York

Date:	4/5/2011
Time:	12:07
Technician:	DN

MONTHLY OM&M TASKS (continued)

Task	Notes
Liquid flow sensors cleaned? (Y/N)	yes
Monthly manhole inspections conducted? (Y/N)	yes
Leaking/dripping of water observed from double- walled HDPE discharge pipe located inside manhole? (Y/N)	no
Do level floats appear to be in good condition and hanging freely? (Y/N)	yes, hanging freely
Observe groundwater inside each manhole and note odor and appearance	MH-1: moderately clear, no odor. MH-2: murky, solids floating on top, no odor. MH-3: No odor, turbid.
Is confined space entry signage present at each manhole? (Y/N)	Yes, except MH-3.
With pump(s) running, visually inspect discharge piping, pipe fittings, and pressure relief valve for leaks	all appear good
With pump(s) running, listen for any unusual sounds	all sound fine; MH-2 offline.
Inspect condition of collection line gate valve protection flush-mount covers for each manhole	all appear good
With system running, visually inspect all piping within the treatment system for leaks, signs of distress, or any other notable observations	Okay.
Treatment system valves exercised? (Y/N) (should be conducted with system in-between batch cycles)	Yes.
List any notable observations	
Are both building heaters working properly? (Y/N) (adjust respective wall-mounted thermostats for both heaters	
and confirm proper heater response)	Y

HEALTH AND SAFETY

Item	Status
Is fire extinguisher charged, unobstructed, and possessing an inspection tag? (Y/N)	
Is eyewash/shower station operational and unobstructed? (Y/N)	Υ
Is interior emergency lighting operational? (Y/N)	Υ
Is first aid kit present and in good condition? (Y/N)	Υ
Is lockout/tagout equipment available? (Y/N)	Υ
Have electrical GFIs been tested and reset? (Y/N)	Υ
Do all electrical panels have 36" of open floor space in front of them? (Y/N)	Υ
Are both the OM&M Manual and HASP onsite? (Y/N) (note dates for each)	HASP - 3/11, OM&M 3/11
Is emergency spill kit available? (Y/N)	Υ
Is H&S signage including emergency contact list, eye protection hearing protection, and automatic equipment present? (Y/N)	
Is current SPDES permit onsite? (Y/N) (note date)	Y 11/2010

Quarterly OM&M Log Sheet, Groundwater Collection and Treatment System, Solvent Dock Area, Former Lockheed Martin French Road Facility, Utica, New York Date: 4/5/11 - 4/6/11
Time: Technician: DZ/DN/CD/TC

QUARTERLY OM&M TASKS

Quarterly liquid influent samples	s collected for MH-1, MH-2,	and MH-3? (Y/N) MH-1 and MH-3
-----------------------------------	-----------------------------	-------------------------------

MH-1 influent pH 7.16
MH-2 influent pH NA
MH-3 influent pH 7.39

Quarterly vapor samples collected pre-carbon, mid-carbon, and effluent? (Y/N) Y

Quarterly catch basin samples collected for CB-1, CB-2, and CB-3? (Y/N) Y

Quarterly groundwater elevation levels collected? (Y/N) Y

Blower bearings greased? (Y/N) N

Indicate air velocity measurement collected from 8" effluent pipe ($\emph{plug located on wall}$

side of vertical portion of effluent pipe) 2030

2030 (fpm) / 644 (cfm)

QUARTERLY CRITICAL DEVICE / ALARM TESTING

Liquid flow transmitters FT-101, FT-102, FT-103, and FT-105 calibrated? (Y/N) (should

be done after flow sensor cleaning) Y, except FT-102.

If yes, document testing and note any changes in sensor calibration factors

If yes, document testing and Performed pumpdown tests consistent with GCTS SOP-09. Changed both K-factors for

MH-1 from 66.739 to 81.4. Did not change any other K-factors.

Manhole floats tested? (Y/N)

Test the following critical alarms (note that system must be in AUTO to observe proper alarm response):

Alarm	Corresponding Transmitter / Sensor	PLC Alarm Output Name	Alarm Type	Caused PLC Alarm Output State Change? (Y/N)	Caused System Shutdown? (Y/N)	Passed (Y/N)
	PT-106	PA_106	fatal	Y	Υ	Υ
Air Stripper Sump High Pressure						
	PT-106	PA_106	fatal	Υ	Υ	Υ
Air Stripper Sump Low Pressure	Notes: Adjusted low setpoint to 29. Observed 45 second delay. Lit up "BLOWER PRESSURE HH or LL ALARM" light on blower panel. Shutdown.					
	LSH-100	LA_100	fatal	NA	NA	NA
Air Stripper High Liquid Level	Notes: Verified that input works. Confirmed alarm within last couple of weeks, although it is currently disabled while new tethered level float is ordered.					
	LSL-100	LA_100	fatal	Υ	Υ	Υ
Air Stripper Low Liquid Level Notes: Closed BFV-401. LSL-100 state changes when level drops below 13.25" on site gauge. Observed 25 second delay and shutdown. Lit up "AERATOR SUMP LEVEL ALARM" light on blower panel.						
	FT-106	FA_106	fatal	Υ	Υ	Υ
High Air Flowrate	Notes: Opened b	olower damper. Ol	oserved 5 sec	cond delay and sh	utdown.	

Date:	4/6/11 - 4/7/11
Time:	-
Technician:	CD/TC

Alarm	Corresponding Transmitter / Sensor	PLC Alarm Output Name	Alarm Type	Caused PLC Alarm Output State Change? (Y/N)	Caused System Shutdown? (Y/N)	Passed (Y/N)
	FT-106	FA_106	fatal	Υ	Υ	Υ
Low Air Flowrate	Notes: Closed Bl	FV-401. Observed	d 5 second de	elay and system s	nutdown.	
	TT-400	TAH400	fatal	Υ	Y	Υ
Pre-Carbon High Temperature	Notes: Changed	high setpoint to 8	0. Observed	1 minute delay an	d shutdown.	
	TT-400	TAL400	fatal	Υ	Y	Υ
Pre-Carbon Low Temperature	Notes: Changed	low setpoint to 95	5. Observed 3	minute delay and	I shutdown.	
	PT-400	PA_400	fatal	Υ	Y	Υ
Pre-Carbon High Pressure	Notes: Adjusted delay to 10 secor	• .	Observed 45	second delay an	d shutdown. Adju	sted time
	PT-400	PA_400	fatal	Υ	Υ	Υ
Pre-Carbon Low Pressure	Notes: Adjusted delay to 10 secor		. Observed 4	5 second delay ar	nd shutdown. Adju	sted time
	FT-101	FA_101	warning	Υ	N	Υ
MH-1 Low Flowrate		ning automatically ond delay. No shu		A switches for both	n MH-1 pumps to	off position.
	FT-102	FA_102	warning	Υ	N	Υ
MH-2 Low Flowrate		ning automatically ond delay. No shu		A switches for both	n MH-2 pumps to	off position.
	FT-103	FA_103	warning	Υ	N	Υ
MH-3 Low Flowrate		ning automatically ond delay. No shu		A switches for bot	n MH-3 pumps to	off position.
	FT-105	FA_105	warning	Υ	N	Υ
Aggregate Low Flowrate	Notes: Tested wi	hile testing others	. Observed 15	5 second delay ar	nd no shutdown.	
	WFS-106	WFS106	fatal	Υ	N	Υ
Building Wet Floor Sensor Alarm	Notes: Filled sun	np with sink water	. Observed sh	nutdown.		

Date:	4/6/11 - 4/7/11
Time:	-
Technician:	CD/TC

Alarm	Corresponding Transmitter / Sensor	PLC Alarm Output Name	Alarm Type	Caused PLC Alarm Output State Change? (Y/N)	Caused System Shutdown? (Y/N)	Passed (Y/N)
	LSH-106	LSH106	warning	Υ	N	Υ
Building Sump High Level	Notes: Filled sun	np with water. Ob	served non-sh	nutdown alarm.		
	FT-200	FA_200	warning	Υ	N	Υ
Sequestering Agent Low Flow	Notes: Removed pump, 2 minute of				error message loo	cally at
	LSH-200	LSH200	warning	Υ	N	Υ
Spill Pallet Wet Sensor Alarm	Notes: Dipped in	water. Observed	10 second de	elay. Non shutdow	/n.	
	LSHH-103	LA_MH1	warning	Υ	N	Υ
MH-1 High Level	Notes: Tipped flo	at. Observed ala	rm occur, no s	shutdown.		
	LSLL-103	LA_MH1	warning	Υ	N	Υ
MH-1 Low Level	Turned off pump	and triggered ala			running automati	cally.
	LSHH-104	LA_MH2	warning	Υ	N	Υ
MH-2 High Level	Notes: Float tippe shutdown.	ed naturally as MI	H-2 has been	offline for over 1	week. Alarm prese	ent, no
	LSLL-104	LA_MH2	warning	NA	NA	NA
MH-2 Low Level	Notes: Should for out/tagged out.	rce off both MH-2	pumps. Did r	not test because N	ЛН-2 pumps curre	ntly locked
	LSHH-105	LA_MH3	warning	Υ	N	Υ
MH-3 High Level	Notes: Tipped flo	oat. Observed ala		shutdown.		
	LSLL-105	LA_MH3	warning	Υ	N	Υ
MH-3 Low Level	Notes: Should for Turned off pump				running automati	cally.

Date:	4/6/11 - 4/7/11
Time:	-
Technician:	CD/TC

Alarm	Corresponding Transmitter / Sensor	PLC Alarm Output Name	Alarm Type	Caused PLC Alarm Output State Change? (Y/N)	Caused System Shutdown? (Y/N)	Passed (Y/N)
Building High	TT-100	TA_100	shutdown	Y	Y	n.
Temperature	Notes: Changed	high setpoint to 5	5. Observed	2 minute delay an	d system shutdow	
Building Low	TT-100	TA_100	shutdown	Y	Y	Y
Temperature	Notes: Held ice/s	snow up to probe.	Observed 2 r	minute delay and	shutdown.	

Water Level Record

Page 1 of 2
Staff: D. Zuck

 Project
 LMC Utica, NY
 Date
 4/1/2011

Well (s)	Depth to Water (ft) (TIC)/MP	Time	Remarks
MW - 1	6.84	1358	
MW - 2	4.05	1402	
MW - 3	9.30	1357	
MW - 4	6.12	1355.00	
MW - 5	2.48	1405	
MW - 6	5.92	1458	Bailer in well.
MW - 7	7.65	1626	
MW - 9	1.99	1407	
MW - 10	3.53	1403	Replace and tap larger bolts/holes
MW - 11	7.89	1353	Replace bolts, J-Plug.
MW - 12	10.90	1643.00	
MW - 13S	5.40	1400.00	
MW - 13T	Unable to locate		
MW - 13BR	9.55	1359.00	
MW - 14S	10.22	1636	
MW - 14BR	28.02	1638	
MW - 15S	8.24	1630	
MW - 15BR	33.48	1632	Under pressure *caution when opening, replace all bolts.
PZ - 2	6.23	1415	
PZ - 4	Under water		
PZ - 5	8.99	1546	Conmed
PZ - 6	9.08	1552	Conmed
PZ - 7	8.80	1554	Conmed
PZ - 8	9.00	1556	Conmed
PZ - 9	7.88	1537	Conmed
PZ - 10	8.75	1540	Conmed
PZ - 11R	7.22	1743	No ID
PZ - 13R	6.46	1620	No ID
PZ - 17	5.68	1616	
PZ - 18	6.53	1618	
PZ - 19	6.65	1624	
PZ - 20	6.38	1622	
PZ - 21	Dry	1755	IHOP
PZ - 22	7.30	1420	
PZ - 23	6.09	1423	

ARCADIS

Water Level Record

Page 2 of 2 Staff: D. Zuck

Project LMC Utica, NY

Date 4/1/2011

Well (s)	Depth to Water (ft) (TIC)/MP	Time	Remarks
PZ - 24	10.52	1424	
PZ - 25	5.96	1428	
PZ - 26	8.72	1434	
PZ - 27	10.08	1444	
PZ - 28	3.53	1418	
PZ - 29	2.36	1422	
PZ - 30	3.56	1427	
PZ - 31	2.10	1430	
PZ - 32	0.53	1431	
PZ - 33	Dry	1442	
PZ - 34	2.34	1411	
PZ - 35	0.98	1409	Cut down IC
PZ - 36	1.00	1408	Cut down IC
PZ - 39	1.90	1406	
PZ - 40	4.49	1451	(In building)
PZ - 41	4.10	1448	(In building
PZ - 42	0.30	1446	(In building)
A1-PZ1	1.16	1416.00	
A1-PZ2	2.33	1417	
A2-PZ1	3.49	1436.00	
A2-PZ2	6.41	1437	
A2-PZ3	2.98	1441	
A2-PZ4	0.81	1437	
A2-PZ5	7.68	1440	
A2-PZ6	0.54	1435	
A2-PZ7	5.74	1439	
A2-PZ8	0.80	1438	

MOUTHLY OMEM FOR 2486t' Atommarca conserior and	hate: 5/12/11 Ime:
System operational? (PLC screen indicating system in "AUTO" or "MANUAL") System currently cycling? Alarms? (list) Multiple System in "AUTO" or "MANUAL") Alarms? (list)	ido
AIR STRIPPER PARAMETERS (record while air stripper is running)	
Carena et al.	(in, W.C.)
Air stripper sump pressure [PI-106] Z 0.5 (h)m 15* Air stripper sump water elevation (record from site gauge) Z 0.5 > 2	
/hm 15 th Air stripper sump water elevation (record from site gauge) 20.5→2 Blower intake line vacuum [PI-100] -1.5	(in. W.C.)
Main damper position (record distance from center of wingnut to outside of blower housing)	(inches)
Interior dilution damper position (6° is shut, 90° is open) 2/8	₩
Is white "POWER ON" light on air stripper control panel lit?	
Is air stripper hand-off-auto switch [HS-1008] in "AUTO" position?	········
Note scaling inside liquid effluent pipe from access port	
Note scaling observed inside air stripper via clear tray access door Slight	
FLOWMETER / PUMP PARAMETERS	
Are white power lights lit on MH-1, MH-2, and MH-3 control panels? (Y/N)	Y
Are pump hand-off-auto switches [HS-101A, HS-101B, HS-102A, HS-102B, HS-103A,	17
and HS-103B] in "auto" position? (Y/N)	<u> </u>
Date/Time 5/12/11 1445	0 71.72
Instantaneous Flowrate [gpm] 36.15 \$16.00 70.42 Permanent Flow (gallons) 11980051 #### (1)	1602 1970162
* Pump 1 Running (Y/N)? Y	NA NA
Pump 2 Running (Y/N)? N, But Works N, But wakes N, But wakes	NA NA
- Flowrete and Permanent Flow can be viewed locally from wall-mounted flow transmitters FT-1	01 through FT-105
using up/down arrows.	
VAPOR PHASE PARAMETERS (record while air stripper is running)	
Is duct heater "HEAT ON/OFF" light lit? (Y/N) // (located on duct heate	r control panel door)
Is duct heater "HI TEMP" alarm light on? (Y/N) // (located on duct heater	r control panel door)
,, ,, ,, ,	•
* Systan off Durry Wolfer, Put in Had to What Donal somple.	
(1) and the following the trought to college some some some	
(1) 2014063 (Z)438196 FT	- 101 : 35:368
(1) 2014063 (2)438196 FT — Blown wolodby: 3489 fpm x.19=(738.9) FT — Effect velocity: 2200 fpm x.33 (727.98) FT	-102: 17.46 JAN
- Effect velody: 2200 fm x.33 (727.98) FT	-105: 66.12

C:\Users\dzuck\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Outlook\KBUBT9QM\Appendix D - GCTS OMM Log Sheets.xlsx

Date:	5	15/11	
Time:			
Technician:	D	3	

MONTHLY OM&M TASKS (continued)

MONTHLY OM&M TASKS (continued)	
Liquid flow sensors cleaned? (Y/N) (only as needed)	Inspeld, No Scolar evolt.
Monthly manhole inspections conducted? (Y/N)	Y
Leaking/dripping of water observed from double- walled HDPE discharge pipe located inside manhole? (Y/N)	None 141,2+3,2800
Do level floats appear to be in good condition and hanging freely? (Y/N)	Yes Floods up: MH1:2, MH2:1, MH=3:2
Observe groundwater inside each manhole and note odor and appearance	MH-1+3: Class, Shear/horse on MH-2.
Is confined space entry signage present at each manhole? (Y/N)	Yes, Adda Neron all 3 MH's
With pump(s) running, visually inspect discharge piping, pipe fittings, and pressure relief valve for leaks	Now in MH 2+3, QMH-1 + thended fifth
With pump(s) running, listen for any unusual sounds	Noe
Inspect condition of collection line gate valve protection flush-mount covers for each manhole	OK
With system running, visually inspect all piping within the treatment system for leaks, signs of distress, or any other notable observations	Noe
Freatment system valves exercised? (Y/N) (should be conducted with system in-between batch cycles)	Yes functionism
List any notable observations	None
Are both building heaters working properly? (Y/N) (adjust respective wall-mounted thermostats for both heaters and confirm proper heater response)	Too worm to adiate Normally factory when Monnelly actually, torod circuit bracker of for Sanger.

HEALTH AND SAFETY

Is fire extinguisher charged, unobstructed, and possessing an inspection	. ,
tag? (\(\tilde{V}_N\)	I Y
Is eyewash/shower station operational and unobstructed? 🚫N)	Y
Is interior emergency lighting operational? (Y/N)	Y
Is first aid kit present and in good condition? 💋N)	Y
Is lockout/tagout equipment available? (YN)	Y
Have electrical GFIs been tested and reset? 🕅N)	Y
Do all electrical panels have 36" of open floor space in front of them?	Y
Are both the OM&M Manual and HASP onsite? 5/N) (note dates for each)	0M+M: 3/2011 HASP: 3/2011
is emergency spill kit available? (Y/N)	Y
Is H&S signage including emergency contact list, eye protection hearing protection, and automatic equipment present? $O(N)$	Y
Is current SPDES permit onsite? 🕅N) (note date)	11/19/2010

Monthly OM&M Log Sheet, Groundwater Collection and	
Treatment System, Solvent Dock Area, Former Lockheed Ma	artin
French Road Facility, Utica, New York	

Date:	5	112	11	
Time:				
Technician:	Q	-2-		

VAPOR PHASE PARAMETERS (continued)

	Pleide			
Pre-Duct Heater Temperature	TI-300	60	(°F)	(No 709)
Pre-Carbon Temperature	T1-400	68	(°F)	
Duct Heater Temperature Setpoint	-	85	(°F)	(located in green on duct heat control panel)
Duct Heater Temperature Transmitter	•	59	(°F)	(located in red on duct heat control panel)
Pre-Carbon Pressure	Pl-401	6	(in. W.C.)	
Mid-Carbon Pressure	PI-402	3	(in. W.C.)	
Effluent Pressure	PI-403	0.5	(in. W.C.)	

TRANSMITTER READINGS (record from ProControl)

	PB Table		i Dura	
Air Stripper Sump Pressure	PT-106	78.30	(in, W.C.)	
Vapor Flowrate	FT-106	5357571	(cfm)	
Pre-Carbon Temperature	TT-400	52.5	(°F)	
Pre-Carbon Pressure	PT-400	6.8	(in. W.C.)	
Building Temperature	TT-100	73.9	(°F)	

⁻ Press the "I/O" up/down arrows on the ProControl screen until the desired transmitter value is displayed.

SEQUESTERING AGENT (record while air stripper is running)

Paration of the control of the contr	or Status 1	
Is pump operating? (Y/N)	Y	
Is low flow alarm present? (Y/N)	N	
ls pump in external mode? (Y/N)	Y	
If in external mode, record one set of mA	(mA)	(display screen should automatically be switching back and
and stroke speed values	5. 6 (spm)	The first term of the first te
Stroke length	100	(record from local stroke length knob on pump)
Sequestering agent drum level [LI-200]	1/37/12	-2/2 3
Quantity of additional full drums	1	
Inspect sequestering agent components signs of leaking or wear (tubing [suct injection, bleed return), injection check va fitting, spill pallet, e	ion,alve	, No Issum to pote.

MONTHLY OM&M TASKS

Monthly liquid effluent sample collected? (MN)	
pH of effluent sample	6.01
Model of pH meter	Hanna HI 99/001
Calibration notes / method used	

Monthly OM&M Log Sheet, Groundwater Collection and Treatment System, Solvent Dock Area, Former Lockheed Martin Technician: French Road Facility, Utica, New York SYSTEM STATUS System operational? (PLC screen indicating system in "AUTO" or "MANUAL") System currently cycling? Alarms? (list) AIR STRIPPER PARAMETERS (record while air stripper is running) Units Value Parameter (in. W.C.) Air stripper sump pressure [PI-106] (inches) Air stripper sump water elevation (record from site gauge) (in. W.C.) Blower intake line vacuum [PI-100] Main damper position (record distance from center of wingnut to outside of (inches) blower housing) Interior dilution damper position (0% shut, 90° is open) Is white "POWER ON" light on air stripper control panel lit? Is air stripper hand-off-auto switch [HS-100B] in "AUTO" position? Note scaling inside liquid effluent pipe from access port TraceNote scaling observed inside air stripper via clear tray access door Trace scaling FLOWMETER / PUMP PARAMETERS Are white power lights lit on MH-1, MH-2, and MH-3 control panels? (Y/N) Are pump hand-off-auto switches [HS-101A, HS-101B, HS-102A, HS-102B, HS-103A, and HS-103B] in "auto" position? (Y/N) MILE MILE WILE Sump Cumulative

Parameter	(FT-403)	(FT-102)	[F1-103]	[FT-104]	/FT-105)*
Date/Time	15/15	1515	1515	1515	(515
Instantaneous Flowrate [gpm]	35.65	16.86	1913	0	61.28
"Total" Flow (resettable, gal)	228,836	.28,250	120,251	0	363,107
"Perm" Flow (gai)	12,208,887	2,043,313	558 447	1,602	2,283,269
Pump 1 Running (Y/N)?	· 'Y'	N/ Mounty	N/ Mayel: 4)	' /V	/ NA
Pump 2 Running (Y/N)?	N	Ň		NA	NA
Pump 2 Running (Y/N)?		v from well mounted	flow transmitters F		

Flowrate and Permanent Flow can be viewed locally from wall-mounted flow transmitters f using up/down arrows.

VAPOR PHASE PARAMETERS	(record white ai	ir stripper is	running
------------------------	------------------	----------------	---------

Is duct heater "HEAT ON/OFF" light lit? (Y/N)	Υ	(located on duct heater control panel door,
Is duct heater "HI TEMP" alarm light on? (Y/N)	N	(located on duct heater control panel door,

Date:	6/2/11
Time:	1300
Technician: _	DE/IG
_	

VAPOR PHASE PARAMETERS (continued)

Parameter	PID Tag	Value	tiniti	Notes
Pre-Duct Heater Temperature	TI-300	***	(°F)	±60°F
Pre-Carbon Temperature	TI-400	750	(°F)	
Duct Heater Temperature Setpoint	.	85	(°F)	(located in green on duct heat control panel)
Duct Heater Temperature Transmitter		85	(°F)	(located in red on duct heat control panel)
Pre-Carbon Pressure	PI-401	11"	(in. W.C.)	
Mid-Carbon Pressure	PI-402	5	(in, W.C.)	
Effluent Pressure	PI-403	0	(in. W.C.)	

TRANSMITTER READINGS (record from ProControl)

Parameter	PiO Tag	Value	Unite	Notes
Air Stripper Sump Pressure	PT~106	30,46	(in. W.C.)	
Vapor Flowrate	FT-106	617.8	(cfm)	
Pre-Carbon Temperature	TT-400	77:1	(°F)	
Pre-Carbon Pressure	PT-400	8,4	(in. W.C.)	
Building Temperature	TT-100	68.6	(°F)	

⁻ Press the "I/O" up/down arrows on the ProControl screen until the desired transmitter value is displayed.

SEQUESTERING AGENT (record while air stripper is running)

Parameter	Status	Notes
Is pump operating? (Y/N)	Yes	
is low flow alarm present? (Y/N)	NO	
is pump in external mode? (Y/N)	ye5	
f in external mode, record one set of mA and stroke speed values	4.3 (mA) (spm)	(display screen should automatically be switching back and forth between mA and stroke speed)
Stroke length	100	(record from local stroke length knob on pump)
Sequestering agent drum level [LI-200]	149.	leval indicator not working properly
Quantity of additional full drums	1	

Inspect sequestering agent components for	
signs of leaking or wear (tubing [suction,	
injection, bleed return], injection check valve	600d
fitting, spill pallet, etc.)	

MONTHLY OM&M TASKS

Tasic	Notes
Monthly liquid effluent sample collected? (Y/N)	Y=5
pH of effluent sample	6.79
Model of pH meter	H1 991001
Calibration notes / method used	4.00 /7.00 OK

* To onsite 6/7/11, advited sight gauge flout operational range.

SECRETARY V ORSESS TA CMC (continued)

MONTHLY OM&M TASKS (continued)			598255785866657
Pask		Notes	
Liquid flow sensors cleaned? (Y/N) (only as needed)	Yoll	Clearly Could Rope	ne FS-102
Monthly manhole inspections conducted? (Y/N)	Yes		
Leaking/dripping of water observed from double- walled HDPE discharge pipe located inside manhole? (Y/N)	MH-Z None	MH-1 None	MH-3
Do level floats appear to be in good condition and hanging freely? (Y/N)	44-5 A4-5	MH-1 Yes	AN H-3 Yeo
Observe groundwater inside each manhole and note odor and appearance	MH-2 N2222625	MH-1 NOODOF Surface Clear	MH-3 No odor Clear
Is confined space entry signage present at each manhole? (Y/N)	MH-Z Yes	MH1 Yes	MH-3 Yes
With pump(s) running, visually inspect discharge piping, pipe fittings, and pressure relief valve for leaks	MH-Z Good	MH-1 Good	MH-3 Good
With pump(s) running, listen for any unusual sounds	MI-Z None	MH-1 NONE	MH-3 None
Inspect condition of collection line gate valve protection flush-mount covers for each manhole	MH-Z Good	MH-1 600d	MH-3 Good
With system running, visually inspect all piping within the treatment system for leaks, signs of distress, or any other notable observations	Y, Non	<u>e</u>	
Treatment system valves exercised? (Y/N) (should be conducted with system in-between batch cycles)	Yas		·`.
List any notable observation	S BV -104	Does Not Close Completes	7
Are both building heaters working properly? (Y/N) (adjust respective wall-mounted thermostats for both heaters and confirm proper heater response)	OFF for	Does Not Close Coupletus r 54 mmer 5 Cesson.	

HEALTH AND SAFETY	
ltem	Status
Is fire extinguisher charged, unobstructed, and possessing an inspection tag? (Y/N)	Yes
Is eyewash/shower station operational and unobstructed? (Y/N)	Ve5
Is interior emergency lighting operational? (Y/N)	Yes
Is first aid kit present and in good condition? (Y/N)	Ye5
ls lockout/tagout equipment available? (Y/N)	Yes
Have electrical GFIs been tested and reset? (Y/N)	Ye5
Do all electrical panels have 36" of open floor space in front of them? (Y/N)	Y 4 5
Are both the OM&M Manual and HASP onsite? (Y/N) (note dates for each)	Ye5
ls emergency spill kit available? (Y/N)	Yes
Is H&S signage including emergency contact list, eye protection hearing protection, and automatic equipment present? (Y/N)	
. Is current SPDES permit onsite? (Y/N) (note date)	yes 11/16/10

Monthly OM&M Log Sheet, Groundwater Collection and Treatment System, Solvent Dock Area, Former Lockheed Martin Technician: French Road Facility, Utica, New York SYSTEM STATUS System operational? (PLC screen indicating system in "AUTO" or "MANUAL") System currently cycling? Alarms? (list) AIR STRIPPER PARAMETERS (record while air stripper is running) Units **Value** Parameter (in. W.C.) Air stripper sump pressure [PI-106] 25.2 Air stripper sump water elevation (record from site gauge) 18 (inches) (in. W.C.) Blower intake line vacuum [PI-100] Main damper position (record distance from center of wingnut to outside of (inches) blower housing) O. 1" (closed) Interior dilution damper position (0° is shut, 90° is open)

> Is white "POWER ON" light on air stripper control panel lit? Yes Is air stripper hand-off-auto switch [HS-100B] in "AUTO" position? Yes Note scaling inside liquid effluent pipe from access port Light Note scaling observed inside air stripper via clear tray access door Medium

FLOWMETER / PUMP PARAMETERS

Are white power lights lit on MH-1, MH-2, and MH-3 control panels? (Y/N) Are pump hand-off-auto switches [HS-101A, HS-101B, HS-102A, HS-102B, HS-103A, and HS-103B] in "auto" position? (Y/N) ye5

Parameter	MH-1 [FT-101]	MH-2 [FT-102]	MH-3 [FT-103]	Sump [FT-104]	Cumulative [FT-105]
Date/Time	7/7/11 0900				>
Instantaneous Flowrate [gpm]	36.5	16-17.5	17-18	NA	68-71.5
* "Total" Flow (resettable, gal)	238194	37698	142986	l	392191
	12447081	2080011	701433	1603	2675461
Pump 1 Running (Y/N)?	Y	Y	Y	N	NA
Pump 2 Running (Y/N)?	N	N	N	NA	NA

⁻ Flowrate and Permanent Flow can be viewed locally from wall-mounted flow transmitters FT-101 through FT-105 using up/down arrows.

* Collected when system was off. VAPOR PHASE PARAMETERS (record while air stripper is running)

Is duct heater "HEAT ON/OFF" light lit? (Y/N) (located on duct heater control panel door) Is duct heater "HI TEMP" alarm light on? (Y/N) (located on duct heater control panel door)

EMON: 57026 KWH

Date:	7/7/11	
Time:	0900	
Technician:	1. Zuch	Tosas C.

VAPOR PHASE PARAMETERS (continued)

Parameter	PID Tag	Value	Units	Notes
Pre-Duct Heater Temperature	TI-300	<i>80</i>	(°F)	
Pre-Carbon Temperature	TI-400	CO CO	(°F)	
Duct Heater Temperature Setpoint	-	85	(°F)	(located in green on duct heat control panel)
Duct Heater Temperature Transmitter	-	85	(°F)	(located in red on duct heat control panel)
Pre-Carbon Pressure	PI-401	10	(in. W.C.)	
Mid-Carbon Pressure	PI-402	5	(in. W.C.)	
Effluent Pressure	PI-403	0	(in. W.C.)	

TRANSMITTER READINGS (record from ProControl)

Parameter	PID Tag	Value	Units Notes
Air Stripper Sump Pressure	PT-106	27.50	(in. W.C.)
Vapor Flowrate	FT-106	635.5	(cfm)
Pre-Carbon Temperature	TT-400	81.4	(°F)
Pre-Carbon Pressure	PT-400	४ ∙5	(in. W.C.)
Building Temperature	TT-100	76.7	(°F)

⁻ Press the "I/O" up/down arrows on the ProControl screen until the desired transmitter value is displayed.

SEQUESTERING AGENT (record while air stripper is running)

Parameter (V) Sta	itus	Notes
Is pump operating?	X N		Pump not operational (EZArer)
Is low flow alarm present? (Y)N)	У		
Is pump in external mode? (Y/N)	Ÿ		
If in external mode, record one set of mA	NA	(mA)	(display screen should automatically be switching back and
and stroke speed values	NIA	(spm)	forth between mA and stroke speed)
Stroke length	100		
Sequestering agent drum level [LI-200]	.35	129a1.	
Quantity of additional full drums			

Inspect sequestering agent components for				
signs of leaking or wear (tubing [suction, _	Inspected	110 leaks.	No Buildup	
injection, bleed return], injection check valve				
fitting, spill pallet, etc.)				

MONTHLY OM&M TASKS

Task	Notes
Monthly liquid effluent sample collected? (Y/N)	Yes
pH of effluent sample	£.10
Model of pH meter	Hanna HI 991001
Calibration notes / method used	

Date:	7/7/1/	/
Time:	0400	
Technician:	D. Zuh	Dasm G.

MONTHLY OM&M TASKS (continued)

MONTHLY OM&M TASKS (continued)	
Task	Notes
Liquid flow sensors cleaned? (Y/N) (only as needed)	Yes
Monthly manhole inspections conducted? (Y/N)	
Leaking/dripping of water observed from double- walled HDPE discharge pipe located inside manhole? (Y/N)	MHI: NOVE MHZ: NOVE MH3: NOVE
Do level floats appear to be in good condition and hanging freely? (Y/N)	yes
Observe groundwater inside each manhole and note odor and appearance	MH-3-clear no odors. MH-2: three as safa; MH-1: Clear
Is confined space entry signage present at each manhole? (Y/N)	483
With pump(s) running, visually inspect discharge piping, pipe fittings, and pressure relief valve for leaks	MH-1 trove leaf Q pressue Relana
With pump(s) running, listen for any unusual sounds	Ane
Inspect condition of collection line gate valve protection flush-mount covers for each manhole	bood
With system running, visually inspect all piping within the treatment system for leaks, signs of distress, or any other notable observations	No leaks/Issues
Treatment system valves exercised? (Y/N) (should be conducted with system in-between batch cycles)	Y
List any notable observations	NO issues
Are both building heaters working properly? (Y/N) (adjust respective wall-mounted thermostats for both heaters and confirm proper heater response)	Brankos turned off for souson

HEALTH AND SAFETY

Item	Status
Is fire extinguisher charged, unobstructed, and possessing an inspection tag? (VN)	Y
Is eyewash/shower station operational and unobstructed? (VN)	Y
Is interior emergency lighting operational? (()N)	Y
Is first aid kit present and in good condition? (Y)N)	Y
Is lockout/tagout equipment available? (VN)	Y
Have electrical GFIs been tested and reset? (YN)	Y
Do all electrical panels have 36" of open floor space in front of them?	Y
Are both the OM&M Manual and HASP onsite? (YN) (note dates for each)	(Y)3 (11/11 (Bota)
ls emergency spill kit available? (Y)N)	Y
Is H&S signage including emergency contact list, eye protection hearing protection, and automatic equipment present?	Υ
Is current SPDES permit onsite?(Y/) (note date)	4/1/11

Quarterly OM&M Lo Treatment System, S French Road Facility QUARTERLY OM&N	Solvent Dock Are y, Utica, New Yo	a, Former Locki		Ted	Date: 7/7/n- Time: Chnician: CP	7/8/11	
Quarterly lie	quid influent samp MH-1 infl MH-2 infl	uent pH 6.5		and MH-3? (Y/N)	Yes		
	MH-3 infl or samples collect y catch basin sam Quarterl	uent pH 7.0 ted pre-carbon, m ples collected for y groundwater ele Bl	· CB-1, CB-2, evation levels ower bearing	and CB-3? (Y/N) collected? (Y/N) s greased? (Y/N)	Yes Yes	(fpm)	
QUARTERLY CRITIC		FT-102, FT-103,	and FT-105		73.4 Y	(cfm)	
If yes, document note any change calibration factor.	s in sensor	-103 -> Pimpdom	1 vol	me per FT-103= 2.0% = OKA	803 gallar	75"]	
FT-107 → Primpdorm te FT-101 → Primpdorm tes FT-105 → instrutameor	T: A volume [per 1	TW] = 651,2 ga	volume [per F llans [37"], L	T-102] = 497 gall volume [per FT-1	as - 0.8% + 0	73,7% OKAY	
Manhole floats tested	1? (Y/N) <u>Y</u> e	S					
Test the following crit	ical alarms (note th	hat system must be	in AUTO to ob	serve proper alarm	response):		
Alarm	Corresponding Transmitter / Sensor	PLC Alarm Output Name	Alarm Type	Caused PLC Alarm Output State Change? (Y/N)	Caused System Shutdown? (Y/N)	Passed (Y/N)	
Air Stripper Sump High Pressure	PT-106 PA_106 fatal Y Y Notes: Changed setpoint						
Air Stripper Sump Low Pressure	PT-106 PA_106 fatal 9 9 9 Notes: Changed setpoint						
Air Stripper High Liquid Level	LSH-100 Notes: Closed	LA_100	fatal Sensor	not installed	1.	7	

7/1/11
16:30
CD/DZ

Alarm	Alarm Corresponding Transmitter / Sensor				Caused System Shutdown? (Y/N)	Passed (Y/N)	
	LSL-100	LA_100	fatal	Y	Y	Y	
Air Stripper Low Liquid Level	Notes: Close	ed BFV-401					
	FT-106	FA_106	fatal	Y	Y	Y	
High Air Flowrate	Notes: Domper of	@ 2.15." [tick	mark on move	cable handle).	Changed high	setpent	
	FT-106	FA_106	fatal	Y	Y	Y	
Low Air Flowrate	Notes: Change	ed setpornt.					
	TT-400	TAH400	fatal	Y	Y	Y	
Pre-Carbon High Temperature	Notes: Cha	nged setpoint.		,	,		
	TT-400	TAL400	fatal	Y	Y	7	
Pre-Carbon Low Temperature	Notes: Changed	l setpoint.					
	PT-400	PA_400	fatal	Y	Y	Y	
Pre-Carbon High Pressure	Notes: Chang	ed setpoint.					
	PT-400	PA_400	fatal	Y	4	4	
Pre-Carbon Low Pressure	Notes: Chang	ed setpoint					
	FT-101	FA_101	warning	Y	N	Y	
MH-1 Low Flowrate	Notes: Turned	both MH-1 HO	A's to off w,	/ HI-I float	cp.		
	FT-102	FA_102	warning	Y	N	y	
MH-2 Low Flowrate	Notes: Turned 1	ooth MH-2 H	PA's to A	- w/ High-1 -	float op.		
	FT-103	FA_103	warning	Y	N	y	
MH-3 Low Flowrate	Notes: Turned	both MH-3 H	-O-A's to off	- w/ High-l fl	out p.		

