

Infrastructure · Water · Environment · Buildings

Transmittal Letter

New Yor Conserva Division Remedia 625 Broa	ation of Environr al Bureau B adway	E. partment of Environmental mental Remediation = 12th Floor = 2207-2942	Charles Trione, Lockheed Martin James Zigmont, CDM Greg Rys, NYSDOH Dale Truskett, Lockheed Martin Kay Armstrong, Armstrong & Assoc. Mary Morningstar, Lockheed Martin Richard Zigenfus, ConMed Glenda Smith, Lockheed Martin Virginia Robbins, BS&K File	Tel 518 250 7300 Fax 518 250 730				
From: Lisa Coll	ins		Date: April 18, 2013					
		erimeter Ditch Off-Site hway Evaluation Report	ARCADIS Project No.: NJ001032.0001					
We are se ⊠ Attach	nding you: ned	☐ Under Se	eparate Cover Via the Following It	tems:				
Shop [Prints Other:	Ū	☐ Plans ☐ Samples	☐ Specifications ☐ Change Order ☐ Copy of Letter ☐ Reports					
Copies	Date		Description		Action*			
1	2/14/13		Ditch Off-Site Vapor Intrusion Pathwa , Former Lockheed Martin French Roa	-	AS			
□ AN A	ACTION* A Approved CR Correct and Resubmit Resubmit Copies AN Approved As Noted F File Return Copies AS As Requested FA For Approval Review and Comment							
U.S. Po	Mailing Method ☐ U.S. Postal Service 1 st Class ☐ Courier/Hand Delivery ☐ FedEx Priority Overnight ☐ FedEx 2-Day Delivery ☐ Certified/Registered Mail ☐ United Parcel Service (UPS) ☐ FedEx Standard Overnight ☐ FedEx Economy ☐ Other: Email							
Comments	comments: This is a revised report per the request of NYSDEC.							

ARCADIS of New York, Inc.

855 Route 146 Suite 210

Clifton Park New York 12065

Ms. Ruth Curley, P.E.

New York State Department of Environmental Conservation

Division of Environmental Remediation

Remedial Bureau B – 12th Floor

625 Broadway

Albany, New York 12207-2942

Subject:

Former Northern Perimeter Ditch Off-Site Vapor Intrusion Pathway Evaluation Report, Solvent Dock Area, Former Lockheed Martin French Road Facility, Utica, New York

Dear Ms. Curley:

On behalf of Lockheed Martin Corporation (Lockheed Martin), ARCADIS of New York, Inc. (ARCADIS) has prepared this Off-Site Vapor Intrusion (VI) Pathway Evaluation Report for the Former Northern Perimeter Ditch (FNPD) area, herein referred to as the FNPD Off-Site VI Report. The FNPD Off-Site VI Report describes the VI pathway evaluation that was conducted adjacent to the former Lockheed Martin French Road facility as part of the Corrective Measures Implementation Plan (CMIP) required by the "Order on Consent," Index Number CO 6-20080321-5. A supplemental investigation presented within the Former Northern Perimeter Ditch Supplemental Investigation Report (FNPD Report) (ARCADIS 2011a) evaluated soil, groundwater, and soil gas quality associated with the Solvent Dock Area (the Site) at the French Road facility, specifically in the area of the FNPD, located along the northern boundary of the Site. Soil gas quality results from the FNPD investigation were transmitted to the New York State Department of Environmental Conservation (NYSDEC) and New York State Department of Health (NYSDOH) in an e-mail dated October 22, 2010 (and further discussed with NYSDOH on November 22, 2010). NYSDOH indicated that low-level detections of chlorinated volatile organic compounds (CVOCs) in soil gas samples warranted further investigation pertaining to the potential for off-Site migration northward and onto the Indium Corporation (Indium) property (which is adjacent to the French Road facility). As a result, Lockheed Martin conducted the FNPD Off-Site VI pathway evaluation.

This FNPD Off-Site VI Report describes the off-Site activities that were completed to evaluate the potential migration of site-related CVOCs in soil gas onto the Indium property. Samples were collected on the Indium property, adjacent to the FNPD, from just above the water table during November 2012. The on-Site and off-Site areas, as well as historical soil gas sample locations are presented on Figure 1.

ARCADIS U.S., Inc.
10 Friends Lane
Suite 200
Newtown
Pennsylvania 18940
Tel 267.685.1874
Fax 267.685.1801
www.arcadis-us.com

ENVIRONMENT

Date:

February 14, 2013

Contact:

Jeffrey Bonsteel

Phone:

267.685.1874

Email:

jeffrey.bonsteel@ arcadis-us.com

Our reference: NJ001032.0001

Although six samples were proposed in the work plan (ARCADIS 2011b), only thee samples were successfully collected due to an observed high groundwater table and, in some cases, groundwater infiltration into the sample ports. The specific sampling methods, data results, and data analysis are presented below.

Objective and Scope of Work

The FNPD Off-Site VI pathway evaluation was designed to further evaluate the soil gas quality findings presented in the FNPD Report, which concluded that CVOCs were detected in soil vapor above United States Environmental Protection Agency (USEPA) screening levels along the on-Site portion of the FNPD in select samples (ARCADIS 2011a).

To investigate the potential for off-Site migration of CVOCs in soil gas, additional samples along the property boundary between the former Lockheed Martin facility and Indium were collected. Low level CVOC concentrations detected along the southern (on-Site) side of the existing Groundwater Collection and Treatment System (GCTS) trench have the potential to contribute to off-Site migration of constituents via the soil gas pathway (Figure 2). Although CVOCs were detected in on-Site groundwater samples collected along the southern side of the GCTS trench, CVOCs were not detected in groundwater sample locations along the northern side of the GCTS trench (adjacent to the property boundary identified for sampling). However, these groundwater sampling locations are in near existing soil gas sample locations (i.e., sample locations SG-22 through SG-27), which have been identified to have measurable concentrations of site-related constituents of concern.