Date:	7/1/11
Time:	16:45
Technician:	16:45 CD/DZ

Alarm	Corresponding Transmitter / Sensor	Transmitter / Output Name		Caused PLC Alarm Output State Change? (Y/N)	Caused System Shutdown? (Y/N)	Passed (Y/N)		
	FT-105	FA_105	warning	Y	N	Y		
Aggregate Low Flowrate	Notes: Alarm			in FA-103 te				
	WFS-106	WFS106	fatal	Y	Y	Y		
Building Wet Floor Sensor Alarm	Notes: The Ov	erflowed so	mp. Good	<i>(</i> .				
	LSH-106	LSH106	warning	Y	N	Y		
Building Sump High Level	Notes: Filled	w/ pump	unplugged					
	FT-200	FA_200	warning	Y	N	4		
Sequestering Agent Low Flow	Notes:							
	LSH-200	LSH200	warning	Y	N	Y		
Spill Pallet Wet Sensor Alarm	Notes: Dipped in water.							
	LSHH-103	LA_MH1	warning	Y	N	Y		
MH-1 High Level	Notes: Manual	y tested.						
	LSLL-103	LA_MH1	warning	Y	N	7		
MH-1 Low Level	Notes: Should for	rce off both MH- y tested.	1 pumps 🗸					
	LSHH-104	LA_MH2	warning	Y	N	Y		
MH-2 High Level	Notes: Manual	ly tested.						
	LSLL-104	LA_MH2	warning	Y	N	Y		
MH-2 Low Level	Notes: Should force off both MH-2 pumps Manually tested.							
	LSHH-105	LA_MH3	warning	Y	N	Y		
MH-3 High Level	Notes: Mamually	raised.				,		

7/7/11
16:50
CD/07

Alarm	Corresponding Transmitter / Sensor	PLC Alarm Output Name	Alarm Type	Caused PLC Alarm Output State Change? (Y/N)	Caused System Shutdown? (Y/N)	Passed (Y/N)
	LSLL-105	LA_MH3	warning	Y	N	Y
MH-3 Low Level Notes: Should force off both MH-3 pumps Manually tested.						
Building High Temperature	Notes: Changed setpoint.					
Building Low Temperature	Notes: Held i	TA_100 ce up to prob	shutdown	9	У	Y

ARCADIS

Water Level Record

Page 1 of 2
Staff: D. Zuck/J. Gutkowski

Project

LMC Utica, NY

Date 7/5/2011

Well (s)	Depth to Water (ft) (TIC)/MP	Time	Remarks
MW - 1	8.57	1040	
MW - 2	5.89	1030	Replace 1 Bolt (Netap)
MW - 3	10.98	1523	
MW - 4	11.24	1016	·
MW - 5	2.63	1052	
MW - 6	6.23	1159	Bailer in well. Replace o: Lock
MW - 7	7.84	1510	
MW - 9	3.01	1110	
MW - 10	5.16	1056	Replace and tap larger bolts/holes
MW - 11	8.09	1010	Replace bolts, J-Plug.
MW - 12	12.08	1444	
MW - 13S	6.99-Dry	1037	
MW - 13T			
MW - 13BR	10.67	1024	
MW - 14S	12.57	1448	
MW - 14BR	25.46	1452	
MW - 15S	8.38	1458	
MW - 15BR	31.94	1456	Under pressure *caution when opening, replace all bolts.
PZ - 2	3.01	1145	
PZ - 4	1.42	1114	·
PZ - 5	8.94	1558	Conmed
PZ - 6	9.32	1601	Conmed
PZ - 7	4.00	1604	Conmed
PZ - 8	4.51	1556	Conmed
PZ - 9	8.02	1546	Conmed
PZ - 10	9.08	1550	Conmed
PZ - 11R	4.64	14/4	No ID
PZ - 13R	8.17	1428	No ID
PZ - 17	6.17	1413	Full of Bestorido
PZ - 18	7.99	1424	
PZ - 19	7.36	1437	
PZ - 20	7.04	1434	
PZ - 21	Dry	1504	IHOP
PZ - 22	7.94	1206	
PZ - 23	6.82	1708	

ARCADIS

Water Level Record

Page 2 of 2
Staff: D. Zuck/J. Gutkowski

Project

LMC Utica, NY

Date 7/5/2011

Well (s)	Depth to Water (ft) (TIC)/MP	Time	Remarks
PZ - 24	10.92	1212	
PZ - 25	6.67	1214	
PZ - 26	9.21	1226	
PZ - 27	1/.13	1229	
PZ - 28	3.93	1204	Missig Bilt
PZ - 29	2.43	1210	
PZ - 30	4.10	1216	
PZ - 31	2.33	1220	
PZ - 32	1.84	1224	
PZ - 33	6.82	1518	
PZ - 34	3.11	1137	
PZ - 35	2.09	1130	Cut down IC Add - Plus
PZ - 36	1,55	1124	Cut down IC Needs TV
PZ - 39	3.53	1103	N-teds IN
PZ - 40	4,92	1245	(In building)
PZ - 41	4.51	1242	(In building (Missing Bolt)
PZ - 42	0.62	1234	(In building)
A1-PZ1	1.53	1150:	
A1-PZ2	2.30	11.56	
A2-PZ1	1883 4.35	1250	
A2-PZ2	6.63	1253	
A2-PZ3	3.06	1256	
A2-PZ4	1.86	1251	
A2-PZ5	7.89	1255	
A2-PZ6	3.25	1247	
A2-PZ7	6.27	1254	· .
A2-PZ8	5.72	1252	

Date:	<u>8/11/11 - </u>
Time:	0800
Technician:)ason Gutkowsk

•	\ / /\	Marie Land	 т л	TUS	•
•	~ ~	1 1-4-11	 /1	111	•

System operational? (P.	C screen indicating system in "AUTO" or "MANUAL")	Auto
System currently cycling	? <u>NO</u>	
Alarms? (list) Non		

AIR STRIPPER PARAMETERS (record while air stripper is running)

Parameter	Value	Units
Air stripper sump pressure [PI-106]	26.5	(in. W.C.)
Air stripper sump water elevation (record from site gauge)	17.5	(inches)
Blower intake line vacuum [PI-100]	2.0	(in. W.C.)
Main damper position (record distance from center of wingnut to outside of blower housing)	2.1	(inches)
Interior dilution damper position (0° is shut, 90° is open)	0.5	(°)

Is white "POWER ON" light on air stripper control panel lit?

Is air stripper hand-off-auto switch [HS-100B] in "AUTO" position?

Note scaling inside liquid effluent pipe from access port

Note scaling observed inside air stripper via clear tray access door

FLOWMETER / PUMP PARAMETERS

Are white power lights lit on MH-1, MH-2, and MH-3 control panels? (Y/N) yes

Are pump hand-off-auto switches [HS-101A, HS-101B, HS-102A, HS-103B, HS-103A, and HS-103B] in "auto" position? (Y/N)

Parameter	MH-1 [FT-101]	MH-2 [FT-102]	MH-3 [FT-103]	Sump [FT-104]	Cumulative [FT-105]	
Date/Time	8/11/11	Company Compan				
Instantaneous Flowrate [gpm]	36.6	16.5	19.57	NIA	72.1	
"Total" Flow (resettable, gal)	169153	38461	121023	37	2967415	15
"Perm" Flow (gal)	12616234	2118472	822459	1639	291945	12
Pump 1 Running (Y/N)?	У	У	У	N	NA	
Pump 2 Running (Y/N)?	N	N	N	NA	NA	

⁻ Flowrate and Permanent Flow can be viewed locally from wall-mounted flow transmitters FT-101 through FT-105 using up/down arrows.

VAPOR PHASE PARAMETERS (record while air stripper is running)

Is duct heater "HEAT ON/OFF" light lit? (Y/N) _	yes	(located on duct heater control panel door)
Is duct heater "HI TEMP" alarm light on? (Y/N)	NO	(located on duct heater control panel door)

Date:	8/11/11 -
Time:	0900
	Jason Gutkowsk

VAPOR PHASE PARAMETERS (continued)

Parameter	PID Tag	Value	Units	Notes
Pre-Duct Heater Temperature	TI-300	72	(°F)	
Pre-Carbon Temperature	TI-400	80	(°F)	
Duct Heater Temperature Setpoint	-	85	(°F)	(located in green on duct heat control panel)
Duct Heater Temperature Transmitter		85	(°F)	(located in red on duct heat control panel)
Pre-Carbon Pressure	PI-401	11	(in. W.C.)	^
Mid-Carbon Pressure	PI-402	21	(in. W.C.)	
Effluent Pressure	PI-403	0	(in. W.C.)	

TRANSMITTER READINGS (record from ProControl)

Parameter	PID Tag	Value	Units	Notes
Air Stripper Sump Pressure	PT-106	24.27	(in. W.C.)	
Vapor Flowrate	FT-106	651.2	(cfm)	
Pre-Carbon Temperature	TT-400	87.8	(°F)	
Pre-Carbon Pressure	PT-400	8.1	(in. W.C.)	
Building Temperature	TT-100	73.6	(°F)	

⁻ Press the "I/O" up/down arrows on the ProControl screen until the desired transmitter value is displayed.

SEQUESTERING AGENT (record while air stripper is running)

Parameter	Status	Notes Notes
Is pump operating? (Y/N)	yes	
Is low flow alarm present? (Y/N)	No	
Is pump in external mode? (Y/N)	Ye5	
If in external mode, record one set of mA and stroke speed values,	8 8	(display screen should automatically be switching back and forth between mA and stroke speed)
Stroke length	100	(record from local stroke length knob on pump)
Sequestering agent drum level [LI-200]	Jaal.	
Quantity of additional full drums	Ţ,	

Inspect sequestering agent components for	
signs of leaking or wear (tubing [suction, Inspected, NO leaks, No Build wo	
injection, bleed return], injection check valve checked ¿ cleaned @ Point of entry	
fitting, spill pallet, etc.)	

MONTHLY OM&M TASKS

Task	Notes
Monthly liquid effluent sample collected? (Y/N)	Ves
pH of effluent sample	8.2
Model of pH meter	Hanna HI 991001
Calibration notes / method used	

Date:	8/11/11
Time:	1240
Technician:	Jason Gutkowski

MONTHLY OM&M TASKS (continued)

MONTHET OMAIN TASKS (continued)	
Task	Notes
Liquid flow sensors cleaned? (Y/N) (only as needed)	NO
Monthly manhole inspections conducted? (Y/N)	yes
Leaking/dripping of water observed from double-	MHI;
walled HDPE discharge pipe located inside	MHZ: youe
manhole? (Y/N)	MH3! None
Do level floats appear to be in good condition and hanging freely? (Y/N)	Ves
Observe groundwater inside each manhole and note odor and appearance	MH1: MHZ: Clear No Odor
Is confined space entry signage present at each manhole? (Y/N)	Yes.
With pump(s) running, visually inspect discharge piping, pipe fittings, and pressure relief valve for leaks	yes.
With pump(s) running, listen for any unusual sounds	Yes
Inspect condition of collection line gate valve protection flush-mount covers for each manhole	Yes
With system running, visually inspect all piping within the treatment system for leaks, signs of distress, or any other notable observations	yes
Treatment system valves exercised? (Y/N) (should be conducted with system in-between batch cycles)	yes .
List any notable observations	Nolssues
Are both building heaters working properly? (Y/N)	
(adjust respective wall-mounted thermostats for both heaters	
and confirm proper heater response)	Breakers turned off forseason

HEALTH AND SAFETY

IISALIII AND ONI ETI	
ltem	Status
Is fire extinguisher charged, unobstructed, and possessing an inspection	
tag? (Y/N)	1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Is eyewash/shower station operational and unobstructed? (Y/N)	ye5
Is interior emergency lighting operational? (Y/N)	Ves NW wall Mounted light D.
Is first aid kit present and in good condition? (Y/N)	Ves
Is lockout/tagout equipment available? (Y/N)	Yes
Have electrical GFIs been tested and reset? (Y/N)	
Do all electrical panels have 36" of open floor space in front of them?	7
(Y/N)	Yes 3/11/11 (Both)
Are both the OM&M Manual and HASP onsite? (Y/N) (note dates for each)	yes
ls emergency spill kit available? (Y/N)	Ves
Is H&S signage including emergency contact list, eye protection hearing	<i></i>
protection, and automatic equipment present? (Y/N)	V25
Is current SPDES permit onsite? (Y/N) (note date)	ves Ulilli

Date:	9/8/11
Time:	0945
Technician:	<u>Jason Gutteausk</u>

SYSTEM	STATUS
--------	--------

System operational? (F	PLC screen indicating system in "AUTO" or "MANUAL")	Auto
System currently cyclin	g? <u>ves</u>	
Alarms? (list) _No.	ne	
		· · · · · · · · · · · · · · · · · · ·

AIR STRIPPER PARAMETERS (record while air stripper is running)

Parameter	Value	Units
Air stripper sump pressure [PI-106]	28.5	(in. W.C.)
Air stripper sump water elevation (record from site gauge)	18.5	(inches)
Blower intake line vacuum [PI-100]	2.0	(in. W.C.)
Main damper position (record distance from center of wingnut to outside of blower housing)	2.1	(inches)
Interior dilution damper position (0° is shut, 90° is open)	0.1	(°)

Is white "POWER ON" light on air stripper control panel lit?	Ves
Is air stripper hand-off-auto switch [HS-100B] in "AUTO" position?	Yes
Note scaling inside liquid effluent pipe from access port	liah+
Note scaling observed inside air stripper via clear tray access door	light

FLOWMETER / PUMP PARAMETERS

Are white power lights lit on MH-1, MH-2, and MH-3 control panels? (Y/N) <u>yes</u>

Are pump hand-off-auto switches [HS-101A, HS-101B, HS-102A, HS-102B, HS-103A, and HS-103B] in "auto" position? (Y/N) <u>yes</u>

Parameter	MH-1 [FT-101]	MH-2 [FT-102]	MH-3 [FT-103]	Sump [FT-104]	Cumulative [FT-105]
Date/Time	9/8/11 0950				
Instantaneous Flowrate [gpm]	42.80	N/A	27.21	NIA	62.3+067.38
"Total" Flow (resettable, gal)	429578	115304	303734	37	763 854
"Perm" Flow (gal)	12876683	2195315	1005199	1639	343 9305
Pump 1 Running (Y/N)?	У	N	Υ	N	NA
Pump 2 Running (Y/N)?	ý	N	У	NA	NA

⁻ Flowrate and Permanent Flow can be viewed locally from wall-mounted flow transmitters FT-101 through FT-105 using up/down arrows.

VAPOR PHASE PARAMETERS (record while air stripper is running)

Is duct heater "HEAT ON/OFF" light lit? (Y/N)	Ves	(located on duct heater control panel door,
Is duct heater "HI TEMP" alarm light on? (Y/N)	NO	(located on duct heater control panel door,

Date:	9/8/11-
Time:	1015
Technician:	Jason Buthowski

VAPOR PHASE PARAMETERS (continued)

Parameter	PID Tag	Value	Units	Notes
Pre-Duct Heater Temperature	TI-300	69	(°F)	
Pre-Carbon Temperature	TI- 40 0	79	(°F)	
Duct Heater Temperature Setpoint		85	(°F)	(located in green on duct heat control panel)
Duct Heater Temperature Transmitter	-	85	(°F)	(located in red on duct heat control panel)
Pre-Carbon Pressure	PI-401	9	(in. W.C.)	
Mid-Carbon Pressure	PI-402	3	(in. W.C.)	
Effluent Pressure	PI-403	O	(in. W.C.)	

TRANSMITTER READINGS (record from ProControl)

Parameter	PID Tag	Value	Units	Notes
Air Stripper Sump Pressure	PT-106	30.40	(in. W.C.)	
Vapor Flowrate	FT-106	609.3	(cfm)	·
Pre-Carbon Temperature	TT-400	76.6	(°F)	
Pre-Carbon Pressure	PT-400	7.5	(in. W.C.)	
Building Temperature	TT-100	72.6	(°F)	

⁻ Press the "I/O" up/down arrows on the ProControl screen until the desired transmitter value is displayed.

SEQUESTERING AGENT (record while air stripper is running)

Parameter	Status	Notes		
ls pump operating? (Y/N)	Yes	Rumpwas off, Turnedon, Pump 22 2 Towelas		
Is low flow alarm present? (Y/N)	yes	(EZ) /ow sequestering Agent, changedown Day		
ls pump in external mode? (Y/N)	Ye5			
If in external mode, record one set of mA	5.6 (mA)	(display screen should automatically be switching back and		
and stroke speed values	/O (spm)	forth between mA and stroke speed)		
Stroke length	100	(record from local stroke length knob on pump)		
Sequestering agent drum level [Ll-200]	New Full			
Sequestering agent druin lever [E1-200]	309ali			
Quantity of additional full drums		on oder		

 Inspect sequestering agent components for 	
signs of leaking or wear (tubing [suction,	No leaks or Buildup
fitting, spill pallet, etc.)	

MONTHLY OM&M TASKS

Task	Notes
Monthly liquid effluent sample collected? (Y/N)	Yes
pH of effluent sample	7.9
Model of pH meter	Hanna HI 991001
Calibration notes / method used	

Date:	<u> 9/8/i1 - </u>
Time:	1100
Technician:	Jason Gotkowski

MONTHLY OM&M TASKS (continued)

Task	Notes
Liquid flow sensors cleaned? (Y/N) (only as needed)	NO
Monthly manhole inspections conducted? (Y/N)	Ye5
Leaking/dripping of water observed from double- walled HDPE discharge pipe located inside manhole? (Y/N)	MHI: None MHZ: None MHZ: Nane
Do level floats appear to be in good condition and hanging freely? (Y/N)	yes
Observe groundwater inside each manhole and note odor and appearance	MHI Clear No odor
Is confined space entry signage present at each manhole? (Y/N)	yes
With pump(s) running, visually inspect discharge piping, pipe fittings, and pressure relief valve for leaks	Yes
With pump(s) running, listen for any unusual sounds	Yes No unusual sounds
Inspect condition of collection line gate valve protection flush-mount covers for each manhole	yes
With system running, visually inspect all piping within the treatment system for leaks, signs of distress, or any other notable observations	Yes
Treatment system valves exercised? (Y/N) (should be conducted with system in-between batch cycles)	Yes
List any notable observations	no issues
Are both building heaters working properly? (Y/N) (adjust respective wall-mounted thermostats for both heaters and confirm proper heater response)	Breakers turned off forscason

HEALTH AND SAFETY

HEALTH AND SAFETT	
Item construction of the second of the secon	Status
Is fire extinguisher charged, unobstructed, and possessing an inspection tag? (Y/N)	1 15 2 m m
Is eyewash/shower station operational and unobstructed? (Y/N)	ye5
Is interior emergency lighting operational? (Y/N)	Y43
Is first aid kit present and in good condition? (Y/N)	Yes
Is lockout/tagout equipment available? (Y/N)	Yes
Have electrical GFIs been tested and reset? (Y/N)	Yes
Do all electrical panels have 36" of open floor space in front of them? (Y/N)	** ***********************************
Are both the OM&M Manual and HASP onsite? (Y/N) (note dates for each)	Yes 3/11/11 for Both
ls emergency spill kit available? (Y/N)	Yes
Is H&S signage including emergency contact list, eye protection hearing protection, and automatic equipment present? (Y/N)	
Is current SPDES permit onsite? (Y/N) (note date)	Yes 4/1/11

CI	107	CER	1 07	FAT	rus
3 1	0		13	A	US

System operational? (PLC screen	een indicating system in "AUTO" or "MANUAL")	Auto
System currently cycling?	Yes	-
Alarms? (list)		

AIR STRIPPER PARAMETERS (record while air stripper is running)

Parameter	Value	Units
Air stripper sump pressure [PI-106]	27	(in. W.C.)
Air stripper sump water elevation (record from site gauge)	181/2	(inches)
Blower intake line vacuum [PI-100]	2	(in. W.C.)
Main damper position (record distance from center of wingnut to outside of blower housing)	2 3/8	(inches)
Interior dilution damper position (0° is shut, 90° is open)	0	(°)

Is white "POWER ON" light on air stripper control panel lit?

Is air stripper hand-off-auto switch [HS-100B] in "AUTO" position?

Note scaling inside liquid effluent pipe from access port

Note scaling observed inside air stripper via clear tray access door

Efour tray 5 Cleaned

FLOWMETER / PUMP PARAMETERS

Are white power lights lit on MH-1, MH-2, and MH-3 control panels? (Y/N)

Yes all Three

Are pump hand-off-auto switches [HS-101A, HS-101B, HS-102A, HS-102B, HS-103A, and HS-103B] in "auto" position? (Y/N)

Yes all Three

Parameter	MH-1	MH-2	MH-3	Sump	Cumulative
Farameter	[FT-101]		[FT-103]	[FT-104]	[FT-105]
Date/Time	10/11/11 1355	-			
Instantaneous Flowrate [gpm]	0	19	20	0	34-38
"Total" Flow (resettable, gal)	811288	173219	511522	37	34-38137
"Perm" Flow (gal)	13258369	2253237	B491212948	1639	4046130
Pump 1 Running (Y/N)?	MYESNO	Ye5	Yes	NO	NA
Pump 2 Running (Y/N)?	No	NO	NO	NA	NA

⁻ Flowrate and Permanent Flow can be viewed locally from wall-mounted flow transmitters FT-101 through FT-105 using up/down arrows.

VAPOR PHASE PARAMETERS (record while air stripper is running)

Is duct heater "HEAT ON/OFF" light lit? (Y/N) _	Yes	(located on duct heater control panel door,
Is duct heater "HI TEMP" alarm light on? (Y/N)	NO	(located on duct heater control panel door,

Date:	10/6/11	
Time:	9:10	
Technician:	CD	

VAPOR PHASE PARAMETERS (continued)

Parameter	PID Tag	Value	Units	Notes
Pre-Duct Heater Temperature	TI-300	64	(°F)	
Pre-Carbon Temperature	TI-400	79	(°F)	
Duct Heater Temperature Setpoint	-	85	(°F)	(located in green on duct heat control panel)
Duct Heater Temperature Transmitter	-	85	(°F)	(located in red on duct heat control panel)
Pre-Carbon Pressure	PI-401	10.8	(in. W.C.)	
Mid-Carbon Pressure	PI-402	4,3	(in. W.C.)	
Effluent Pressure	PI-403	<1	(in. W.C.)	

TRANSMITTER READINGS (record from ProControl)

Parameter	PID Tag	Value	Units	Notes
Air Stripper Sump Pressure	PT-106	31.14	(in. W.C.)	
Vapor Flowrate	FT-106	670-760	(cfm)	
Pre-Carbon Temperature	TT-400	81,8	(°F)	
Pre-Carbon Pressure	PT-400	9,4	(in. W.C.)	***************************************
Building Temperature	TT-100	67.5	(°F)	

⁻ Press the "I/O" up/down arrows on the ProControl screen until the desired transmitter value is displayed.

SEQUESTERING AGENT (record while air stripper is running) Recorded 10/1/11, following

Parameter	Status	Notes
ls pump operating? (Y/N)	Yes	
ls low flow alarm present? (Y/N)	No	
Is pump in external mode? (Y/N)	Yes	
If in external mode, record one set of mA	ЧА (m	(display screen should automatically be switching back and
and stroke speed values	<i>5</i> (sp	. 1
Stroke length	100	(record from local stroke length knob on pump)
Sequestering agent drum level [LI-200]	30 gal	Drum#3
Quantity of additional full drums	zero	Drum # 2 on pallet, but chemical bad; 26 gallons les

Inspect sequestering agent components for On 10/6/11 low chemical flow alarm was present. Alarm signs of leaking or wear (tubing [suction, caused due to partial solidification of chemical in bittem injection, bleed return], injection check value of drum (#2), suction tubing, pump fittings, and part of discharge fitting, spill pallet, etc.) tubing. Most was soup-like consistency, except in the intake screen monthly oman tasks fittings, replaced suction tubing, installed new 4 function value and began use of drum #3.

Task	Notes
Monthly liquid effluent sample collected? (Y/N)	Ves 10/11/11
pH of effluent sample	7.80
Model of pH meter	Hanna 1 7 491301
Calibration notes / method used	7.00. 4.00, 10.00 OK

Date:	10/11/11	
Time:	9:00	
Technician:	CP/J6	_

MONTHLY OM&M TASKS (continued)

Task	Notes
Liquid flow sensors cleaned? (Y/N) (only as needed)	N
Monthly manhole inspections conducted? (Y/N)	Y
Leaking/dripping of water observed from double- walled HDPE discharge pipe located inside manhole? (Y/N)	i N 2 N 3 N
Do level floats appear to be in good condition and hanging freely? (Y/N)	1 Y 3 Y 2 Y
Observe groundwater inside each manhole and note odor and appearance	1 clear/no odor 3 clear/no odor 2 organic sheen, slight odor
Is confined space entry signage present at each manhole? (Y/N)	Yes
With pump(s) running, visually inspect discharge piping, pipe fittings, and pressure relief valve for leaks	1 OK 2 OK 3 OK
With pump(s) running, listen for any unusual sounds	1 with Piping shakes upon started 3 0K
Inspect condition of collection line gate valve protection flush-mount covers for each manhole	1 0K 2 0K 3 0K
With system running, visually inspect all piping within the treatment system for leaks, signs of distress, or any other notable observations	No leaks observed
Treatment system valves exercised? (Y/N) (should be conducted with system in-between batch cycles)	Yes
List any notable observations	
Are both building heaters working properly? (Y/N) (adjust respective wall-mounted thermostats for both heaters and confirm proper heater response)	Yes

HEALTH AND SAFETY

ltem	Status
Is fire extinguisher charged, unobstructed, and possessing an inspection tag? (Y/N)	106
Is eyewash/shower station operational and unobstructed? (Y/N)	Yes
Is interior emergency lighting operational? (Y/N)	Yes
Is first aid kit present and in good condition? (Y/N)	Yes
Is lockout/tagout equipment available? (Y/N)	Yes
Have electrical GFIs been tested and reset? (Y/N)	Yes
Do all electrical panels have 36" of open floor space in front of them? (Y/N)	Yes
Are both the OM&M Manual and HASP onsite? (Y/N) (note dates for each)	Yes 3/11/11 (BOTH)
Is emergency spill kit available? (Y/N)	Yes
Is H&S signage including emergency contact list, eye protection hearing protection, and automatic equipment present? (Y/N)	
Is current SPDES permit onsite? (Y/N) (note date)	Yes 4/1/11

QUARTERLY CRITICAL DEVICE / ALARM TESTING Liquid flow transmitters FT-101, FT-102, FT-103, and FT-105 calibrated? (Y/N) If yes, document testing and note any changes in sensor calibration factors Calibration factors NH-1[FT-101], DTW; = 119 \(\frac{7}{3} \) \[\text{TTW} = 150 \(\frac{7}{4} \) \[\text{ADTW} = 37 \\ \frac{7}{4} \\ \text{ADTW} = 37 \\ ADT	Outside the OMORAL			m 5000000		10/	7/11
French Road Facility, Utica, New York QUARTERLY OM&M TASKS Quarterly liquid influent samples collected for MH-1, MH-2, and MH-3? (Y/N) MH-1 influent pH MH-2 influent pH MH-2 influent pH Quarterly vapor samples collected pre-carbon, mid-carbon, and effluent? (Y/N) Quarterly catch basin samples collected for CB-1, CB-2, and CB-3? (Y/N) Quarterly groundwater elevation levels collected? (Y/N) Quarterly groundwater elevation levels collected? (Y/N) Quarterly groundwater elevation levels collected? (Y/N) Possible of vertical portion of effluent pipe, 1 fpm = 0.317 cfm) Side of vertical portion of effluent pipe, 1 fpm = 0.317 cfm) If yes, document testing and note any changes in sensor cleaning of the pipe, 1 fpm = 0.317 cfm) If yes, document testing and note any changes in sensor cleaning of the pipe, 1 fpm = 0.317 cfm) If yes, document testing and note any changes in sensor cleaning of the pipe, 1 fpm = 0.317 cfm) If yes, document testing and note any changes in sensor cleaning of the pipe, 1 fpm = 0.317 cfm) If yes, document testing and note any changes in sensor cleaning of the pipe, 1 fpm = 0.317 cfm) If yes, document testing and note any changes in sensor cleaning of the pipe, 1 fpm = 0.317 cfm) If yes, document testing and note any changes in sensor cleaning of the pipe, 1 fpm = 0.317 cfm) If yes, document testing and note any changes in sensor cleaning of the pipe, 1 fpm = 0.317 cfm) If yes, document testing and note any changes in sensor cleaning of the pipe, 1 fpm = 0.317 cfm 2.5 6 5 6 (fpm) If yes, document testing and note any changes in sensor cleaning of the pipe, 1 fpm = 0.317 cfm 2.5 6 6 (fpm) If yes, document testing and note any changes in sensor cleaning of the pipe							5
QUARTERLY OM&M TASKS Quarterly liquid influent samples collected for MH-1, MH-2, and MH-3? (Y/N) MH-1 influent pH MH-2 influent pH MH-2 influent pH MH-2 influent pH MH-2 influent pH Quarterly vapor samples collected for examples, and effluent? (Y/N) Quarterly vapor samples collected for CB-1, CB-2, and CB-3? (Y/N) Quarterly catch basin samples collected for CB-1, CB-2, and CB-3? (Y/N) Quarterly groundwater elevation levels collected? (Y/N) Blower bearings greased? (Y/N) Side of vertical portion of effluent pipe (plug located on wall 2.2.50 (fpm) Blower bearings greased? (Y/N) Side of vertical portion of effluent pipe, 1 fpm = 0.317 cfm) GUARTERLY CRITICAL DEVICE / ALARM TESTING Liquid flow transmitters FT-101, FT-102, FT-103, and FT-105 calibrated? (Y/N) (should be done after flow sensor cleaning) If yes, document testing and note any changes in sensor calibration factors Transmitter + transmi	French Road Facili	ty, Utica, New Yo	rk	mood martin	Teo		
MH-1 influent pH MH-2 influent pH 7.27 Quarterly vapor samples collected pre-carbon, mid-carbon, and effluent? (Y/N) Quarterly catch basin samples collected for CB-1, CB-2, and CB-3? (Y/N) Quarterly groundwater elevation levels collected? (Y/N) Blower bearings greased? (Y/N) Blower bearings greased? (Y/N) Indicate air velocity measurement collected from 8" effluent pipe (pipe located on wall side of vertical portion of effluent pipe, 1 fpm = 0.317 cfm) GUARTERLY CRITICAL DEVICE! ALARM TESTING Liquid flow transmitters FT-101, FT-102, FT-103, and FT-105 calibrated? (Y/N) If yes, document testing and note any changes in sensor calibration factors If yes, document testing and note any changes in sensor calibration factors MH-1(FT-101); TTW; = 114 s TTW; = 150 s ADTW = 150 s ADTW = 154 s ADTW							
Quarterly vapor samples collected pre-carbon, mid-carbon, and effluent? (Y/N) Quarterly catch basin samples collected for CB-1, CB-2, and CB-3? (Y/N) Quarterly groundwater elevation levels collected? (Y/N) Blower bearings greased? (Y/N) Blower bearings greased? (Y/N) Yes Indicate air velocity measurement collected from 8" effluent pipe (plug located on wall 2.2.50 (fpm) Side of vertical portion of effluent pipe, 1 fpm = 0.317 cfm) Side of vertical portion of effluent pipe, 1 fpm = 0.317 cfm) GUARTERLY CRITICAL DEVICE / ALARM TESTING Liquid flow transmitters FT-101, FT-102, FT-103, and FT-105 calibrated? (Y/N) (should be done after flow sensor cleaning) If yes, document testing and note any changes in sensor in manhole with collection lines closed. Heaved DTW note any changes in sensor in manhole with collection lines closed. Heaved DTW note any changes in sensor in manhole with collection lines closed. Heaved DTW note any change in sensor in manhole with collection lines closed. Heaved DTW note any change in sensor in manhole with collection lines closed. Heaved DTW note any change in sensor in manhole with collection lines closed. Heaved DTW note any change in sensor in manhole with collection lines closed. Heaved DTW note any change in sensor in manhole with collection lines closed. Heaved DTW note any change in sensor in manhole with collection lines closed. Heaved DTW note any change close	Quarterly I				and MH-3? (Y/N)	Yes 10/	<u>,, 1,,</u>
Quarterly catch basin samples collected for CB-1, CB-2, and CB-3? (Y/N) Quarterly groundwater elevation levels collected? (Y/N) Blower bearings greased? (Y/N) Yes Indicate air velocity measurement collected from 8" effluent pipe (plug located on wall side of vertical portion of effluent pipe, 1 fpm = 0.317 cfm) QUARTERLY CRITICAL DEVICE / ALARM TESTING Liquid flow transmitters FT-101, FT-102, FT-103, and FT-105 calibrated? (Y/N) (should be done after flow sensor cleaning) If yes, document testing and note any changes in sensor calibration factors If yes, document testing and note any changes in sensor calibration factors Transmitter + off lizers. NH-1 FT-101, DTW; = 170 ⁴ , DTW; = 150 ⁴ , DTW; = 150 ⁴ , DTW; = 190 ⁴ , ADTW; 21" = 54½ gal. AFT-101 = 53.3 gal. 1.0% difference = 0K! NH-1 FT-103; DTW; = 170 ⁴ , DTW; = 190 ⁴ , ADTW; 20" = 353 gal. AFT-103 = 317 gal. 1.0% difference = 0K! NH-1 FT-103; DTW; = 153 ² , DTW; = 180 ² , ADTW; 21" = 54½ gal. AFT-103 = 317 gal. 1.0% difference = 0K! NH-1 FT-103; DTW; = 153 ² , DTW; = 180 ² , ADTW; 21" = 54½ gal. AFT-103 = 317 gal. 1.0% difference = 0K! NH-1 FT-103; DTW; = 153 ² , DTW; = 180 ² , ADTW; 21" = 348 gal. AFT-103 = 317 gal. 1.0% difference = 0K! NH-1 FT-103; DTW; = 153 ² , DTW; = 180 ² , ADTW; 21" = 348 gal. AFT-103 = 317 gal. 1.0% difference = 0K! NH-1 FT-103; DTW; = 153 ² , DTW; = 180 ² , ADTW; 21" = 348 gal. AFT-103 = 317 gal. 1.0% difference = 0K! NH-1 FT-103; DTW; = 153 ² , DTW; = 180 ² , ADTW; 21" = 348 gal. AFT-103 = 317 gal. 1.0% difference = 0K! NH-1 FT-103; DTW; = 153 ² , DTW; = 180 ² , ADTW; 21" = 348 gal. AFT-103 = 317 gal. 1.0% difference = 0K! NH-1 FT-103; DTW; = 153 ² , DTW; = 180 ² , ADTW; 21" = 348 gal. AFT-103 = 317 gal. 1.0% difference = 0K! NH-1 FT-103; DTW; = 150 ² , DTW; = 180 ² , ADTW; 21" = 348 gal. AFT-103 = 317 gal. 1.0% difference = 0K! NH-1 FT-103; DTW; = 180 ² , ADTW; 21" = 348 gal. AFT-103 = 317 gal. 1.0% difference = 0K! NH-1 FT-103; DTW; = 180 ² , ADTW; 21" = 318 gal. AFT-103 = 318 gal. AFT-103 = 318 gal. AFT-1					•	D/ 40/46	2/4.4
Quarterly groundwater elevation levels collected? (Y/N) Blower bearings greased? (Y/N) Potential portion of effluent pipe (plug located on wall side of vertical portion of effluent pipe, 1 fpm = 0.317 cfm) GUARTERLY CRITICAL DEVICE / ALARM TESTING Liquid flow transmitters FT-101, FT-102, FT-103, and FT-105 calibrated? (Y/N) (should be done after flow sensor cleaning) If yes, document testing and note any changes in sensor calibration factors The manhole with replaced and compared and compared and volume with the Afron flow transmitter for the potential							2/11
Blower bearings greased? (Y/N) Yes 10 17 17 17 17 18 18 18 18	Quarter						uln
Indicate air velocity measurement collected from 8" effluent pipe (plug located on wall side of vertical portion of effluent pipe, 1 fpm = 0.317 cfm) QUARTERLY CRITICAL DEVICE / ALARM TESTING Liquid flow transmitters FT-101, FT-102, FT-103, and FT-105 calibrated? (Y/N) (should be done after flow sensor cleaning) If yes, document testing and note any changes in sensor calibration factors If yes, document testing and note any changes in sensor calibration factors If yes, document testing and note any changes in sensor calibration factors If yes, document testing and note any changes in sensor calibration factors If yes, document testing and note any changes in sensor calibration factors If yes, document testing and note any changes in sensor calibration factors If yes, document testing and note any changes in sensor calibration factors If yes, document testing and note any changes in sensor calibration factors If yes, document testing and note any changes in sensor calibration factors If yes, document testing and note any changes in sensor calibrated? (Y/N) If yes, document testing and note any changes in sensor calibrated? (Y/N) If yes, document testing and note any changes in sensor calibrated? (Y/N) If yes, document testing and note that system must be in action and testing and the system of the system of the system must be in action and the system? If yes, document testing and note that system must be in action and the system? If yes, document testing and the system must be in action and the system? If yes, document testing and the system must be in action and the system? If yes, document testing and the system must be in action and the system? If yes, document testing and the system factors and the system? If yes, document testing and the system factors and the system of the system		Quarter			, ,		***************************************
QUARTERLY CRITICAL DEVICE / ALARM TESTING Liquid flow transmitters FT-101, FT-102, FT-103, and FT-105 calibrated? (Y/N) (should be done after flow sensor cleaning) If yes, document testing and note any changes in sensor calibration factors If yes, document testing and note any changes in sensor calibration factors If yes, document testing and note any changes in sensor calibration factors If yes, document testing and note any changes in sensor calibration factors If yes, document testing and note any changes in sensor calibration factors If yes, document testing and note any changes in sensor calibration factors If yes, document testing and note any changes in sensor calibration factors If yes, document testing and note any changes in sensor calibration factors If yes, document testing and note any changes in sensor calibration factors If yes, document testing and note any changes in sensor calibration factors If yes, document testing and note any changes in sensor calibration factors If yes, document testing and note any changes in sensor calibrate and note any changes and any changes and note any changes and note any changes and any c	Indicate air valesitus						
Liquid flow transmitters FT-101, FT-102, FT-103, and FT-105 calibrated? (Y/N) (should be done after flow sensor cleaning) If yes, document testing and note any changes in sensor calibration factors The control of	moreate all velocity i						
(should be done after flow sensor cleaning) If yes, document testing and note any changes in sensor calibration factors Pumpdown tests in each manhole with collection lines closed. Pleasured DTW in manhole with the A from flow transmitter telalizers. NH-1[FT-101]; DTW; = 119 \frac{1}{3} \text{ DTW} = 150 \frac{2}{3} \text{ ADTW} = 31" = 54b \text{ gal. AFT-101} = 523 \text{ gal. AFT-102} = 30 \text{ difference} = 0K! HH-2 [FT-102]; DTW; = 170 \frac{1}{3} \text{ DTW} = 190 \frac{1}{3} \text{ ADTW} = 31" = 54b \text{ gal. AFT-102} = 33 \text{ gal. AFT-102} = 30 \text{ difference} = 0K! HH-3 [FT-102]; DTW; = 152 \frac{3}{3} \text{ DTW} = 190 \frac{1}{3} \text{ ADTW} = 31" = 54b \text{ gal. AFT-102} = 34 \text{ gal. AFT-102} = 37 \text{ difference} = 0K! HH-3 [FT-102]; DTW; = 152 \frac{3}{3} \text{ DTW} = 168 \frac{3}{3} \text{ ADTW} = 168 \frac{3}{3} \text{ ADTW} = 30 \text{ difference} = 0K! HH-3 [FT-102]; DTW; = 152 \frac{3}{3} \text{ DTW} = 190 \frac{1}{3} \text{ ADTW} = 168 \frac{3}{3} \text{ ADTW} = 168 \frac{3}{3} \text{ ADTW} = 30 \frac{3}{3} \text{ difference} = 0K! HH-3 [FT-102]; DTW; = 152 \frac{3}{3} \text{ DTW} = 190 \frac{1}{3} \text{ ADTW} = 168 \frac{3}{3} \text{ ADTW} = 30 \frac{3}{3} \text{ difference} = 0K! HH-3 [FT-102]; DTW; = 152 \frac{3}{3} \text{ DTW} = 168 \frac{3}{3} \text{ ADTW} = 30 \frac{3}{3} \text{ difference} = 0K! HH-3 [FT-103]; DTW; = 152 \frac{3}{3} \text{ DTW} = 168 \frac{3}{3} \text{ DTW} = 30 \frac{3}{3} \text{ difference} = 0K! HH-3 [FT-105]; DTW; = 152 \frac{3}{3} \text{ DTW} = 168 \frac{3}{3} \text{ DTW} = 30 \frac{3}{3} \text{ difference} = 0K! HH-3 [FT-105]; DTW; = 150 \frac{3}{3} \text{ DTW} = 100 \frac{3}{3} \text{ difference} = 0K! HH-3 [FT-105]; DTW; = 150 \frac{3}{3} \text{ DTW} = 100 \frac{3}{3} \text{ DTW} = 100 \frac{3}{3} \text{ difference} = 0K! HH-3 [FT-105]; DTW; = 150 \frac{3}{3} \text{ DTW} = 100 \frac{3}{3} \text{ DTW} = 100 \frac{3}{3} \text{ difference} = 0K! HH-3 [FT-105]; DTW; = 150 \frac{3}{3} \text{ DTW} = 100 \frac{3}{3} differen	QUARTERLY CRITI	CAL DEVICE / AL	ARM TESTING			-	
If yes, document testing and note any changes in sensor calibration factors Interpretation Interpretati	Liquid flow tra	nsmitters FT-101,			, , , ,	11.1	\
note any changes in sensor calibration factors I'm manhole w/ tape and compared \(\triangle \) volume with the \(\triangle \) from flow transmitter totalizers. INH-1[FT-101]; DTW; = 119\frac{7}{3} \) DTW; = 150\frac{7}{3} \(\triangle \) DTW; = 150\frac{7}	16		1				<i></i>
Calibration factors WH-1 [FT-101]; DTW; = 119 \(\frac{1}{3} \) DTW; = 150 \(\frac{2}{3} \) ADTW = 31" = 546 \(\frac{1}{3} \) gal. AFT-101 = 523 \(\frac{1}{3} \) gal. 3.0 \(\frac{1}{3} \) difference = 0K! MH-2 [FT-102]; DTW; = 170 \(\frac{1}{3} \) DTW; = 170 \(\frac{1}{3} \) DTW; = 188 \(\frac{1}			odown tests in a	each manhole			leasured DTW
MH-1[FT-101]; DTW; = 119 \$ DTW = 150 \$ DTW = 31" = 546 gal. AFT-101 = 523.gal. 4.270 difference = 0K! MH-2 [FT-102]; DTW; = 170-1" DTW = 190-1" ADTW = 30" = 352 gal. AFT-102 = 36341 gal. 3.070 difference = 0K! MH-3 [FT-103]; DTW; = 1522" DTW = 1685" A DTW = 16" = 282 gal. AFT-103 = 279 gal. 1.0% difference = 0K! MANHOLE floats tested? (YIN) Manhole floats test		in n			pared A volun	10 with the Δ	from flow
MH-2 [FT-103]; DTW = 170 ** DTW = 190 ** ADTW = 367 gal. AFT-102 = 3834 gal. 3.0 % difference = OK! MH-3 [FT-103]; DTW = 152 ** DTW = 168 ** ADTW = 16" = 283 gal. AFT-103 = 279 gal. 1.0% difference = OK! ET-105]; AFT-105 = 528 gal. during FT-101 test where ADTW = 31" = 546 gal. 3.3 % difference = OK! Manhole floats tested? (Y/N) M	_	7" Tran	ismitter totalize	ers,	-T 101 - 5:3 1	11 202 140	
MH-3[FT-103]; DTW; = 1523 DTW; = 1683 ADTW = 16" = 282 gal. AFT-103 = 279 gal. 1.0% difference = 0K! ET-105]; AFT-105 = 528 gal. during FT-101 test, where ADTW=31" = 546 gal. 3.3% difference = 0K! Manhole floats tested? (YIN) Yes, during critical alarms (note that system must be in AUTO to observe proper alarm response): Corresponding Transmitter / Sensor Corresponding Transmitter / Output Name Alarm Type Alarm Type Alarm Type Alarm Output State Change? (YIN) PT-106 PA_106 fatal P-106 PA_106 Fatal PT-106 PA_106 PA_106 Fatal PT-106 PA_106 PA	MIL-2 (ET-107), VIW;	= 1178, DIW = 1	50 g , ADTW=31":	= 546 gal. At	-1-101 = 523.gal	4.2% ditterent	e = ok!
Manhole floats tested? (Y/N) Yes, during critical alarms (note that system must be in AUTO to observe proper alarm response): Alarm Corresponding Transmitter / Sensor PLC Alarm Output Name Alarm Type Alarm Type Alarm Output State Change? (Y/N) PT-106 PA_106 Fatal PES Yes Notes: Current setpoint = 34 in wice Switched to 25 in wice PA_106 alarm Fet off, Blower pressure HH/U Alarm Lit on main blower = p. PT-106 PA_106 FA_106 FA_	MU-3/ET-102]; DTW: -	1105, 01Wf = 19	07 AVIW: 40"=	250 gal. At	-1-102=341g	al. 3,0% dist	
Manhole floats tested? (Y/N) Yes, during critical alarms (note that system must be in AUTO to observe proper alarm response): Corresponding Transmitter / Sensor PLC Alarm Output Name PLC Alarm Type Alarm Output State Change? (Y/N) PT-106 PA_106 fatal PA_106 Fatal Passed (Y/N) PT-106 PA_106 Fatal Passed (Y/N) Fatal Passed (Y/N) PT-106 PA_106 Fatal Passed (Y/N) Fatal Passed (Y/N) Fat							
Test the following critical alarms (note that system must be in AUTO to observe proper alarm response): Alarm Corresponding Transmitter / Sensor PLC Alarm Output Name Alarm Type Caused PLC Alarm Output State Change? (Y/N) PT-106 PA_106 fatal Pessure Passed (Y/N) PT-106 PA_106 Fatal Pessure Alarm Type Shutdown? (Y/N) PT-106 PA_106 Fatal Passed (Y/N) PT-106 PA_106 Fatal Passed (Y/N) PT-106 PA_106 Fatal PA_106 Fatal PT-106 PA_106	- 3/	J.			1	2-170 WITE	ence OK!
Alarm Corresponding Transmitter / Sensor PLC Alarm Output Name Output Name Output Name Output Name Output Name Passed (Y/N) PT-106 PA_106 fatal PEC Alarm Output State Change? (Y/N) PT-106 PA_106 Fatal Passed (Y/N) Passed (Y/N) Passed (Y/N) Passed (Y/N) Alarm Type State Change? (Y/N) Possible Caused System Shutdown? (Y/N) Passed (Y/N) Possible Caused PLC Alarm Output State Change? (Y/N) Possible Caused PLC Alarm Output State Change? (Y/N) Passed (Y/N) Possible Caused PLC Alarm Output State Change? (Y/N) Passed (Y/N) Possible Caused PLC Alarm Shutdown? (Y/N) Passed (Y/N) Passed (Y/N) Passed (Y/N) Passed (Y/N) Possible Caused PLC Alarm Shutdown? (Y/N) Passed (Y/N) Pas	Manhole floats tested	d? (Y/N) <u>Ye</u>	s, during critic	al alarm	testing.	·	
Alarm Corresponding Transmitter / Sensor PLC Alarm Output Name Output Name Output Name Output Name Output Name Passed (Y/N) PT-106 PA_106 fatal PEC Alarm Output State Change? (Y/N) PT-106 PA_106 Fatal Passed (Y/N) Passed (Y/N) Passed (Y/N) Passed (Y/N) Alarm Type State Change? (Y/N) Possible Caused System Shutdown? (Y/N) Passed (Y/N) Passed (Y/N) Possible Caused System Shutdown? (Y/N) Passed (Y/N) Possible Caused PLC Alarm Output State Change? (Y/N) Passed (Y/N) Pas						······································	
Alarm Output State Change? Transmitter / Sensor PLC Alarm Output State Change? (Y/N) PT-106 PA_106 fatal PEC Alarm Output State Change? (Y/N) PT-106 PA_106 Fatal Passed (Y/N) Passed (Y/N) Passed (Y/N) Alarm Output State Change? (Y/N) Possible Shutdown? (Y/N) Passed (Y/N) Passed (Y/N) Passed (Y/N) Alarm Output State Change? (Y/N) Possible Shutdown? (Y/N) Passed (Y/N) Passed (Y/N) Alarm Output State Change? (Y/N) Possible Shutdown? (Y/N) Passed	Test the following crit	tical alarms (note ti	hat system must be	in AUTO to ob	serve proper alarm	response):	
Alarm Type Alarm Output State Change? Sensor PT-106 PA_106 fatal Pessure PT-106 PA_106 Fatal Pessure PT-106 PA_106 Fatal Pessure Passed (Y/N) PT-106 PA_106 Fatal Pessure Passed (Y/N) PT-106 PA_106 Fatal Passed (Y/N) Pt-106 PA_106 Fatal PA_106 Fatal PA_106 PA_106 PA_106 Fatal PA_106 PA_106 PA_106 Fatal PA_106 PA_106 Fatal PA_106 PA_106 Fatal PA_106		Corresponding			The state of the s	Caused System	
Sensor Sensor State Change? (Y/N) PT-106 PA_106 fatal Yes. Yes Yes Air Stripper Sump High Pressure PT-106 PA_106 Fatal PT-106 PA_106 Fatal Fatal PT-106 PA_106 Fatal Fata	Alarm			Alarm Type			
Air Stripper Sump High Pressure PT-106 PA_106 fatal Yes. Yes Yes Notes: Current setpoint = 34 in wic. Switched to 25 in wic. PA_106 alarm High Pressure PT-106 PA_106 Fatal Y Y Y Air Stripper Sump Low Pressure PT-106 PA_106 Fatal Y Y Y Notes: Current setpoint = 15 inwe. Switched to 33 inwic. PA_106 alarm Set off. Blower Pressure HH/LL alarm light lit up on blower MCP. LSH-100 LA_100 fatal NA NA		Sensor	Output Name			Control of the contro	(Y/N)
Air Stripper Sump Low Pressure Notes: Current setpoint = 34 in wic. Switched to 25 in wic. PA_106 alarm PT-106 PA_106 fatal Y Y Y Notes: Current setpoint = 15 inwe. Switched to 33 inwic. PA_106 alarm Set off. Blower Pressure HH/LL alarm light lit up on blower MCP. LSH-100 LA_100 fatal NA NA NA		PT-106	PA 106	fatal		Vac	V
Air Stripper Sump Low Pressure PT-106 PA_106 Fatal Y Y Y Notes: Cyrrent setpoint = 15 inwe. Switched to 33 inwe. PA_106 alarm Set off. Blower Pressure LSH-100 LA_100 Fatal NA NA NA NA	Air Stripper Sump				L		
Air Stripper Sump Low Pressure PT-106 PA_106 fatal Y Y Notes: Correct sctpout = 15 inwc. Switched to 33 inwice. PA_106 alarm Set aff. Blower Pressure HH/LL alarm light lit up on blower MCP. LSH-100 LA_100 fatal NA NA NA							100 anum
Air Stripper Sump Low Pressure Notes: Corrent sctpoint = 15 inwc. Switched to 33 inwic. PA _ 106 alarm Set off. Blower Pressure HH/LL alarm light lit up on blower MCP. LSH-100 LA_100 fatal NA NA NA		Jes all stower	pressure Anjer	ALLOW M COL	on man prower	e, p.	
LSH-100 LA_100 fatal NA NA NA			PA_106	fatal	Y	Y	Y
LSH-100 LA_100 fatal NA NA NA		Notes: Current	setpount = 15	inwe. Swit	ched to 33 in	w.c. PA_10h	alarm
	Low Pressure	set aff. Blowe	r Pressure HH	/LL alarm	light lit up o	en blower MCF	?
		LSH-100	LA_100	fatal	NA	NA	NA
Air Stripper High Liquid Level Currently not in use.		Notes:		<u> </u>		•	

NA-not applicable

10/7/11
12:10
CD

Alarm	Corresponding Transmitter / Sensor	PLC Alarm Output Name	Alarm Type	Caused PLC Alarm Output State Change? (Y/N)	Caused System Shutdown? (Y/N)	Passed (Y/N)	
	LSL-100	LA_100	fatal	У	¥	Y	
Air Stripper Low	Notes: Closed	BF4-401 p	artially w	ule system c	xeling. Observe	ed USL100	
Liquid Level	switch off at AFrater Sump L	evel Alarm light	it on MCP 1	tup.	LA_100 initia	ted and	
	FT-106	FA_106	fatal	Y	Y	Y	
High Air Flowrate	Notes: Cirrent FA_106 alarm	23	Octm. Ch	anged to 5	00 cfm. Trigg	ered	
	FT-106	FA_106	fatal	Y	Y	Y	
Low Air Flowrate	Notes: Current	setpoint is	400 cfm. C	hanged to 90	00 cfm. Trigg	gered	
	FA_106 alarm.						
	TT-400	TAH400	fatal	Y	Y	Y	
Pre-Carbon High	Notes: Current	setpoint is 110	OF. Switch	hed to 75°F.	Observed roug	hlx /min.	
Temperature	delay, Alarm	TAH400 trigg	ered.				
	TT-400	TAL400	fotol			V	
Pre-Carbon Low			fatal	1 to 900= 0	hear 1 3 to	l I	
Temperature	Notes: Curent setpoint is 60°F. Changed to 20°F. Observed 3 minute delay. Marin TAL400 triggered.						
	7712 100	11.199 4 44.					
	PT-400	PA_400	fatal	Y	Y	Y	
Pre-Carbon High	Notes: Current	setpoint 25 in	we. Chang	ed to 7 inw	c. Observed	45 sec	
Pressure	delay. PA_400						
	PT 400	DA 400	f-t-1			1/	
Pre-Carbon Low	PT-400	PA_400	fatal	Y	/ 0/	1 115	
Pressure	Notes: Current		l inwe. Cl	ranged to l	linue. Observ	ed 43 sec	
	belgy. PA_400	indicated,					
	FT-101	FA_101	warning	Y	N	Y	
MH-1 Low Flowrate	Notes: With M	H-1 pump A		AUTO, Swite	h both MH-1		
Will I Low How atc	HOA's to att.	Observed 3	O second	delay. FA-10	1 triggered	, ,	
				/	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	
	FT-102	FA_102	warning			<u> </u>	
MH-2 Low Flowrate	Notes: With M	4-2 Duma A 1	Uniting in a	ite Switched 1	ath MU a	A HOAL	
	to off, Observe	ed 30 second	delay FA	Ina triangren	1	ן	
	FT-103	FA 103	warning	Y	A.	Y	
MH-3 Low Flavorets	Notes: With MH			TO switched	both MH-3	DUMOS	
	to off via Ho					position	
	io on via no	ri surjon. 10	sec, aeu	y. 171_107 1	igg ered.		

Date:	10/7/11			
Time:	12:30			
Technician:	CD			

				Causad DI C	<u> </u>				
Alarm	Corresponding Transmitter / Sensor	PLC Alarm Output Name	Alarm Type	Caused PLC Alarm Output State Change? (Y/N)	Caused System Shutdown? (Y/N)	Passed (Y/N)			
	FT-105	FA_105	warning	Y	\sim	Y			
Aggregate Low Notes: This alarm, FA_105, occurred bring manhole flow alarms.					cot individual	low			
	WFS-106	WFS106	fatal	Y	Y	Y			
Building Wet Floor Sensor Alarm	Notes: Following testing of LSH-10b, continued filling sump. Triggered WFS-10b input and WFS106 alarm output to change state. Also litup wet Floor Sensor Alarm light on MCP.								
	LSH-106	LSH106	warning warning	Floor Sensor	Harm light on	MCP.			
Building Sump High			waiting	Ellus sura	with surv	toc			
Level	Notes: With sump pump unplugged, begin filling sump with sunk water. is HIOB input state turns on, and LSHIOB alarm output turns on.								
	FT-200	FA_200	warning	Y	N	Y			
Sequestering Agent Low Flow	Notes: Was real-lite confirmed xesterday, FA-200 ortest was on.								
	LSH-200	LSH200	warning	Y	N	Y			
Spill Pallet Wet Sensor Alarm	Notes: Pit sensor into cup of water. LSH200 input turns on LSH200 alarm ortput turns on.								
	LSHH-103	LA_MH1	warning	Y	N	9			
MH-1 High Level	Notes: Manually tested. LA_MHI triggered.								
	LSLL-103	LA_MH1	warning	Y	N	Y			
MH-1 Low Level	Notes: Should force off both MH-1 pumps 10/11/11 Manually tested m/ pump on; pump turned off. LA-MHI triggered.								
	10/11/11 Manual		· · · · · · · · · · · · · · · · · · ·	ump turned of	F LA-MH/ Y	mygered.			
	LSHH-104	LA_MH2	warning	l y	N	<u> </u>			
MH-2 High Level	Notes: Manually tested. LA_MHZ triggered. 10/11/11								
	LSLL-104	LA_MH2	warning	Y	N	Y			
MH-2 Low Level	Notes: Should force off both MH-2 pumps 10/11/11 Manually tested w/ pump on; pump turned off. LA_MH2 triggered.								
	LSHH-105		warning	Y	N	y			
MH-3 High Level	Notes: Manually	tested. LA_	MH3 trig	gered.					

Date: 10/7/11
Time: 12:50
Technician: CD

Alarm	Corresponding Transmitter / Sensor	PLC Alarm Output Name	Alarm Type	Caused PLC Alarm Output State Change? (Y/N)	Caused System Shutdown? (Y/N)	Passed (Y/N)		
MH-3 Low Level	LSLL-105 Notes: Should for			Y	N	γ		
	10/11/11 Manually tested w/ pump on; pump turned off. LA-MH3 triggered							
Building High Temperature	Notes: Current setpoint is 110°F. Changed to 70°F. Observed 2 min delax. TA_100 indicated.							
Building Low Temperature	Notes: Current delax. TA-10		shutdown	ed to 88°F.	Observed 2 n	ily		

	, , , , , , , , , , , , , , , , , , , ,	
1	10/11/11 07/16	via "outputs locked" switch of clicking on LA-MHI
		H-1 [Tilt HI] Pump #1 on; 34 gpm
	Lift H2 and Pumpon #1 20 gpm	Tilt 42 Pump #2 on; 42 gpm
	Lift HH Alarm? LA_MH3V	Tilt HH Received LA_MHI
	Prop All Remainer: Lestill tilted. Ranse L Propos off. Lift HI list Prop on 18 47 2 18 9 pm	Prop All Reset LA_MHI
	FIRST HI TIST EXMED WATER 18 20m	Lift L. Pumps aff.
	Raise LL Pump off, Alum. / LA_AH3	WATITHI. Pump#2 on.
		Lift LL. Pump off, LA_MHI on.
	MH-2 Fit HI Pomp#100 20 gpm	
	FT-102 Tilt HZ PUMP# 20123 gpm	This is procedure used to test flow floats
	TIH HH Received LA-MHZ	and float logic for each manhole.
	PropAU Reset LA_MHZ	
	Lift L Pumps off	
	TIHHIT PUMP#2 on	
	Laft LL Pump off LA_MHZON	

Water Level Record

Project LMC Utica, NY

Page_____1 of 2

Date 9/26/11 - 9/27/11 Staff: D. Nodine / D. Zuk

Well (s)	Depth to Water (ft) (TIC)/MP	Time	Remarks
MW - 1	8.09	10.45	
MW - 2	5.42	11:15	
MW - 3	10,58	134	
MW - 4	10.55	10:70	
MW - 5	3.08	11:32	
MW - 6	5.59	0903 9/2	Bailer in well 2' to bailer ball not get water fire
MW - 7	7.46	151:45) 100 j
MW - 9	2.55	12.04	: ``
MW - 10	4.80	11:01	
MW - 11	6.80	10:09	
MW - 12	U		Not on figure - Not Regular Based on Figure
MW - 13S	6.68	11:10	
MW - 13BR	10,94	11:04	
MW - 14S	10.35	16:10	
MW - 14BR	23.55	16:05	
MW - 15S	8.28	18:30	
MW - 15BR	30.79	18:10	Under pressure *caution when opening , Bolts Don't tighter
PZ - 2		+	Careved by Egyphent
PZ - 4	0.47	12:12	J 1701/1 31
PZ - 5	8.03	17:05	(Conmed)
PZ - 6	9.11	17:10	(Conmed)
PZ - 7	8.89	17:15	(Conmed)
PZ - 8	9,05,	16:51	(Conmed)
PZ - 9	7.86	16:41	(Conmed)
PZ - 10	8,78	17:18	(Conmed)
PZ - 11R	6-8-8.44	10:04	Car forked on top of Lell 1645 collected wh
PZ - 13R	8.05	9:72	
PZ - 17	6.47	9:10	Bentante Cleared.
PZ - 18	× 7.85	× 1425	Cos Parked as bo of 1 bil
PZ - 19	7.09	9:49	
PZ - 20	6.62	9.27	
PZ - 21	Dry	3960	(Outside IHOP) After the tracket the Total
PZ - 22	7.56	15:23	Jan 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18
PZ - 23	6.12	15:15	
PZ - 24	10.74	15:12	

Project

LMC Utica, NY

Page 2 of 2

Date 9/26/11 + 1/27/4 Staff: D. NGd. NC/P. Zuk

Well (s)	Depth to Water (ft) (TIC)/MP	Time	Remarks
PZ - 25	6.05	15:05	
PZ - 26	8.90	14:58	
PZ - 27	16.47	14:47	
PZ - 28	7.04	15:A	
PZ - 29	2.12	0905 1/27	Could not lought
PZ - 30	3,54	15:10	
PZ - 31	7.46	15.00	
PZ - 32	0.45	14:50	
PZ - 33	6.8 (DTR)	13:53	Dru Buttom
PZ - 34	2:41	14:38	BASTILET. Hous to be Tr-tapel
PZ - 35	1.04	14:45	
PZ - 36	t-041.09	12:15	
PZ - 39	2,62	11:22	
PZ - 40	4.58	M:25	(In building)
PZ - 41	H44.22	17:20.	(In building)
PZ - 42	0.28	09077/27	(In building)
A1-PZ1	367	H+30	Calo flo by equipment
A1-PZ2	2.00	15:13	Japp 1
A2-PZ1	3.87	14:30	
A2-PZ2	6.08	14:21.	
A2-PZ3			IC Missing
A2-PZ4	0.65	14:38	7
A2-PZ5	5.81	4:00	
A2-PZ6	1.7.	14 37	
A2-PZ7	1209	405	
A2-PZ8	0.74	14:25 -	

Monthly OM&M Log Sheet, Groundwater Collection and Date: Treatment System, Solvent Dock Area, Former Lockheed Martin Time: French Road Facility, Utica, New York Technician: Jason **SYSTEM STATUS** System operational? (PLC screen indicating system in "AUTO" or "MANUAL") System currently cycling? Alarms? (list) None AIR STRIPPER PARAMETERS (record while air stripper is running) **Parameter** Value Units Air stripper sump pressure [PI-106] 27.0 (in. W.C.) Air stripper sump water elevation (record from site gauge) 15.25 (inches) Blower intake line vacuum [PI-100] (in. W.C.) 2.0 Main damper position (record distance from center of wingnut to outside of (inches)

Is white "POWER ON" light on air stripper control panel lit?	Ves
Is air stripper hand-off-auto switch [HS-100B] in "AUTO" position?	Ves
Note scaling inside liquid effluent pipe from access port	// 기// -
Note scaling observed inside air stripper via clear tray access door	1,94+
•	

blower housing)

Closed

FLOWMETER / PUMP PARAMETERS

Are white power lights lit on MH-1, MH-2, and MH-3 control panels? (Y/N) Are pump hand-off-auto switches [HS-101A, HS-101B, HS-102A, HS-102B, HS-103A, and HS-103B] in "auto" position? (Y/N) Yes a//six

Interior dilution damper position (0° is shut, 90° is open)

Parameter	MH-1 [FT-101]	MH-2 [FT-102]	MH-3 [FT-103]	Sump [FT-104]	Cumulative [FT-105]
Date/Time	11/1/11 0800				
Instantaneous Flowrate [gpm]	00 4.48 35.24	NIA	NIA	NIA	35.40
"Total" Flow (resettable, gal)	1000431	208/12	613684	37	1665301
"Perm" Flow (gal)	13447511	2288123	1315/20	1639	4340771
Pump 1 Running (Y/N)?	yes	No	No	No	NA
Pump 2 Running (Y/N)?	NO	No	NO	NA	NA

⁻ Flowrate and Permanent Flow can be viewed locally from wall-mounted flow transmitters FT-101 through FT-105 using up/down arrows.

VAPOR PHASE PARAMETERS (record while air stripper is running)

Is duct heater "HEAT ON/OFF" light lit? (Y/N)	Ves	(located on duct heater control panel door)
Is duct heater "HI TEMP" alarm light on? (Y/N)	NO	(located on duct heater control panel door)

Date:	11/1/11 -
Time:	1400
Technician:	Jason Gutkowsk:

MONTHLY OM&M TASKS (continued)

Task	Notes
Liquid flow sensors cleaned? (Y/N) (only as needed)	Ves
Monthly manhole inspections conducted? (Y/N)	Ves
Leaking/dripping of water observed from double- walled HDPE discharge pipe located inside manhole? (Y/N)	MHI: NONE MHZ: NONE MH3: NONE
Do level floats appear to be in good condition and hanging freely? (Y/N)	MH1: All 6000 MH3: All good MH2: All Good
Observe groundwater inside each manhole and note odor and appearance	clear w/ No odos in all three
Is confined space entry signage present at each manhole? (Y/N)	Yes
With pump(s) running, visually inspect discharge piping, pipe fittings, and pressure relief valve for leaks	yes
With pump(s) running, listen for any unusual sounds	yes, Nounusual sounds
Inspect condition of collection line gate valve protection flush-mount covers for each manhole	A11600d
With system running, visually inspect all piping within the treatment system for leaks, signs of distress, or any other notable observations	AllGood
Treatment system valves exercised? (Y/N) (should be conducted with system in-between batch cycles)	Yes
List any notable observations	NO 1550es
Are both building heaters working properly? (Y/N) (adjust respective wall-mounted thermostats for both heaters	Heater working in GCTS Building
and confirm proper heater response)	No Heater in 5505 Building

HEALTH AND SAFETY

ltem	Status
Is fire extinguisher charged, unobstructed, and possessing an inspection tag? (Y/N)	1
Is eyewash/shower station operational and unobstructed? (Y/N)	Ves
Is interior emergency lighting operational? (Y/N)	
Is first aid kit present and in good condition? (Y/N)	Ves
Is lockout/tagout equipment available? (Y/N)	Ýes
Have electrical GFIs been tested and reset? (Y/N)	Ves
Do all electrical panels have 36" of open floor space in front of them? (Y/N)	ye5
Are both the OM&M Manual and HASP onsite? (Y/N) (note dates for each)	Yes 3/11/11
ণ Is emergency spill kit available? (Y/N)	I
Is H&S signage including emergency contact list, eye protection hearing protection, and automatic equipment present? (Y/N)	
Is current SPDES permit onsite? (Y/N) (note date)	Yes Ylill Postedonwall

Date:	11/1/11 -	
Time:	<i>_0</i> 83₫	
Technician:	Jason Guthaw:	*

VAPOR PHASE PARAMETERS (continued)

Parameter	PID Tag	Value	Units	Notes
Pre-Duct Heater Temperature	TI-300	62 81 QB	(°F)	
Pre-Carbon Temperature	TI-400	81	(°F)	
Duct Heater Temperature Setpoint	_	85	(°F)	(located in green on duct heat control panel)
Duct Heater Temperature Transmitter	_	85	(°F)	(located in red on duct heat control panel)
Pre-Carbon Pressure	PI-401	12	(in. W.C.)	
Mid-Carbon Pressure	PI-402	5	(in. W.C.)	
Effluent Pressure	PI-403	0	(in. W.C.)	

TRANSMITTER READINGS (record from ProControl)

Parameter	PID Tag	Value	Units	Notes
Air Stripper Sump Pressure	PT-106	28.88	(in. W.C.)	
Vapor Flowrate	FT-106	784.7	(cfm)	
Pre-Carbon Temperature	TT-400	83.6	(°F)	
Pre-Carbon Pressure	PT-400	10.6	(in. W.C.)	
Building Temperature	TT-100	67.3	(°F)	***************************************

⁻ Press the "I/O" up/down arrows on the ProControl screen until the desired transmitter value is displayed.

SEQUESTERING AGENT (record while air stripper is running)

Parameter	Status	Notes
Is pump operating? (Y/N)	Ves	
Is low flow alarm present? (Y/N)	No	
Is pump in external mode? (Y/N)	Ves	
If in external mode, record one set of mA	4.0 (mA)	(display screen should automatically be switching back and
and stroke speed values	<u> </u>	forth between mA and stroke speed)
Stroke length	100	(record from local stroke length knob on pump)
Sequestering agent drum level [LI-200]		
	26901	
Quantity of additional full drums	7	

Inspect sequestering agent components for		
signs of leaking or wear (tubing [suction,	No leaksorbuildup	
injection, bleed return], injection check valve	Checked	
fitting, spill pallet, etc.)		

MONTHLY OM&M TASKS

Task	Notes
Monthly liquid effluent sample collected? (Y/N)	Ves 11/1/11 P.0830
pH of effluent sample	7.83
Model of pH meter	PHSensor 30
Calibration notes / method used	Auto Cal

Date:	12/1/11
Time:	0830
Technician:	J. GU+KOWSK:

9	/ST	ΈM	ST	Δ.	ГП	S
-				~		

System operation	nal? (PLC scr	een indicating syst	em in "AUTO" or "MA	NUAL")	Auto	
System currently	cycling?	Ves				
Alarms? (list)	None					

AIR STRIPPER PARAMETERS (record while air stripper is running)

Parameter	Value	Units
Air stripper sump pressure [PI-106]	27.0	(in. W.C.)
Air stripper sump water elevation (record from site gauge)	15.50	(inches)
Blower intake line vacuum [PI-100]	2.0	(in. W.C.)
Main damper position (record distance from center of wingnut to outside of blower housing)	2./	(inches)
Interior dilution damper position (0° is shut, 90° is open)	906	(°)

Is white "POWER ON" light on air stripper control panel lit?

Is air stripper hand-off-auto switch [HS-100B] in "AUTO" position?

Note scaling inside liquid effluent pipe from access port

Note scaling observed inside air stripper via clear tray access door

| 1944

FLOWMETER / PUMP PARAMETERS

Are white power lights lit on MH-1, MH-2, and MH-3 control panels? (Y/N) yes all three

Are pump hand-off-auto switches [HS-101A, HS-101B, HS-102A, HS-103A, Allothers/
and HS-103B] in "auto" position? (Y/N) HS-102A off set to Auto

Parameter	MH-1 [FT-101]	MH-2 [FT-102]	MH-3 [FT-103]	Sump [FT-104]	Cumulative [FT-105]
Date/Time	12/1/11/0850				
Instantaneous Flowrate [gpm]	38.50	18:60	16.44	NIA	73.81
"Total" Flow (resettable, gal)	1,276,899	242,880	117,208	50	2,035,276
"Perm" Flow (gal)	13,723,980	2,322,891	1,432329	1652	4710,804
Pump 1 Running (Y/N)?	X e5	Ve5	ves	NA	NA NA
Pump 2 Running (Y/N)?	NO	NO	NO	NA	NA

⁻ Flowrate and Permanent Flow can be viewed locally from wall-mounted flow transmitters FT-101 through FT-105 using up/down arrows.

VAPOR PHASE PARAMETERS (record while air stripper is running)

Is duct heater "HEAT ON/OFF" light lit? (Y/N)_	Ve5	(located on duct heater control panel door)
ls duct heater "HI TEMP" alarm light on? (Y/N) ¯	NO	(located on duct heater control panel door)

Date:	12/1/11
Time:	1345
Technician:	J. Gutleowskei

VAPOR PHASE PARAMETERS (continued)

Parameter	PID Tag	Value	Units	Notes
Pre-Duct Heater Temperature	TI-300	62	(°F)	
Pre-Carbon Temperature	TI-400	85	(°F)	
Duct Heater Temperature Setpoint	_	85	(°F)	(located in green on duct heat control panel)
Duct Heater Temperature Transmitter	<u>-</u>	85	(°F)	(located in red on duct heat control panel)
Pre-Carbon Pressure	PI-401	11	(in. W.C.)	
Mid-Carbon Pressure	PI-402	4	(in. W.C.)	
Effluent Pressure	PI-403	Ò	(in. W.C.)	

TRANSMITTER READINGS (record from ProControl)

Parameter	PID Tag	Value	Units	Notes
Air Stripper Sump Pressure	PT-106	31.04	(in. W.C.)	,
Vapor Flowrate	FT-106	739.6	(cfm)	
Pre-Carbon Temperature	TT-400	83.8	(°F)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Pre-Carbon Pressure	PT-400	9.0	(in. W.C.)	
Building Temperature	TT-100	66.5	(°F)	

⁻ Press the "I/O" up/down arrows on the ProControl screen until the desired transmitter value is displayed.

SEQUESTERING AGENT (record while air stripper is running)

Parameter	Status	Notes
Is pump operating? (Y/N)	ye5	
Is low flow alarm present? (Y/N)	NO.	
Is pump in external mode? (Y/N)	Ves	
If in external mode, record one set of mA and stroke speed values		(display screen should automatically be switching back and forth between mA and stroke speed)
Stroke length	100	(record from local stroke length knob on pump)
Sequestering agent drum level [LI-200]	314 FUII	Drum empty, place new drum online.
Quantity of additional full drums	0	

Inspect sequestering agent components for		
signs of leaking or wear (tubing [suction,	No leaks or buildus	
injection, bleed return], injection check valve	Checked, all good	
fitting, spill pallet, etc.)		

MONTHLY OM&M TASKS

Task	Notes
Monthly liquid effluent sample collected? (Y/N)	Ves @ 1340
pH of effluent sample	7.71
Model of pH meter	PH Sensor 30
Calibration notes / method used	Auto Cal.

Date:	12/1/11
Time:	1400
Technician:	S. GUHLOUSKi

MONTHLY OM&M TASKS (continued)

Task	Notes
Liquid flow sensors cleaned? (Y/N) (only as needed)	Yes F5-103 Had Slight Buildup All others were clean
Monthly manhole inspections conducted? (Y/N)	Yes
Leaking/dripping of water observed from double- walled HDPE discharge pipe located inside manhole? (Y/N)	MHI: NONE MHZ; NONE MH3; NONE
Do level floats appear to be in good condition and hanging freely? (Y/N)	MHI: All Good MH3: All Good MHZ: All Good
Observe groundwater inside each manhole and note odor and appearance	Clear W/ No odor In All Three
Is confined space entry signage present at each manhole? (Y/N)	yes
With pump(s) running, visually inspect discharge piping, pipe fittings, and pressure relief valve for leaks	yes All Good
With pump(s) running, listen for any unusual sounds	No unusual sounds
Inspect condition of collection line gate valve protection flush-mount covers for each manhole	AllGood
With system running, visually inspect all piping within the treatment system for leaks, signs of distress, or any other notable observations	A11 600 d
Treatment system valves exercised? (Y/N) (should be conducted with system in-between batch cycles)	Ve5
List any notable observations	
Are both building heaters working properly? (Y/N) (adjust respective wall-mounted thermostats for both heaters	Heater is working in GCTS Building
and confirm proper heater response)	Thermostatehecked, 600d

HEALTH AND SAFETY

Item	Status
Is fire extinguisher charged, unobstructed, and possessing an inspection tag? (Y/N)	
Is eyewash/shower station operational and unobstructed? (Y/N)	Ves
Is interior emergency lighting operational? (Y/N)	
Is first aid kit present and in good condition? (Y/N)	
Is lockout/tagout equipment available? (Y/N)	
Have electrical GFIs been tested and reset? (Y/N)	
Do all electrical panels have 36" of open floor space in front of them? (Y/N)	
Are both the OM&M Manual and HASP onsite? (Y/N) (note dates for each)	yes 3/11/11
ls emergency spill kit available? (Y/N)	Ve5
Is H&S signage including emergency contact list, eye protection hearing protection, and automatic equipment present? (Y/N)	Mar Das Led as well
Is current SPDES permit onsite? (Y/N) (note date)	yes 4/1/11 Posted onwall

Appendix C

Alarm-Response Log Sheets

Date:	3/14/2011
Time:	10:30
Technician:	TC/CD

Date: 3/14/11 Time: NA Alarm Condition: Automated daily efax was not received by operator Cause of Alarm:
Automated daily efax was not received by operator
Cause of Alarm:
Cause of Alarm:
Cause of Alarm:
Data logger indicates fax failed.
Corrective Action:
Log into system and verify communication settings and initiate a fax now command to further test line.
Changed time for daily log/efax to be sent to operators at 01:00 versus 06:00.
May need to contact efax to obtain a new # if problem persists?

Date:	3/15/2011
Time:	8:00
Technician:	TC/CD

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Date:	3/14/11 3/14/11	Time:	0:43:32 23:53:58			
	3/14/11		23.33.30			
Alarm Cond	dition:					
Process 32	/ LSL-100					
		_	_			
Cause of A	larm:					
Low water le	evel in air strippe	er sump due to	sump pressure se	etting to be high.		
Corrective	Action:					
Restart syst	em remotely on	3/14/11 at 10:3	31			
Monitor syst	tem remotely.					
Restart syst	em remotely on	3/15/11 at 9:14	1			
Interim corre	ective action take	en on 3/15/11 t	o adjust influent b	lower damper to	reduce pressure	in sump.
Permanent	corrective action	will involve rep	placing currently in	nstalled rigid leve	l sensors LSL-10	00 and
LSH-100 wit	th tethered mech	nanical floats to	provide a greater	range for the wa	ater level in the ai	ir stripper
			harge and varying			
	· · · · · · · · · · · · · · · · · · ·	<u> </u>	<u></u>	, сар р. ссса. сс		and dyotom.