Soil Gas Probe Installation and Sampling

Sample locations were adjusted in the field slightly from what was proposed in the Work Plan, actual locations of soil gas samples and soil borings are presented in Figures 1 and 2. Soil borings were advanced at each proposed sample location to characterize soils and determine the depth to groundwater. Soil boring logs are included in Appendix A. Four permanent soil gas probes were installed on November 14, 2012, with a hand auger at locations at the off-Site Indium property (Figure 2). Two locations (identified as locations SB-IND-5 and SB-IND-6 on Figure 2) were not installed due to observations of groundwater (saturated conditions) from ground surface to depths up to 15-feet below ground surface. Due to the higher land surface elevation encountered at locations SB-IND-4 and SB-IND-5 a GeoprobeTM rig was used to advance a soil boring to a deeper termination depth, to ensure that the water observed near the surface was not perched groundwater or some other unique

drainage feature. Based on saturated soils within the borings and anticipated groundwater elevations from the northern perimeter wells, soil gas probes SG-IND-1 through SG-IND-4 were installed in soils with the best chance for vapor recovery within the vadose zone and above the capillary fringe. Soil gas probes SG-IND-1 through SG-IND-3 are located approximately 30 feet northwest of the French Road facility property boundary in a line approximately 40 to 50 feet northwest of existing on-Site soil gas probes SG-24 through SG-27 along the FNPD (Figure 2). Soil gas probe SG-IND-4 is located farther within the Indium property, approximately 100 feet from the property boundary. Soil gas probes SG-IND-1 to SG-IND-3 were installed between 2 and 5 feet below ground surface (ft bgs), and SG-IND-4 was installed between 9.5 and 10 feet below land surface, due to higher land surface elevation. The installed sample depth at each location was approximately 1 foot above saturated soils and the approximate water table in accordance with NYSDOH VI guidance (2006) and the approved work plan (ARCADIS 2011b). Soil gas probe construction logs are included in Appendix A.

The integrity of each vapor probe was tested using a helium tracer gas test on the same day as sampling. Sample collection was attempted on November 20, 2012, from each of the four newly-installed locations as two-hour grab samples using passivated stainless steel canisters (i.e., SUMMA canisters). Sample logs are included in Appendix B. Samples were submitted to Centek Laboratories in Syracuse, New York, and analyzed in accordance with the existing *Quality Assurance Project Plan* (QAPP) (ARCADIS 2009) by USEPA Method TO-15. In addition to the soil gas samples, one ambient (outdoor) air sample was collected at an upwind sample location representative of the Site.

Sample Results and Analysis

Although four soil gas probes were installed along the off-Site side of the FNPD on the Indium property, samples were only successfully collected from three locations due to groundwater infiltration into the screened interval of SG-IND-4 soil gas probe. Samples were successfully collected from SG-IND-1, SG-IND-2, and SG-IND-3 on November 20, 2012. Soil gas data collected from the off-Site Indium property are presented in Table 1. One ambient air sample was also collected during the off-Site sampling event and its resulting data are presented in Table 1. The full laboratory deliverable for the samples collected from the Indium property is included in Appendix C. Various CVOCs were detected in the ambient air sample, which is typical for samples collected in urban/commercial environments.

Following receipt of laboratory data, all deliverables were reviewed independent of the analytical laboratory. This review was completed according to the guidelines established by NYSDEC for Data Usability Summary Reviews (DUSR). A DUSR report was prepared for the sample data-package prepared and is included in Appendix D.

Off-Site soil gas data were evaluated considering the following: (1) relevant screening values for migration of soil gas to indoor air and (2) on-Site soil gas concentrations and detections.

As a conservative measure, soil gas data were first compared to NYSDOH (2006) Air Guidelines although these values were developed to be protective of exposure to indoor air resulting from vapor intrusion under a residential use scenario. No exceedances of the three available Air Guidelines (methylene chloride, tetrachloroethylene (PCE), and trichloroethylene (TCE)) were noted in the off-Site soil gas samples collected November 20, 2012 (Table 1). In addition, off-Site soil gas data were compared to USEPA Regional Screening Levels (RSLs) (2012a) for indoor air at an industrial building converted to soil gas screening levels using an attenuation factor (AF) of 0.1. The usage of an AF of 0.01 was outlined in the work plan (ARCADIS 2011b); however, USEPA currently recommends using an AF of 0.1 for soil gas data (USEPA 2012b).

As shown in Table 1, using an AF of 0.1, benzene was detected slightly above the calculated RSL value in one sample (SG-IND-1). No other exceedances were noted from off-Site samples collected near the FNPD. Although benzene was detected above the calculated RSL value in sample SG-IND-1, off-site benzene concentrations are similar or higher than those collected on site near this location (SG-24 and SG-25). Further, benzene has not been detected in groundwater samples collected from the FNPD during 2010 and 2011 or across the entire site during 2012 (ARCADIS 2011a, ARCADIS in process). Benzene has only been detected in one soil sample collected from the FNPD but at a depth of 15 ft bgs and at a low concentration (ARCADIS 2011a). Benzene was not detected in soil samples collected during 2011 (ARCADIS in process). This suggests that benzene may be associated with background sources as there is no source of benzene in groundwater or soil near the FNPD.

Off-Site and on-Site soil gas samples collected along the FNPD were also compared in Table 2, which presents all constituents that were detected in either set of samples. For ease of data comparison in Table 2, off-Site samples were placed approximately where they lie between on-Site samples (Figure 2). Similar

constituents were detected in soil gas samples at the on-Site boundary and on the off-Site Indium property near the FNPD including CVOCs and benzene, toluene, ethylbenzene, and xylenes (BTEX) (Table 2). Although similar chemicals were detected, there does not appear to be an overall consistent increasing or decreasing trend in detected concentrations of constituents between on-Site and off-Site samples. Given the shallow (< 3 ft bgs) nature of some of the samples, it is not unexpected to encounter variability in the data as these samples are likely influenced by ambient air, wind, barometric pressure, and temporal changes as the samples were collected over a period of two years and not always during the same season.

Overall, the data collected from the off-Site Indium property on the north side of the FNPD do not support the presence of a soil gas source that could be associated with potential VI to the off-Site Indium property. As noted in Table 1, all soil gas results are less than NYSDOH air guidelines. In addition, with the exception of one detection of benzene, all soil gas results are below calculated USEPA RSLs for soil gas. All samples were taken very close to the water table and, therefore, are representative of worst case conditions. There were no elevated off-Site detections of constituents that could be directly correlated to known impacts from the Lockheed Martin French Road site. As such, no further action in regards to off-site migration of soil gas is recommended.

Please contact us if you have any questions or require additional information.

Sincerely,

ARCADIS U.S., Inc.