ALARM Fax Report EOS Research Ltd. ProControl Series II+

To:

TODD CARIGNAN

From

SYSTEM IN LOCKHEED UTICA @ 23:53:58 ON 03/14/2011 : ROM 2.1996 : MODEL A2 THE ARCADIS GCTS

SER NO 9539 : SETUP VER 1

System Status:

LAST SHUTDOWN @ 00:43:32 ON 03/14/2011 BY LSL100 SHUTD

FAX REPORT INITIATED BY PROCESS 32

Discrete Inputs:

MH1_HH is OFF	MH1_H2 is OFF	MH1_H1 is ON	MH1_LO is ON
MH1LL is ON	MH2 HH is OFF	$MH2^{-}H2$ is OFF	MH2 H1 is OFF
MH2_LO is ON	MH2_LL is ON	MH3_HH is OFF	MH3H2 is OFF
MH3 ^T H1 is OFF	MH3LO is OFF	MH3LL is ON	WFS $\overline{1}$ 06 is OFF
$MOT\overline{I}ON$ is OFF	LSH $\overline{1}$ 06 is OFF	$\mathtt{LSH}\overline{1}00$ is OFF	LSL100 is ON
PT 200 is OPP	TCUSOO is OFF		

Discrete Outputs:

MH1 P1 is OFF	MH1 P2 is OFF	MH2 P1 is OFF	MH2 P2 is OFF
$MH3_P1$ is OFF	MH3P2 is OFF	${ t B_1\overline{0}0}$ is ON	$DH_{\overline{3}00}$ is $OH_{\overline{3}00}$
MH1_HH is OFF	$FA_\overline{1}01$ is OFF	$M\overline{H}2$ HH is OFF	FA_102 is OFF
MH3_HH is OFF	FA_103 is OFF	$PA_\overline{1}06$ is OFF	$\mathtt{LA} \overline{\mathtt{100}}$ is ON
LSH $\overline{1}$ 06 is OFF	$WF\overline{S}106$ is OFF	$\mathtt{TA} \overline{_} 100$ is OFF	FA_105 is OFF
FA_106 is OFF	FA_200 is OFF	$ exttt{MOTION}$ is OFF	$ extsf{TA}\overline{ extsf{H}}400$ is OFF
$\mathtt{TAL400}$ is OFF	PA^-400 is OFF	LSH200 is OFF	

Analog Inputs:

FT 101	is	0.00	\mathbf{GPM}	TOTAL I	FLOW	is	673070	${f GAL}$			
FT_102	is	0.00	GPM	TOTAL I	FLOW	is	150108	GAL			
FT_103	is	0.00	GPM	TOTAL I	FLOW	is	75425	GAL			
FT_105	is	0.00	GPM	TOTAL I	FLOW	is	687120	GAL			
FT_106	is	763	CFM	LIMITS	are	${f L}$:	400	CFM	H :	1000	CFM
PT_106	is	25.46	IWC	LIMITS	are	${f L}$:	15.00	IWC	H :	30.00	IWC
TT_400	is	77.4	\mathbf{DEG}	LIMITS	are	${f L}$:	60.0	DEG	H :	105.0	\mathbf{DEG}
PT_400	is	6.0	IWC	LIMITS	are	${f L}$:	1.0	IWC	H :	25.0	IWC
TT_100	is	57.8	\mathbf{DEG}	LIMITS	are	${f L}$:	40.0	\mathbf{DEG}	H :	120.0	\mathbf{DEG}

Analog Outputs:

INJSPD 0.0 PCT

Date:	3/20/2011
Time:	13:00
Technician:	TC

ALARM RE	SPONSE / COF	RRECTIVE AC	TION LOG SHEET	-			
Date:	3/20/11	Time:	7:26:00				
Alarm Con	dition:						
Process 32	/ LSL-100						
Cause of A	larm:						
Low water le	evel in air stripp	er sump due to	sump pressure se	etting to be hig	h.		
Corrective	Action:						
Restart syst	tem remotely on	3/20/11 at 12:	49				
Monitor sys	tem remotely.						
Permanent	corrective action	n will involve re	eplacing currently in	nstalled rigid le	vel sensors LS	SL-100 and	
LSH-100 wi	th tethered mec	hanical floats to	o provide a greater	range for the	water level in	the air strippe	er
sump, which	h is required for	the gravity disc	charge and varying	sump pressui	res associated	with this sys	stem.

ALARM Fax Report EOS Research Ltd. ProControl Series II+

To:

TODD CARIGNAN

From

SYSTEM IN LOCKHEED UTICA @ 12:49:40 ON 03/20/2011 : ROM 2.1996 : MODEL A2 THE ARCADIS GCTS

SER NO 9539 : SETUP VER 1

System Status:

AUTO P07 : LAST SHUTDOWN @ 07:26:37 ON 03/20/2011 BY LSL100

FAX REPORT INITIATED BY REMOTE

Discrete Inputs:

MH1 HH is OFF	MH1 H2 is OFF	MH1 H1 is ON	MH1 LO is ON
$\mathtt{MH1}^{-}\mathtt{LL}$ is ON	$\mathtt{MH2}^{-}\mathtt{HH}$ is OFF	MH2H2 is OFF	MH2H1 is OFF
MH2_LO is ON	$\mathtt{MH2_LL}$ is \mathtt{ON}	MH3_HH is OFF	MH3_H2 is OFF
MH3_H1 is OFF	MH3_LO is OFF	$MH3_LL$ is ON	WFS $\overline{1}06$ is OFF
$MOT\overline{I}ON$ is OFF	$\mathtt{LSH}\overline{1}\mathtt{06}$ is OFF	$\mathtt{LSH}\overline{1}00$ is OFF	LSL100 is ON
FT 200 is OFF	LSH200 is OFF		

Discrete Outputs:

MH1 P1 is ON	MH1 P2 is OFF	MH2 P1 is OFF	MH2 P2 is OFF
MH3P1 is OFF	MH3P2 is OFF	${\mathtt B}_{\mathtt{L}} 1 \overline{\mathtt{0}} \mathtt{0}$ is ON	$DH_{\overline{3}00}$ is ON
MH1_HH is OFF	$\mathtt{FA}_\overline{1}\mathtt{01}$ is \mathtt{OFF}	$M\overline{H}2$ HH is OFF	FA_102 is OFF
MH3_HH is OFF	FA_103 is OFF	PA $\overline{1}06$ is OFF	LA_100 is OFF
LSH $\overline{1}$ 06 is OFF	$WF\overline{S}106$ is OFF	$\mathtt{TA} \overline{\mathtt{100}}$ is OFF	FA_105 is OFF
FA_106 is OFF	FA_200 is OFF	$ exttt{MOTION}$ is OFF	$ extsf{TAH400}$ is OFF
$ ext{TA}\overline{ ext{L}}400$ is OFF	PA^-400 is OFF	LSH200 is OFF	

Analog Inputs:

FT 101	is	43.74	GPM	TOTAL E	LOW	is	754263	GAL			
$FT^{-}102$	is	0.00	GPM	TOTAL E	LOW	is	172240	GAL			
FT_{103}	is	0.00	GPM	TOTAL E	LOW	is	75425	GAL			
$FT^{-}105$	is	43.83	GPM	TOTAL E	LOW	is	784620	GAL			
FT_{106}	is	700	CFM	LIMITS	are	\mathbf{L} :	400	CFM	H :	1000	CFM
PT_{106}	is	26.43	IWC	LIMITS	are	${f L}$:	15.00	IWC	H :	30.00	IWC
TT_400	is	86.5	\mathbf{DEG}	LIMITS	are	\mathbf{L} :	60.0	\mathbf{DEG}	H :	105.0	\mathbf{DEG}
PT_400	is	4.8	IWC	LIMITS	are	${f L}$:	1.0	IWC	H :	25.0	IWC
TT_100	is	57.7	\mathbf{DEG}	LIMITS	are	\mathbf{L} :	40.0	DEG	H :	120.0	\mathbf{DEG}

Analog Outputs:

INJSPD 47.3 PCT PRO

Date:	3/20/2011
Time:	15:00
Technician:	TC

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Date: _	3/20/11 & 3/26/11	Time:	7:26 & (3:21 &	•	
_	3/20/11		21:38)		
Alarm Coi	ndition:				
Process 32	2 / LSL-100 (low a	ir stripper	sump level)		
Cause of	Alarm:				
Low water	level in air strippe	r sump oc	curs due to operating r	ange between low and high sump levels be	eing
too narrow	·				
	•				
Corrective	Action:				
		3/20/11 at	12:40 on 3/26/11 at 0	:37, and on 3/29/11 at 9:52.	
	•	3/20/11 at			
Monitor sy	stem remotely.				
Permanen	t corrective action	will involv	e replacing currently in	stalled rigid level sensor LSH-100 with	
tethered m	echanical float to	provide gr	eater range for the wat	ter level in the air stripper sump, which is	
required fo	r the gravity disch	arge and	varying sump pressure	s associated with the system.	_

ALARM Fax Report EOS Research Ltd. ProControl Series II+

To:

TODD CARIGNAN

From

SYSTEM IN LOCKHEED UTICA @ 12:49:40 ON 03/20/2011 : ROM 2.1996 : MODEL A2 THE ARCADIS GCTS

SER NO 9539 : SETUP VER 1

System Status:

AUTO P07 : LAST SHUTDOWN @ 07:26:37 ON 03/20/2011 BY LSL100

FAX REPORT INITIATED BY REMOTE

Discrete Inputs:

MH1 HH is OFF	MH1 H2 is OFF	MH1 H1 is ON	MH1 LO is ON
$\mathtt{MH1}^{-}\mathtt{LL}$ is ON	$\mathtt{MH2}^{-}\mathtt{HH}$ is OFF	MH2H2 is OFF	MH2H1 is OFF
MH2_LO is ON	$\mathtt{MH2_LL}$ is \mathtt{ON}	MH3_HH is OFF	MH3_H2 is OFF
MH3_H1 is OFF	MH3_LO is OFF	$MH3_LL$ is ON	WFS $\overline{1}06$ is OFF
$MOT\overline{I}ON$ is OFF	$\mathtt{LSH}\overline{1}\mathtt{06}$ is OFF	$\mathtt{LSH}\overline{1}00$ is OFF	LSL100 is ON
FT 200 is OFF	LSH200 is OFF		

Discrete Outputs:

MH1 P1 is ON	MH1 P2 is OFF	MH2 P1 is OFF	MH2 P2 is OFF
MH3P1 is OFF	MH3P2 is OFF	${\mathtt B}_{\mathtt{L}} 1 \overline{\mathtt{0}} \mathtt{0}$ is ON	$DH_{\overline{3}00}$ is ON
MH1_HH is OFF	$\mathtt{FA}_\overline{1}\mathtt{01}$ is \mathtt{OFF}	$M\overline{H}2$ HH is OFF	FA_102 is OFF
MH3_HH is OFF	FA_103 is OFF	PA $\overline{1}06$ is OFF	LA_100 is OFF
LSH $\overline{1}$ 06 is OFF	$WF\overline{S}106$ is OFF	$\mathtt{TA} \overline{\mathtt{100}}$ is OFF	FA_105 is OFF
FA_106 is OFF	FA_200 is OFF	$ exttt{MOTION}$ is OFF	$ extsf{TAH400}$ is OFF
$ ext{TA}\overline{ ext{L}}400$ is OFF	PA^-400 is OFF	LSH200 is OFF	

Analog Inputs:

FT 101	is	43.74	GPM	TOTAL E	LOW	is	754263	GAL			
$FT^{-}102$	is	0.00	GPM	TOTAL E	LOW	is	172240	GAL			
FT_{103}	is	0.00	GPM	TOTAL E	LOW	is	75425	GAL			
$FT^{-}105$	is	43.83	GPM	TOTAL E	LOW	is	784620	GAL			
FT_{106}	is	700	CFM	LIMITS	are	\mathbf{L} :	400	CFM	H :	1000	CFM
PT_{106}	is	26.43	IWC	LIMITS	are	${f L}$:	15.00	IWC	H :	30.00	IWC
TT_400	is	86.5	\mathbf{DEG}	LIMITS	are	\mathbf{L} :	60.0	\mathbf{DEG}	H :	105.0	\mathbf{DEG}
PT_400	is	4.8	IWC	LIMITS	are	${f L}$:	1.0	IWC	H :	25.0	IWC
TT_100	is	57.7	\mathbf{DEG}	LIMITS	are	\mathbf{L} :	40.0	DEG	H :	120.0	\mathbf{DEG}

Analog Outputs:

INJSPD 47.3 PCT PRO

ALARM Fax Report ProControl Series II+

EOS Research Ltd.

To:

TODD CARIGNAN

From:

SYSTEM IN LOCKHEED UTICA @ 03:21:37 ON 03/26/2011 : ROM 2.1996 : MODEL A2 THE ARCADIS GCTS SER NO 9539 : SETUP VER 1

System Status:

LAST SHUTDOWN @ 06:57:24 ON 03/23/2011 BY B_100 SHUTD FAX REPORT INITIATED BY PROCESS 32

Discrete Inputs:

MH1_HH is OFF	MH1_H2 is OFF	$\mathtt{MH1}\mathtt{H1}$ is ON	MH1_LO is ON
MH1_LL is ON	MH2 HH is OFF	MH2 H2 is OFF	MH2H1 is ON
MH2_LO is ON	$\mathtt{MH2_LL}$ is \mathtt{ON}	MH3_HH is OFF	MH3_H2 is OFF
MH3_H1 is OFF	$MH3_LO$ is OFF	MH3_LL is ON	WFS $\overline{1}$ 06 is OFF
$MOT\overline{I}ON$ is OFF	LSH $\overline{1}$ 06 is OFF	LSH $\overline{1}$ 00 is OFF	LSL100 is OFF
rm 200 is Orr	LCU200 is OFF		

Discrete Outputs:

MH1 P1 is OFF	MH1 P2 is OFF	MH2 P1 is OFF	MH2 P2 is OFF
$MH3^-P1$ is OFF	MH3P2 is OFF	${f B}$ ${f 1}{f 0}{f 0}$ is ON	DH $\overline{3}00$ is ON
MH1_HH is OFF	$\mathtt{FA}_\overline{1}\mathtt{01}$ is \mathtt{OFF}	$M\overline{H}2$ HH is OFF	FA_102 is ON
MH3_HH is OFF	FA_103 is OFF	$PA_\overline{1}06$ is OFF	\mathtt{LA}_100 is ON
LSH $\overline{1}$ 06 is OFF	$WF\overline{S}106$ is OFF	$\mathtt{TA} \overline{\mathtt{100}}$ is OFF	FA_105 is ON
FA_106 is OFF	FA_200 is OFF	$MO\overline{I}ION$ is OFF	$ extsf{TAH400}$ is OFF
$\overline{ ext{TAL}400}$ is OFF	\mathtt{PA}^{-400} is OFF	LSH200 is OFF	

Analog Inputs:

FT 101	is	0.00	GPM	TOTAL E	LOW	is	823257	GAL			
FT_102	is	0.00	GPM	TOTAL E	LOW	is	180635	GAL			
FT_103	is	0.00	GPM	TOTAL E	LOW	is	75429	GAL			
FT_105	is	0.00	GPM	TOTAL E	LOW	is	847045	GAL			
FT_106	is	807	CFM	LIMITS	are	\mathbf{L} :	400	CFM	H :	1000	\mathbf{CFM}
PT_106	is	25.21	IWC	LIMITS	are	${f L}$:	15.00	IWC	H :	30.00	IWC
TT_400	is	82.3	\mathbf{DEG}	LIMITS	are	\mathbf{L} :	60.0	DEG	H :	105.0	\mathbf{DEG}
PT_400	is	6.1	IWC	LIMITS	are	\mathbf{L} :	1.0	IWC	H :	25.0	IWC
$\mathtt{TT}^{-}100$	is	57.7	\mathbf{DEG}	LIMITS	are	$\mathbf L$:	40.0	DEG	H:	120.0	\mathbf{DEG}

Analog Outputs:

INJSPD 0.0 PCT

ALARM Fax Report ProControl Series II+

EOS Research Ltd.

To:

TODD CARIGNAN

From:

SYSTEM IN LOCKHEED UTICA @ 21:38:04 ON 03/26/2011 : ROM 2.1996 : MODEL A2 THE ARCADIS GCTS SER NO 9539 : SETUP VER 1

System Status:

LAST SHUTDOWN @ 03:31:37 ON 03/26/2011 BY LSL100 SHUTD

FAX REPORT INITIATED BY PROCESS 32

Discrete Inputs:

MH1_HH is OFF	MH1_H2 is OFF	$\mathtt{MH1}\mathtt{H1}$ is ON	MH1_LO is ON
MH1_LL is ON	MH2HH is OFF	MH2 H2 is ON	MH2H1 is ON
MH2_LO is ON	$\mathtt{MH2}$ LL is ON	MH3_HH is OFF	MH3_H2 is OFF
MH3_H1 is OFF	$MH3_LO$ is OFF	MH3_LL is ON	WFS $\overline{1}$ 06 is OFF
MOTĪON is OFF	$\mathtt{LSH}\overline{1}\mathtt{06}$ is OFF	LSH $\overline{1}00$ is OFF	LSL100 is ON
PT 200 is OPP	TCUONO LE OPP		

Discrete Outputs:

MH1 P1 is OFF	MH1 P2 is OFF	MH2 P1 is OFF	MH2 P2 is OFF
$MH3^-P1$ is OFF	MH3P2 is OFF	${f B}$ ${f 1}{f 0}{f 0}$ is ON	DH $\overline{3}00$ is ON
MH1_HH is OFF	$\mathtt{FA}_\overline{1}\mathtt{01}$ is \mathtt{OFF}	$M\overline{H}2$ HH is OFF	FA_102 is ON
MH3_HH is OFF	FA_103 is OFF	$PA_\overline{1}06$ is OFF	\mathtt{LA}_100 is ON
LSH $\overline{1}$ 06 is OFF	$WF\overline{S}106$ is OFF	$\mathtt{TA} \overline{\mathtt{100}}$ is OFF	FA_105 is ON
FA_106 is OFF	FA_200 is OFF	$MO\overline{I}ION$ is OFF	$ extsf{TAH400}$ is OFF
$\overline{ ext{TAL}400}$ is OFF	\mathtt{PA}^{-400} is OFF	LSH200 is OFF	

Analog Inputs:

FT_101	is	0.00	GPM	TOTAL F	LOW	is	830901	GAL			
$FT^{-}102$	is	0.00	GPM	TOTAL F	LOW	is	180635	GAL			
FT_{103}	is	0.00	GPM	TOTAL F	LOW	is	75429	GAL			
$FT^{-}105$	is	0.00	GPM	TOTAL F	LOW	is	851989	GAL			
$FT^{-}106$	is	754	CFM	LIMITS	are	\mathbf{L} :	400	CFM	H :	1000	CFM
PT ⁻ 106	is	24.97	IWC	LIMITS	are	\mathbf{L} :	15.00	IWC	H :	30.00	IWC
${f TT}^{-}400$	is	92.9	DEG	LIMITS	are	\mathbf{L} :	60.0	\mathbf{DEG}	H :	105.0	\mathbf{DEG}
$PT^{-}400$	is	5.3	IWC	LIMITS	are	\mathbf{L} :	1.0	IWC	H :	25.0	IWC
TT_100	is	58.5	DEG	LIMITS	are	\mathbf{L} :	40.0	DEG	H :	120.0	\mathbf{DEG}

Analog Outputs:

INJSPD 0.0 PCT

Date:	3/23/2011	
Time:	15:00	
Technician:	CD	

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET						
Date:	3/23/11	Time:	6:47:00			
Alarm Con						
Process 42	/ LSH-100 (high	air stripper sum	ıp level)			
Cause of A	larm:					
High water	level in air stripp	er sump occurs	due to operating rang	ge between low and	high sump levels being	
too narrow.						
Corrective	Action:					
Restart syst	tem remotely on	3/23/11 at 11:4	2.			
Morntor 3y3	tem remotery.					
Permanent	corrective actior	n will involve rep	lacing currently instal	lled rigid level senso	LSH-100 with	
tethered me	echanical float to	provide greater	range for the water I	evel in the air strippe	er sump, which is	
required for	the gravity discl	harge and varyir	ng sump pressures as	ssociated with the sy	stem.	
'	<u> </u>	,		,		

ALARM Fax Report EOS Research Ltd. ProControl Series II+

To:

TODD CARIGNAN

From

SYSTEM IN LOCKHEED UTICA @ 23:53:58 ON 03/14/2011 : ROM 2.1996 : MODEL A2 THE ARCADIS GCTS

SER NO 9539 : SETUP VER 1

System Status:

LAST SHUTDOWN @ 00:43:32 ON 03/14/2011 BY LSL100 SHUTD

FAX REPORT INITIATED BY PROCESS 32

Discrete Inputs:

MH1_HH is OFF	MH1_H2 is OFF	MH1_H1 is ON	MH1_LO is ON
MH1LL is ON	MH2 HH is OFF	$MH2^{-}H2$ is OFF	MH2 H1 is OFF
MH2_LO is ON	MH2_LL is ON	MH3_HH is OFF	MH3H2 is OFF
MH3 ^T H1 is OFF	MH3LO is OFF	MH3LL is ON	WFS $\overline{1}$ 06 is OFF
$MOT\overline{I}ON$ is OFF	LSH $\overline{1}$ 06 is OFF	$\mathtt{LSH}\overline{1}00$ is OFF	LSL100 is ON
PT 200 is OPP	TCUSOO is OFF		

Discrete Outputs:

MH1 P1 is OFF	MH1 P2 is OFF	MH2 P1 is OFF	MH2 P2 is OFF
$MH3_P1$ is OFF	MH3P2 is OFF	${ t B_1\overline{0}0}$ is ON	$DH_{\overline{3}00}$ is $OH_{\overline{3}00}$
MH1_HH is OFF	$FA_\overline{1}01$ is OFF	$M\overline{H}2$ HH is OFF	FA_102 is OFF
MH3_HH is OFF	FA_103 is OFF	$PA_\overline{1}06$ is OFF	$\mathtt{LA} \overline{\mathtt{100}}$ is ON
LSH $\overline{1}$ 06 is OFF	$WF\overline{S}106$ is OFF	$\mathtt{TA} \overline{_} 100$ is OFF	FA_105 is OFF
FA_106 is OFF	FA_200 is OFF	$ exttt{MOTION}$ is OFF	$ extsf{TA}\overline{ extsf{H}}400$ is OFF
$\mathtt{TAL400}$ is OFF	PA^-400 is OFF	LSH200 is OFF	

Analog Inputs:

FT 101	is	0.00	\mathbf{GPM}	TOTAL I	FLOW	is	673070	${f GAL}$			
FT_102	is	0.00	GPM	TOTAL I	FLOW	is	150108	GAL			
FT_103	is	0.00	GPM	TOTAL I	FLOW	is	75425	GAL			
FT_105	is	0.00	GPM	TOTAL I	FLOW	is	687120	GAL			
FT_106	is	763	CFM	LIMITS	are	${f L}$:	400	CFM	H :	1000	CFM
PT_106	is	25.46	IWC	LIMITS	are	${f L}$:	15.00	IWC	H :	30.00	IWC
TT_400	is	77.4	\mathbf{DEG}	LIMITS	are	${f L}$:	60.0	DEG	H :	105.0	\mathbf{DEG}
PT_400	is	6.0	IWC	LIMITS	are	${f L}$:	1.0	IWC	H :	25.0	IWC
TT_100	is	57.8	\mathbf{DEG}	LIMITS	are	${f L}$:	40.0	\mathbf{DEG}	H :	120.0	\mathbf{DEG}

Analog Outputs:

INJSPD 0.0 PCT

 Date:
 3/14/2011

 Time:
 11:35

 Technician:
 CD

ALARM RESPONSE / CRITICAL DEVICE CORRECTIVE ACTION LOG SHEET						
Date: 3/14/11	Time:	6:30:00				
Alarm Condition / Critical D	Device Failure:					
Daily fax report did not occur	r.					
Cause of Alarm / Device Fa	ailure:					
Cause of fax failure related to	o recent re-configura	ation of control unit, as well as rec	ent plugging / unplugging			
of phone line.	_					
Corrective Action:						
Will implement as part of SO	Ps that the control u	nit is rebooted following any re-c	onfiguration of unit or			
adjustment of phone line con	nnections.					
		nit is rebooted following any re-co	ontiguration of unit or			

Date:	3/20/2011
Time:	15:00
Technician:	TC

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Date:	3/20/11 &	Time:	7:26 & (3:21 &	_	
_	3/26/11		21:38)	_	
Alarm Co	ndition:				
Process 3	2 / LSL-100 (low ai	r stripper	sump level)		
Cause of	Alarm:				
Low water	loval in air strippa	r eumn oo	cure due to operating	range between low and	high sump levels being
LOW Water	level ili ali strippei	Sump oc	curs due to operating	range between low and	Tilgit sump levels being
too narrow	<i>I</i> .				
Corrective	e Action:				
Restart sv	stem remotely on 3	3/20/11 at	12:49. on 3/26/11 at 9	9:37, and on 3/29/11 at	9:52.
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,	o.o., aa o o, <u>_</u> , a	<u>0.02.</u>
Monitor sy	stem remotely.				
Permanen	t corrective action	will involv	e replacing currently i	nstalled rigid level senso	or LSH-100 with
tethered m	nechanical float to p	orovide gr	eater range for the wa	ater level in the air stripp	per sump, which is
				es associated with the s	
roquirou it	or the gravity disent	argo aria	varying damp process	oo acconated with the c	yotom

Date:	3/23/2011	
Time:	15:00	
Technician:	CD	

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET								
Date:	3/23/11	Time:	6:47:00					
	larm Condition:							
1100000 127		an empper earn	,p 10101)					
Cause of Ala	arm:							
High water le	evel in air stripp	er sump occurs	due to operating rar	nge between low a	ınd high sump le	vels being		
too narrow.								
Corrective A	Action:							
Restart syste	em remotely on	3/23/11 at 11:42	2.					
Monitor syste	em remotely.							
Permanent c	corrective action	n will involve repl	lacing currently insta	alled rigid level sen	nsor LSH-100 wi	th		
tethered med	chanical float to	provide greater	range for the water	level in the air stri	pper sump, whic	ch is		
required for t	the gravity disch	narge and varyin	ng sump pressures a	associated with the	e system.			

Date:	6/12/2011	
Time:	11:30	
Technician:	TC	

ALARM	RESPONSE / CO	DRRECTIVE AC	CTION LOG SHEE		
Date:	6/11/11	Time:	16:52:58	<u>-</u>	
Ale C	ondition:	_			
Alarm C	onaition:				
Power O	utage				
Cause o	f Alarm:				
Power fa	ilure due to local	liahtnina storm	3		
. 5	3 33 10 10 10 101				
Correcti	ve Action:				
				40	
6/12/11 -	Log into system	remotely and re	estart system at 11:	40.	

ALARM Fax Report EOS Research Ltd. ProControl Series II+

To:

TODD CARIGNAN

From

SYSTEM IN LOCKHEED UTICA @ 11:47:03 ON 06/12/2011 : ROM 2.1996 : MODEL A2 THE ARCADIS GCTS SER NO 9539 : SETUP VER 1

System Status:

LAST SHUTDOWN @ 16:52:58 ON 06/11/2011 BY LSL100 AUTO P21:

FAX REPORT INITIATED BY REMOTE

Discrete Inputs:

MH1_HH is OFF	MH1_H2 is OFF	MH1_H1 is ON	MH1_LO is ON
MH1_LL is ON	MH2_HH is OFF	MH2H2 is OFF	MH2H1 is OFF
MH2_LO is ON	MH2_LL is ON	MH3 HH is OFF	MH3H2 is OFF
MH3_H1 is ON	$MH3_LO$ is ON	MH3_LL is ON	WFS $\overline{1}$ 06 is OFF
$\mathtt{MOT}\overline{\mathtt{ION}}$ is OFF	LSH $\overline{1}$ 06 is OFF	$\mathtt{LSH}\overline{1}00$ is OFF	LSL100 is ON
FT 200 is OFF	LSH200 is OFF		

Discrete Outputs:

MH1 P1 is OFF	MH1 P2 is OFF	MH2 P1 is OFF	MH2 P2 is OFF
MH3P1 is OFF		${ t B_1\overline 00}$ is ON	$DH_{\overline{3}}00$ is ON
LA_MH1 is OFF	$\mathtt{FA}_\overline{1}\mathtt{01}$ is \mathtt{OFF}	$L\overline{A}$ _MH2 is OFF	FA_102 is OFF
LA_MH3 is OFF		PA_106 is OFF	\mathtt{LA}_100 is OFF
$LS\overline{H}106$ is OFF		TA_100 is OFF	FA_105 is OFF
FA_106 is OFF	FA_200 is OFF	$ exttt{MOTION}$ is OFF	$ extsf{TAH400}$ is OFF
$ ext{TA}\overline{ ext{L}}400$ is ON	$PA^{-}400$ is OFF	LSH200 is OFF	

Analog Inputs:

FT_101	is	0.00	GPM	TOTAL F	LOW	is	51894665	GAL			
$FT^{-}102$	is	0.00	GPM	TOTAL F	LOW	is	9198545	GAL			
FT_{103}	is	0.00	GPM	TOTAL F	LOW	is	565324	GAL			
FT_105	is	0.00	GPM	TOTAL F	LOW	is	2299194	GAL			
PT_106	is	26.98	IWC	LIMITS	are	${f L}$:	15.00	IWC	H:	34.00	IWC
TT_400	is	57.9	\mathbf{DEG}	LIMITS	are	\mathbf{L} :	60.0	DEG	H:	110.0	\mathbf{DEG}
PT_400	is	10.1	IWC	LIMITS	are	${f L}$:	1.0	IWC	H:	25.0	IWC
TT_100	is	65.7	\mathbf{DEG}	LIMITS	are	\mathbf{L} :	40.0	DEG	H :	110.0	\mathbf{DEG}
FT_106	is	746.2	\mathbf{CFM}	LIMITS	are	${f L}$:	400.0	CFM	H :		\mathbf{CFM}

Analog Outputs:

INJSPD 0.0 PCT

Date:	6/13/2011
Time:	7:00
Technician:	TC

ALARM	RESPONSE / Co	ORRECTIVE A	CTION LOG SHEET	Γ			
Date:	6/12/11	Time:	19:16:49	- -			
Alarm C	ondition:						
Process	- 57 - Aggregate	low flowrate, F	T-105				
(Non-Fat	al Alarm)						
Cause o Most like 3 online.		elay in aggregat	te flowmeter registe	ring flow within 1	5 second time o	lelay period with o	nly MH-
6.14.11 -	ve Action: Inspect flow trar was a anomaly.		gger for to compare	aggregate flows	to MH-3 flows.	Appears that this a	alarm

ALARM Fax Report <u>ProControl Series II+</u>

EOS Research Ltd.

To:

TODD CARIGNAN

From

SYSTEM IN LOCKHEED UTICA @ 19:16:49 ON 06/12/2011 : ROM 2.1996 : MODEL A2 THE ARCADIS GCTS SER NO 9539 : SETUP VER 1

System Status:

LAST SHUTDOWN @ 11:57:15 ON 06/12/2011 BY TT_400 AUTO P57 : FAX REPORT INITIATED BY PROCESS 57

Discrete Inputs:

MH1_HH is OFF	$MH1_H2$ is OFF	$\mathtt{MH1}\mathtt{\underline{H1}}$ is OFF	MH1_LO is ON
$\mathtt{MH1_LL}$ is \mathtt{ON}	MH2_HH is OFF	MH2_H2 is OFF	MH2H1 is OFF
MH2_LO is ON	$MH2_LL$ is ON	MH3_HH is OFF	MH3 H2 is OFF
MH3 H1 is OFF	MH3LO is ON	MH3LL is ON	WFS $\overline{1}$ 06 is OFF
$\mathtt{MOT}\overline{\mathtt{ION}}$ is OFF	LSH $\overline{1}$ 06 is OFF	LSH $\overline{1}$ 00 is OFF	LSL100 is ON
ry 200 is Orr	LSH200 is OFF		

Discrete Outputs:

MH1 P1 is 0		MH1 P2 is	OFF	MH2 P1 i		MH2 P2		
$MH3_P1$ is (ON M	MH3_P2 is	OFF	$\mathbf{B}_{1}\mathbf{\overline{0}}0$	is ON	DH_{300}	is	ON
LA_MH1 is (OFF E	${ m FA}_{-}\overline{1}01$ is	OFF	$L\overline{A}_MH2$ i		FA_102		
LA_MH3 is (${ m TA} = 103$ is	OFF	PA_106 i	is OFF	LA_100	is	OFF
$LS\overline{H}106$ is ($VF\overline{S}106$ is	OFF	TA_100 i	is OFF	FA_105	is	ON
FA_106 is 0	OFF E	A_200 is	OFF	MOTION 1	is OFF	$TA\overline{H}400$	is	OFF
$\mathrm{TA}\overline{\mathrm{L}}400$ is (OFF P	$2A^{-}400$ is	OFF	LSH200 j	is OFF			

Analog Inputs:

FT_101	is	0.00	GPM	TOTAL E	LOW	is	51901642	GAL			
$FT^{-}102$	is	0.00	GPM	TOTAL E	LOW	is	9198545	GAL			
FT_{103}			GPM	TOTAL E	LOW	is	569890	GAL			
FT_105	is	6.93	GPM	TOTAL E	LOW	is	2310141	GAL			
PT_106	is	27.66	IWC	LIMITS	are	${f L}$:	15.00	IWC	H:	34.00	IWC
TT_400	is	61.3	\mathbf{DEG}	LIMITS	are	${f L}$:	60.0	DEG	H:	110.0	\mathbf{DEG}
PT_400	is	9.6	IWC	LIMITS	are	${f L}$:	1.0	IWC	H:	25.0	IWC
$\mathtt{TT}^{-}100$	is	69.4	\mathbf{DEG}	LIMITS	are	${f L}$:	40.0	\mathbf{DEG}	H:	110.0	\mathbf{DEG}
FT_106	is	671.2	\mathbf{CFM}	LIMITS	are	${f L}$:	400.0	CFM	H :		CFM

Analog Outputs:

INJSPD 1.3 PCT

Date:	6/12/2011
Time:	11:30
Technician:	TC

	• .	•				
ALARM	RESPONSE / CO	RRECTIVE A	CTION LOG SHEE	т		
Date:	6/12/11	Time:	11:51:00			
Date.	6/12/11		22:58:29	_		
	0, 12, 11	_	22.00.20	_		
Alarm C	Condition:	_		_		
Process	- 47 - Pre-Carbor	temperature a	alarm, TT-400			
Power fa	of Alarm: ailure due to local ture alarm.	lightning storm	s. Power outage to	duct heater MCP t	riggered a false inte	ernal duct heater
Correct	ive Action:					
6/12/11	- Log into system	remotely and [OZ onsite to inspect	duct heater and re	start system.	
					ture set point form 6 larm at duct heater I	
	-	<u>, , , , , , , , , , , , , , , , , , , </u>		·		
6/14/11	- Login to system	remotely and r	eset TT-400 low se	t point back to 60 F	. .	

ALARM Fax Report EOS Research Ltd. ProControl Series II+

TODD CARIGNAN

From

To:

SYSTEM IN LOCKHEED UTICA @ 11:51:00 ON 06/12/2011 : ROM 2.1996 : MODEL A2 THE ARCADIS GCTS SER NO 9539 : SETUP VER 1

System Status:

SHUTD P02 : LAST SHUTDOWN @ 16:52:58 ON 06/11/2011 BY LSL100

FAX REPORT INITIATED BY PROCESS 47

Discrete Inputs:

MH1_HH is OFF	MH1_H2 is OFF	$\mathtt{MH1}\mathtt{H1}$ is \mathtt{ON}	MH1_LO is ON
MH1LL is ON	MH2 HH is OFF	$MH2^{-}H2$ is OFF	MH2 H1 is OFF
MH2_LO is ON	MH2_LL is ON	MH3_HH is OFF	MH3H2 is OFF
MH3 ^T H1 is ON	MH3 LO is ON	MH3LL is ON	WFS $\overline{1}$ 06 is OFF
$\mathtt{MOT}\overline{\mathtt{ION}}$ is OFF	LSH $\overline{1}$ 06 is OFF	LSH $\overline{1}$ 00 is OFF	LSL100 is ON
ET 200 is OFF	TCUSOO is OFF		

Discrete Outputs:

MH1 P1 is	OFF	MH1 P2 is	off.	MH2 P1	is OFF	MH2 P2		
$MH3_P1$ is		MH3_P2 is		$\mathbf{B}_{-}1\overline{0}0$		$DH_{\overline{3}00}$	is	ON
$LA_\overline{M}H1$ is	OFF	$ extsf{FA} = \overline{1}01$ is	S OFF	LA_MH2		FA_102		
LA MH3 is		FA_103 is	S OFF	PA_106		LA_100	is	OFF
$LS\overline{H}106$ is		$WF\overline{S}106$ is	S OFF	TA_100	is OFF	FA_105	is	OFF
FA_106 is		FA_200 is	off.	MOTION	is OFF	$TA\overline{H}400$	is	OFF
$ ext{TA}\overline{ ext{L}}400$ is	ON	$PA^{-}400$ is	S OFF	LSH200	is OFF			

Analog Inputs:

FT_101	is	0.00	GPM	TOTAL F	LOW	is	51894665	GAL			
FT_102			GPM	TOTAL F	LOW	is	9198545	GAL			
FT_103	is	0.00	GPM	TOTAL F	LOW	is	565324	GAL			
$FT^{-}105$	is	0.00	GPM	TOTAL F	LOW	is	2299194	GAL			
PT_106	is	26.16	IWC	LIMITS .	are	\mathbf{L} :	15.00	IWC	H :	34.00	IWC
$TT^{-}400$	is	59.1	\mathbf{DEG}	LIMITS .	are	\mathbf{L} :	60.0	DEG	H :	110.0	\mathbf{DEG}
PT_400	is	10.6	IWC	LIMITS .	are	\mathbf{L} :	1.0	IWC	H :	25.0	IWC
$TT^{-}100$	is	65.9	\mathbf{DEG}	LIMITS .	are	\mathbf{L} :	40.0	DEG	H :	110.0	\mathbf{DEG}
FT_106	is	751.3	\mathbf{CFM}	LIMITS .	are	\mathbf{L} :	400.0	CFM	H :		CFM

Analog Outputs:

INJSPD 0.0 PCT

ALARM Fax Report <u>ProControl Series II+</u>

EOS Research Ltd.

To:

TODD CARIGNAN

From

SYSTEM IN LOCKHEED UTICA @ 22:58:29 ON 06/12/2011 : ROM 2.1996 : MODEL A2 THE ARCADIS GCTS SER NO 9539 : SETUP VER 1

System Status:

SHUTD P-1: LAST SHUTDOWN @ 11:57:15 ON 06/12/2011 BY TT_400

FAX REPORT INITIATED BY PROCESS 47

Discrete Inputs:

MH1 HH is OFF	MH1 H2 is OFF	MH1 H1 is ON	MH1 LO is ON
$\mathtt{MH1}^{-}\mathtt{LL}$ is ON	$\mathtt{MH2}^{-}\mathtt{HH}$ is OFF	MH2H2 is OFF	MH2H1 is OFF
MH2_LO is ON	$\mathtt{MH2_LL}$ is \mathtt{ON}	MH3HH is OFF	MH3_H2 is OFF
MH3_H1 is OFF	MH3_LO is ON	MH3LL is ON	WFS $\overline{1}06$ is OFF
$\mathtt{MOT}\overline{\mathtt{ION}}$ is OFF	$\mathtt{LSH}\overline{1}\mathtt{06}$ is OFF	$\mathtt{LSH}\overline{1}\mathtt{00}$ is OFF	LSL100 is ON
FT 200 is OFF	LSH200 is OFF		

Discrete Outputs:

MH1 P1 is OFF	MH1 P2 is OFF	MH2 P1 is OFF	MH2 P2 is OFF
MH3P1 is OFF	MH3P2 is OFF	${ t B_1\overline 00}$ is ON	$DH_{\overline{3}}00$ is ON
LA_MH1 is OFF	$\mathtt{FA}_\overline{1}\mathtt{01}$ is \mathtt{OFF}	$L\overline{A}$ _MH2 is OFF	FA_102 is OFF
LA_MH3 is OFF		PA_106 is OFF	\mathtt{LA}_100 is OFF
$LS\overline{H}106$ is OFF		$\mathtt{TA} \overline{_} 100$ is OFF	FA_105 is ON
FA_106 is OFF	FA_200 is OFF	$MO\overline{ ext{T}}ION$ is OFF	$ extsf{TAH400}$ is OFF
$ ext{TA}\overline{ ext{L}}400$ is ON	\mathtt{PA}^{-400} is OFF	LSH200 is OFF	

Analog Inputs:

FT 101	is	0.00	GPM	TOTAL E	LOW	is	51901795	GAL			
FT_{102}	is	0.00	GPM	TOTAL E	LOW	is	9198545	GAL			
FT_{103}	is	0.00	GPM	TOTAL E	LOW	is	570603	GAL			
FT_{105}	is	0.00	GPM	TOTAL E	LOW	is	2310518	GAL			
PT_106	is	26.95	IWC	LIMITS	are	\mathbf{L} :	15.00	IWC	H :	34.00	IWC
$TT^{-}400$	is	57.0	\mathbf{DEG}	LIMITS	are	${f L}$:	60.0	\mathbf{DEG}	H :	110.0	\mathbf{DEG}
PT_400	is	10.4	IWC	LIMITS	are	\mathbf{L} :	1.0	IWC	H :	25.0	IWC
$TT^{-}100$	is	67.3	\mathbf{DEG}	LIMITS	are	${f L}$:	40.0	\mathbf{DEG}	H :	110.0	\mathbf{DEG}
FT_106	is	727.6	CFM	LIMITS	are	\mathbf{L} :	400.0	CFM	H :		CFM

Analog Outputs:

INJSPD 0.0 PCT

Date:	6/13/2011	
Time:	9:30	
Technician:	TC	

ALANIVI	KESPONSE / CC	ARECTIVE AC	TION LOG SHEET		
Date:	6/13/11	Time:	8:10:06		
Alarm C	ondition:				
Process	- 53 - Sequesterir	ng agent low flo	w, FT-200		
(Non-Fat	al Alarm)				
Cause o	f Alarm:				
Pump los	st prime.				
Correcti	ve Action:				
bubble w		unction line of th	ne pump. DZ manu	agent drum is approx. 1/3 full. However, a large air lly primed the chemcial feed pump until the air bub	
			7-		

ALARM Fax Report ProControl Series II+

EOS Research Ltd.