Jeffrey J. Bonsteel Project Manager

Attachments:

Table 1: Off-Site (Indium Property) Soil Gas Data, Former Lockheed Martin Facility, Utica, New York
Table 2: Detected Constituents in On-Site and Off-Site Soil Gas Data from Former Northern Perimeter
Ditch Area, Former Lockheed Martin Facility, Utica, New York

Figure 1: Facility Plan

Figure 2: Investigation Sample Locations

Appendix A: Soil Gas Installation Logs Appendix B: Sample Collection Logs Appendix C: Laboratory Deliverable

Appendix D: Data Usability Summary Review

Copies:

Mr. Gregory A. Rys, NYSDOH

Mr. Charles Trione, Lockheed Martin

Mr. James Zigmont, CDM

Ms. Dale Truskett, Lockheed Martin

Ms. Virginia Robbins, BS&K

Ms. Kay Armstrong, Armstrong & Assoc.

Mr. Richard Zigenfus, ConMed

Ms. Glenda Smith, Lockheed Martin

Ms. Mary Morningstar, Lockheed Martin

References

ARCADIS. 2009. Quality Assurance Project Plan. October.

ARCADIS. 2011a. Former Northern Perimeter Ditch Supplemental Investigation Report. Solvent Dock Area, Former Lockheed Martin French Road, Facility, Utica, New York. March.

ARCADIS. 2011b. Former Northern Perimeter Ditch Off-Site Vapor Intrusion Pathway Evaluation Work Plan. Solvent Dock Area, Former Lockheed Martin French Road, Facility, Utica, New York. April.

ARCADIS. 2013 Pre-Design Activities Report, Former Northern Perimeter Ditch, Solvent Dock Area, Former Lockheed Martin French Road, Facility, Utica, New York. February

NYSDOH. 2006. Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York. Center for Environmental Health, Bureau of Environmental Exposure Investigation. October.

USEPA. 2012a. Regional Screening Levels for Chemical Contaminants at Superfund Sites. http://www.epa.gov/reg3hwmd/risk/human/rb-concentration_table/Generic_Tables/pdf/master_sl_table_run_NOV2012.pdf. November.

USEPA. 2012b. Superfund Vapor Intrusion FAQs.

http://www.epa.gov/superfund/sites/npl/Vapor_Intrusion_FAQs_Feb2012.pdf. February.

Tables

Table 1. Off-Site (Indium Property) Soil Gas Data, Former Lockheed Martin Facility, Utica, New York

Sample ID: Lab ID: Sample Date: Sample Depth: Unit:	NYSDOH Air Guideline (Indoor Air) µg/m³	USEPA RSL / 0.1 AF (c) 1x10-6 Risk Level µg/m³	AMB-112012 C1211047-004A 11/20/2012 3' ags μg/m³	SG-IND-1 C1211047-001A 11/20/2012 2-2.5'bgs µg/m ³	SG-IND-2 C1211047-002A 11/20/2012 4.5-5' bgs µg/m ³	SG-IND-3 C1211047-003A 11/20/2012 4.5-5' bgs µg/m ³
Constituent	₩ 9 /	r9,	₩ 9 ,	μ 9 ,	₽9∕···	μ9,
1,1,1-Trichloroethane		220,000	0.83 U	0.83 U	0.83 U	0.83 U
1,1,2,2-Tetrachloroethane		2.1	1.0 U	1.0 U	1.0 U	1.0 U
1,1,2-Trichloroethane		7.7	0.83 U	0.83 U	0.83 U	0.83 U
1,1-Dichloroethane		77	0.62 U	0.62 U	0.62 U	0.62 U
1,1-Dichloroethene		8,800	0.60 U	0.60 U	0.60 U	0.60 U
1,2,4-Trichlorobenzene		88	1.1 U	1.1 U	1.1 U	1.1 U
1,2,4-Trimethylbenzene		310	7.5	12	2	2.2
1,2-Dibromoethane		0.2	1.2 U	1.2 U	1.2 U	1.2 U
1,2-Dichlorobenzene		8,800	0.92 U	0.92 U	0.92 U	0.92 U
1,2-Dichloroethane 1,2-Dichloropropane		4.7 12	0.62 U 0.70 U	0.62 U 0.70 U	0.62 U 0.70 U	0.62 U 0.70 U
1,3,5-Trimethylbenzene			2.6	3.1	0.70 U 0.50J	0.70 U 0.50J
1,3-butadiene		4.1	0.34 U	0.34 U	0.34 U	0.34 U
1,3-Dichlorobenzene			0.92 U	0.92 U	0.92 U	0.92 U
1,4-Dichlorobenzene		11	0.92 U	0.92 U	0.92 U	0.92 U
1,4-Dioxane		16	1.1 U	1.1 U	1.1 U	1.1 U
2,2,4-trimethylpentane			8.1 D	17 D	0.57J	0.71 U
4-ethyltoluene			2.7	4.1	0.65J	0.60J
Acetone		1,400,000	19 D	29 D	28 D	23 D
Allyl chloride		20	0.48 U	0.48 U	0.48 U	0.48 U
Benzene		16	9.1 D	21 D	1.3	0.65
Benzyl chloride		2.5	0.88 U	0.88 U	0.88 U	0.88 U
Bromodichloromethane		3.3	1.0 U	1.0 U	1.0 U	1.0 U
Bromofluorobenzene			0 U	0 U	0 U	0 U
Bromoform Bromomethane		110 220	1.6 U 0.59 U	1.6 U 0.59 U	1.6 U 0.59 U	1.6 U 0.59 U
Carbon disulfide		31,000	0.59 U 0.47 U	0.59 0	1.8	0.39 U 0.47 U
Carbon tetrachloride		20	0.47 U 0.96 U	0.7 0.96 U	0.96 U	0.47 U 0.96 U
Chlorobenzene		2,200	0.70 U	0.70 U	0.70 U	0.70 U
Chloroethane		440,000	0.40 U	0.40 U	0.40 U	0.40 U
Chloroform		5.3	0.74 U	0.74 U	1.3	0.74 U
Chloromethane		3,900	0.31 U	0.31 U	0.31 U	0.31 U
cis-1,2-Dichloroethene (a)		2,600	0.60 U	0.60 U	0.60 U	0.60 U
cis-1,3-Dichloropropene (b)		31	0.69 U	0.69 U	0.69 U	0.69 U
Cyclohexane		260,000	30 D	160 D	2.6	0.52 U
Dibromochloromethane		4.5	1.3 U	1.3 U	1.3 U	1.3 U
Ethyl acetate			0.92 U	0.92 U	0.92 U	0.92 U
Ethylbenzene		49	5.2	9.4	1.1	1.1
Freon 11		31,000	1.4	1.1	1.1	0.91
Freon 113 Freon 114		1,300,000	1.2 U 1.1 U	0.93J 1.1 U	1.1J 1.1 U	1.2 U 1.1 U
Freon 12		 4,400	2.6	2	2.4	1.1 U 110 D
Heptane		+,+00 	2.6 9.6	24 D	1.3	0.62 U
Hexachloro-1,3-butadiene		5.6	1.6 U	1.6 U	1.6 U	1.6 U
Hexane		31,000	30	130 D	2.7	2.2
Isopropyl alcohol		310,000	28	0.37 U	0.37 U	0.37 U
m&p-Xylene		4,400	15	18 D	3.7	4.3
Methyl Butyl Ketone		1,300	1.2 U	1.2 U	1.2 U	1.2 U
Methyl Ethyl Ketone		220,000	0.90 U	0.90 U	0.90 U	0.90 U
Methyl Isobutyl Ketone		130,000	1.2 U	1.2 U	1.2 U	1.2 U
Methyl tert-butyl ether		470	0.55 U	0.55 U	0.55 U	0.55 U
Methylene chloride	60	12,000	0.53 U	0.53 U	0.53 U	0.53 U
o-Xylene		4,400	6.6	11	1.1	1.3
Propylene Styrono		130,000	0.26 U 0.65 U	0.26 U	0.26 U	0.26 U
Styrene Tetrachloroethylene	 100	44,000 470	0.65 U 1.0 U	0.65 U 3.8	0.65 U 3.9	0.65 U 15 D
Tetrahydrofuran		88,000	0.45 U	3.6 0.45 U	3.9 0.45 U	0.45 U
Toluene		220,000	26	57 D	6.8	6.7
trans-1,2-Dichloroethene		2,600	0.60 U	0.60 U	0.60 U	0.60 U
trans-1,3-Dichloropropene (b)		31	0.69 U	0.69 U	0.69 U	0.69 U
Trichloroethylene	5	30	14	2.5	0.66J	0.82 U
Vinyl acetate		8,800	0.54 U	0.54 U	0.54 U	0.54 U
Vinyl Bromide			0.67 U	0.67 U	0.67 U	0.67 U
Vinyl chloride		28	0.39 U	0.39 U	0.39 U	0.39 U

Notes:

- (a) trans-1,2-Dichloroethene used as a surrogate
- (b) 1,3-Dichloropropene used as a surrogate
- (c) Calculated from RSL for industrial air using an AF of 0.1
- -- Value not available
- $\mu g/m^3$ Micrograms per cubic meter AF Attenuation factor
- ags Above ground surface
- AMB Ambient air
- bgs Below ground surface
- IND Indium property

- J Constituent concentration estimated
- NYSDOH New York State Department of Health
- RSL Regional screening level
- SG Soil gas
- U Constituent not detected at reporting limit
- D Diluted value reported
- USEPA United States Environmental Protection Agency Cells exceeding the NYSDOH Air Guideline are bolded. Cells exceeding the calculated RSL are shaded.

Table 2. Detected Constituents in On-Site and Off-Site Soil Gas Data from Former Northern Perimeter Ditch Area, Former Lockheed Martin Facility, Utica, New York

Sample ID:	NYSDOH Air	USEPA RSL / 0.1	SG-7	SG-22	SG-22	SG-22R	SG-23	SG-23R	SG-IND-1	SG-24	SG-24
Lab ID:	Guideline	AF (b) 1x10-6 Risk	C1008052-003A	C1008052-004A	C1010020-001A	C1105038-001A	C1008052-005A	C1105038-002A	C1211047-001A	C1008052-006A	C1010020-002A
Sample Date:	(Indoor Air)		08/18/10	08/18/10	10/7/2010	5/23/2011	08/18/10	5/23/2011	11/20/2012	08/18/10	10/7/2010
Sample Depth:	(IIIdool All)	Level	3 - 3.5' bgs	3.5 - 4' bgs	3.5 - 4' bgs	1.5 - 2' bgs	1.8 - 2.4' bgs	1.5 - 2' bgs	2-2.5'bgs	6.5 - 7' bgs	6.5 - 7' bgs
 Unit:	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³
Constituents											
1,1,1-Trichloroethane		220,000	0.83 U	3.5	1.4	0.83 U	0.61 J	0.83 U	0.83 U	4.4	1.1
1,1-Dichloroethane		77	0.62 U	12	4	0.62	0.62 U	0.62 U	0.62 U	30	8.3
1,2,4-Trimethylbenzene		310	25 J	57	12	4.8	110 J	2.2	12	67	9.5
1,3,5-Trimethylbenzene			11 J	14	6 J	1.3	25 J	0.85	3.1	15	4.5 J
1,3-Dichlorobenzene			18 J	12	17	2.4	17 J	3.2	0.92 U	19	11
1,4-Dichlorobenzene		11	0.92 U	0.92 U	0.79 J	0.92 U	0.92 U	0.92 U	0.92 U	0.92 U	0.67 J
2,2,4-trimethylpentane			20 J	6.5	4	0.71 U	3.6 J	4.6	17 D	3.6	2.8
4-ethyltoluene			5.5 J	16	4.6	0.95	27 J	0.75 U	4.1	15	3.1 J
Acetone		1,400,000	660 J	180	35 J	500 E	420 J	180	29 D	180	110 J
Benzene		16	9.1 J	7.1	5.7	1.8	26 J	3.1	21 D	9.1	0.49 U
Carbon disulfide		31,000	11 J	5.3	0.47 U	5.3	2.7 J	130	0.7	11	1.3
Carbon tetrachloride		20	0.96 U	0.96 U	0.38 J	0.26 J	0.96 U	0.32 J	0.96 U	0.96 U	0.45 J
Chlorobenzene		2,200	0.47 J	0.7 U	0.7 U	0.7 U	0.7 U	0.7 U	0.70 U	0.7 U	0.7 U
Chloroethane		440,000	0.4 U	0.4 U	0.40 U	0.4 U	0.4 U				
Chloroform		5.3	5 J	19	7.1	1.6	0.74 U	0.74 U	0.74 U	10	2.8