To:

TODD CARIGNAN

From

SYSTEM IN LOCKHEED UTICA @ 08:10:06 ON 06/13/2011 : ROM 2.1996 : MODEL A2 THE ARCADIS GCTS SER NO 9539 : SETUP VER 1

System Status:

LAST SHUTDOWN @ 07:03:26 ON 06/13/2011 BY TT_400 AUTO P53 :

FAX REPORT INITIATED BY PROCESS 53

Discrete Inputs:

MH1 HH is OFF	MH1 H2 is OFF	MH1 H1 is ON	MH1 LO is ON
$\mathtt{MH1}^{-}\mathtt{LL}$ is ON	$\mathtt{MH2}^{-}\mathtt{HH}$ is OFF	MH2H2 is OFF	MH2H1 is OFF
MH2_LO is ON	$MH2_LL$ is ON	MH3_HH is OFF	MH3_H2 is OFF
MH3_H1 is OFF	MH3_LO is ON	$MH3_LL$ is ON	WFS $\overline{1}06$ is OFF
$MOT\overline{I}ON$ is OFF	$\mathtt{LSH}\overline{1}\mathtt{06}$ is OFF	$\mathtt{LSH}\overline{1}00$ is OFF	LSL100 is ON
FT 200 is ON	LSH200 is OFF		

Discrete Outputs:

MH1 P1 is	ON	MH1 P2 is	s OFF	MH2 P1	is	ON	MH2 P2		
$MH3_P1$ is		MH3_P2 is		$\mathbf{B}_{1}\mathbf{\overline{0}}0$			$DH_{\overline{3}00}$	is	ON
LA_MH1 is	OFF	$FA_\overline{1}01$ is	s OFF	$L\overline{A}_MH2$			FA_102		
LA MH3 is		FA_103 is	s OFF	PA_106	is	OFF	LA_100	is	OFF
$LS\overline{H}106$ is		WFS106 is		TA_100	is	OFF	FA_105	is	OFF
FA_106 is		FA_200 is	s ON	MOTION	is	OFF	$TA\overline{H}400$	is	OFF
$ ext{TA}\overline{ ext{L}}400$ is	OFF	PA 400 is	s OFF	LSH200	is	OFF			

Analog Inputs:

FT_101	is	38.97	GPM	TOTAL F	LOW	is	51904196	GAL			
$FT^{-}102$	is	17.92	GPM	TOTAL F	LOW	is	9199663	GAL			
FT_{103}	is	19.73	GPM	TOTAL F	LOW	is	571934	GAL			
$FT^{-}105$	is	71.18	GPM	TOTAL F	LOW	is	2315148	GAL			
$PT^{-}106$	is	30.56	IWC	LIMITS	are	\mathbf{L} :	15.00	IWC	H :	34.00	IWC
$TT^{-}400$	is	57.1	\mathbf{DEG}	LIMITS	are	$\mathbf L$:	50.0	DEG	H :	110.0	\mathbf{DEG}
PT_400	is	8.1	IWC	LIMITS	are	\mathbf{L} :	1.0	IWC	H:	25.0	IWC
$\mathtt{TT}^{-}100$	is	67.3	\mathbf{DEG}	LIMITS	are	$\mathbf L$:	40.0	DEG	H :	110.0	\mathbf{DEG}
FT_106	is	539.7	\mathbf{CFM}	LIMITS	are	\mathbf{L} :	400.0	CFM	H :		CFM

Analog Outputs:

INJSPD 11.0 PCT

Date:	6/20/2011
Time:	12:00
Technician:	TC

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Date:	6/20/11	Time:	9:42:17		
_	6/22/11		12:58:00	_	
_	6/23/11		9:25:59	- -	
Alarm C	ondition:				
Process	- 53 - Sequesteri	ng agent low flo	w alarm FA-200 v	a transmitter FT-200.	
 = .					
(Non-Fat	al Alarm)				
(Non-Fat	al Alarm)				 _

Cause of Alarm:

Pump has lost prime or flowrate has been reduced.

Corrective Action:

6/20/11 - DZ onsite to Inspect alarm condition. Sequestering agent drum is approx. 1/3 full. No air bubble noted in the suction line of the pump. DZ manually re-primes the chemical feed pump and alarm is cleared.

6/22/11 - Alarm returned - DZ onsite to Inspect alarm condition. Sequestering agent drum is approx. 1/3 full. No air bubble noted in the suction line of the pump. DZ manually re-primes the chemical feed pump and alarm is cleared but returns after returning to external mode whether being call to pump by PLC or not? Inspect priming bleed valve for proper operation, observed adjustment knob broken off, however valve still appears to operational and can be adjust with pliers. Following several failed attempts to clear flow alarm condition following SOP and manufacturers troubleshooting sections ARCADIS contacted Aries Chemical to ask for troubleshooting assistance and also to order a replacement multifunction valve. Aries Chemical discussed the alarm condition with the onsite ARCADIS personnel and was unable to determine any obvious reasons why the alarm would not clear?

6/23/11 - Looking into if Aries Chemical can provide a technician tomorrow to come out to the site to look at the pump and flow monitoring device. In addition, we are planning on temporarily taking the pump offline to inspect the discharge tubing and injection port for fouling/partial blockage that may be reducing the flow and triggering the alarm condition.

ALARM Fax Report <u>ProControl Series II+</u>

EOS Research Ltd.

To:

TODD CARIGNAN

From

SYSTEM IN LOCKHEED UTICA @ 09:25:59 ON 06/23/2011 : ROM 2.1996 : MODEL A2 THE ARCADIS GCTS SER NO 9539 : SETUP VER 1

System Status:

LAST SHUTDOWN @ 07:03:26 ON 06/13/2011 BY TT_400 AUTO P53 : FAX REPORT INITIATED BY PROCESS 53

Discrete Inputs:

MH1_HH is OFF	$MH1_H2$ is OFF	$\mathtt{MH1}\mathtt{\underline{H1}}$ is OFF	MH1_LO is ON
MH1_LL is ON	MH2_HH is OFF	MH2_H2 is OFF	MH2H1 is OFF
MH2_LO is ON	$MH2_LL$ is ON	MH3_HH is OFF	MH3 H2 is OFF
MH3 H1 is OFF	MH3LO is ON	MH3LL is ON	WFS $\overline{1}$ 06 is OFF
$\mathtt{MOT}\overline{\mathtt{ION}}$ is OFF	$\mathtt{LSH}\overline{1}\mathtt{06}$ is OFF	LSH $\overline{1}$ 00 is OFF	LSL100 is ON
ET 200 is ON	LCH200 is OFF		

Discrete Outputs:

MH1 P1 is	OFF	MH1 P2 is	s OFF	MH2 P1 :	is OFF	MH2 P2		
$MH3_P1$ is		MH3_P2 is		$\mathbf{B}_{1}\mathbf{\overline{0}}0$		$DH_{\overline{3}00}$	is	ON
LA_MH1 is	OFF	$FA_\overline{1}01$ is	s OFF	LA_MH2 :		FA_102		
LA MH3 is		FA_103 is	s OFF	PA_106 :		LA_100	is	OFF
$LS\overline{H}106$ is		WFS106 is		TA_100 :	is OFF	FA_105	is	OFF
FA_106 is		FA_200 is	s ON	MOTION :	is OFF	$TA\overline{H}400$	is	OFF
$ ext{TA}\overline{ ext{L}}400$ is	OFF	PA 400 is	s OFF	LSH200 :	is OFF			

Analog Inputs:

FT_101	is	0.00	GPM	TOTAL E	LOW	is	51964584	GAL			
$FT^{-}102$	is	0.00	GPM	TOTAL E	LOW	is	9209851	GAL			
FT_{103}	is	20.46	GPM	TOTAL E	LOW	is	609214	GAL			
FT_105	is	19.66	GPM	TOTAL E	LOW	is	2416889	GAL			
PT ⁻ 106	is	27.41	IWC	LIMITS	are	${f L}$:	15.00	IWC	H:	34.00	IWC
TT_400	is	80.3	\mathbf{DEG}	LIMITS	are	${f L}$:	60.0	DEG	H:	110.0	\mathbf{DEG}
PT_400	is	9.0	IWC	LIMITS	are	${f L}$:	1.0	IWC	H:	25.0	IWC
TT_100	is	70.0	\mathbf{DEG}	LIMITS	are	${f L}$:	40.0	DEG	H :	110.0	\mathbf{DEG}
FT_106	is	686.5	\mathbf{CFM}	LIMITS	are	${f L}$:	400.0	CFM	H :		\mathbf{CFM}

Analog Outputs:

INJSPD 3.2 PCT

ALARM Fax Report

EOS Research Ltd.

ProControl Series II+

To:

TODD CARIGNAN

From

THE ARCADIS GCTS SYSTEM IN LOCKHEED UTICA @ 12:58:00 ON 06/22/2011 SER NO 9539 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P53: LAST SHUTDOWN @ 07:03:26 ON 06/13/2011 BY TT_400

FAX REPORT INITIATED BY PROCESS 53

Discrete Inputs:

MH1 HH is OFF	MH1 H2 is OFF	MH1 H1 is OFF	MH1 LO is ON
$\mathtt{MH1_LL}$ is \mathtt{ON}	$\mathtt{MH2}$ HH is OFF	MH2H2 is OFF	$MH2_H1$ is OFF
MH2_LO is ON	$\mathtt{MH2_LL}$ is \mathtt{ON}	MH3HH is OFF	MH3_H2 is OFF
MH3_H1 is OFF	$MH3_LO$ is OFF	$MH3_LL$ is ON	WFS $\overline{1}$ 06 is OFF
$MOT\overline{I}ON$ is OFF	$\mathtt{LSH}\overline{1}\mathtt{06}$ is OFF	$\mathtt{LSH}\overline{1}\mathtt{00}$ is OFF	LSL100 is ON
FT 200 is ON	LSH200 is OFF		

Discrete Outputs:

MH1 P1 is	OFF	MH1 P2 is	s OFF	MH2 P1	is OFF	MH2 P2		
$MH3_P1$ is		MH3_P2 is		$\mathbf{B}_{-}1\overline{0}0$		$DH_{\overline{3}00}$	is	ON
$LA_\overline{M}H1$ is	OFF	$FA_\overline{1}01$ is	s OFF	LA_MH2		FA_102		
LA MH3 is		FA_103 is	s OFF	PA_106		LA_100	is	\mathbf{OFF}
$LS\overline{H}106$ is		WFS106 is		TA_100	is OFF	FA_105	is	OFF
FA_106 is		FA_200 is	s ON	MOTION	is OFF	$TA\overline{H}400$	is	\mathbf{OFF}
$ ext{TA}\overline{ ext{L}}400$ is	OFF	PA 400 is	s OFF	LSH200	is OFF			

Analog Inputs:

FT 101	is	0.00	GPM	TOTAL B	FLOW	is	51956063	GAL			
$FT^{-}102$	is	0.00	GPM	TOTAL B	FLOW	is	9207440	GAL			
FT_{103}	is	0.00	GPM	TOTAL B	FLOW	is	601360	GAL			
$FT^{-}105$	is	0.00	GPM	TOTAL B	FLOW	is	2398642	GAL			
PT_106	is	25.98	IWC	LIMITS	are	${f L}$:	15.00	IWC	H :	34.00	IWC
${f TT}^{-}400$	is	79.8	\mathbf{DEG}	LIMITS	are	${f L}$:	60.0	\mathbf{DEG}	H :	110.0	\mathbf{DEG}
PT_400	is	10.3	IWC	LIMITS	are	${f L}$:	1.0	IWC	H :	25.0	IWC
$\mathtt{TT}^{-}100$	is	70.7	\mathbf{DEG}	LIMITS	are	${f L}$:	40.0	\mathbf{DEG}	H :	110.0	\mathbf{DEG}
FT_106	is	725.0	\mathbf{CFM}	LIMITS	are	${f L}$:	400.0	CFM	H :		CFM

Analog Outputs:

INJSPD 0.0 PCT PRO

ALARM Fax Report ProControl Series II+

EOS Research Ltd.

To:

TODD CARIGNAN

From

SYSTEM IN LOCKHEED UTICA @ 09:42:17 ON 06/20/2011 : ROM 2.1996 : MODEL A2 THE ARCADIS GCTS

SER NO 9539 : SETUP VER 1

System Status:

LAST SHUTDOWN @ 07:03:26 ON 06/13/2011 BY TT_400 AUTO P53 :

FAX REPORT INITIATED BY PROCESS 53

Discrete Inputs:

MH1_HH is OFF	MH1_H2 is OFF	$\mathtt{MH1}_\mathtt{H1}$ is OFF	MH1_LO is ON
MH1LL is ON	MH2 HH is OFF	MH2H2 is OFF	MH2 H1 is OFF
MH2_LO is ON	MH2_LL is ON	MH3_HH is OFF	MH3H2 is OFF
MH3 ^T H1 is OFF	MH3 LO is ON	MH3LL is ON	WFS $\overline{1}$ 06 is OFF
$MOT\overline{I}ON$ is OFF	LSH $\overline{1}$ 06 is OFF	$\mathtt{LSH}\overline{1}00$ is OFF	LSL100 is ON
ET 200 is ON	TCUSOO is OFF		

Discrete Outputs:

MH1 P1 is	OFF	MH1 P2 is	OFF	MH2 P1	is	OFF	MH2 P2		
$MH3_P1$ is	OFF	MH3P2 is		$\mathbf{B}_{-}1\overline{0}0$			DH_{300}	is	ON
$LA_\overline{M}H1$ is	OFF	$ ext{FA} = \overline{1}01$ is	OFF	LA_MH2	is		FA_102		
LA MH3 is		FA_103 is	OFF	PA_106	is	OFF	LA_100	is	OFF
$LS\overline{H}106$ is		$WF\overline{S}106$ is		TA_100	is	OFF	FA_105	is	OFF
FA_106 is		FA_200 is	ON	MOTION			$TA\overline{H}400$	is	OFF
$\overline{\mathtt{TAL400}}$ is	OFF	$PA^{-}400$ is	OFF	LSH200	is	OFF			

Analog Inputs:

FT_101 .	is	0.00	GPM	TOTAL 1	FLOW	is	51945850	GAL			
FT ⁻ 102	is	18.88	GPM	TOTAL 1	FLOW	is	9206987	GAL			
FT_103 .	is	0.00	GPM	TOTAL 1	FLOW	is	594341	GAL			
FT ⁻ 105	is	11.17	GPM	TOTAL 1	FLOW	is	2382622	GAL			
PT_106	is	27.35	IWC	LIMITS	are	\mathbf{L} :	15.00	IWC	H :	34.00	IWC
$\mathbf{T}\mathbf{T}^{-}400$.	is	76.4	DEG	LIMITS	are	${f L}$:	60.0	\mathbf{DEG}	H :	110.0	\mathbf{DEG}
PT_400	is	8.9	IWC	LIMITS	are	\mathbf{L} :	1.0	IWC	H :	25.0	IWC
TT ⁻ 100	is	72.8	DEG	LIMITS	are	${f L}$:	40.0	\mathbf{DEG}	H :	110.0	\mathbf{DEG}
FT_106 .	is	648.1	CFM	LIMITS	are	\mathbf{L} :	400.0	CFM	H :		CFM

Analog Outputs:

INJSPD 1.7 PCT

Date:	6/24/2011
Time:	17:25
Technician:	TC

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Date:	6/20/11	Time:	9:42:17
	6/22/11	_	12:58:00
	6/23/11		9:25:59

Alarm Condition:

(Non-Fatal Alarm)

Process - 53 - Sequestering agent low flow alarm FA-200 via transmitter FT-200.	

Cause of Alarm:

Pump has lost prime or flowrate has been reduced.

Corrective Action:

6/20/11 - DZ onsite to Inspect alarm condition. Sequestering agent drum is approx. 1/3 full. No air bubble noted in the suction line of the pump. DZ manually re-primes the chemical feed pump and alarm is cleared.

6/22/11 - Alarm returned - DZ onsite to Inspect alarm condition. Sequestering agent drum is approx. 1/3 full. No air bubble noted in the suction line of the pump. DZ manually re-primes the chemical feed pump and alarm is cleared but returns after returning to external mode whether being call to pump by PLC or not? Inspect priming bleed valve for proper operation, observed adjustment knob broken off, however valve still appears to operational and can be adjust with pliers. Following several failed attempts to clear flow alarm condition following SOP and manufacturers troubleshooting sections ARCADIS contacted Aries Chemical to ask for troubleshooting assistance and also to order a replacement multifunction valve. Aries Chemical discussed the alarm condition with the onsite ARCADIS personnel and was unable to determine any obvious reasons why the alarm would not clear?

6/23/11 - Looking into if Aries Chemical can provide a technician tomorrow to come out to the site to look at the pump and flow monitoring device. In addition, we are planning on temporarily taking the pump offline to inspect the discharge tubing and injection port for fouling/partial blockage that may be reducing the flow and triggering the alarm condition.

6/24/11 - Inspect injection tubing and port, identify fouling (sequestering agent solidified/crystallized) within injection port where it line ties into manifold. Clean and reinstall. Cleared alarm but it reoccurred after a few cycles. Discuss pump settings with Aries Chemical and they pointed out that we should adjust(decrease sensitivity) the alarm setpoint (i.e. if no or lesser flow is detected after 8 continuous cycles the internal flow alarm (E2) is triggered). The reason Aries recommended this is because this system is a batch type with varying dosing rates, thus we do not have a continuous flow and/or flowrate passing through the flow monitoring device, which Aries believes may be triggering the E2 alarm. Corrective action was to adjust low flow setpoint alarm from the factory default value of 8 to 50 cycles (Note: full alarm set point range is 8 to 220 cycles). Alarm cleared and pump operated alarm free for several cycles.

ALARM Fax Report ProControl Series II+

EOS Research Ltd.

To:

TODD CARIGNAN

From

SYSTEM IN LOCKHEED UTICA @ 13:14:53 ON 06/24/2011 : ROM 2.1996 : MODEL A2 THE ARCADIS GCTS SER NO 9539 : SETUP VER 1

System Status:

LAST SHUTDOWN @ 10:54:37 ON 06/24/2011 BY LSL100 AUTO P53 : FAX REPORT INITIATED BY PROCESS 53

Discrete Inputs:

MH1_HH is OFF	$MH1_H2$ is OFF	$\mathtt{MH1}\mathtt{\underline{H1}}$ is OFF	$\mathtt{MH1_LO}$ is \mathtt{ON}
MH1 LL is ON	MH2HH is OFF	MH2H2 is OFF	$MH2^-H1$ is OFF
MH2_LO is ON	$\mathtt{MH2_LL}$ is \mathtt{ON}	MH3_HH is OFF	MH3_H2 is OFF
MH3 H1 is OFF	MH3LO is ON	MH3LL is ON	WFS $\overline{1}$ 06 is OFF
$\mathtt{MOT}\overline{\mathtt{ION}}$ is OFF	$\mathtt{LSH}\overline{1}\mathtt{06}$ is ON	$\mathtt{LSH}\overline{1}00$ is OFF	LSL100 is ON
ET 200 is ON	LSU200 is OFF		

Discrete Outputs:

MH1 P1 is OFF	MH1 P2 is OFF	MH2 P1 is OFF	MH2 P2 is OFF
MH3P1 is OFF	MH3_P2 is ON	$\mathrm{B}_{-}1\overline{0}0$ is ON	$DH_{\overline{3}00}$ is ON
$LA_\overline{M}H1$ is OFF	$\mathtt{FA}_\overline{1}\mathtt{01}$ is \mathtt{OFF}	$L\overline{A}$ _MH2 is OFF	FA_102 is OFF
LA_MH3 is OFF	FA_103 is OFF	PA_106 is OFF	\mathtt{LA}_100 is OFF
$LS\overline{H}106$ is ON	$\overline{\text{WFS}}$ 106 is OFF	$\mathtt{TA} \overline{100}$ is OFF	FA_105 is OFF
FA_106 is OFF	FA_200 is ON	$ exttt{MOTION}$ is OFF	$ extsf{TA}\overline{ extsf{H}}400$ is OFF
$ ext{TAL}400$ is OFF	\mathtt{PA}^{-400} is OFF	LSH200 is OFF	

Analog Inputs:

FT_101	is	0.00	GPM	TOTAL I	FLOW	is	51975808	GAL			
FT_102			GPM	TOTAL I	FLOW	is	9212057	GAL			
$FT^{-}103$	is	20.42	GPM	TOTAL I	FLOW	is	615548	GAL			
$FT^{-}105$	is	20.39	GPM	TOTAL I	FLOW	is	2435722	GAL			
PT_106	is	26.95	IWC	LIMITS	are	\mathbf{L} :	15.00	IWC	H :	34.00	IWC
${f TT}^{-}400$	is	81.5	\mathbf{DEG}	LIMITS	are	${f L}$:	60.0	\mathbf{DEG}	H :	110.0	\mathbf{DEG}
PT_400	is	8.6	IWC	LIMITS	are	\mathbf{L} :	1.0	IWC	H :	25.0	IWC
$\mathtt{TT}^{-}100$	is	73.3	\mathbf{DEG}	LIMITS	are	${f L}$:	40.0	\mathbf{DEG}	H :	110.0	\mathbf{DEG}
FT_106	is	616.7	CFM	LIMITS	are	${f L}$:	400.0	CFM	H :		CFM

Analog Outputs:

INJSPD 2.9 PCT

Date:	7/13/2011
Time:	13:30
Technician:	CD

ALAKIVI	RESPONSE / CO	ORRECTIVE AC	TION LOG SHEE	
Date: _	7/9/11	Time:	6:58:00	·
Alarm Co	ondition:			
Low level	in the air strippe	er sump.		
Cause of	Alarm:			
of actual	site conditions.	The low level se	nsor, as well as the	screte inputs to change to the OFF position, regardless three low-low level floats for the three pumping on; not consistent with actual site conditions.
Correctiv	e Action:			
System re	estarted at 8:56	on 7/11/11.		

To:

TODD CARIGNAN

From:

THE ARCADIS GCTS SYSTEM IN LOCKHEED UTICA @ 10:30:00 ON 07/11/2011 SER NO 9539 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P25 : LAST SHUTDOWN @ 07:08:32 ON 07/09/2011 BY LSL100

Discrete Inputs:

MH1 HH is OFF	MH1 H2 is OFF	MH1 H1 is ON	MH1 LO is ON
MH1_LL is ON	$\mathtt{MH2}$ HH is OFF	MH2H2 is OFF	MH2H1 is OFF
MH2_LO is ON	$\mathtt{MH2_LL}$ is \mathtt{ON}	MH3_HH is OFF	MH3_H2 is OFF
MH3 H1 is ON	MH3_LO is ON	MH3LL is ON	WFS $\overline{1}$ 06 is OFF
$\mathtt{MOT}\overline{\mathtt{ION}}$ is OFF	LSH $\overline{1}$ 06 is OFF	$\mathtt{LSH}\overline{1}\mathtt{00}$ is OFF	LSL100 is ON
FT_200 is OFF	LSH200 is OFF		

Discrete Outputs:

MH1_P1 is ON	$MH1_P2$ is OFF	MH2_P1 is ON	MH2_P2 is OFF
MH3_P1 is ON	MH3_P2 is ON	$\mathrm{B}_1\overline{\mathrm{0}}\mathrm{0}$ is ON	$DH_{\overline{3}00}$ is $OH_{\overline{3}00}$
LA_MH1 is OFF	$\mathtt{FA}_\overline{1}\mathtt{01}$ is \mathtt{OFF}	$L\overline{A}$ _MH2 is OFF	FA_102 is OFF
LA_MH3 is OFF	FA_103 is OFF	PA_106 is OFF	LA_100 is OFF
$LS\overline{H}106$ is OFF	$\overline{\text{WFS}106}$ is OFF	$\mathtt{TA} \overline{100}$ is OFF	FA_105 is OFF
FA_106 is OFF	FA_200 is OFF	$ exttt{MOTION}$ is OFF	$ extsf{TA}\overline{ extsf{H}}400$ is OFF
TALA00 is OFF	$PA^{-}A00$ is OFF	LSH200 is OFF	

Analog Inputs:

FT_101	is	40.05	GPM	TOTAL I	FLOW	is	52088804	GAL			
FT_102	is	17.63	GPM	TOTAL I	FLOW	is	9232128	GAL			
FT_103	is	25.64	GPM	TOTAL I	FLOW	is	680968	GAL			
FT_105	is	78.69	GPM	TOTAL I	FLOW	is	2622950	GAL			
PT_106			IWC	LIMITS	are	${f L}$:	15.00	IWC	H :	34.00	IWC
TT_400	is	62.1	\mathbf{DEG}	LIMITS	are	\mathbf{L} :	60.0	DEG	H :	110.0	\mathbf{DEG}
PT_400	is	6.6	IWC	LIMITS	are	${f L}$:	1.0	IWC	H :	25.0	IWC
TT_100			\mathbf{DEG}	LIMITS	are	\mathbf{L} :	40.0	DEG	H :	110.0	\mathbf{DEG}
FT_106	is	509.6	\mathbf{CFM}	LIMITS	are	${f L}$:	400.0	CFM	H :		\mathbf{CFM}

Analog Outputs:

INJSPD 11.6 PCT PRO

Date:	7/13/2011	
Time:	13:35	
Technician:	CD	

ALARM I	RESPONSE / CO	ORRECTIVE AC	CTION LOG SHEE	Г			
Date: _	7/12/11	Time:	22:13:00	- -			
Alarm Co	ondition:						
Low pre-	carbon temperat	ure.					
Cause of	Alarm:						
be presse			ier. Even though sy ollowing a power re		arted remotel	y, a local reset	button must
			temperature alarmet of duct heater.	temporarily cha	anged from 6	0 F to 50 F whi	le site visit is

To:

TODD CARIGNAN

From

THE ARCADIS GCTS SYSTEM IN LOCKHEED UTICA @ 13:30:00 ON 07/13/2011 SER NO 9539 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P21: LAST SHUTDOWN @ 22:23:14 ON 07/12/2011 BY TT_400

Discrete Inputs:

MH1 HH is OFF	MH1 H2 is OFF	MH1 H1 is OFF	MH1 LO is ON
$\mathtt{MH1}^-\mathtt{LL}$ is ON	MH2 HH is OFF	$MH2\overline{}H2$ is OFF	MH2H1 is OFF
MH2_LO is ON	$MH2_LL$ is ON	MH3HH is OFF	MH3_H2 is OFF
MH3_H1 is ON	MH3LO is ON	MH3LL is ON	WFS $\overline{1}06$ is OFF
$\mathtt{MOT}\overline{\mathtt{ION}}$ is OFF	LSH $\overline{1}$ 06 is OFF	$\mathtt{LSH}\overline{1}\mathtt{00}$ is OFF	LSL100 is ON
FT_200 is OFF	LSH200 is OFF		

Discrete Outputs:

MH1 P1 is ON	MH1 P2 is OFF	MH2 P1 is OFF	MH2 P2 is OFF
MH3_P1 is ON	$MH3_P2$ is OFF	${ t B_1\overline{0}0}$ is ON	$DH_{\overline{3}}00$ is ON
LA_MH1 is OFF	$\mathtt{FA}_\overline{1}\mathtt{01}$ is \mathtt{OFF}	$L\overline{A}$ _MH2 is OFF	FA_102 is OFF
LA_MH3 is OFF	FA_103 is OFF	PA_106 is OFF	LA_100 is OFF
$LS\overline{H}106$ is OFF	$WF\overline{S}106$ is OFF	$\mathtt{TA} \overline{\mathtt{100}}$ is OFF	FA_105 is OFF
FA_106 is OFF	FA_200 is OFF	MOTION is OFF	$ extsf{TA}\overline{ extsf{H}}400$ is OFF
TATAOO is OFF	DB 400 is OFF	LGH200 is OFF	

Analog Inputs:

FT_101	is	39.32	GPM	TOTAL 1	FLOW	is	52106478	GAL			
FT_102	is	0.00	GPM	TOTAL 1	FLOW	is	9232868	GAL			
FT_103	is	23.37	GPM	TOTAL 1	FLOW	is	690310	GAL			
FT_105	is	59.00	GPM	TOTAL 1	FLOW	is	2649868	GAL			
PT_106			IWC	LIMITS	are	${f L}$:	15.00	IWC	H :	34.00	IWC
TT_400	is	62.6	DEG	LIMITS	are	${f L}$:	50.0	\mathbf{DEG}	H :	110.0	\mathbf{DEG}
PT_400	is	7.0	IWC	LIMITS	are	${f L}$:	1.0	IWC	H :	25.0	IWC
TT_100			DEG	LIMITS	are	${f L}$:	40.0	DEG	H :	110.0	\mathbf{DEG}
FT_106	is	555.1	\mathbf{CFM}	LIMITS	are	${f L}$:	400.0	CFM	H :		CFM

Analog Outputs:

9.0 PCT PRO INJSPD

Date:	7/19/2011
Time:	9:30
Technician:	TC

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Date:	7/18/11	Time:	17:41:54			
_	7/19/11	_	6:34:08	_		
_		·		_		
Alarm Co	ondition:					
Process 5	57 - Low Flow Ag	gregate				
Process 3	29 - Low Flow Mi	- 1₋1				
1 100033 2	19 - LOW I IOW IVII	1-1				
Cause of	Alarm:					
Scaling o	n flowmeter pado	dlewheel senso	r.			
Corroctiv	e Action:					
Correctiv	e Action:					
Staff onsi	te today and will	inspect/clean s	ensors.			

ALARM Fax Report ProControl Series II+

EOS Research Ltd.

To:

TODD CARIGNAN

From

SYSTEM IN LOCKHEED UTICA @ 17:41:54 ON 07/18/2011 : ROM 2.1996 : MODEL A2 THE ARCADIS GCTS SER NO 9539 : SETUP VER 1

System Status:

LAST SHUTDOWN @ 22:23:14 ON 07/12/2011 BY TT_400 FAX REPORT INITIATED BY PROCESS 57 AUTO P57 :

Discrete Inputs:

MH1 HH is OFF	MH1 H2 is OFF	MH1 H1 is OFF	MH1 LO is ON
$\mathtt{MH1_LL}$ is ON	MH2HH is OFF	$MH2_H2$ is OFF	MH2H1 is OFF
MH2_LO is OFF	$MH2_LL$ is ON	MH3_HH is OFF	MH3_H2 is OFF
MH3_H1 is OFF	$MH3_LO$ is ON	$MH3_LL$ is ON	WFS $\overline{1}$ 06 is OFF
$\mathtt{MOT\overline{I}ON}$ is OFF	LSH $\overline{1}$ 06 is OFF	$\mathtt{LSH}\overline{1}\mathtt{00}$ is OFF	LSL100 is ON
FT 200 is OFF	LSH200 is OFF		

Discrete Outputs:

MH1 P1 is OFF	MH1 P2 is OFF	MH2 P1 is OFF	MH2 P2 is OFF
MH3_P1 is ON	$MH3_P2$ is OFF	${\mathtt B}_{oldsymbol{-}}1\overline{0}0$ is ON	$DH_{\overline{3}}00$ is $OH_{\overline{3}}$
LA_MH1 is OFF	$\mathtt{FA}_\overline{1}\mathtt{01}$ is \mathtt{OFF}	$L\overline{A}$ _MH2 is OFF	FA_102 is OFF
LA_MH3 is OFF	FA_103 is OFF	PA_106 is OFF	LA_100 is OFF
$LS\overline{H}106$ is OFF	$\overline{\text{WFS}}$ 106 is OFF	$\mathtt{TA} \overline{_} 100$ is OFF	FA_105 is ON
FA_106 is OFF	FA_200 is OFF	$ exttt{MOTION}$ is OFF	$ extsf{TAH400}$ is OFF
$ ext{TA}\overline{ ext{L}}400$ is OFF	$PA^{-}400$ is OFF	LSH200 is OFF	

Analog Inputs:

FT 101	is	0.00	GPM	TOTAL E	LOW	is	52130888	GAL			
FT_102	is	0.00	GPM	TOTAL E	LOW	is	9239453	GAL			
FT_103	is	19.56	GPM	TOTAL E	LOW	is	708235	GAL			
$FT^{-}105$	is	0.06	GPM	TOTAL E	LOW	is	2693761	GAL			
PT_106	is	27.17	IWC	LIMITS	are	${f L}$:	15.00	IWC	H :	34.00	IWC
$TT^{-}400$	is	77.4	\mathbf{DEG}	LIMITS	are	${f L}$:	60.0	\mathbf{DEG}	H :	110.0	\mathbf{DEG}
PT_400	is	8.0	IWC	LIMITS	are	\mathbf{L} :	1.0	IWC	H :	25.0	IWC
$TT^{-}100$	is	79.4	\mathbf{DEG}	LIMITS	are	${f L}$:	40.0	\mathbf{DEG}	H :	110.0	\mathbf{DEG}
FT_106	is	622.4	CFM	LIMITS	are	\mathbf{L} :	400.0	CFM	H :		CFM

Analog Outputs:

INJSPD 0.8 PCT

ALARM Fax Report <u>ProControl Series II+</u>

EOS Research Ltd.

To:

TODD CARIGNAN

From

SYSTEM IN LOCKHEED UTICA @ 06:34:08 ON 07/19/2011 : ROM 2.1996 : MODEL A2 THE ARCADIS GCTS SER NO 9539 : SETUP VER 1

System Status:

LAST SHUTDOWN @ 22:23:14 ON 07/12/2011 BY TT_400 FAX REPORT INITIATED BY PROCESS 29 AUTO P29 :

Discrete Inputs:

MH1_HH is OFF	$\mathtt{MH1}\mathtt{_H2}$ is OFF	$\mathtt{MH1}\mathtt{H1}$ is \mathtt{ON}	MH1_LO is ON
$\mathtt{MH1}^{-}\mathtt{LL}$ is ON	MH2HH is OFF	MH2H2 is OFF	MH2 H1 is OFF
MH2LO is ON	$\mathtt{MH2}^{-}\mathtt{LL}$ is ON	MH3 $$ HH is OFF	MH3 ⁻ H2 is OFF
MH3 ^T H1 is OFF	MH3LO is ON	MH3LL is ON	WFS $\overline{1}$ 06 is OFF
$\mathtt{MOT\overline{I}ON}$ is OFF	LSH $\overline{1}$ 06 is OFF	$\mathtt{LSH}\overline{1}00$ is OFF	LSL100 is ON
FT 200 is OFF	LSH200 is OFF		

Discrete Outputs:

MH1 P1 is C	OFF MH1 P2	is ON	MH2 P1 is OFF	MH2 P2 is OFF
$MH3_P1$ is O	DFF MH3_P2	is OFF	$\mathrm{B}_{-}1\overline{0}0$ is ON	$DH_{\overline{3}00}$ is ON
LA_MH1 is C	$FF FA_{\overline{1}01}$	is ON	LA_MH2 is OFF	FA_102 is OFF
LA MH3 is C		is OFF	PA_106 is OFF	LA_100 is OFF
$LS\overline{H}106$ is C		is OFF	\mathtt{TA}_100 is OFF	FA_105 is ON
FA_106 is C	DFF FA_200	is OFF	MOTION is OFF	$ extsf{TA}\overline{ extsf{H}}400$ is OFF
$ ext{TA}\overline{ ext{L}}400$ is $ ext{C}$	DEE PA-400	is OFF	LSH200 is OFF	

Analog Inputs:

FT_101	is	0.00	GPM	TOTAL F	LOW	is	52133381	GAL			
$FT^{-}102$	is	0.02	GPM	TOTAL F	LOW	is	9239453	GAL			
FT_103	is	0.00	GPM	TOTAL F	LOW	is	710122	GAL			
$FT^{-}105$	is	0.00	GPM	TOTAL F	LOW	is	2697801	GAL			
PT_106	is	24.42	IWC	LIMITS	are	\mathbf{L} :	15.00	IWC	H:	34.00	IWC
${f TT}^{-}400$	is	89.6	\mathbf{DEG}	LIMITS	are	${f L}$:	60.0	\mathbf{DEG}	H:	110.0	\mathbf{DEG}
PT_400	is	11.4	IWC	LIMITS	are	\mathbf{L} :	1.0	IWC	H:	25.0	IWC
TT^-100	is	74.3	\mathbf{DEG}	LIMITS	are	${f L}$:	40.0	\mathbf{DEG}	H:	110.0	\mathbf{DEG}
FT_106	is	848.7	\mathbf{CFM}	LIMITS	are	${f L}$:	400.0	CFM	H :		CFM

Analog Outputs:

INJSPD 0.0 PCT

Date:	8/2/2011
Time:	12:00
Technician:	TC

ALAKINI	RESPONSE / CO	ORRECTIVE AC	TION LOG SHEE		
Date: _	8/2/11	Time:	1:30:30		
Alarm Co	ondition:				
Process 8	57 - Low Flow A	ggregate (FT-10	5)		
Cause of	· Alarm·				
Flow regi	stered after 15 s	econd delay with	h M-3 online.		
Correctiv	e Action:				
registerin	g flow with MH-3	3 online. Will insp		MH-3 pump to trigger flow sensor on 8/2/11. FT-108 sensor position during next O&M visit to ensure that	
·	·	·			· <u> </u>

To:

TODD CARIGNAN

From

SYSTEM IN LOCKHEED UTICA @ 01:30:30 ON 08/02/2011 : ROM 2.1996 : MODEL A2 THE ARCADIS GCTS SER NO 9539 : SETUP VER 1

System Status:

LAST SHUTDOWN @ 22:23:14 ON 07/12/2011 BY TT_400 FAX REPORT INITIATED BY PROCESS 57 AUTO P57 :

Discrete Inputs:

MH1_HH is OFF	MH1_H2 is OFF	$\mathtt{MH1}_\mathtt{H1}$ is OFF	MH1_LO is ON
MH1LL is ON	MH2 HH is OFF	MH2H2 is OFF	MH2 H1 is OFF
MH2_LO is ON	MH2_LL is ON	MH3_HH is OFF	MH3H2 is OFF
MH3 ^T H1 is OFF	MH3 LO is ON	MH3LL is ON	WFS $\overline{1}$ 06 is OFF
$MOT\overline{I}ON$ is OFF	LSH $\overline{1}$ 06 is OFF	$\mathtt{LSH}\overline{1}00$ is OFF	LSL100 is ON
PT 200 is OPP	TCUSOO is OFF		

Discrete Outputs:

MH1 P1 is OFF	MH1 P2 is OFF	MH2 P1 is OFF	MH2 P2 is OFF
MH3_P1 is ON	$MH3_P2$ is OFF	$\mathrm{B}_{-}1\overline{0}\mathrm{0}$ is ON	$DH_{\overline{3}}00$ is ON
LA MH1 is OFF	FA $\overline{1}01$ is OFF	$L\overline{A}$ MH2 is OFF	$FA^{-}102$ is OFF
LA_MH3 is OFF	FA_103 is OFF	PA_106 is OFF	\mathtt{LA}_100 is OFF
$LS\overline{H}106$ is OFF	$WF\overline{S}106$ is OFF	$\mathtt{TA} \overline{\mathtt{100}}$ is OFF	FA_105 is ON
FA_106 is OFF	FA_200 is OFF	$ exttt{MOTION}$ is OFF	$ extsf{TAH400}$ is OFF
ΤΑΙ/ΛΟΟ ie OFF	DB 400 is OFF	LSU200 ie OFF	

Analog Inputs:

FT_101 i	s 0.00	GPM	TOTAL FLOW	is	52200382	GAL			
FT_102 i		GPM	TOTAL FLOW	is	9254839	GAL			
FT_103 i	s 19.66	GPM	TOTAL FLOW	is	755328	GAL			
FT ⁻ 105 i	s 0.00	GPM	TOTAL FLOW	is	2811929	GAL			
PT_106 i	s 27.96	IWC	LIMITS are	${f L}$:	15.00	IWC	H :	34.00	IWC
TT 400 i	s 76.8	\mathbf{DEG}	LIMITS are	${f L}$:	60.0	\mathbf{DEG}	H :	110.0	\mathbf{DEG}
PT_400 i	s 8.9	IWC	LIMITS are	${f L}$:	1.0	IWC	H :	25.0	IWC
TT ⁻ 100 i	s 76.7	\mathbf{DEG}	LIMITS are	${f L}$:	40.0	\mathbf{DEG}	H :	110.0	\mathbf{DEG}
FT_106 i	s 652.6	CFM	LIMITS are	${f L}$:	400.0	CFM	H :		\mathbf{CFM}

Analog Outputs:

INJSPD 1.2 PCT

Date:	8/2/2011
Time:	
Technician:	CD/TC

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Date:	8/2/11	Time:	
-------	--------	-------	--

Alarm Condition:

Inconsistant daily and alarm fax reports since remedial enhancement construction upgrades completed in First Quarter.