Chloromethane		3,900	0.31 U	0.31 U	0.52	0.27 J	0.31 U	0.31 U	0.31 U	0.31 U	0.44
cis-1,2-Dichloroethene (a)		2,600	0.6 U	20	3.7	4.2	0.6 U	0.6 U	0.60 U	64	14
Cyclohexane		260,000	19 J	0.52 UJ	4.9	2.4	0.52 UJ	6.1	160 D	8.3 J	3.3
Ethyl acetate		200,000	23 J	10	9.5	0.92 U	43 J	0.92 U	0.92 U	16	16
Ethylbenzene		49	8 J	15	8.8 J	1.7	12 J	2.1	9.4	13	6.9 J
Freon 11		31,000	2.1 J	7.5	3.4	2.4	1.8 J	1.8	1.1	8.3	4.8
Freon 113		1,300,000	1.2 U	400	810	54	1.5 J	1.6	0.93J	860	360
Freon 12		4,400	0.75 U	0.75 U	0.75 U	1.4	0.75 U	2.1	0.933	0.75 U	300
		4,400	8.7 J	6.2	6.6	1.4	8.7 J	0.87	24 D	6.2	3.2
Heptane		24.000				1 0					2.3
Hexane		31,000	15 J	0.54 U	2.3	4.9	0.54 U	5.6	130 D	0.54 U	
Isopropyl alcohol		310,000	200 J	130	91 J	240 E	450 J	360 E	0.37 U	190 J	130
m&p-Xylene		4,400	15 J	45	29 J	4.6	45 J	5.9	18 D	41 J	15 J
Methyl Butyl Ketone		1,300	2.7 J	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U
Methyl Ethyl Ketone		220,000	24 J	5.7 J	4.5	3.3	14 J	4.1	0.90 U	4.5 J	5.8
Methyl Isobutyl Ketone		130,000	44 J	37	1.7 J	1.2 U	68 J	1.2 U	1.2 U	42 J	2.5 J
Methyl tert-butyl ether		470	49 J	2.6	0.55 J	0.55 U	0.55 U	0.55 U	0.55 U	1.8 J	0.55 U
Methylene chloride	60	12,000	0.53 U	0.53 U	0.53 U	4.7	0.42 J	0.71	0.53 U	0.53 U	0.67
o-Xylene		4,400	9.7 J	28	8.8 J	2.4	31 J	2.5	11	28 J	9 J
Styrene		44,000	0.65 U	0.65 U	7.4 J	1.4	0.65 U	1	0.65 U	0.65 U	3.5 J
Tetrachloroethylene	100	470	8.5 J	14	2.4	1.4	1 U	1 U	3.8	320	8.3 J
Toluene		220,000	16 J	52	69	14	33 J	25	57 D	32	28
trans-1,2-Dichloroethene		2,600	0.6 U	6.2	1.9	0.6 U	0.6 U	0.6 U	0.60 U	0.6 U	0.93
Trichloroethylene	5	30	2.2 J	36	9.1	6	2 J	1.8	2.5	200	9.3
Vinyl chloride		28	0.39 U	0.39 U	0.39 U	0.21 J	0.39 U	0.39 U	0.39 U	0.39 U	0.39 U

Notes:

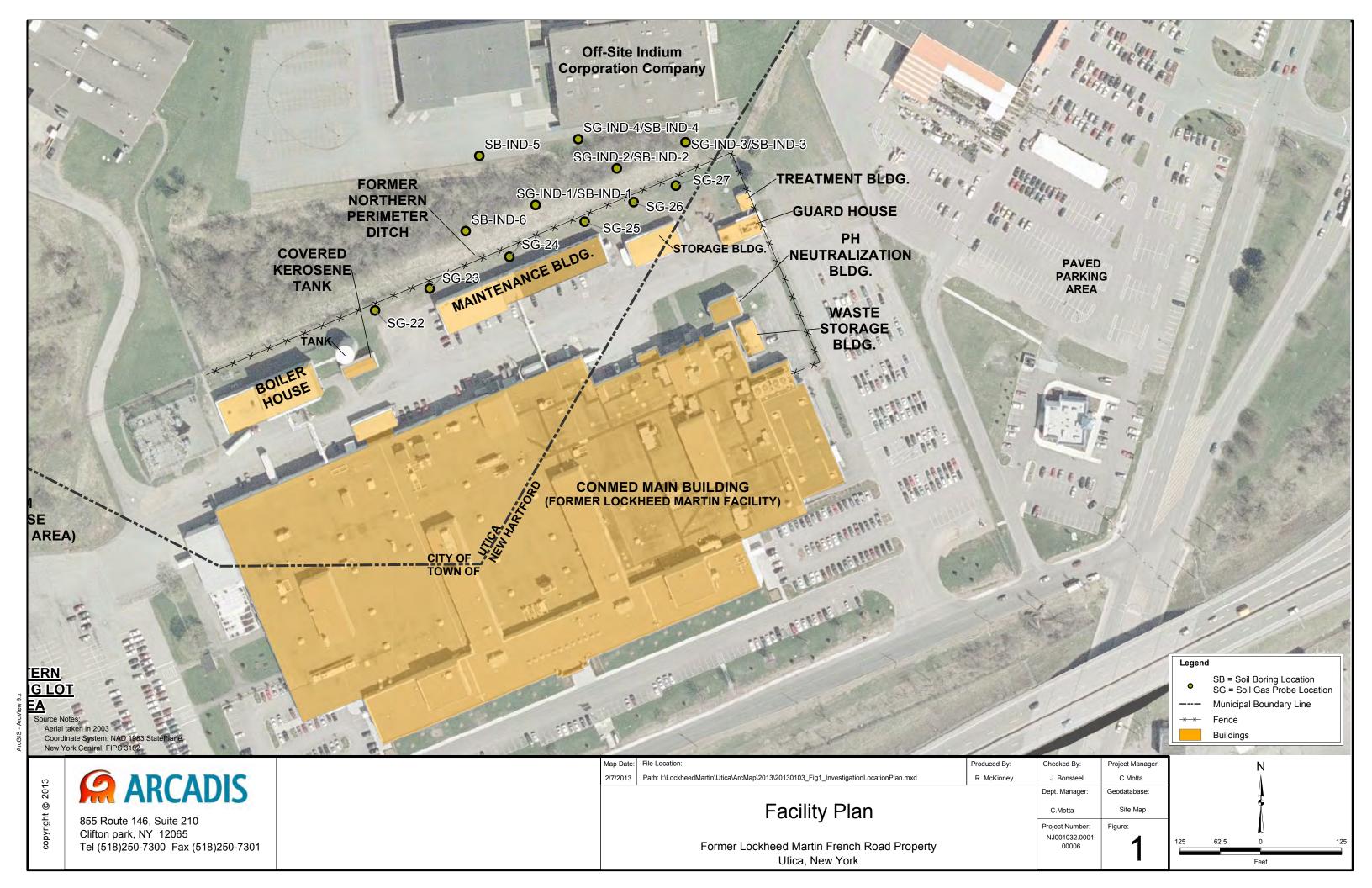
- (a) trans-1,2-Dichloroethene used as a surrogate
- (b) Calculated from RSL for industrial air using an AF of 0.1
- -- Value not available
- μg/m³ Micrograms per cubic meter
- AF Attenuation factor
- ags Above ground surface
- bgs Below ground surface
- D Diluted value reported
- E Constituent was quantitated above the calibration range
- IND Indium property
- J Constituent concentration estimated
- NYSDOH New York State Department of Health
- RSL Regional screening level
- SG Soil gas
- U Constituent not detected at reporting limit
- USEPA United States Environmental Protection Agency
- Cells exceeding the NYSDOH Air Guideline are Bolded.
- Cells exceeding the calculated RSL are Shaded Gray.

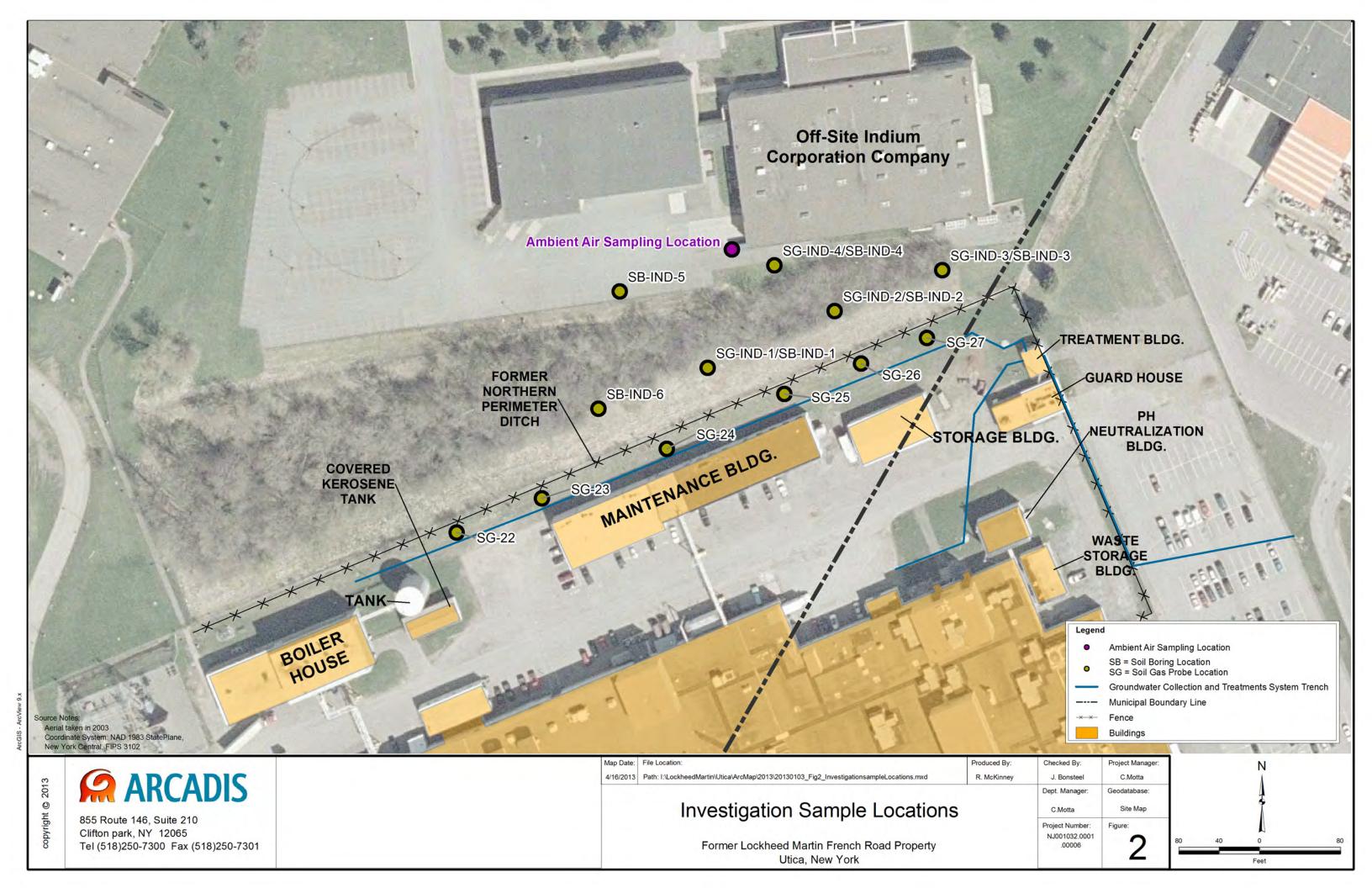
Table 2. Detected Constituents in On-Site and Off-Site Soil Gas Data from Former Northern Perimeter Ditch Area, Former Lockheed Martin Facility, Utica, New York