Cause of Alarm:

Daily and alarm fax reports unsuccessful due to ProControl's modem not properly sensing when a phone line connection becomes disconnected (i.e. a hangup). When the modem senses that a phone line connection is present, a report or alarm fax will not be initiated.

Corrective Action:

Onsite troubleshooting conducted by Telecommunication Concepts, Inc. on 6/22/11 indicated that the materials used for the exterior/below-grade phone line installation presented the potential for phone line depletion. Attached is a quote pertaining to replacement of the phone line.

Follow-up testing conducted on 7/8/11 revealed that the quality of the phone line currently is fine, and that instead the ProControl modem may not be responding correctly to hangups. Troubleshooting of the fax-out sequence included temporarily changing the fax reporting frequency to once every 30 minutes, which resulted in a 100% success rate up until the very early morning of the following day (i.e. fax reports continuously successful at the desired 30 minute interval for greater than 16 hours until failing at 1:00-2:00 am). Once a fax report failure occurred, the fax report sequence would not return to schedule until a phoneline connection was attempted with the ProControl, thereby resetting the modem to allow for proper acknowledgement of a phoneline disconnection. Explanation as to why the modem would not properly sense a hangup during the early morning hours is unclear, although a potential contributing factor includes line noise caused by certain facility communications operations that occur during that time period. To serve as a modem reset action (by attempting a phoneline connection with), the SSDS ProControl fax report procedure was modified to call the GCTS phone number (in addition to its regular dial-out number) at 5:00 am. Initial observations indicate that GCTS daily and alarm fax reports are being sent with a high success rate. Should this not prove to be a sufficient solution for the modem deficiency, a modem replacement will be considered.

A verbal quote including parts and labor was obtained from EOS Research, Ltd of \$125.00 on 7/13/11. This would require the temporary removal the PLC so that it could be shipped via overnight the EOS, thus resulting a temporary shutdown of the system for approximately 2.5 days.

Telecommunication Concepts, Inc. 329 Oriskany Blvd Whitesboro, NY 13492

Voice: 315-736-8523 Fax: 315-736-8524 DUOTATION

417.49

TOTAL

Quote Number: 1094

Quote Date: Jun 24, 2011

Page:

Quoted To:

Arcadis PO Box 66 6723 Towpath Rd Syracuse, NY 13214-0066

Customer ID Good Thru		Payment Terms	Sales Rep
TA1810	7/24/11	Net 10 Days	

Quantity	Item	Description	Unit Price	Amount
3.00	Svc Call	Install underground cable between Guard	90.00	270.00
		shack & shed at Conmed. Terminate & test.		
25.00	WAD6PR24	Wire Aerial Duct 6 PR 24	4.00	100.00
2.00	JF4684	Jack Surface Md 4C	5.95	11.90
2.00	PLF104LR	Plug LC 4C for Solid Wire	1.00	2.00
_				
		1	Subtotal	383.90
			Sales Tax	33.59
				20.00

Date:	9/8/2011	
Time:	12:00	
Technician:	TC	

ALARM	RESPONSE / CO	ORRECTIVE A	CTION LOG SHEE	Т		
Date:	9/7/11	Time: _	19:58:29 PM	- -		
Alarm C	ondition:					
Process	53 - Sequesterin	g Agent Low F	low Alarm FA-200 (I	-T-200)		
Cause o	f Alarm:					
Sequeste	ering agent drum	was empty.				
	ve Action: ut drum on 9/8/1	1.				
_						

ALARM Fax Report ProControl Series II+

EOS Research Ltd.

To:

TODD CARIGNAN

From

SYSTEM IN LOCKHEED UTICA @ 19:58:29 ON 09/07/2011 : ROM 2.1996 : MODEL A2 THE ARCADIS GCTS SER NO 9539 : SETUP VER 1

System Status:

LAST SHUTDOWN @ 17:30:21 ON 08/11/2011 BY FT_106 AUTO P53 : FAX REPORT INITIATED BY PROCESS 53

Discrete Inputs:

MH1_HH is OFF	$MH1_H2$ is OFF	$MH1_H1$ is ON	MH1_LO is ON
MH1_LL is ON	MH2_HH is OFF	MH2H2 is OFF	MH2H1 is OFF
MH2_LO is ON	$MH2_LL$ is ON	MH3 HH is OFF	MH3 H2 is OFF
MH3_H1 is ON	MH3_LO is ON	MH3_LL is ON	WFS $\overline{1}$ 06 is OFF
$MOT\overline{I}ON$ is OFF	LSH $\overline{1}$ 06 is OFF	LSH $\overline{1}$ 00 is OFF	LSL100 is ON
FT 200 is ON	LSH200 is OFF		

Discrete Outputs:

MH1 P1 is	ON MH1 I	P2 is OFF	MH2 P1 is ON	MH2 P2 is OFF
$MH3_P1$ is \bullet		P2 is ON	${\mathtt B}_{-}{\mathbf 1}\overline{\mathbf 0}{\mathbf 0}$ is ON	$DH_{\overline{3}00}$ is ON
LA_ $\overline{ ext{M}}$ H1 is $ ext{(}$		01 is ON	$L\overline{A}$ _MH2 is OFF	FA_102 is ON
LA MH3 is		.03 is ON	PA_106 is OFF	LA_100 is OFF
$LS\overline{H}106$ is (06 is OFF	$\mathtt{TA} \overline{_} 100$ is OFF	FA_105 is ON
FA_106 is 0	OFF FA_2	00 is ON	$MO\overline{I}ION$ is OFF	$ extsf{TAH400}$ is OFF
$\mathrm{TA}\overline{\mathrm{L}}400$ is (OFF PA 40	00 is OFF	LSH200 is OFF	

Analog Inputs:

FT_101	is	38.93	GPM	TOTAL I	FLOW	is	52469234	GAL			
FT_102			GPM	TOTAL I	FLOW	is	9331270	GAL			
$FT^{-}103$	is	21.78	GPM	TOTAL I	FLOW	is	941666	GAL			
$FT^{-}105$	is	72.44	GPM	TOTAL I	FLOW	is	3297409	GAL			
$PT_{-}106$	is	31.11	IWC	LIMITS	are	\mathbf{L} :	15.00	IWC	H :	34.00	IWC
${f TT}^{-}400$	is	76.6	\mathbf{DEG}	LIMITS	are	${f L}$:	60.0	\mathbf{DEG}	H :	110.0	\mathbf{DEG}
PT_400	is	7.3	IWC	LIMITS	are	${f L}$:	1.0	IWC	H :	25.0	IWC
$\mathtt{TT}^{-}100$	is	73.6	\mathbf{DEG}	LIMITS	are	${f L}$:	40.0	\mathbf{DEG}	H :	110.0	\mathbf{DEG}
FT_106	is	563.5	CFM	LIMITS	are	\mathbf{L} :	400.0	CFM	H :		CFM

Analog Outputs:

INJSPD 11.4 PCT

Date:	9/17/2011	
Time:	12:30	
Technician:	TC	

ALAKW	RESPONSE / CO	JRRECTIVE AC	STION LOG SHEE	1		
Date:	9/17/11	Time:	10:58:03	_ _		
Alarm C	ondition:					
Process	56 - Low Flow Ag	ggregate (FT-10	05)			
Cause o	f Alarm:					
Flow regi	stered after 15 s	econd delay wit	h M-2 online.			
<u> </u>		<u></u>				
Corrocti	ve Action:					
Log into	remotely and ins		neter registering flo ed at the correct de			
				_		

To:

TODD CARIGNAN

From

SYSTEM IN LOCKHEED UTICA @ 10:58:03 ON 09/17/2011 : ROM 2.1996 : MODEL A2 THE ARCADIS GCTS SER NO 9539 : SETUP VER 1

System Status:

LAST SHUTDOWN @ 14:00:23 ON 09/16/2011 BY KEYPAD AUTO P56 : FAX REPORT INITIATED BY PROCESS 56

Discrete Inputs:

MH1_HH is OFF	$MH1_H2$ is OFF	$\mathtt{MH1}\mathtt{\underline{H1}}$ is OFF	MH1_LO is OFF
$\mathtt{MH1_LL}$ is \mathtt{ON}	MH2_HH is OFF	MH2_H2 is OFF	MH2H1 is OFF
MH2_LO is ON	$MH2_LL$ is ON	MH3_HH is OFF	MH3H2 is OFF
MH3_H1 is OFF	MH3_LO is ON	MH3_LL is ON	WFS $\overline{1}$ 06 is OFF
$MOT\overline{I}ON$ is OFF	LSH $\overline{1}$ 06 is OFF	LSH $\overline{1}$ 00 is OFF	LSL100 is ON
ry 200 is Orr	LSH200 is OFF		

Discrete Outputs:

MH1 P1 is	OFF	MH1 P2 is	s OFF	MH2 P1	is ON	MH2 P2		
$MH3_P1$ is		MH3_P2 is		$\mathbf{B}_{-}1\overline{0}0$		$DH_{\overline{3}00}$	is	ON
$LA_\overline{M}H1$ is	OFF	$FA_\overline{1}01$ is	s OFF	LA_MH2		FA_102		
LA MH3 is		FA_103 is	s OFF	PA_106	is OFF	LA_100	is	OFF
$LS\overline{H}106$ is		WFS106 is		TA_100	is OFF	FA_105		
FA_106 is		FA_200 is	s ON	MOTION	is OFF	$TA\overline{H}400$	is	OFF
$ ext{TA}\overline{ ext{L}}400$ is	OFF	PA 400 is	s OFF	LSH200	is OFF			

Analog Inputs:

FT_101	is	0.00	GPM	TOTAL F	LOW	is	52642187	GAL			
$FT^{-}102$	is	21.00	GPM	TOTAL F	LOW	is	9359167	GAL			
$FT^{-}103$	is	0.00	GPM	TOTAL F	LOW	is	1037789	GAL			
$FT^{-}105$	is	0.00	GPM	TOTAL F	LOW	is	3580368	GAL			
$PT^{-}106$	is	29.12	IWC	LIMITS	are	\mathbf{L} :	15.00	IWC	H :	34.00	IWC
$TT^{-}400$	is	79.8	\mathbf{DEG}	LIMITS	are	$\mathbf L$:	60.0	DEG	H :	110.0	\mathbf{DEG}
$PT^{-}400$	is	9.9	IWC	LIMITS	are	\mathbf{L} :	1.0	IWC	H:	25.0	IWC
$\mathtt{TT}^{-}100$	is	68.9	\mathbf{DEG}	LIMITS	are	$\mathbf L$:	40.0	DEG	H :	110.0	\mathbf{DEG}
FT_106	is	726.9	\mathbf{CFM}	LIMITS	are	\mathbf{L} :	400.0	CFM	H :		CFM

Analog Outputs:

INJSPD 0.0 PCT

Date:	9/26/2011	
Time:	20:16	
Technician:	TC	

ALAKWI	RESPONSE / CO	DRRECTIVE AC	TION LOG SHEET			
Date: _	9/26/11	Time:	1:00:53			
Alarm Co						
Process 8	53 - Sequestering	g Agent Low Flo	ow Alarm FA-200 (F	T-200)		
Cause of Not all air 9/8/11.		urged within the	suction line while r	e-priming the pun	np following the di	rum changeout on
	re Action: emotely and clea	ar alarm on 9/26	5/11 and see if alarn	n condition return	s. If alarm returns	the pump will be re-

To:

TODD CARIGNAN

From

SYSTEM IN LOCKHEED UTICA @ 01:00:53 ON 09/26/2011 : ROM 2.1996 : MODEL A2 THE ARCADIS GCTS SER NO 9539 : SETUP VER 1

System Status:

LAST SHUTDOWN @ 14:00:23 ON 09/16/2011 BY KEYPAD AUTO P53 : FAX REPORT INITIATED BY PROCESS 53

Discrete Inputs:

MH1_HH is OFF	$MH1_H2$ is OFF	$\mathtt{MH1}\mathtt{\underline{H1}}$ is OFF	MH1_LO is ON
MH1_LL is ON	MH2_HH is OFF	MH2_H2 is OFF	MH2H1 is OFF
MH2_LO is ON	$MH2_LL$ is ON	MH3_HH is OFF	MH3 H2 is OFF
MH3 H1 is OFF	MH3LO is ON	MH3LL is ON	WFS $\overline{1}$ 06 is OFF
$\mathtt{MOT}\overline{\mathtt{ION}}$ is OFF	$\mathtt{LSH}\overline{1}\mathtt{06}$ is OFF	LSH $\overline{1}$ 00 is OFF	LSL100 is ON
ET 200 is ON	LCH200 is OFF		

Discrete Outputs:

MH1 P1 is OFF	MH1 P2 is OFF	MH2 P1 is OFF	MH2 P2 is OFF
MH3 ^P 1 is ON	MH3P2 is OFF	B $1\overline{0}$ 0 is ON	DH $\overline{3}$ 00 is ON
LA_MH1 is OFF	$\mathtt{FA}_\overline{1}\mathtt{01}$ is \mathtt{OFF}	$L\overline{A}$ _MH2 is OFF	FA_102 is OFF
LA_MH3 is OFF	FA_103 is OFF	$\mathtt{PA} \overline{106}$ is OFF	\mathtt{LA}_100 is OFF
$LS\overline{H}106$ is OFF	$\overline{\text{WFS}}106$ is OFF	$\mathtt{TA} \overline{100}$ is OFF	FA_105 is ON
FA_106 is OFF	FA_200 is ON	$ exttt{MOTION}$ is OFF	$ extsf{TAH400}$ is OFF
$\mathtt{TAL400}$ is OFF	\mathtt{PA}^{-400} is OFF	LSH200 is OFF	

Analog Inputs:

FT_101	is	0.00	GPM	TOTAL B	LOW	is	52712745	GAL			
FT_102			GPM	TOTAL B	LOW	is	9372454	GAL			
FT_{103}	is	18.95	GPM	TOTAL B	LOW	is	1078927	GAL			
$FT^{-}105$	is	18.93	GPM	TOTAL B	LOW	is	3697810	GAL			
PT_106	is	28.45	IWC	LIMITS	are	\mathbf{L} :	15.00	IWC	H:	34.00	IWC
$TT^{-}400$	is	85.2	\mathbf{DEG}	LIMITS	are	${f L}$:	60.0	\mathbf{DEG}	H:	110.0	\mathbf{DEG}
PT_400	is	9.2	IWC	LIMITS	are	$\mathbf L$:	1.0	IWC	H:	25.0	IWC
$\mathtt{TT}^{-}100$	is	72.3	\mathbf{DEG}	LIMITS	are	${f L}$:	40.0	\mathbf{DEG}	H:	110.0	\mathbf{DEG}
FT_106	is	700.6	\mathbf{CFM}	LIMITS	are	${f L}$:	400.0	CFM	H :		CFM

Analog Outputs:

INJSPD 2.8 PCT

Date:	10/20/2011
Time:	20:00
Technician:	TMC

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET Date: Time: 10:40:00 10/15/11 14:29:00 10/19/11 **Alarm Condition:** Process - 57 - FA-105 (Low Flow Alarm Aggregate Flowmeter FT-105) Process - 56 - FA-105 (Low Flow Alarm Aggregate Flowmeter FT-105) Cause of Alarm: Suspect alarm conditions caused by low velocity in 3" diameter header pipe when only one MH pump in batching resulting in a delay for flow to registrar greater than 5 gpm before the alarm is trigger. **Corrective Action:** Increase time delay for alarm from 15 seconds to 30 seconds. Continue to inspect the flowmeter on a monthly basis.

To:

TODD CARIGNAN

From

SYSTEM IN LOCKHEED UTICA @ 10:40:59 ON 10/15/2011 : ROM 2.1996 : MODEL A2 THE ARCADIS GCTS SER NO 9539 : SETUP VER 1

System Status:

LAST SHUTDOWN @ 10:59:21 ON 10/11/2011 BY KEYPAD AUTO P57 : FAX REPORT INITIATED BY PROCESS 57

Discrete Inputs:

MH1_HH is OFF	$MH1_H2$ is OFF	$\mathtt{MH1}\mathtt{\underline{H1}}$ is OFF	MH1_LO is ON
$\mathtt{MH1_LL}$ is \mathtt{ON}	MH2_HH is OFF	MH2_H2 is OFF	MH2_H1 is OFF
MH2_LO is ON	$MH2_LL$ is ON	MH3_HH is OFF	MH3H2 is OFF
MH3_H1 is ON	MH3_LO is ON	MH3_LL is ON	WFS $\overline{1}$ 06 is OFF
$MOT\overline{I}ON$ is OFF	$\mathtt{LSH}\overline{1}\mathtt{06}$ is OFF	$\mathtt{LSH}\overline{1}00$ is OFF	LSL100 is ON
rm 200 ie Orr	LCU200 ie OFF		

Discrete Outputs:

MH1 P1 is 0		MH1 P2 is	OFF	MH2 P1 i		MH2 P2		
$MH3_P1$ is (ON M	MH3_P2 is	OFF	$\mathbf{B}_{1}\mathbf{\overline{0}}0$	is ON	DH_{300}	is	ON
LA $\underline{M}H1$ is (OFF E	${ m FA}_{-}\overline{1}01$ is	OFF	$L\overline{A}_MH2$ i		FA_102		
LA_MH3 is (${ m TA} = 103$ is	OFF	PA_106 i	is OFF	LA_100	is	OFF
$LS\overline{H}106$ is ($VF\overline{S}106$ is	OFF	TA_100 i	is OFF	FA_105	is	ON
FA_106 is 0	OFF E	A_200 is	OFF	MOTION 1	is OFF	$TA\overline{H}400$	is	OFF
$\mathrm{TA}\overline{\mathrm{L}}400$ is (OFF P	$2A^{-}400$ is	OFF	LSH200 j	is OFF			

Analog Inputs:

FT_101 :	is 0.00	GPM	TOTAL FLOW	is	52913478	GAL		
FT_102 :		GPM	TOTAL FLOW	is	9406984	GAL		
FT_103 :	is 18.68	GPM	TOTAL FLOW	is	1176926	GAL		
FT_105 :	is 5.86	GPM	TOTAL FLOW	is	4013349	GAL		
PT_106 :	is 27.05	IWC	LIMITS are	\mathbf{L} :	15.00	IWC	н: 34.00	IWC
TT_400 :	is 83.3	\mathbf{DEG}	LIMITS are	\mathbf{L} :	60.0	\mathbf{DEG}	H: 110.0	\mathbf{DEG}
PT_400 :	is 10.5	IWC	LIMITS are	\mathbf{L} :	1.0	IWC	н: 25.0	IWC
TT ⁻ 100 :	is 68.1	\mathbf{DEG}	LIMITS are	$\mathbf L$:	40.0	\mathbf{DEG}	H: 110.0	\mathbf{DEG}
FT_106 :	is 759.6	\mathbf{CFM}	LIMITS are	\mathbf{L} :	400.0	CFM	н:	CFM

Analog Outputs:

INJSPD 1.2 PCT

To:

TODD CARIGNAN

From

SYSTEM IN LOCKHEED UTICA @ 14:29:02 ON 10/19/2011 : ROM 2.1996 : MODEL A2 THE ARCADIS GCTS SER NO 9539 : SETUP VER 1

System Status:

LAST SHUTDOWN @ 16:14:05 ON 10/17/2011 BY KEYPAD AUTO P56 :

FAX REPORT INITIATED BY PROCESS 56

Discrete Inputs:

MH1_HH is OFF	MH1_H2 is OFF	$\mathtt{MH1}_\mathtt{H1}$ is OFF	MH1_LO is ON
MH1LL is ON	MH2 HH is OFF	$MH2^{-}H2$ is OFF	$MH2^-H1$ is ON
MH2_LO is ON	MH2_LL is ON	MH3_HH is OFF	MH3H2 is OFF
MH3 H1 is OFF	MH3 LO is ON	MH3LL is ON	WFS $\overline{1}$ 06 is OFF
$MOT\overline{I}ON$ is OFF	LSH $\overline{1}$ 06 is OFF	$\mathtt{LSH}\overline{1}00$ is OFF	LSL100 is ON
PT 200 is OPP	TCUSOO is OFF		

Discrete Outputs:

MH1 P1 is	OFF	MH1 P2 is	s OFF	MH2 P1	is OFF	MH2 P2		
$MH3_P1$ is		MH3_P2 is		$\mathbf{B}_{-}1\overline{0}0$		$DH_{\overline{3}00}$	is	ON
$LA_\overline{M}H1$ is	OFF	$FA_\overline{1}01$ is	s OFF	LA_MH2		FA_102		
LA MH3 is		FA_103 is	s OFF	PA_106		LA_100	is	OFF
$LS\overline{H}106$ is		WFS106 is	s OFF	TA_100	is OFF	FA_105		
FA_106 is		FA_200 is	s OFF	MOTION	is OFF	$TA\overline{H}400$	is	OFF
$ ext{TA}\overline{ ext{L}}400$ is	OFF	PA 400 is	s OFF	LSH200	is OFF			

Analog Inputs:

FT_101 i	s 0.00	GPM	TOTAL FLOW	is	52954376	GAL			
FT_102 i		GPM	TOTAL FLOW	is	9411847	GAL			
FT_103 i	s 0.00	GPM	TOTAL FLOW	is	1196616	GAL			
FT ⁻ 105 i	s 11.51	GPM	TOTAL FLOW	is	4075785	GAL			
PT_106 i	s 28.08	IWC	LIMITS are	${f L}$:	15.00	IWC	H :	34.00	IWC
TT 400 i	s 77.5	\mathbf{DEG}	LIMITS are	${f L}$:	60.0	\mathbf{DEG}	H :	110.0	\mathbf{DEG}
PT_400 i	s 9.4	IWC	LIMITS are	${f L}$:	1.0	IWC	H:	25.0	IWC
TT ⁻ 100 i	s 68.4	\mathbf{DEG}	LIMITS are	${f L}$:	40.0	\mathbf{DEG}	H :	110.0	\mathbf{DEG}
FT_106 i	s 698.1	\mathbf{CFM}	LIMITS are	${f L}$:	400.0	CFM	H :		CFM

Analog Outputs:

INJSPD 1.6 PCT

Date:	11/2/2011
Time:	9:00
Technician:	TMC

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET Time: Date: 10/28/11 13:40:00 **Alarm Condition:** Process 29 - MH-1 Low Flowrate Cause of Alarm: Mineral scale build up on the paddlewheel sensor. Possible air pockets causing turbulent flow during initial pump startup until manifold is completely flooded. **Corrective Action:** Inspect and clean flowmeter on 11/1/11, a small amount of mineral scaling was noted on the paddlewheel. Increase time delay for alarm from 30 seconds to 60 seconds.

To:

TODD CARIGNAN

From

SYSTEM IN LOCKHEED UTICA @ 13:40:38 ON 10/28/2011 : ROM 2.1996 : MODEL A2 THE ARCADIS GCTS SER NO 9539 : SETUP VER 1

System Status:

LAST SHUTDOWN @ 16:14:05 ON 10/17/2011 BY KEYPAD AUTO P29 : FAX REPORT INITIATED BY PROCESS 29

Discrete Inputs:

MH1_HH is OFF	$MH1_H2$ is OFF	$\mathtt{MH1}_\mathtt{H1}$ is OFF	MH1_LO is ON
$\mathtt{MH1_LL}$ is \mathtt{ON}	MH2_HH is OFF	MH2_H2 is OFF	MH2H1 is ON
MH2_LO is ON	$MH2_LL$ is ON	MH3 HH is OFF	MH3H2 is OFF
MH3 H1 is OFF	MH3LO is ON	MH3 LL is ON	WFS $\overline{1}$ 06 is OFF
$MOT\overline{I}ON$ is OFF	LSH $\overline{1}$ 06 is OFF	LSH $\overline{1}$ 00 is OFF	LSL100 is ON
ry 200 is Orr	LSH200 is OFF		

Discrete Outputs:

MH1 P1 is	OFF	MH1 P2 is	ON	MH2 P1 i	s ON	MH2 P2		
$MH3_P1$ is	ON	MH3P2 is	OFF	$\mathbf{B}_{1}\mathbf{\overline{0}}0$ i	s ON	$DH_{\overline{3}00}$	is	ON
$LA_\overline{M}H1$ is	OFF	FA_{101} is	ON	$L\overline{A}_MH2$ i		FA_102		
LA_MH3 is		FA_103 is	OFF	PA_106 i	s OFF	LA_100	is	OFF
$LS\overline{H}106$ is		$WF\overline{S}106$ is	OFF	TA_100 i	s OFF	FA_105	is	ON
FA_106 is	OFF	FA_200 is	OFF	MOTION i	s OFF	$TA\overline{H}400$	is	OFF
$\overline{ ext{TAL}400}$ is	OFF	PA = 400 is	OFF	LSH200 i	s OFF			

Analog Inputs:

FT_101	is	9.67	GPM	TOTAL E	LOW	is	53043119	GAL			
$FT^{-}102$	is	17.63	GPM	TOTAL E	LOW	is	9428330	GAL			
$FT^{-}103$	is	18.14	GPM	TOTAL E	LOW	is	1240715	GAL			
$FT^{-}105$	is	41.24	GPM	TOTAL E	LOW	is	4216507	GAL			
$PT^{-}106$	is	30.62	IWC	LIMITS	are	${f L}$:	15.00	IWC	H :	34.00	IWC
${f TT}^{-}400$	is	77.7	\mathbf{DEG}	LIMITS	are	${f L}$:	60.0	\mathbf{DEG}	H:	110.0	\mathbf{DEG}
PT_400	is	9.2	IWC	LIMITS	are	${f L}$:	1.0	IWC	H:	25.0	IWC
$\mathtt{TT}^{-}100$	is	67.5	\mathbf{DEG}	LIMITS	are	${f L}$:	40.0	\mathbf{DEG}	H:	110.0	\mathbf{DEG}
FT_106	is	651.3	CFM	LIMITS	are	${f L}$:	400.0	CFM	H :		CFM

Analog Outputs:

6.5 PCT INJSPD

Date:	11/8/2011
Time:	10:25
Technician:	TMC

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET Date: 11/8/11 Time: 5:30:00 **Alarm Condition:** Daily scheduled system fax report was not received. Cause of Alarm: Faulty local phone connection resulted in a failed dialout by the PLC **Corrective Action:** Log into the system remotely and verify operation. Initiate a fax now to test dialout connection/communication.

To:

TODD CARIGNAN

From

SYSTEM IN LOCKHEED UTICA @ 09:36:57 ON 11/08/2011 : ROM 2.1996 : MODEL A2 THE ARCADIS GCTS SER NO 9539 : SETUP VER 1

System Status:

LAST SHUTDOWN @ 16:14:05 ON 10/17/2011 BY KEYPAD AUTO P06 :

FAX REPORT INITIATED BY REMOTE

Discrete Inputs:

MH1 HH is OFF	MH1 H2 is OFF	MH1 H1 is OFF	MH1 LO is ON
$\mathtt{MH1_LL}$ is \mathtt{ON}	$\mathtt{MH2}$ HH is OFF	MH2H2 is OFF	MH2_H1 is OFF
$\mathtt{MH2_LO}$ is \mathtt{ON}	$\mathtt{MH2_LL}$ is ON	MH3_HH is OFF	MH3_H2 is OFF
MH3_H1 is OFF	MH3LO is ON	$MH3_LL$ is ON	WFS $\overline{1}06$ is OFF
$\mathtt{MOT}\overline{\mathtt{ION}}$ is OFF	$\mathtt{LSH}\overline{1}\mathtt{06}$ is OFF	$\mathtt{LSH}\overline{1}00$ is OFF	LSL100 is ON
FT 200 is OFF	LSH200 is OFF		

Discrete Outputs:

MH1 P1 is	OFF	MH1 P2 is	s OFF	MH2 P1	is OFF	MH2 P2		
$MH3_P1$ is		MH3_P2 is		$\mathbf{B}_{-}1\overline{0}0$		$DH_{\overline{3}00}$	is	OFF
$LA_\overline{M}H1$ is	OFF	$FA_\overline{1}01$ is	s OFF	LA_MH2		FA_102		
LA MH3 is		FA_103 is	s OFF	PA_106		LA_100		
$LS\overline{H}106$ is		WFS106 is	s OFF	TA_100	is OFF	FA_105	is	OFF
FA_106 is		FA_200 is	s OFF	MOTION	is OFF	$TA\overline{H}400$	is	OFF
$ ext{TA}\overline{ ext{L}}400$ is	OFF	PA 400 is	s OFF	LSH200	is OFF			

Analog Inputs:

FT 101	is	0.00	GPM	TOTAL I	FLOW	is	53126731	GAL			
$FT^{-}102$	is	0.00	GPM	TOTAL I	FLOW	is	9441720	GAL			
$FT^{-}103$	is	0.00	GPM	TOTAL I	FLOW	is	1279673	GAL			
$FT^{-}105$	is	0.00	GPM	TOTAL I	FLOW	is	4333235	GAL			
PT [_] 106	is	0.00	IWC	LIMITS	are	\mathbf{L} :	15.00	IWC	H :	34.00	IWC
$\mathtt{TT}^{-}400$	is	67.8	\mathbf{DEG}	LIMITS	are	${f L}$:	60.0	\mathbf{DEG}	H :	110.0	\mathbf{DEG}
PT_400	is	0.0	IWC	LIMITS	are	$\mathbf L$:	1.0	IWC	H :	25.0	IWC
$\mathtt{TT}^{-}100$	is	62.8	\mathbf{DEG}	LIMITS	are	${f L}$:	40.0	\mathbf{DEG}	H :	110.0	\mathbf{DEG}
FT_106	is	0.0	CFM	LIMITS	are	${f L}$:	400.0	CFM	H :		CFM

Analog Outputs:

INJSPD 0.0 PCT

Date:	11/14/2011
Time:	9:15
Technician:	TMC

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET
Date:11/13/11 Time:18:05:00
Alarm Condition:
Process - 56 - FA-105 (Low Flow Alarm Aggregate Flowmeter FT-105)
Cause of Alarm:
Possible air pockets causing turbulent flow during initial pump startup until manifold is completely flooded.
Suspect alarm conditions caused by low velocity in 3" diameter header pipe when only one MH pump in batching
resulting in a delay for flow to registrar greater than 5 gpm before the alarm is trigger.
Corrective Action:
Log into the system remotely and verify operation.
Continue to inspect the flowmeter on a monthly basis.
Continue to monitor the effectiveness of the sequestering agent.