Sample ID:	NYSDOH Air	USEPA RSL / 0.1	SG-24R	SG-IND-2	SG-25	SG-25R	SG-IND-3	SG-26	SG-26	SG-26R	SG-27
Lab ID:	Guideline	AF (b) 1x10-6 Risk	C1105038-003A	C1211047-002A	C1008052-007A	C1105038-004A	C1211047-003A	C1008052-008A	C1010020-003A	C1105038-005A	C1008052-009A
Sample Date:	(Indoor Air)	Level	5/23/2011	11/20/2012	08/18/10	5/23/2011	11/20/2012	08/18/10	10/7/2010	5/23/2011	08/18/10
Sample Depth:	(maddi Air)	LCVCI	1.5 - 2' bgs	4.5-5' bgs	2.3 - 2.9' bgs	1.5 - 2' bgs	4.5-5' bgs	5 - 5.5' bgs	5 - 5.5' bgs	1.5 - 2' bgs	6.5 - 7' bgs
Unit:	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³
Constituents											
1,1,1-Trichloroethane		220,000	33	0.83 U	4	0.55 J	0.83 U	0.83 U	0.83 U	0.83 U	1.1
1,1-Dichloroethane		77	36	0.62 U	0.62 U	0.62 U	0.62 U	0.62 U	0.62 U	0.62 U	0.62 U
1,2,4-Trimethylbenzene		310	2.1	2	62	1.8	2.2	48	11	2.3	120 J
1,3,5-Trimethylbenzene			0.95	0.50J	16	0.9	0.50J	15	4.8 J	0.8	22 J
1,3-Dichlorobenzene			3.9	0.92 U	25	4.3	0.92 U	20	16 J	2.8	28 J
1,4-Dichlorobenzene		11	0.92 U	0.92 U	0.92 U	0.92 U	0.92 U	0.92 U	0.67 J	0.92 U	0.92 U
2,2,4-trimethylpentane			1	0.57J	5.7	9.6	0.71 U	38	7	10	4.1
4-ethyltoluene			0.75 U	0.65J	12	0.75 U	0.60J	12 J	3.3 J	0.75 U	22 J
Acetone		1,400,000	260 E	28 D	500	540 E	23 D	86	83 J	440	180
Benzene		16	4.1	1.3	7.8	4.6	0.65	4.2	0.49 U	4.2 J	4.5
Carbon disulfide		31,000	130	1.8	180	300 E	0.47 U	150	2.8 J	220	12 J
Carbon tetrachloride		20	0.32 J	0.96 U	0.96 U	0.38 J	0.96 U	0.96 U	0.38 J	0.38 J	0.96 U
Chlorobenzene		2,200	0.7 U	0.70 U	0.7 U	0.7 U	0.70 U	0.7 U	0.7 U	0.7 U	0.7 U
Chloroethane		440,000	3.3	0.40 U	0.4 U	0.32 J	0.40 U	0.4 U	0.4 U	0.4 U	0.4 U
Chloroform		5.3	2.5	1.3	1.1	0.74 U	0.74 U	2.4	0.5 J	3.5	0.99
Chloromethane		3,900	0.31 U	0.31 U	0.31 U	0.31 U	0.31 U	0.31 U	0.65	0.31 U	0.31 U
cis-1,2-Dichloroethene (a)		2,600	6.9	0.60 U	2.2	0.6 U	0.60 U	0.6	0.44 J	0.6 U	0.6 U
Cyclohexane		260,000	6.3	2.6	25 J	13	0.52 U	22 J	6.4 J	12	23 J
Ethyl acetate			0.92 U	0.92 U	13	0.92 U	0.92 U	8	13	0.92 U	8.4 J
Ethylbenzene		49	2	1.1	9.7	2.5	1.1	8.4	8.8 J	3.7	16 J
Freon 11		31,000	39	1.1	2.2	1.7	0.91	1.6	0.86 U	1.7	2.5
Freon 113		1,300,000	2300 E	1.1J	16	4.3	1.2 U	22 J	4.3	5.5	6.8
Freon 12		4,400	0.75 U	2.4	3.3	2.3	110 D	0.75 U	0.8	2.4	3.1
Heptane			0.62 U	1.3	9.4	1.4	0.62 U	3.7	5.2 J	1.3	0.62 U
Hexane		31,000	6.9	2.7	7.1	44	2.2	9.9	2.7	36	0.54 U
Isopropyl alcohol		310,000	370 E	0.37 U	300 J	420 E	0.37 U	0.37 U	150 J	340	110 J
m&p-Xylene		4,400	6.5	3.7	31 J	5.8	4.3	23 J	24 J	9.6	51 J
Methyl Butyl Ketone		1,300	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	9.6
Methyl Ethyl Ketone		220,000	5.6	0.90 U	8.4 J	0.9 U	0.90 U	7	9	0.9 U	14 J
Methyl Isobutyl Ketone		130,000	8.7 J	1.2 U	340 J	1.2 U	1.2 U	23 J	3 J	1.2 U	57 J
Methyl tert-butyl ether		470	0.55 U	0.55 U	0.55 U	3.8	0.55 U	14 J	0.55 U	0.55 U	0.55 U
Methylene chloride	60	12,000	0.53 U	0.53 U	0.6	1.4	0.53 U	0.53 U	0.53	0.53 U	0.53 U
o-Xylene		4,400	2.7	1.1	21 J	2.6	1.3	15 J	8.4 J	4	37 J
Styrene		44,000	1.1	0.65 U	0.65 U	1	0.65 U	0.65 U	4 J	1.4	0.65 U
Tetrachloroethylene	100	470	72	3.9	76	6.5	15 D	4.6	1 U	3.2	61 J
Toluene		220,000	26	6.8	28	31	6.7	15	51 J	28	30 J
trans-1,2-Dichloroethene		2,600	3.4	0.60 U	0.6 U	0.6 U	0.60 U	0.6 U	0.6 U	0.6 U	0.6 U
Trichloroethylene	5	30	68	0.66J	10	2.9	0.82 U	1.8	0.76 J	2.8	2
Vinyl chloride		28	0.39 U	0.39 U	0.39 U	0.39 U	0.39 U	0.39 U	0.39 U	0.39 U	0.39 U
Notes:			-	-	_	_	-	_	_	-	_

Notes:

- (a) trans-1,2-Dichloroethene used as a surrogate
- (b) Calculated from RSL for industrial air using an AF of 0.1
- -- Value not available
- μg/m³ Micrograms per cubic meter
- AF Attenuation factor
- ags Above ground surface
- bgs Below ground surface
- D Diluted value reported
- E Constituent was quantitated above the calibration range
- IND Indium property
- J Constituent concentration estimated
- NYSDOH New York State Department of Health
- RSL Regional screening level
- SG Soil gas
- U Constituent not detected at reporting limit
- USEPA United States Environmental Protection Agency
- Cells exceeding the NYSDOH Air Guideline are Bolded.
- Cells exceeding the calculated RSL are Shaded Gray.


Table 2. Detected Constituents in On-Site and Off-Site Soil Gas Data from Former Northern Perimeter Ditch Area, Former Lockheed Martin Facility, Utica, New York


Sample ID: Lab ID: Sample Date: Sample Depth:	NYSDOH Air Guideline (Indoor Air)	USEPA RSL / 0.1 AF (b) 1x10-6 Risk Level	SG-27 C1010020-004A 10/7/2010 6.5 - 7' bgs	SG-27R C1105038-006A 5/23/2011 1.5 - 2' bgs
Unit:	μg/m³	μg/m³	μg/m³	µg/m³
Constituents				
1,1,1-Trichloroethane		220,000	0.83 U	0.55 J
1,1-Dichloroethane		77	0.62 U	0.62 U
1,2,4-Trimethylbenzene		310	6.5 J	2.6
1,3,5-Trimethylbenzene			3 J	0.85
1,3-Dichlorobenzene			9.2	0.92 U
1,4-Dichlorobenzene		11	0.92 U	0.92 U
2,2,4-trimethylpentane			3.9 J	9.5
4-ethyltoluene			1.8 J	0.75 U
Acetone		1,400,000	100 J	160
Benzene		16	0.49 U	2.4
Carbon disulfide		31,000	0.95	120
Carbon tetrachloride		20	0.32 J	0.38 J
Chlorobenzene		2,200	0.7 U	0.7 U
Chloroethane		440,000	0.4 U	0.4 U
Chloroform		5.3	0.65 J	46
Chloromethane		3,900	0.67	0.31 U
cis-1,2-Dichloroethene (a)		2,600	0.4 J	0.6 U
Cyclohexane		260,000	3.4 J	9.1
Ethyl acetate			8.4 J	0.92 U
Ethylbenzene		49	5.1 J	3.7
Freon 11		31,000	1.4	1.9
Freon 113		1,300,000	3	4.7
Freon 12		4,400	1.7	2.1
Heptane			2.7 J	1.9
Hexane		31,000	2.4	23
Isopropyl alcohol		310,000	150	26
m&p-Xylene		4,400	11 J	8.8 J
Methyl Butyl Ketone		1,300	1.2 U	1.2 U
Methyl Ethyl Ketone		220,000	5	4.8
Methyl Isobutyl Ketone		130,000	1.2 J	2.1
Methyl tert-butyl ether		470	0.55 U	0.55 U
Methylene chloride	60	12,000	0.49 J	0.92
o-Xylene		4,400	6.2 J	4.3
Styrene		44,000	2.8 J	1.9
Tetrachloroethylene	100	470	1 J	69
Toluene		220,000	27	38
trans-1,2-Dichloroethene		2,600	0.6 U	0.6 U
Trichloroethylene	5	30	0.87 J	2.4
Vinyl chloride		28	0.39 U	0.39 U
Notes:			5.55 5	0.000

- (a) trans-1,2-Dichloroethene used as a surrogate
- (b) Calculated from RSL for industrial air using an AF of 0.1
- -- Value not available
- μg/m³ Micrograms per cubic meter
- AF Attenuation factor
- ags Above ground surface bgs - Below ground surface
- D Diluted value reported
- E Constituent was quantitated above the calibration range
- IND Indium property
- J Constituent concentration estimated
- NYSDOH New York State Department of Health
- RSL Regional screening level
- SG Soil gas
- U Constituent not detected at reporting limit
- USEPA United States Environmental Protection Agency
- Cells exceeding the NYSDOH Air Guideline are Bolded.
- Cells exceeding the calculated RSL are Shaded Gray.

Figures

Appendix A

Permanent Soil Vapor Point Construction Log

	□ □
Surface completion	↑ft
Type: 6" MH	↓ LAND SURFACE
	Drilled hole: 2 inch diam.
Tubing Size:	<u> </u>
3/8 inch diam.,	Cement Type: Quikrete
Teflon lined	Concrete (0.3 to 1) ft*
polyethylene	Y/Y/ ——————————————————————————————————
Dry X Chips Bentonite Pellets	1 ft* Top of Bentonite
Deliterinte reliets	1.5 ft* Bottom of Bentonite
	1.5 It Bottom of Bentonite
	2 ft* Top of screen
Well Screen (inch): -	- [3 46]
, type:	Filter Pack: #0
Stainless Steel	Sand
	2.5 ft* Bottom of screen 5.0 ft* BH depth

Project Name and No.:		Lockheed Martin Utica						
Location:	SG-IND-1	Address: Indium						
Town/City:	Utica	State: NY						
Land-Surface	Elevation a	nd Datum:						
	NA	feet Surveyed Estimated						
Coordinates-	Northing:	NA Easting: NA						
Installation Da	ite(s):	11/14/2012						
Drilling Contra	ector:	Zebra						
Installation Me	ethod:	Hand Auger/Drill rig						
Equipment Used:		Shovel, Rig						
Groundwater I	ntormation	:						
Well ID:		NA						
Well Screen S	etting:	NA .						
Static Depth to	Water:	NA						
Vapor Point P	urpose:	Perimeter Evaluation						
Remarks:	Remarks: Soil Boring ID = SB-IND-1							
**Measuring P	oint is Top	of Well Casing Unless Otherwise Noted.						
Prepared by		Dan Zuck						

Location:	SB-IND-1		_ Pro	oject Name and No.	Lockhee	ed Martin Uti	ica				
Site Location	Utica, NY (I	ndium)				Drilling Started	11/14/20)12	Drilling Completed	11/14/2012	
Total Depth	Drilled	5	feet	Hole Diameter	2	inches	Samplir	ıg Interval	0.0 - 5.0 feet		
Length and of Sampling		1.5 ft x 4 ft		-	Type o	of Sampling	Device	Liner			
Drilling Met	thod	Geoprobe		_		Drilling Fl	uid Used			NA	
Drilling Cor	ntractor	Zebra		Driller	Will McA	Alister		Helper	J. Plank		
Prepared By	D.Zuck			-	Hamme Weigh				Hammer Drop		inches
(feet below	ele Depth land surface)	Sample Recovery	Sample Interval								DID (mass)
From	То	(feet)	(feet)			Sample Des	scription				PID (ppm)
0	5	4.7	0.0 - 0.5	Organic, Dark B Orangish Brown						fine to	0.0
			0.5 - 2.5	medium subang angular Gravel.							0.0
			2.5 - 5.0	Reddish Brown, to angular Grave			wet pocke	ets, some	medium to fine	e subangular	0.0

Permanent Soil Vapor Point Construction Log

Surface completion	_
Type: 6" MH	LAND SURFACE
	Drilled