To:

TODD CARIGNAN

From

SYSTEM IN LOCKHEED UTICA @ 18:05:49 ON 11/13/2011 : ROM 2.1996 : MODEL A2 THE ARCADIS GCTS SER NO 9539 : SETUP VER 1

System Status:

LAST SHUTDOWN @ 16:14:05 ON 10/17/2011 BY KEYPAD AUTO P56 :

FAX REPORT INITIATED BY PROCESS 56

Discrete Inputs:

MH1 HH is OFF	MH1 H2 is OFF	MH1 H1 is OFF	MH1 LO is ON
$\mathtt{MH1_LL}$ is \mathtt{ON}	$\mathtt{MH2}$ HH is OFF	MH2H2 is OFF	MH2_H1 is OFF
$\mathtt{MH2_LO}$ is \mathtt{ON}	$\mathtt{MH2_LL}$ is ON	MH3_HH is OFF	MH3_H2 is OFF
MH3_H1 is OFF	MH3LO is ON	$MH3_LL$ is ON	WFS $\overline{1}06$ is OFF
$\mathtt{MOT}\overline{\mathtt{ION}}$ is OFF	$\mathtt{LSH}\overline{1}\mathtt{06}$ is OFF	$\mathtt{LSH}\overline{1}00$ is OFF	LSL100 is ON
FT 200 is OFF	LSH200 is OFF		

Discrete Outputs:

MH1 P1 is OFF	MH1 P2 is OFF	MH2 P1 is ON	MH2 P2 is OFF
$MH3_P1$ is OFF	MH3P2 is OFF	${ t B_1\overline{0}0}$ is ON	$DH_{\overline{3}}00$ is $OH_{\overline{3}}$
$LA_\overline{M}H1$ is OFF	$\mathtt{FA}_\overline{1}\mathtt{01}$ is \mathtt{OFF}	$L\overline{A}$ _MH2 is OFF	FA_102 is OFF
LA MH3 is OFF	FA_103 is OFF	PA_106 is OFF	$\mathtt{LA} \overline{100}$ is OFF
$LS\overline{H}106$ is OFF	$WF\overline{S}106$ is OFF	$\mathtt{TA} \overline{100}$ is OFF	FA_105 is ON
FA_106 is OFF	FA_200 is OFF	$MO\overline{ ext{T}}$ ION is OFF	$ extsf{TA}\overline{ extsf{H}}400$ is OFF
$ ext{TA}\overline{ ext{L}}400$ is OFF	\mathtt{PA}^{-400} is OFF	LSH200 is OFF	

Analog Inputs:

FT 101	is	0.00	GPM	TOTAL E	LOW	is	53161750	GAL			
$FT^{-}102$	is	19.56	GPM	TOTAL E	LOW	is	9446206	GAL			
$FT^{-}103$	is	0.00	GPM	TOTAL E	LOW	is	1296653	GAL			
$FT^{-}105$	is	10.87	GPM	TOTAL E	LOW	is	4388122	GAL			
PT_106	is	28.72	IWC	LIMITS	are	\mathbf{L} :	15.00	IWC	H :	34.00	IWC
${f TT}^{-}400$	is	94.2	\mathbf{DEG}	LIMITS	are	${f L}$:	60.0	\mathbf{DEG}	H :	110.0	\mathbf{DEG}
PT_400	is	9.0	IWC	LIMITS	are	\mathbf{L} :	1.0	IWC	H :	25.0	IWC
$\mathtt{TT}^{-}100$	is	73.0	\mathbf{DEG}	LIMITS	are	${f L}$:	40.0	\mathbf{DEG}	H :	110.0	\mathbf{DEG}
FT_106	is	712.8	\mathbf{CFM}	LIMITS	are	\mathbf{L} :	400.0	CFM	H :		CFM

Analog Outputs:

INJSPD 1.2 PCT

Date:	11/15/2011
Time:	13:00
Technician:	TMC

To:

TODD CARIGNAN

From

SYSTEM IN LOCKHEED UTICA @ 15:08:52 ON 11/14/2011 : ROM 2.1996 : MODEL A2 THE ARCADIS GCTS SER NO 9539 : SETUP VER 1

System Status:

LAST SHUTDOWN @ 16:14:05 ON 10/17/2011 BY KEYPAD AUTO P55 :

FAX REPORT INITIATED BY PROCESS 55

Discrete Inputs:

MH1 HH is OFF	MH1 H2 is OFF	MH1 H1 is ON	MH1 LO is ON
$\mathtt{MH1}^{-}\mathtt{LL}$ is ON	$\mathtt{MH2}^{-}\mathtt{HH}$ is OFF	MH2H2 is OFF	MH2H1 is OFF
MH2_LO is ON	$\mathtt{MH2_LL}$ is \mathtt{ON}	MH3HH is OFF	MH3_H2 is OFF
MH3_H1 is OFF	MH3_LO is ON	MH3LL is ON	WFS $\overline{1}06$ is OFF
$\mathtt{MOT}\overline{\mathtt{ION}}$ is OFF	$\mathtt{LSH}\overline{1}\mathtt{06}$ is OFF	$\mathtt{LSH}\overline{1}\mathtt{00}$ is OFF	LSL100 is ON
FT 200 is OFF	LSH200 is OFF		

Discrete Outputs:

MH1 P1 is OFF	MH1 P2 is ON	MH2 P1 is OFF	MH2 P2 is OFF
MH3P1 is OFF	MH3_P2 is OFF	${ t B_1\overline{0}0}$ is ON	$DH_{\overline{3}}00$ is ON
LA_MH1 is OFF	$\mathtt{FA}_\overline{1}\mathtt{01}$ is \mathtt{OFF}	$L\overline{A}$ _MH2 is OFF	FA_102 is OFF
LA_MH3 is OFF	FA_103 is OFF	PA_106 is OFF	LA_100 is OFF
$LS\overline{H}106$ is ON	$WF\overline{S}106$ is OFF	$\mathtt{TA} \overline{100}$ is OFF	FA_105 is ON
FA_106 is OFF	FA_200 is OFF	$ exttt{MOTION}$ is OFF	$ extsf{TAH400}$ is OFF
$ ext{TA}\overline{ ext{L}}400$ is OFF	PA^-400 is OFF	LSH200 is OFF	

Analog Inputs:

FT 101	is	29.99	GPM	TOTAL E	LOW	is	53166773	GAL			
$FT^{-}102$	is	0.00	GPM	TOTAL E	LOW	is	9448315	GAL			
$FT^{-}103$	is	0.00	GPM	TOTAL E	LOW	is	1298737	GAL			
$FT^{-}105$	is	0.00	GPM	TOTAL E	LOW	is	4396229	GAL			
$PT^{-}106$	is	29.00	IWC	LIMITS	are	${f L}$:	15.00	IWC	H :	34.00	IWC
$TT^{-}400$	is	89.7	\mathbf{DEG}	LIMITS	are	${f L}$:	60.0	\mathbf{DEG}	H:	110.0	\mathbf{DEG}
PT_400	is	8.2	IWC	LIMITS	are	${f L}$:	1.0	IWC	H :	25.0	IWC
$\mathtt{TT}^{-}100$	is	67.3	\mathbf{DEG}	LIMITS	are	${f L}$:	40.0	\mathbf{DEG}	H:	110.0	\mathbf{DEG}
FT_106	is	650.6	CFM	LIMITS	are	${f L}$:	400.0	CFM	H:		CFM

Analog Outputs:

INJSPD 0.0 PCT

Date:	11/15/2011
Time:	7:45
Technician:	TMC

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Date:	11/15/11	Time:		5:30:00		
Alarm Condition	nn:					
Daily scheduled		eport was no	t receive	d.		
		<u> </u>		<u> </u>		
Cause of Alarn	n:					
Faulty local pho	ne connection	resulted in	a failed c	dial out by the PLC		
Corrective Act	ion:					
Log into the sys	tem remotely	and verify o	peration.			
Initiate a fax nov	w to test dial c	out connection	on/commi	unication.		
,						

To:

TODD CARIGNAN

From

SYSTEM IN LOCKHEED UTICA @ 08:31:48 ON 11/15/2011 : ROM 2.1996 : MODEL A2 THE ARCADIS GCTS SER NO 9539 : SETUP VER 1

System Status:

LAST SHUTDOWN @ 16:14:05 ON 10/17/2011 BY KEYPAD AUTO P06 : FAX REPORT INITIATED BY REMOTE

Discrete Inputs:

MH1_HH is OFF	$MH1_H2$ is OFF	$\mathtt{MH1}\mathtt{\underline{H1}}$ is OFF	MH1_LO is ON
$\mathtt{MH1_LL}$ is \mathtt{ON}	MH2_HH is OFF	MH2_H2 is OFF	MH2H1 is OFF
MH2_LO is ON	$MH2_LL$ is ON	MH3_HH is OFF	MH3 H2 is OFF
MH3 H1 is OFF	MH3LO is ON	MH3LL is ON	WFS $\overline{1}$ 06 is OFF
$MOT\overline{I}ON$ is OFF	LSH $\overline{1}$ 06 is OFF	LSH $\overline{1}$ 00 is OFF	LSL100 is ON
ry 200 is Orr	LSH200 is OFF		

Discrete Outputs:

MH1 P1 is	OFF	MH1 P2 is	OFF	MH2 P1 is		MH2 P2		
MH3P1 is		MH3P2 is		$\mathrm{B}_1\overline{0}0$ is		$DH_{\overline{3}00}$	is	OFF
LA_MH1 is	OFF	$ ext{FA}_{-}\overline{1}01$ is	OFF	$L\overline{A}_MH2$ is		FA_102		
LA_MH3 is		FA_103 is		PA_106 is		LA_100	is	OFF
$LS\overline{H}106$ is	OFF	$WF\overline{S}106$ is	OFF	TA_100 is	s OFF	FA_105	is	ON
FA_106 is		FA_200 is	OFF	MOTION is	s OFF	$TA\overline{H}400$	is	OFF
$TA\overline{L}400$ is	OFF	PA = 400 is	OFF	LSH200 is	s OFF			

Analog Inputs:

FT_101 i	is 0.00	GPM	TOTAL FLOW	is	53178291	GAL		
FT_102 i		GPM	TOTAL FLOW	is	9448315	GAL		
FT ⁻ 103 i	is 0.00	GPM	TOTAL FLOW	is	1303332	GAL		
FT ⁻ 105 i	is 0.00	GPM	TOTAL FLOW	is	4396229	GAL		
PT_106 i	is 0.12	IWC	LIMITS are	${f L}$:	15.00	IWC	н: 34.0	0 IWC
${ m TT}^-400$ i	is 96.6	\mathbf{DEG}	LIMITS are	${f L}$:	60.0	\mathbf{DEG}	H: 110.	0 DEG
PT_400 i	is 0.0	IWC	LIMITS are	${f L}$:	1.0	IWC	H: 25.0	IWC
TT ⁻ 100 i	is 72.0	\mathbf{DEG}	LIMITS are	${f L}$:	40.0	\mathbf{DEG}	H: 110.	0 DEG
FT_106 i	is 0.0	\mathbf{CFM}	LIMITS are	${f L}$:	400.0	CFM	н:	. CFM

Analog Outputs:

INJSPD 0.0 PCT

Date:	11/21/2011
Time:	12:35
Technician:	TMC

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET Time: Date: 11/20/11 8:11:00 11/21/11 9:09:00 **Alarm Condition:** Process - 30 - FA-102 (Low Flow Alarm Aggregate Flowmeter FT-102) with MH-2 online Cause of Alarm: Suspect alarm conditions caused by possible sediment and/or scaling on the paddlewheel sensor. **Corrective Action:** Log into the system remotely and verify operation and bump paddlewheel with by manually turning on 2nd pump to increase velocity in pipe on 11/21/11, verify flowrate 22 gpm, place 2nd pump back to auto and flowrate remained at ~22 gpm. Remove and inspect flowmeter paddlewheel for scaling and clean as necessary during the December Monthly OMM event.

To:

TODD CARIGNAN

From

SYSTEM IN LOCKHEED UTICA @ 08:11:02 ON 11/20/2011 : ROM 2.1996 : MODEL A2 THE ARCADIS GCTS SER NO 9539 : SETUP VER 1

System Status:

LAST SHUTDOWN @ 16:14:05 ON 10/17/2011 BY KEYPAD AUTO P30:

FAX REPORT INITIATED BY PROCESS 30

Discrete Inputs:

MH1 HH is OFF	MH1 H2 is OFF	MH1 H1 is OFF	MH1 LO is ON
$\mathtt{MH1}^{-}\mathtt{LL}$ is \mathtt{ON}	MH2HH is OFF	MH2H2 is OFF	$MH2^-H1$ is ON
MH2_LO is ON	$MH2_LL$ is ON	MH3_HH is OFF	MH3_H2 is OFF
MH3_H1 is OFF	$MH3_LO$ is ON	$MH3_LL$ is ON	WFS $\overline{1}$ 06 is OFF
$\mathtt{MOT}\overline{\mathtt{ION}}$ is OFF	$\mathtt{LSH}\overline{1}\mathtt{06}$ is OFF	$\mathtt{LSH}\overline{1}00$ is OFF	LSL100 is ON
FT 200 is OFF	LSH200 is OFF		

Discrete Outputs:

MH1 P1 is	OFF	MH1 P2 is	S OFF	MH2 P1	is	ON	MH2 P2		
$MH3_P1$ is		MH3_P2 is		$\mathbf{B}_{\mathbf{D}}1\mathbf{\overline{0}}0$			$DH_{\overline{3}00}$	is	ОИ
$LA_\overline{M}H1$ is	OFF	$ extsf{FA} = \overline{1}01$ is	S OFF	LA_MH2			FA_102		
LA MH3 is		FA_103 is	S OFF	PA_106	is	OFF	LA_100	is	\mathbf{OFF}
$LS\overline{H}106$ is		$WF\overline{S}106$ is	S OFF	TA_100	is		FA_105		
\mathtt{FA}_106 is		FA_200 is	S OFF	MOTION	is	OFF	$TA\overline{H}400$	is	OFF
$ ext{TA}\overline{ ext{L}}400$ is	OFF	PA 400 is	S OFF	LSH200	is	OFF			

Analog Inputs:

FT 101	is	0.00	GPM	TOTAL E	LOW	is	53228268	GAL			
FT_102	is	0.00	GPM	TOTAL E	LOW	is	9455096	GAL			
FT_103	is	0.00	GPM	TOTAL E	LOW	is	1322900	GAL			
FT_105	is	0.00	GPM	TOTAL E	LOW	is	4457147	GAL			
PT_106	is	25.64	IWC	LIMITS	are	${f L}$:	15.00	IWC	H :	34.00	IWC
TT_400			\mathbf{DEG}	LIMITS	are	${f L}$:	60.0	\mathbf{DEG}	H :	110.0	\mathbf{DEG}
PT_400	is	11.5	IWC	LIMITS	are	${f L}$:	1.0	IWC	H :	25.0	IWC
TT_100	is	73.2	\mathbf{DEG}	LIMITS	are	\mathbf{L} :	40.0	\mathbf{DEG}	H :	110.0	\mathbf{DEG}
FT_106	is	921.2	CFM	LIMITS	are	\mathbf{L} :	400.0	CFM	H :		CFM

Analog Outputs:

INJSPD 0.0 PCT

To:

TODD CARIGNAN

From

SYSTEM IN LOCKHEED UTICA @ 09:09:00 ON 11/21/2011 : ROM 2.1996 : MODEL A2 THE ARCADIS GCTS SER NO 9539 : SETUP VER 1

System Status:

LAST SHUTDOWN @ 16:14:05 ON 10/17/2011 BY KEYPAD AUTO P30 :

FAX REPORT INITIATED BY PROCESS 30

Discrete Inputs:

MH1_HH is OFF	MH1_H2 is OFF	$\mathtt{MH1}_\mathtt{H1}$ is OFF	MH1_LO is ON
MH1LL is ON	MH2 HH is OFF	$MH2^{-}H2$ is OFF	$MH2^-H1$ is ON
MH2_LO is ON	MH2_LL is ON	MH3_HH is OFF	MH3H2 is OFF
MH3 H1 is OFF	MH3 LO is ON	MH3LL is ON	WFS $\overline{1}$ 06 is OFF
$MOT\overline{I}ON$ is OFF	LSH $\overline{1}$ 06 is OFF	$\mathtt{LSH}\overline{1}00$ is OFF	LSL100 is ON
PT 200 is OPP	TCUSOO is OFF		

Discrete Outputs:

MH1 P1 is	OFF	MH1 P2 is	s OFF	MH2 P1	is	ON	MH2 P2		
$MH3_P1$ is		MH3_P2 is		$\mathbf{B}_{\mathbf{D}}1\mathbf{\overline{0}}0$			$DH_{\overline{3}00}$	is	ON
LA_MH1 is	OFF	$ extsf{FA} = \overline{1}01$ is	S OFF	$L\overline{A}_MH2$			FA_102		
LA MH3 is		FA_103 is	s OFF	PA_106	is	OFF	LA_100	is	OFF
$LS\overline{H}106$ is		$WF\overline{S}106$ is	s OFF	TA_100	is	OFF	FA_105	is	OFF
FA_106 is		FA_200 is	S OFF	MOTION	is	OFF	$TA\overline{H}400$	is	OFF
$ ext{TA}\overline{ ext{L}}400$ is	OFF	PA 400 is	s OFF	LSH200	is	OFF			

Analog Inputs:

FT 101	is	0.00	GPM	TOTAL E	LOW	is	53235859	GAL			
$FT^{-}102$	is	21.54	GPM	TOTAL E	LOW	is	9455307	GAL			
FT_{103}			GPM	TOTAL E	LOW	is	1326114	GAL			
$FT^{-}105$	is	10.59	GPM	TOTAL E	LOW	is	4467461	GAL			
PT_106	is	30.40	IWC	LIMITS	are	\mathbf{L} :	15.00	IWC	H :	34.00	IWC
$TT^{-}400$	is	97.5	\mathbf{DEG}	LIMITS	are	${f L}$:	60.0	\mathbf{DEG}	H :	110.0	\mathbf{DEG}
PT_400	is	9.1	IWC	LIMITS	are	\mathbf{L} :	1.0	IWC	H :	25.0	IWC
$\mathtt{TT}^{-}100$	is	73.4	\mathbf{DEG}	LIMITS	are	${f L}$:	40.0	\mathbf{DEG}	H :	110.0	\mathbf{DEG}
FT_106	is	791.7	\mathbf{CFM}	LIMITS	are	\mathbf{L} :	400.0	CFM	H :		CFM

Analog Outputs:

INJSPD 1.6 PCT

Date:	11/23/2011
Time:	12:30
Technician:	CD/TMC

French Road Facility, Utica, New York **ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET** Date: 11/21/11 Time: **Alarm Condition:** PLC Reset to "Manual" for unknown reason, identified during remote login following no daily fax receipt. Cause of Alarm: Monday, 11/21/11 @ 16:23 – Something causes system to reset. I know the time and date because the earliest datalog entries are a "RESET" and "MANUAL" at that very time. No other events occurred until you logged in today. Noted events are below: "BTD 6: Overflow" alarm box shows up repeatedly within the ProControl Software. Three clicks of okay and it would go away for a short period before returning. All datalog information before 11/21/11 16:23 has been erased. Note: All logged data was downloaded and saved in the AM on 11/21/11 while drafting the monthly DMR. Flow totalizers had been reset to zero at 11/21/11 16:23. All analog input high/low alarm setpoints had been changed to 12/8. **Corrective Action:** Dan Zuck onsite 11/22/11 to inspect system locally, unable to log into local PLC interface. TMC logs into the system remotely on 11/23/11 and observes the alarm condition noted above. CD logs into the system remotely and reconfigures the PLC with the latest GCTS File #17 on 11/23/11. Change all analog input alarm levels/timers to match the latest revised OMM Table 3. Corrected totalizers. The last record of flow totalizers was provided in an alarm fax report about 1.5 hours before (11/21/11 14:56) the shutdown (11/21/11 16:23). These numbers were added to the current totalizers within the PLC. Confirmed that totalizer logging period was still set to once every 6 hours. Also confirm datalogger setup for all analog and discrete I/O. Restart system in "Auto" at 12:00 on 11/23/11 and watch each process control funciton/logic for proper operation/response.

To:

TODD CARIGNAN

From

SYSTEM IN UTICA NEW YORK @ 06:30:00 ON 11/24/2011 : ROM 2.1996 : MODEL A2 THE ARCADIS

SER NO 9539 : SETUP VER 1

System Status:

AUTO P06 : LAST SHUTDOWN @ 12:15:22 ON 11/23/2011 BY B_100

Discrete Imputs:

MH1_HH is OFF	MH1_H2 is OFF	$\mathtt{MH1}\mathtt{H1}$ is OFF	$\mathtt{MH1_LO}$ is \mathtt{ON}
MH1_LL is ON	MH2_HH is OFF	MH2_H2 is OFF	MH2_H1 is OFF
MH2_LO is ON	MH2_LL is ON	MH3 HH is OFF	MH3_H2 is OFF
MH3_H1 is OFF	MH3_LO is ON	MH3LL is ON	WFS $\overline{1}06$ is OFF
$MOT\overline{I}ON$ is OFF	LSH $\overline{1}$ 06 is OFF	LSH $\overline{1}$ 00 is OFF	LSL100 is ON
FT 200 is OFF	LSH200 is OFF		

Discrete Outputs:

MH1 P1 is	OFF	MH1 P2 is	OFF	MH2 P1	is		MH2 P2		
MH3P1 is	OFF	MH3P2 is		$\mathbf{B}_{1}\mathbf{\overline{0}}0$			DH_{300}	is	OFF
LA_MH1 is	OFF	FA_{101} is		LA_MH2	is		FA_102		
LA_MH3 is		FA_103 is		PA_106			LA_100		
$LS\overline{H}106$ is	OFF	$WF\overline{S}106$ is	OFF	TA_100	is	OFF	FA_105		
FA_106 is		FA_200 is		MOTION			$TA\overline{H}400$	is	OFF
$ ext{TA}\overline{ ext{L}}400$ is	OFF	$PA^{-}400$ is	OFF	LSH200	is	OFF			

Analog Inputs:

FT_101	is	0.00	GPM	TOTAL I	FLOW	is	53271106	GAL			
FT_102	is	0.00	GPM	TOTAL I	FLOW	is	9461130	GAL			
FT_103	is	0.00	GPM	TOTAL 1	FLOW	is	1340470	GAL			
$FT^{-}105$	is	0.00	GPM	TOTAL 1	FLOW	is	4519954	GAL			
PT ⁻ 106	is	0.24	IWC	LIMITS	are	${f L}$:	8.00	IWC	H :	34.00	IWC
$TT^{-}400$	is	114.5	\mathbf{DEG}	LIMITS	are	$\mathbf L$:	60.0	\mathbf{DEG}	H :	105.0	\mathbf{DEG}
PT_400	is	0.0	IWC	LIMITS	are	${f L}$:	1.0	IWC	H :	25.0	IWC
TT_100	is	72.8	\mathbf{DEG}	LIMITS	are	${f L}$:	40.0	DEG	H :	110.0	\mathbf{DEG}
FT_106	is	0.0	\mathbf{CFM}	LIMITS	are	${f L}$:	400.0	CFM	H :		CFM

Analog Outputs:

0.0 PCT INJSPD

Date:	11/25/2011	
Time:	10:00	
Technician:	TMC	

ALARM R	ESPONSE / COF	RRECTIVE A	CTION LOG SHEET			
Date: _	11/24/11	Time: _	16:10:00			
Alarm Co	ndition:					
Process -	56 - FA-105 (Low	Flow Alarm A	Aggregate Flowmeter	FT-105) with MF	I-2 online	
Cause of	Alarm:					
Suspect a	larm conditions ca	aused by pos	sible sediment and/or	scaling on the pa	addlewheel sens	sor.
Corrective	e Action:					
Remove a event.	nd inspect flowmo	eter paddlewh	neel for scaling and cle	ean as necessar	y during the Dec	ember Monthly OMM

ALARM Fax Report <u>ProControl Series II+</u>

EOS Research Ltd.

To:

TODD CARIGNAN

From

SYSTEM IN UTICA NEW YORK @ 18:10:30 ON 11/24/2011 : ROM 2.1996 : MODEL A2 THE ARCADIS

SER NO 9539 : SETUP VER 1

System Status:

LAST SHUTDOWN @ 12:15:22 ON 11/23/2011 BY B_100 AUTO P56 :

FAX REPORT INITIATED BY PROCESS 56

Discrete Inputs:

MH1_HH is OFF	$MH1_H2$ is OFF	$\mathtt{MH1}\mathtt{\underline{H1}}$ is OFF	$\mathtt{MH1_LO}$ is \mathtt{ON}
$\mathtt{MH1_LL}$ is \mathtt{ON}	MH2_HH is OFF	MH2_H2 is OFF	MH2H1 is OFF
MH2_LO is ON	$MH2_LL$ is ON	MH3_HH is OFF	MH3 H2 is OFF
MH3 H1 is OFF	MH3LO is OFF	MH3LL is ON	WFS $\overline{1}$ 06 is OFF
$MOT\overline{I}ON$ is OFF	LSH $\overline{1}$ 06 is OFF	LSH $\overline{1}$ 00 is OFF	LSL100 is ON
ry 200 is Orr	LSH200 is OFF		

Discrete Outputs:

MH1 P1 is	OFF	MH1 P2 is	s OFF	MH2 P1	is OFF	MH2 P2		
$MH3_P1$ is		MH3_P2 is		$\mathbf{B}_{-}1\overline{0}0$		$DH_{\overline{3}00}$	is	ON
$LA_\overline{M}H1$ is	OFF	$FA_\overline{1}01$ is	s OFF	LA_MH2		FA_102		
LA MH3 is		FA_103 is	s OFF	PA_106		LA_100	is	OFF
$LS\overline{H}106$ is		WFS106 is	s OFF	TA_100	is OFF	FA_105		
FA_106 is		FA_200 is	s OFF	MOTION	is OFF	$TA\overline{H}400$	is	OFF
$ ext{TA}\overline{ ext{L}}400$ is	OFF	PA 400 is	s OFF	LSH200	is OFF			

Analog Inputs:

FT_101	is	0.00	GPM	TOTAL F	LOW	is	53279491	GAL			
$FT^{-}102$	is	18.88	GPM	TOTAL F	LOW	is	9461907	GAL			
FT_{103}	is	0.00	GPM	TOTAL F	LOW	is	1343488	GAL			
$FT^{-}105$	is	8.39	GPM	TOTAL F	LOW	is	4531697	GAL			
$PT^{-}106$	is	29.64	IWC	LIMITS	are	\mathbf{L} :	8.00	IWC	H :	34.00	IWC
${f TT}^{-}400$	is	85.3	\mathbf{DEG}	LIMITS	are	\mathbf{L} :	60.0	\mathbf{DEG}	H :	105.0	\mathbf{DEG}
$PT^{-}400$	is	9.8	IWC	LIMITS	are	\mathbf{L} :	1.0	IWC	H :	25.0	IWC
$\mathtt{TT}^{-}100$	is	73.6	\mathbf{DEG}	LIMITS	are	\mathbf{L} :	40.0	\mathbf{DEG}	H :	110.0	\mathbf{DEG}
FT_106	is	760.3	\mathbf{CFM}	LIMITS	are	\mathbf{L} :	400.0	CFM	H :		CFM

Analog Outputs:

INJSPD 16.0 PCT

Date:	11/28/2011
Time:	3:30
Technician:	TMC

French Road Facility, Utica, New York **ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET** Date: 11/26/11 Time: Alarm Condition: Process - 30 - FA-102 (Low Flow Alarm Aggregate Flowmeter FT-102) with MH-2 Pump #1 online Cause of Alarm: Suspect alarm conditions caused by faulty pump or in-well check valve. **Corrective Action:** Log into the system remotely on 11/28/11 and verify proper control operation and bump paddlewheel with by manually turning on Pump #2 to increase velocity in pipe on 11/21/11, verify flowrate 22 gpm, place Pump #2 pump back to auto/off and flowrate returned to 0 gpm. Monitor water level in MH-2 via H1 level sensor, no change in level position in a 1 hour period with only Pump #1 online/cycle. Note: based on datalogger high level sensor usually changes state after 4-5 minutes. Turn on Pump #2 on manually and let it pump down the water level to the Low Low level sensor. Low Low level sensor turned off Pump 1 and Pump 2 and triggered an alarm (logic check). Dan Zuck onsite to inspect MH-2 Pump #1 breaker, not tripped, pump motot contact pulls in when pump is placed in "HAND". Following an Inspection of the MH-2 vault it appears that Pump #1 is operating and may be recirculating water back through Pump #2's intake thus indicating a faulty/dirty (e.g. stuck open) Pump #2 check valve or dead heading against a faulty/dirty (e.g. stuck closed, scaled up) Pump #1 check valve? Pump #1 HOA switch turned to the "OFF" position for the time being until the pump and check valves can be inspected/repaired. ARCADIS contacted Paragon Environmental for a quote and schedule for confined space inspection in order to inspect Pump #1 and the Pump #2 check valve. In the interim ARCADIS will continue to monitor MH-2 water levels. Note: MH-2 pump(s) typically only cycle one a day or every other day so the next cycling event should be until late tomorrow, in which case Pump #2 should be the next pump to cycle within the programming so we shouldn't see a MH-2 low flow alarm until Wednesday at the earliest.

EOS Research Ltd.

To:

TODD CARIGNAN

From

SYSTEM IN UTICA NEW YORK @ 07:30:14 ON 11/26/2011 : ROM 2.1996 : MODEL A2 THE ARCADIS SER NO 9539 : SETUP VER 1

System Status:

LAST SHUTDOWN @ 12:15:22 ON 11/23/2011 BY B_100 FAX REPORT INITIATED BY PROCESS 30 AUTO P30 :

Discrete Inputs:

MH1_HH is OFF	MH1_H2 is OFF	$\mathtt{MH1}\mathtt{H1}$ is \mathtt{ON}	MH1_LO is ON
MH1LL is ON	MH2 HH is OFF	$MH2^{-}H2$ is OFF	$MH2^-H1$ is ON
MH2_LO is ON	MH2_LL is ON	MH3_HH is OFF	MH3H2 is OFF
MH3 ^T H1 is OFF	MH3 LO is ON	MH3LL is ON	WFS $\overline{1}$ 06 is OFF
$MOT\overline{I}ON$ is OFF	LSH $\overline{1}$ 06 is OFF	$\mathtt{LSH}\overline{1}00$ is OFF	LSL100 is ON
ET 200 is ON	TCUSOO is OFF		

Discrete Outputs:

MH1 P1 is OFF	MH1 P2 is ON	MH2 P1 is ON	MH2 P2 is OFF
$MH3$ $^{-}P1$ is OFF	MH3P2 is OFF	B $1\overline{0}$ 0 is ON	DH $\overline{3}$ 00 is ON
LA $\overline{ ext{M}}$ H1 is OFF	FA $\overline{1}01$ is OFF	$L\overline{A}$ MH2 is OFF	$FA^{-}102$ is ON
LA_MH3 is OFF	FA_103 is OFF	PA_106 is OFF	\mathtt{LA}_100 is OFF
$LS\overline{H}106$ is OFF	$WF\overline{S}106$ is OFF	$\mathtt{TA} \overline{100}$ is OFF	FA_105 is ON
FA_106 is OFF	FA_200 is ON	$ exttt{MOTION}$ is OFF	$ extsf{TAH}400$ is OFF
$ ext{TA}\overline{ ext{L}}400$ is OFF	$PA^{-}400$ is OFF	LSH200 is OFF	

Analog Inputs:

FT_101	is	27.52	GPM	TOTAL F	LOW	is	53295927	GAL			
FT_102			GPM	TOTAL F	LOW	is	9463275	GAL			
FT_{103}	is	0.00	GPM	TOTAL F	LOW	is	1350322	GAL			
$FT^{-}105$	is	19.60	GPM	TOTAL F	LOW	is	4554123	GAL			
$PT_{-}106$	is	30.10	IWC	LIMITS	are	\mathbf{L} :	8.00	IWC	H:	34.00	IWC
${f TT}^{-}400$	is	86.4	\mathbf{DEG}	LIMITS	are	\mathbf{L} :	60.0	\mathbf{DEG}	H:	105.0	\mathbf{DEG}
PT_400	is	9.8	IWC	LIMITS	are	\mathbf{L} :	1.0	IWC	H:	25.0	IWC
$TT^{-}100$	is	71.9	\mathbf{DEG}	LIMITS	are	\mathbf{L} :	40.0	\mathbf{DEG}	H:	110.0	\mathbf{DEG}
FT_106	is	728.8	CFM	LIMITS	are	\mathbf{L} :	400.0	CFM	H :		CFM

Analog Outputs:

INJSPD 100.0 PCT

Date:	11/28/2011	
Time:	16:00	
Technician:	TMC	

ALARM RI	ESPONSE / COR	RRECTIVE A	CTION LOG SHEET			
Date:	11/27/11	Time:	5:06:00			
Alarm Cor	ndition:					
Process - 3	31 - FA-103 (Low	Flow Alarm F	T-103) with MH-3 P	ump #1 online.		
Cause of A	Alarm:					
Suspect ala	arm conditions ca	aused by poss	sible sediment and/o	r scaling on the pa	ddlewheel sensor.	
Note: Flow	alarm occurred i	in the last min	oute of the pump cyc	e, otherwise FT-10	03 registered flow.	
Corrective	Action:					
	e system remotel e alarm occurred		1 and review datalog	ger file to verify pu	mp operation and	water levels during
			neel for scaling and c	lean as necessary	during the Decem	ber Monthly OMM

ALARM Fax Report EOS Research Ltd. ProControl Series II+

To:

TODD CARIGNAN

From

SYSTEM IN UTICA NEW YORK @ 05:06:28 ON 11/27/2011 : ROM 2.1996 : MODEL A2 THE ARCADIS

SER NO 9539 : SETUP VER 1

System Status:

LAST SHUTDOWN @ 12:15:22 ON 11/23/2011 BY B_100 FAX REPORT INITIATED BY PROCESS 31 AUTO P31 :

Discrete Inputs:

MH1 HH is OFF	MH1 H2 is OFF	MH1 H1 is OFF	MH1 LO is ON
$\mathtt{MH1}^{-}\mathtt{LL}$ is \mathtt{ON}	MH2HH is OFF	MH2H2 is OFF	$\mathtt{MH2}^{-}\mathtt{H1}$ is ON
MH2_LO is ON	$MH2_LL$ is ON	MH3_HH is OFF	MH3_H2 is OFF
MH3_H1 is OFF	$MH3_LO$ is OFF	$MH3_LL$ is ON	WFS $\overline{1}06$ is OFF
$\mathtt{MOT}\overline{\mathtt{ION}}$ is OFF	$\mathtt{LSH}\overline{1}\mathtt{0}\mathtt{6}$ is OFF	$\mathtt{LSH}\overline{1}\mathtt{00}$ is OFF	LSL100 is ON
FT 200 is ON	LSH200 is OFF		

Discrete Outputs:

MH1 P1 is	OFF	MH1 P2 i	s OFF	MH2 P1	is ON	MH2 P2		
$MH3_P1$ is		MH3_P2 i		$\mathbf{B}_{-}1\overline{0}0$		$DH_{\overline{3}00}$	is	ON
$LA_\overline{M}H1$ is		FA_{101} i		LA_MH2		FA_102		
LA MH3 is		FA_103 i	s ON	PA_106	is OFF	LA_100	is	OFF
$LS\overline{H}106$ is		$WF\overline{S}106$ i		TA_100	is OFF	FA_105		
\mathtt{FA}_106 is		FA_200 i	s ON	MOTION	is OFF	$TA\overline{H}400$	is	OFF
$ ext{TA}\overline{ ext{L}}400$ is	OFF	PA 400 i	s OFF	LSH200	is OFF			

Analog Inputs:

FT 101	is	0.00	GPM	TOTAL B	FLOW	is	53306291	GAL			
$FT^{-}102$	is	0.00	GPM	TOTAL B	FLOW	is	9463275	GAL			
$FT^{-}103$	is	0.00	GPM	TOTAL B	FLOW	is	1354175	GAL			
$FT^{-}105$	is	0.00	GPM	TOTAL B	FLOW	is	4567557	GAL			
PT_106	is	28.54	IWC	LIMITS	are	\mathbf{L} :	8.00	IWC	H :	34.00	IWC
${f TT}^{-}400$	is	82.8	\mathbf{DEG}	LIMITS	are	${f L}$:	60.0	\mathbf{DEG}	H :	105.0	\mathbf{DEG}
PT_400	is	10.3	IWC	LIMITS	are	\mathbf{L} :	1.0	IWC	H :	25.0	IWC
$\mathtt{TT}^{-}100$	is	73.8	\mathbf{DEG}	LIMITS	are	${f L}$:	40.0	\mathbf{DEG}	H :	110.0	\mathbf{DEG}
FT_106	is	804.5	CFM	LIMITS	are	\mathbf{L} :	400.0	CFM	H :		CFM

Analog Outputs:

Date: 12/14/2011 Alarm Response Log Sheet, Groundwater Collection and Treatment System, Solvent Dock Area, Former Lockheed Martin Time: 16:00 French Road Facility, Utica, New York Technician: TMC **ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET** Date: 12/8/11 Time: 10:06:00 20:06:00 12/11/11 12/13/11 3:50:00 **Alarm Condition:** Process - 46, TAH400 (Pre Carbon High Temperature >105 F, via TT-400) Cause of Alarm: The data logger indicates that the blower was moving air through the piping during the time of each alarm. Therefore, it is unlikely that the actual air temperature was above 105F except if one the following conditions were occurring. Suspect alarm conditions include: 1, result of the transmitter TT-400 requiring re-calibration/zeroing; 2, original high set point made to close to actual normal operation conditions; 3, internal duct heater thermometer is malfunctioning and is maintaining temp set point higher than desired? **Corrective Action:** Log into the system remotely on 12/9/11 @ 21:00 and restart system.

Log into the system remotely on 12/11/11 @ 20:13 and restart system. Download datalogger files to review events

Log into the system remotely on 12/13/11 @ 8:16 and restart system. Download datalogger files to review events

prior to alarm occurrence. Temporarily adjust TAH400 high alarm set point to 110 F from 105 F.

Continue to monitor the system remotely and inspect instrument during the next OM&M site visit.

prior to alarm occurrence.

ALARM Fax Report ProControl Series 11+

EOS Research Ltd.

To:

TODD CARIGNAN

From:

SYSTEM IN UTICA NEW YORK @ 03:50:08 ON 12/13/2011 : ROM 2.1996 : MODEL A2 THE ARCADIS GCTS SER NO 9539 : SETUP VER 1

System Status:

LAST SHUTDOWN @ 10:00:10 ON 12/12/2011 BY FT_106 SHUTD P-2: FAX REPORT INITIATED BY PROCESS 46

Discrete Inputs:

MH1_HH is OFF	$MH1_H2$ is OFF	$MH1_H1$ is OFF	$\mathtt{MH1_LO}$ is \mathtt{ON}
MH1_LL is ON	MH2 HH is OFF	$MH2\overline{}H2$ is OFF	MH2H1 is OFF
MH2_LO is ON	$MH2_LL$ is ON	MH3_HH is OFF	MH3_H2 is OFF
MH3_H1 is OFF	$MH3_LO$ is ON	MH3LL is ON	WFS $\overline{1}$ 06 is OFF
$\mathtt{MOT}\overline{\mathtt{ION}}$ is OFF	LSH $\overline{1}$ 06 is OFF	LSH $\overline{1}$ 00 is OFF	LSL100 is ON
rm 200 is Orr	LCU200 ie OFF		

Discrete Outputs:

MH1 P1 is	OFF	MH1 P2 is		MH2 P1 i		MH2 P2		
$MH3^-P1$ is	OFF	MH3P2 is	OFF	$\mathbf{B} 1 \overline{0} 0$	is ON	DH 300	is	ON
LA $\overline{ ext{M}}$ H1 is	OFF	FA $\overline{1}01$ is	OFF	LA MH2 i	is OFF	FA 102	is	OFF
LAMH3 is		FA_103 is	ON	PA_106 i	is OFF	LA_100	is	OFF
$\mathtt{LS}\overline{\mathtt{H}}\mathtt{106}$ is	OFF	$WF\overline{S}106$ is	OFF	TA_100 i	is OFF	FA_105		
FA_106 is	OFF	FA_200 is	OFF	MOTION	is OFF	$TA\overline{H}400$	is	ON
$\mathtt{TAL400}$ is	OFF	$PA^{-}400$ is	OFF	LSH200 i	is OFF			

Analog Inputs:

FT_101			GPM	TOTAL FLOW	<i>l</i> is	53448396	GAL			
FT_102	is	0.00	GPM	TOTAL FLOW	<i>l</i> is	9483141	GAL			
FT_103	is	0.00	GPM	TOTAL FLOW	<i>l</i> is	1408287	GAL			
FT_105	is	0.00	GPM	TOTAL FLOW	<i>l</i> is	4773784	GAL			
PT ⁻ 106	is	29.64	IWC	LIMITS are	L :	8.00	IWC	H:	34.00	IWC
TT_400	is	104.6	\mathbf{DEG}	LIMITS are	L :	60.0	\mathbf{DEG}	H:	105.0	\mathbf{DEG}
PT_400	is	10.0	IWC	LIMITS are	L :	1.0	IWC	H:	25.0	IWC
TT_100	is	70.8	\mathbf{DEG}	LIMITS are	L :	40.0	\mathbf{DEG}	H:	110.0	\mathbf{DEG}
FT_106	is	843.6	\mathbf{CFM}	LIMITS are	L :	400.0	CFM	н:		CFM

Analog Outputs:

EOS Research Ltd.

To:

TODD CARIGNAN

From:

SYSTEM IN UTICA NEW YORK @ 20:06:18 ON 12/11/2011 : ROM 2.1996 : MODEL A2 THE ARCADIS GCTS SER NO 9539 : SETUP VER 1

System Status:

LAST SHUTDOWN @ 10:16:30 ON 12/08/2011 BY TT_400 SHUTD P-2: FAX REPORT INITIATED BY PROCESS 46

Discrete Inputs:

MH1_HH is OFF	MH1_H2 is OFF	$\mathtt{MH1}\mathtt{H1}$ is OFF	MH1_LO is ON
MH1_LL is ON	MH2HH is OFF	MH2 H2 is OFF	MH2_H1 is OFF
MH2_LO is ON	$MH2_LL$ is ON	MH3_HH is OFF	MH3_H2 is OFF
MH3_H1 is OFF	$MH3_LO$ is ON	MH3_LL is ON	WFS $\overline{1}$ 06 is OFF
MOTĪON is OFF	LSH $\overline{1}$ 06 is OFF	$\mathtt{LSH}\overline{1}00$ is OFF	LSL100 is ON
ET 200 is OFF	TCUOOO ie OFF		

Discrete Outputs:

MH1 P1 is (OFF	MH1 P2 is	OFF	MH2 P1 i		MH2 P2		
MH3P1 is 0	OFF	MH3P2 is	OFF	$\mathbf{B}_{1}\mathbf{\overline{0}}0$ i	s on	DH 300	is	ON
$LA_\overline{M}H1$ is (OFF	$FA_{1}01$ is	OFF	$L\overline{A}$ MH2 i		FA_102		
LA_MH3 is (FA_103 is	OFF	PA_106 i		LA_100	is	OFF
$LS\overline{H}106$ is ($WF\overline{S}106$ is	OFF	TA_100 i	s OFF	FA_105		
FA_106 is C		FA_200 is		MOTION i	s OFF	$TA\overline{H}400$	is	ON
$TA\overline{L}400$ is (OFF	$PA^{-}400$ is	OFF	LSH200 i	s OFF			

Analog Inputs:

FT_101			GPM	TOTAL FLOY	<i>l</i> is	53439589	GAL			
FT_102	is	0.00	GPM	TOTAL FLOY	l is	9480970	${f GAL}$			
$FT^{-}103$	is	0.00	GPM	TOTAL FLOY	<i>l</i> is	1404824	GAL			
FT_105	is	0.00	GPM	TOTAL FLOY	<i>l</i> is	4760171	GAL			
PT ⁻ 106	is	29.33	IWC	LIMITS are	• L:	8.00	IWC	H:	34.00	IWC
TT_400	is	104.5	\mathbf{DEG}	LIMITS are	• L:	60.0	\mathbf{DEG}	H:	105.0	\mathbf{DEG}
PT_400	is	10.3	IWC	LIMITS are	• L:	1.0	IWC	H:	25.0	IWC
$TT^{-}100$	is	71.1	\mathbf{DEG}	LIMITS are	e L:	40.0	\mathbf{DEG}	H:	110.0	\mathbf{DEG}
FT_106	is	853.2	CFM	LIMITS are	≥ L:	400.0	CFM	H :		CFM

Analog Outputs:

EOS Research Ltd.

To:

TODD CARIGNAN

From:

SYSTEM IN UTICA NEW YORK @ 10:06:29 ON 12/08/2011 : ROM 2.1996 : MODEL A2 THE ARCADIS GCTS SER NO 9539 : SETUP VER 1

System Status:

LAST SHUTDOWN @ 12:08:03 ON 12/02/2011 BY REMOTE SHUTD P-2: FAX REPORT INITIATED BY PROCESS 46

Discrete Inputs:

MH1 HH is OFF	MH1 H2 is OFF	MH1 H1 is OFF	MH1 LO is ON
$\mathtt{MH1}$ LL is ON	MH2_HH is OFF	MH2H2 is OFF	MH2H1 is OFF
MH2_LO is ON	$\mathtt{MH2_LL}$ is \mathtt{ON}	MH3_HH is OFF	MH3_H2 is OFF
MH3_H1 is ON	$MH3_LO$ is ON	$MH3_LL$ is ON	WFS $\overline{1}$ 06 is OFF
$\mathtt{MOT}\overline{\mathtt{ION}}$ is OFF	$\mathtt{LSH}\overline{1}\mathtt{06}$ is OFF	LSH $\overline{1}00$ is OFF	LSL100 is ON
rm 200 is Orr	TOUGOO SE OPP		

Discrete Outputs:

MH1 P1 is (OFF	MH1 P2 is	OFF	MH2 P1 i		MH2 P2		
MH3P1 is 0	OFF	MH3P2 is	OFF	$\mathbf{B}_{1}\mathbf{\overline{0}}0$ i	s on	DH 300	is	ON
$LA_\overline{M}H1$ is (OFF	$FA_{1}01$ is	OFF	$L\overline{A}$ MH2 i		FA_102		
LA_MH3 is (FA_103 is	OFF	PA_106 i		LA_100	is	OFF
$LS\overline{H}106$ is ($WF\overline{S}106$ is	OFF	TA_100 i	s OFF	FA_105		
FA_106 is C		FA_200 is		MOTION i	s OFF	$TA\overline{H}400$	is	ON
$TA\overline{L}400$ is (OFF	$PA^{-}400$ is	OFF	LSH200 i	s OFF			

Analog Inputs:

FT_101	is	0.00	GPM	TOTAL FI	LOW	is	53410149	GAL			
$FT^{-}102$	is	0.00	GPM	TOTAL FI	LOW	is	9478034	GAL			
FT_103	is	0.00	GPM	TOTAL FI	LOW	is	1394530	GAL			
FT_105	is	0.00	GPM	TOTAL FI	LOW	is	4718115	GAL			
PT_106	is	28.82	IWC	LIMITS a	are	${f L}$:	8.00	IWC	H :	34.00	IWC
TT_400	is	108.8	\mathbf{DEG}	LIMITS a	\mathbf{are}	$\mathbf L$:	60.0	DEG	H :	105.0	\mathbf{DEG}
PT_400	is	9.4	IWC	LIMITS a	are	${f L}$:	1.0	IWC	H:	25.0	IWC
TT_100	is	57.0	\mathbf{DEG}	LIMITS a	\mathbf{are}	$\mathbf L$:	40.0	DEG	H :	110.0	\mathbf{DEG}
FT_106	is	807.7	CFM	LIMITS a	are	$\mathbf L$:	400.0	CFM	H:		CFM

Analog Outputs:

Date:	12/14/2011
Time:	19:30
Technician:	TMC

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET
Date: 12/12/11 Time: 0:14:00
Alarm Condition: Process - 56 - FA-105 (Low Flow Alarm Aggregate Flowmeter FT-105) with MH-2 online
Cause of Alarm: Suspect alarm conditions caused by possible sediment and/or scaling on the paddlewheel sensor.
Corrective Action:
Remove and inspect flowmeter paddlewheel for scaling and clean as necessary during the next site visit.
Continue to monitor the effectiveness of the sequestering agent.

ALARM Fax Report

EOS Research Ltd.

<u>ProControl Series II+</u>

To:

TODD CARIGNAN

From

THE ARCADIS GCTS SYSTEM IN UTICA_NEW YORK @ 00:14:15 ON 12/12/2011 SER NO 9539 : SETUP VER 1 : ROM $2.1\overline{9}96$: MODEL A2

System Status:

AUTO P56: LAST SHUTDOWN @ 20:16:18 ON 12/11/2011 BY TT_400 FAX REPORT INITIATED BY PROCESS 56

Discrete Inputs:

MH1_HH is OFF	$MH1_H2$ is OFF	$\mathtt{MH1}\mathtt{H1}$ is OFF	MH1_LO is OFF
MH1_LL is ON	MH2HH is OFF	$MH2\overline{H}2$ is OFF	MH2_H1 is OFF
MH2_LO is ON	$MH2_LL$ is ON	MH3_HH is OFF	MH3_H2 is OFF
MH3_H1 is OFF	$MH3_LO$ is ON	MH3_LL is ON	WFS $\overline{1}$ 06 is OFF
$\mathtt{MOT}\overline{\mathtt{ION}}$ is OFF	$\mathtt{LSH}\overline{1}\mathtt{06}$ is OFF	$\mathtt{LSH}\overline{1}\mathtt{00}$ is OFF	LSL100 is ON
FT 200 is OFF	LSH200 is OFF		

Discrete Outputs:

MH1 P1 is	OFF 1	MH1 P2 is	OFF	MH2 P1 is		MH2 P2		
$MH3P1$ is \bullet	OFF 1	$MH3^{-}P2$ is	OFF	$\mathbf{B} 1 \overline{0} 0$ is	ON	DH $\overline{3}00$	is	ON
LA_ $\overline{\text{M}}$ H1 is \circ	OFF :	FA $_{ar{1}}$ 01 is	OFF	$L\overline{A}$ MH2 is	OFF	FA_102	is	OFF
LA_MH3 is 0		FA_103 is	OFF	PA_106 is		LA_100		
$LS\overline{H}106$ is ($WF\overline{S}106$ is	OFF	$ extsf{TA} = 100 ext{ is}$		FA 105		
FA_106 is Φ	OFF :	FA_200 is	OFF	MOTION is	OFF	$TA\overline{H}400$	is	OFF
$ ext{TA}\overline{ ext{L}}400$ is $ ext{(}$	OFF 1	\mathtt{PA}^{-400} is	OFF	LSH200 is	OFF			

Analog Inputs:

FT_101	is	0.00	GPM	TOTAL FLO)W is	53442090	GAL			
FT_102	is	19.10	GPM	TOTAL FLO)W is	9482377	GAL			
FT_103	is	0.00	GPM	TOTAL FLO)W is	1405327	GAL			
FT_105	is	0.00	GPM	TOTAL FLO)W is	4764384	GAL			
PT ⁻ 106	is	30.34	IWC	LIMITS ar	re L:	8.00	IWC	H :	34.00	IWC
$\mathtt{TT} \underline{\hspace{0.1cm}} 400$	is	92.5	\mathbf{DEG}	LIMITS ar	re L:	60.0	DEG	H :	105.0	\mathbf{DEG}
PT_400	is	9.9	IWC	LIMITS ar	re L:	1.0	IWC	H :	25.0	IWC
$\mathtt{TT}_\mathtt{100}$	is	73.9	\mathbf{DEG}	LIMITS ar	re L:	40.0	DEG	H :	110.0	\mathbf{DEG}
FT_106	is	818.6	\mathbf{CFM}	LIMITS ar	re L:	400.0	CFM	H :		CFM

Analog Outputs:

INJSPD 0.0 PCT PRO

Date:	12/14/2011	
Time:	19:30	
Technician:	TMC	

ALARM Fax Report ProControl Series 11+

EOS Research Ltd.

To:

TODD CARIGNAN

From:

SYSTEM IN UTICA NEW YORK @ 01:17:37 ON 12/12/2011 : ROM 2.1996 : MODEL A2 THE ARCADIS GCTS SER NO 9539 : SETUP VER 1

System Status:

LAST SHUTDOWN @ 20:16:18 ON 12/11/2011 BY TT_400 SHUTD P-3: FAX REPORT INITIATED BY PROCESS 45

Discrete Inputs:

1014 UU		and and de one	MILE TO SE ON
MH1_HH is OFF	MH1_H2 is OFF	$\mathtt{MH1}\mathtt{H1}$ is OFF	$\mathtt{MH1_LO}$ is \mathtt{ON}
MH1_LL is ON	MH2_HH is OFF	MH2H2 is OFF	MH2H1 is OFF
MH2LO is OFF	MH2LL is ON	MH3 HH is OFF	MH3 H2 is OFF
MH3_H1 is ON	MH3_LO is ON	MH3LL is ON	WFS $\overline{1}$ 06 is OFF
MOTĪON is OFF	LSH $\overline{1}$ 06 is OFF	LSH $\overline{1}00$ is OFF	LSL100 is ON
FT 200 is OFF	LSH200 is OFF		

Discrete Outputs:

MH1_P1 is		MH1_P2 is OFF	MH2_P1 is OFF	MH2_P2 is OFF
MH3P1 is	OFF	MH3 P2 is OFF	B $1\overline{0}0$ is ON	DH $\overline{3}00$ is ON
LA $\overline{M}H1$ is		$FA_\overline{1}01$ is OFF	$L\overline{A}$ MH2 is OFF	FA_102 is OFF
LA MH3 is		FA_{103} is OFF	PA_106 is OFF	$\mathtt{LA} \overline{100}$ is OFF
$LS\overline{H}106$ is	OFF	$WF\overline{S}106$ is OFF	$\mathtt{TA} \overline{} 100$ is OFF	FA_105 is ON
FA_106 is		FA_200 is OFF	$ exttt{MOTION}$ is OFF	$TA\overline{H}400$ is OFF
$ ext{TA}\overline{ ext{L}}400$ is	OFF	PA-400 is OFF	LSH200 is OFF	

Analog Inputs:

FT_101			GPM	TOTAL FLO	d is	53442090	${f GAL}$			
FT_102	is	0.00	GPM	TOTAL FLO	d is	9483141	${f GAL}$			
FT_103	is	0.00	GPM	TOTAL FLO	d is	1405333	GAL			
FT_105	is	0.00	GPM	TOTAL FLO	d is	4764545	GAL			
PT ⁻ 106	is	27.38	IWC	LIMITS are	e L:	8.00	IWC	H:	34.00	IWC
TT_400	is	79.9	\mathbf{DEG}	LIMITS are	e L:	60.0	\mathbf{DEG}	H:	105.0	\mathbf{DEG}
PT_400	is	12.3	IWC	LIMITS are	e L:	1.0	IWC	H:	25.0	IWC
TT_100	is	70.1	\mathbf{DEG}	LIMITS are	e L:	40.0	\mathbf{DEG}	H:	110.0	\mathbf{DEG}
FT_106	is	948.7	\mathbf{CFM}	LIMITS ar	e L:	400.0	\mathbf{CFM}	H:		CFM

Analog Outputs:

Date:	12/14/2011
Time:	21:15
Technician:	TMC

ALARM RESPO	NSE / COR	RECTIVE A	CTION LOG SHEET				
Date:	12/12/11	Time: _	19:40:00				
Alarm Condition							
Process - 31, FA	-103 (Low F	Flow Alarm F	Flowmeter FT-103) - Noi	า-Fatal			
Cause of Alarm	-						
		used by pos	sible sediment and/or s	caling on the pa	ddlewheel sei	nsor.	
очеров алали				<u> эашту от што ра</u>			
Corrective Action							
		ter paddlewl	heel for scaling and clea	an as necessarv	during the ne	ext site visit.	

EOS Research Ltd.

To:

TODD CARIGNAN

From:

SYSTEM IN UTICA_NEW YORK @ 19:40:44 ON 12/12/2011 : ROM 2.1996 : MODEL A2 THE ARCADIS GCTS SER NO 9539 : SETUP VER 1

Vstem Status:

LAST SHUTDOWN @ 10:00:10 ON 12/12/2011 BY FT_106 AUTO P31 : FAX REPORT INITIATED BY PROCESS 31

Discrete Inputs:

MIT III de OPE	MI1 HO 3- OFF	WII 111 3- OFF	MITA TO SE ON
$\mathtt{MH1}$ \mathtt{HH} is OFF	$\mathtt{MH1}\mathtt{H}\mathtt{1}$ is OFF	$\mathtt{MH1}\mathtt{H1}$ is OFF	$\mathtt{MH1_LO}$ is ON
MH1_LL is ON	MH2_HH is OFF	MH2_H2 is OFF	MH2H1 is OFF
MH2_LO is ON	$MH2_LL$ is ON	MH3_HH is OFF	MH3_H2 is OFF
MH3_H1 is OFF	MH3_LO is ON	MH3_LL is ON	WFS $\overline{1}06$ is OFF
$MOT\overline{I}ON$ is OFF	LSH $\overline{1}$ 06 is OFF	LSH $\overline{1}$ 00 is OFF	LSL100 is ON
FT 200 is OFF	LSH200 is OFF		

Discrete Outputs:

MH1 P1 is OFF	MH1 P2 is ON	MH2 P1 is OFF	MH2 P2 is OFF
MH3 ⁻ P1 is ON	MH3P2 is OFF	${ t B} \ { t 100}$ is ON	DH $\overline{3}$ 00 is ON
LA_MH1 is OFF	$\mathtt{FA}_\overline{1}\mathtt{01}$ is \mathtt{OFF}	$L\overline{A}$ MH2 is OFF	FA_102 is OFF
LA MH3 is OFF	FA_{103} is ON	$\mathtt{PA} \overline{106}$ is OFF	LA_100 is OFF
$LS\overline{H}106$ is OFF	$WF\overline{S}106$ is OFF	$\mathtt{TA} \overline{100}$ is OFF	FA_105 is OFF
FA_106 is OFF	FA_200 is OFF	$ exttt{MOTION}$ is OFF	$TA\overline{H}400$ is OFF
$ ext{TA}\overline{ ext{L}}400$ is OFF	$PA^{-}400$ is OFF	LSH200 is OFF	

Analog Inputs:

FT_101			GPM	TOTAL FLO	d is	53447263	${f GAL}$			
FT_102			GPM	TOTAL FLO	d is	9483141	${f GAL}$			
FT_103	is	0.00	GPM	TOTAL FLO	d is	1407783	GAL			
FT_105	is	45.91	GPM	TOTAL FLO	d is	4772136	GAL			
PT ⁻ 106	is	31.81	IWC	LIMITS ar	e L:	8.00	IWC	н:	34.00	IWC
$\mathtt{TT} \underline{\hspace{0.1cm}} 400$	is	91.6	\mathbf{DEG}	LIMITS ar	e L:	60.0	DEG	н:	105.0	\mathbf{DEG}
PT_400	is	8.9	IWC	LIMITS are	e L:	1.0	IWC	H :	25.0	IWC
TT_100	is	72.3	\mathbf{DEG}	LIMITS ar	e L:	40.0	DEG	н:	110.0	\mathbf{DEG}
FT_106	is	703.8	CFM	LIMITS ar	e L:	400.0	CFM	H:		CFM

Analog Outputs:

6.8 PCT INJSPD

Date:	12/20/2011
Time:	16:00
Technician:	TMC

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

ALAKIM KEGI GROEF GORKEGITE AGIIGR EGG GILET
Date: 12/15/11 Time: 11:22:00 12/15/11 Time: 11:27:00
Alarm Condition:
Process 29 - MH-1 Low Flow Alarm
Process 55 - Low Flow Aggregate with MH-1 online
Cause of Alarm:
The discrete datalogger file indicated that at 3:40 am the MH-1 Low level float switch was toggling on/off every few seconds. Below are several possible causes of why the switch was sending the false signals. 1.Possible faulty/loose wire(s). 2. Faulty seal in the underground/manhole conduit/junction boxes allowing moisture to penetrate. 3. or the float switch may be faulty.
Corrective Action:
Dan Zuck was just on site 12/15 to look at the MH-1 Low and High 1 float switches. Both switches were suspended freely/submerged under the water and in the upright/on positions. Each float switch was removed from the manhole and successfully tested by exercising the mechanical switch on and off while monitoring the inputs at the PLC. After testing the switches the system was restarted in "Auto" and was observed for 15 minutes, the switches appeared to function properly (i.e. turned on one of the manhole pumps which remained on until both switches were in the off/down position).
On 12/16 the Low Float input began to toggle on/off again at 2:35 am. TMC has Dan Zuck stop back onsite to temporarily place the Low Float in the on (upright position) for the weekend to test the sensor and PLC input. The Low Float remained in the "ON" position all weekend without any interruptions. Dan Zuck placed the float back into its normal float position on 12/19 at ~12:00 pm and the PLC input immediately began to toggle on/off every few seconds, as noted last week. Two spare floats were ordered from Emerick Associates (local Goulds/Flygt vendor) with a expected 12/21 delivery date. In the interim ARCADIS will continue to monitor MH-1 water levels and pump operation remotely.
ARCADIS is tentatively planning on replacing the Low Float on 12/22 or 12/23, depending on confined space staff availability.

ALARM Fax Report

EOS Research Ltd.

<u>ProControl Series II+</u>

To:

TODD CARIGNAN

From:

THE ARCADIS GCTS SYSTEM IN UTICA NEW YORK @ 11:22:36 ON 12/15/2011 SER NO 9539 : SETUP VER 1 : ROM $2.1\overline{9}96$: MODEL A2

System Status:

AUTO P29: LAST SHUTDOWN @ 04:00:08 ON 12/13/2011 BY TT_400 FAX REPORT INITIATED BY PROCESS 29

Discrete Inputs:

MH1_HH is OFF	MH1_H2 is OFF	$\mathtt{MH1}\mathtt{H1}$ is \mathtt{ON}	MH1_LO is OFF
MH1_LL is ON	MH2HH is OFF	MH2 H2 is OFF	MH2H1 is OFF
MH2_LO is ON	$MH2_LL$ is ON	MH3_HH is OFF	MH3_H2 is OFF
MH3_H1 is OFF	$MH3_LO$ is ON	MH3_LL is ON	WFS $\overline{1}$ 06 is OFF
$\mathtt{MOT}\overline{\mathtt{ION}}$ is OFF	LSH $\overline{1}$ 06 is OFF	LSH $\overline{1}$ 00 is OFF	LSL100 is ON
rm 200 is OFF	LCU200 ie OFF		

Discrete Outputs:

MH1 P1 is (DEE ME	H1 P2 is	OFF	MH2 P1 i		MH2 P2		
MH3P1 is 0		13^{-} P2 is		$\mathbf{B} 1 \mathbf{\overline{0}} 0 \mathbf{i}$	s ON	DH $\overline{3}00$	is	ON
$LA_\overline{M}H1$ is (OFF F	$1 \overline{1}01$ is	ON	$L\overline{A}$ _MH2 i		FA_102		
LA_MH3 is (103 is		PA_106 i		LA_100	is	OFF
$LS\overline{H}106$ is ($\overline{S}106$ is	OFF	TA_100 i	s OFF	FA 105		
FA_106 is C		1_200 is		MOTION i	s OFF	$TA\overline{H}400$	is	OFF
$TA\overline{L}400$ is (DEE PA	400 is	OFF	LSH200 i	s OFF			

Analog Inputs:

FT_101 i		GPM	TOTAL FLOW	is	53463830	GAL			
$FT^{-}102$ j	is 0.00	GPM	TOTAL FLOW	is	9485303	GAL			
FT_103 i	is 0.00	GPM	TOTAL FLOW	is	1414189	GAL			
FT_105 i	is 0.00	GPM	TOTAL FLOW	is	4796211	GAL			
PT_106 i	is 27.69	IWC	LIMITS are	\mathbf{L} :	8.00	IWC	H :	34.00	IWC
${f TT}$ ${f 400}$ j	is 81.6	\mathbf{DEG}	LIMITS are	\mathbf{L} :	60.0	DEG	\mathbf{H} :	110.0	\mathbf{DEG}
PT_400 i	is 10.6	IWC	LIMITS are	\mathbf{L} :	1.0	IWC	H :	25.0	IWC
${f TT}$ ${f 100}$ j	is 72.9	\mathbf{DEG}	LIMITS are	$\mathbf L$:	40.0	DEG	\mathbf{H} :	110.0	\mathbf{DEG}
FT_106 i	is 869.9	CFM	LIMITS are	\mathbf{L} :	400.0	CFM	H :		CFM

Analog Outputs:

INJSPD 0.0 PCT PRO

EOS Research Ltd.

To:

TODD CARIGNAN

From:

SYSTEM IN UTICA_NEW YORK @ 11:27:00 ON 12/15/2011 : ROM 2.1996 : MODEL A2 THE ARCADIS GCTS SER NO 9539 : SETUP VER 1

System Status:

LAST SHUTDOWN @ 04:00:08 ON 12/13/2011 BY TT_400 AUTO P08 :

FAX REPORT INITIATED BY PROCESS 55

Discrete Inputs:

MH1_HH is OFF	MH1_H2 is OFF	$\mathtt{MH1}\mathtt{H1}$ is ON	MH1_LO is ON
MH1_LL is ON	MH2 HH is OFF	MH2 H2 is OFF	MH2H1 is OFF
MH2_LO is ON	$\mathtt{MH2_LL}$ is \mathtt{ON}	MH3_HH is OFF	MH3_H2 is OFF
MH3_H1 is OFF	$MH3_LO$ is ON	MH3LL is ON	WFS $\overline{1}$ 06 is OFF
$MOT\overline{I}ON$ is OFF	LSH $\overline{1}$ 06 is OFF	LSH $\overline{1}$ 00 is OFF	LSL100 is ON
rm 200 is Orr	LCU200 is OFF		

Discrete Outputs:

MH1 P1 is (DEE ME	H1 P2 is	OFF	MH2 P1 i		MH2 P2		
MH3P1 is (13^{-} P2 is		$\mathbf{B} 1 \mathbf{\overline{0}} 0 \mathbf{i}$	s ON	DH $\overline{3}00$	is	ON
$LA_\overline{M}H1$ is (OFF F	$1 \overline{1}01$ is	ON	$L\overline{A}$ _MH2 i		FA_102		
LA_MH3 is (103 is		PA_106 i		LA_100	is	OFF
$LS\overline{H}106$ is ($\overline{S}106$ is	OFF	TA_100 i	s OFF	FA 105		
FA_106 is C		1_200 is		MOTION i	s OFF	$TA\overline{H}400$	is	OFF
$TA\overline{L}400$ is (DEE PA	400 is	OFF	LSH200 i	s OFF			

Analog Inputs:

FT_101			GPM	TOTAL FLOW	is	53463858	GAL			
FT_102	is	0.00	GPM	TOTAL FLOW	is	9485303	GAL			
FT_103	is	0.00	GPM	TOTAL FLOW	is	1414189	GAL			
FT_105	is	0.00	GPM	TOTAL FLOW	is	4796230	GAL			
PT ⁻ 106	is	28.24	IWC	LIMITS are	L :	8.00	IWC	H:	34.00	IWC
TT_400			\mathbf{DEG}	LIMITS are	L :	60.0	\mathbf{DEG}	H:	110.0	\mathbf{DEG}
PT_400	is	10.0	IWC	LIMITS are	L :	1.0	IWC	H:	25.0	IWC
TT_100	is	73.4	\mathbf{DEG}	LIMITS are	L :	40.0	\mathbf{DEG}	H:	110.0	\mathbf{DEG}
FT_106	is	798.7	CFM	LIMITS are	L :	400.0	CFM	H :		CFM

Analog Outputs:

INJSPD 5.2 PCT

Date:	12/28/2011
Time:	21:00
Technician:	TMC

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Date: 12/15/11 Time: 11:22:00 12/15/11 Time: 11:27:00

Alarm Condition:

Process 29 - MH-1 Low Flow Alarm

Process 55 - Low Flow Aggregate with MH-1 online

Cause of Alarm:

The discrete datalogger file indicated that at 3:40 am the MH-1 Low level float switch was toggling on/off every few seconds. Below are several possible causes of why the switch was sending the false signals. 1.Possible faulty/loose wire(s). 2. Faulty seal in the underground/manhole conduit/junction boxes allowing moisture to penetrate. 3. or the float switch may be faulty.

Corrective Action:

Dan Zuck was just on site 12/15 to look at the MH-1 Low and High 1 float switches. Both switches were suspended-freely/submerged under the water and in the upright/on positions. Each float switch was removed from the manhole-and successfully tested by exercising the mechanical switch on and off while monitoring the inputs at the PLC. After-testing the switches the system was restarted in "Auto" and was observed for 15 minutes, the switches appeared to function properly (i.e. turned on one of the manhole pumps which remained on until both switches were in the off/down position).

On 12/16 the Low Float input began to toggle on/off again at 2:35 am. TMC has Dan Zuck stop back onsite to-temporarily place the Low Float in the on (upright position) for the weekend to test the sensor and PLC input. The Low Float remained in the "ON" position all weekend without any interruptions. Dan Zuck placed the float back into its normal float position on 12/19 at ~12:00 pm and the PLC input immediately began to toggle on/off every few seconds, as noted last week. Two spare floats were ordered from Emerick Associates (local Goulds/Flygt vendor) with a expected 12/21 delivery date. In the interim ARCADIS will continue to monitor MH-1 water levels and pump operation remotely.

ARCADIS is tentatively planning on replacing the Low Float on 12/22 or 12/23, depending on confined space staff-availability. Two spare floats have been obtained and will kept at the site as future spares.

TMC onsite 12/22/11 to inspect MH-1 float switches. Based on physical inspection the Low Float mechanical switch appeared to work properly. After completing the physical inspection the intrinsically safe relay (ISR) switch (GEMS Part# ST64101) which powers the float switch was inspected and found to be potentially faulty. This finding was based on the output current for each of the other float ISRs was found to be 14v and the Low Float output current was reading less than 5v. As a result the Low Low Float PLC input was swapped with the faulty Low so that the pumps could operate normally over the holiday weekend until a new replacement ISR could be obtained. Two new ISRs were ordered on 12/27 and received on 12/28.

TMC scheduled to be onsite 12/29/11 to replace the presumed faulty Low Float ISR. If the new ISR doesn't solve the problem then the next step will be to replace the Low Float in parallel with the check valve cleaning tentatively scheduled for 12/30/11.

Date:	12/30/2011
Time:	13:00
Technician:	TMC

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Date:	12/15/11	Time:	11:22:00
	12/15/11		11:27:00

Alarm Condition:

Process 29 - MH-1 Low Flow Alarm

Process 55 - Low Flow Aggregate with MH-1 online

Cause of Alarm:

The discrete datalogger file indicated that at 3:40 am the MH-1 Low level float switch was toggling on/off every few seconds. Below are several possible causes of why the switch was sending the false signals. 1.Possible faulty/loose wire(s). 2. Faulty seal in the underground/manhole conduit/junction boxes allowing moisture to penetrate. 3. or the float switch may be faulty.

Corrective Action:

Dan Zuck was just on site 12/15 to look at the MH-1 Low and High 1 float switches. Both switches were suspended-freely/submerged under the water and in the upright/on positions. Each float switch was removed from the manhole-and successfully tested by exercising the mechanical switch on and off while monitoring the inputs at the PLC. After-testing the switches the system was restarted in "Auto" and was observed for 15 minutes, the switches appeared to-function properly (i.e. turned on one of the manhole pumps which remained on until both switches were in the-off/down position).

On 12/16 the Low Float input began to toggle on/off again at 2:35 am. TMC has Dan Zuck stop back onsite to-temporarily place the Low Float in the on (upright position) for the weekend to test the sensor and PLC input. The Low Float remained in the "ON" position all weekend without any interruptions. Dan Zuck placed the float back into its normal float position on 12/19 at ~12:00 pm and the PLC input immediately began to toggle on/off every few seconds, as noted last week. Two spare floats were ordered from Emerick Associates (local Goulds/Flygt vendor) with a expected 12/21 delivery date. In the interim ARCADIS will continue to monitor MH-1 water levels and pump operation remotely.

ARCADIS is tentatively planning on replacing the Low Float on 12/22 or 12/23, depending on confined space staff-availability. Two spare floats have been obtained and will kept at the site as future spares.

TMC onsite 12/22/11 to inspect MH-1 float switches. Based on physical inspection the Low Float mechanical switch-appeared to work properly. After completing the physical inspection the intrinsically safe relay (ISR) switch (GEMS-Part# ST64101) which powers the float switch was inspected and found to be potentially faulty. This finding was-based on the output current for each of the other float ISRs was found to be 14v and the Low Float output current was reading less than 5v. As a result the Low Low Float PLC input was swapped with the faulty Low so that the pumps-could operate normally over the holiday weekend until a new replacement ISR could be obtained. Two new ISRs were ordered on 12/27 and received on 12/28.

TMC scheduled to be ensite 12/29/11 to replace the presumed faulty Low Float ISR. If the new ISR doesn't solve the problem then the next step will be to replace the Low Float in parallel with the check valve cleaning tentatively scheduled for 12/30/11.

TMC onsite 12/29/11, MH-1 Low Float ISR successfully replaced, float operating normally.

Date:	12/23/2011				
Time:	16:00				
Technician:	TMC				

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET
Date: 12/23/11 Time: 13:44:00
Alarm Condition: Process - 29 - FA-101 (Low Flow Alarm Aggregate Flowmeter FT-101) with MH-1 Pump #2 online
Cause of Alarm: Suspect alarm conditions caused by faulty pump or in-well check valve or motor overload.
Corrective Action: Log into the system remotely on 12/23/11 to verify proper logic and bump paddlewheel with by manually turning on Pump #1 to increase velocity in pipe, verify flowrate 38 gpm, place Pump #2 pump back to auto/off and flowrate returned to 0 gpm.
Dan Zuck onsite to inspect MH-1 Pump #2 breaker, not tripped, pump motor contact pulls in when pump is placed in "HAND". Following an Inspection of the MH-1 vault it appears that Pump #2 is operating and may be recirculating water back through Pump #1's intake thus indicating a faulty/dirty (e.g. stuck open) Pump #1 check valve or dead heading against a faulty/dirty (e.g. stuck closed, scaled up) Pump #2 check valve?
Pump #2 HOA switch turned to the "OFF" position for the time being until the pump and check valves can be inspected/repaired.
ARCADIS contact to contact subcontractors to schedule for a confined space entry/inspection in order to inspect Pump #1 and the Pump #2 check valves.
In the interim ARCADIS will continue to monitor MH-1 water levels.

EOS Research Ltd.

To:

TODD CARIGNAN

From:

SYSTEM IN UTICA_NEW YORK @ 13:44:48 ON 12/23/2011 : ROM 2.1996 : MODEL A2 THE ARCADIS GCTS SER NO 9539 : SETUP VER 1

System Status:

LAST SHUTDOWN @ 14:25:06 ON 12/22/2011 BY B_100 AUTO P29 : FAX REPORT INITIATED BY PROCESS 29

Discrete Inputs:

MH1_HH is OFF	$MH1_H2$ is OFF	MH1_H1 is ON	$\mathtt{MH1_LO}$ is \mathtt{ON}
MH1_LL is ON	MH2 HH is OFF	$MH2\overline{}H2$ is OFF	MH2H1 is OFF
MH2_LO is ON	$MH2_LL$ is ON	MH3_HH is OFF	MH3_H2 is OFF
MH3_H1 is OFF	$MH3_LO$ is ON	MH3LL is ON	WFS $\overline{1}$ 06 is OFF
$\mathtt{MOT}\overline{\mathtt{ION}}$ is OFF	$\mathtt{LSH}\overline{1}\mathtt{06}$ is OFF	LSH $\overline{1}$ 00 is OFF	LSL100 is ON
rm 200 is Orr	LCU200 ie OFF		

Discrete Outputs:

MH1 P1 is	OFF	MH1 P2 is	ON	MH2 P1 i		MH2 P2		
MH3P1 is	OFF	$MH3^-P2$ is	OFF	$\mathbf{B} 1 \overline{0} 0 \mathbf{i}$	s ON	DH $\overline{3}00$	is	ON
$LA_\overline{M}H1$ is	OFF	FA $_{ar{1}}$ 01 is	ON	$L\overline{A}$ _MH2 i	s OFF	FA_102	is	OFF
LA_MH3 is		FA_103 is		PA_106 i		LA_100		
$LS\overline{H}106$ is	OFF	$WF\overline{S}106$ is	OFF	TA_100 i	s OFF	FA_105		
FA_106 is		FA_200 is	OFF	MOTION i		$TA\overline{H}400$	is	OFF
$TA\overline{L}400$ is	OFF	$PA^{-}400$ is	OFF	LSH200 i	s OFF			

Analog Inputs:

FT_101 i		GPM	TOTAL FLOW	is	53539911	GAL		
$FT^{-}102$ i	is 0.00	GPM	TOTAL FLOW	is	9496435	GAL		
$FT^{-}103$ i	is 0.00	GPM	TOTAL FLOW	is	1444274	GAL		
FT_105 i	is 0.00	GPM	TOTAL FLOW	is	4890360	GAL		
PT ⁻ 106 i	is 26.37	IWC	LIMITS are	${f L}$:	8.00	IWC	н: 34.00	IWC
${f TT}$ ${f 400}$ i	is 72.8	\mathbf{DEG}	LIMITS are	\mathbf{L} :	60.0	DEG	H: 110.0	\mathbf{DEG}
PT^-400 i	is 12.8	IWC	LIMITS are	${f L}$:	1.0	IWC	н: 25.0	IWC
TT_100 i	is 71.2	\mathbf{DEG}	LIMITS are	$\mathbf L$:	40.0	DEG	H: 110.0	\mathbf{DEG}
FT_106 i	is 941.0	CFM	LIMITS are	\mathbf{L} :	400.0	CFM	H:	CFM

Analog Outputs:

Time:

Date:	12/30/2011
Time:	12:30
Technician:	TMC

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

12/23/11

Alarm Condition: Process - 29 - FA-101 (Low Flow Alar	m Aggregate Flowmeter	r FT-101) with MH-1	Pump #2 online	

13:44:00

Cause of Alarm:

Date:

Suspect alarm conditions caused by faulty pump or in-well check valve or motor overload.

Corrective Action:

Log into the system remotely on 12/23/11 to verify proper logic and bump paddlewheel with by manually turning on Pump #1 to increase velocity in pipe, verify flowrate 38 gpm, place Pump #2 pump back to auto/off and flowrate returned to 0 gpm.

Dan Zuck onsite to inspect MH-1 Pump #2 breaker, not tripped, pump motor contact pulls in when pump is placed in "HAND". Following an Inspection of the MH-1 vault it appears that Pump #2 is operating and may be recirculating water back through Pump #1's intake thus indicating a faulty/dirty (e.g. stuck open) Pump #1 check valve or dead heading against a faulty/dirty (e.g. stuck closed, scaled up) Pump #2 check valve?

Pump #2 HOA switch turned to the "OFF" position for the time being until the pump and check valves can be inspected/repaired.

ARCADIS contact to contact subcontractors to schedule for a confined space entry/inspection in order to inspect Pump #1 and the Pump #2 check valves.

In the interim ARCADIS will continue to monitor MH-1 water levels.

TMC onsite 12/29/11 to replace MH-1 Low Float ISR and to inspect suspected stuck check valve. Following replacement of the ISR MH-1 was placed back in normal operation. 100% recirculation back through the Pump #1 intake was noted when Pump #2 was online. The Pump #1 CV was lightly tapped with a plastic rod from outside the MH and the check ball dislodged from the stuck open position, thus allowing Pump #2 to operate normally.

A quote for confined space entry/CV cleaning was received from Royal Environmental. ARCADIS to continue development of possible SOP for all confined space entries onsite.

ARCADIS will continue to monitor MH-1 pumps for proper operation.

Date:	12/30/2011
Time:	14:00
Technician:	TMC

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET
Date: 12/30/11 Time: 8:35:00
Alarm Condition:
Process - 57 - FA-105 (Low Flow Alarm Aggregate Flowmeter FT-105 with MH-3 online)
Cause of Alarm:
Possible air pockets causing turbulent flow within the 3" dia. Manifold.
Lower velocity in 3" diameter header pipe when only one MH-3 pump is batching (18-19 gpm), thus resulting in a flow of less than 3 gpm for a period greater than 30 seconds (alarm time delay set point) during the initial startup of batch cycle.
Corrective Action:
Consider replacing paddle wheel flow sensor with a more accurate/high sensitivity magmeter type (see attached spec sheet).

EOS Research Ltd.

To:

TODD CARIGNAN

From:

SYSTEM IN UTICA NEW YORK @ 08:35:16 ON 12/30/2011 : ROM 2.1996 : MODEL A2 THE ARCADIS GCTS SER NO 9539 : SETUP VER 1

Vstem Status:

LAST SHUTDOWN @ 09:44:22 ON 12/29/2011 BY REMOTE AUTO P57 : FAX REPORT INITIATED BY PROCESS 57

Discrete Inputs:

MH1_HH is OFF	MH1_H2 is OFF	MH1_H1 is OFF	$\mathtt{MH1_LO}$ is \mathtt{ON}
MH1_LL is ON	MH2HH is OFF	$MH2\overline{}H2$ is OFF	MH2H1 is OFF
MH2_LO is ON	$MH2_LL$ is ON	MH3_HH is OFF	MH3_H2 is OFF
MH3_H1 is OFF	$MH3_LO$ is ON	MH3LL is ON	WFS $\overline{1}$ 06 is OFF
$\mathtt{MOT}\overline{\mathtt{ION}}$ is OFF	LSH $\overline{1}$ 06 is OFF	LSH $\overline{1}$ 00 is OFF	LSL100 is ON
rm 200 is OFF	LCU200 ie OFF		

Discrete Outputs:

MH1 P1 is	OFF	MH1 P2 is	OFF	MH2 P1 i		MH2 P2		
$MH3^-P1$ is	ON	MH3P2 is	OFF	$\mathbf{B} 1 \overline{0} 0 \mathbf{i}$	s on	DH $\overline{3}00$	is	ON
LA_ $\overline{ ext{M}}$ H1 is	OFF	$ ext{FA}$ $\overline{1}01$ is	OFF	$L\overline{A}$ MH2 i		FA_102		
LA MH3 is		FA = 103 is	OFF	PA_106 i	s OFF	LA_100	is	OFF
$LS\overline{H}106$ is		$WF\overline{S}106$ is	OFF	TA_100 i	s OFF	FA_105		
FA_106 is $^{\circ}$		FA_200 is		MOTION i	s OFF	$TA\overline{H}400$	is	OFF
${ m TAL400}$ is ${ m ^{1}}$	OFF	$PA^{-}400$ is	OFF	LSH200 i	is OFF			

Analog Inputs:

FT_101	is	0.00	GPM	TOTAL FI	LOW	is	53613097	GAL			
FT_102	is	0.00	GPM	TOTAL FI	LOW	is	9504590	GAL			
FT_103	is	16.97	GPM	TOTAL FI	LOW	is	1472019	GAL			
FT_105	is	0.00	GPM	TOTAL FI	LOW	is	4987838	GAL			
PT ⁻ 106	is	30.49	IWC	LIMITS a	are	${f L}$:	8.00	IWC	H:	34.00	IWC
TT_400	is	89.7	\mathbf{DEG}	LIMITS a	are	$\mathbf L$:	60.0	DEG	H :	110.0	\mathbf{DEG}
PT_400	is	11.1	IWC	LIMITS a	are	${f L}$:	1.0	IWC	H:	25.0	IWC
TT_100	is	62.8	\mathbf{DEG}	LIMITS a	are	$\mathbf L$:	40.0	DEG	H :	110.0	\mathbf{DEG}
FT_106	is	850.0	CFM	LIMITS a	are	$\mathbf L$:	400.0	CFM	H :		CFM

Analog Outputs: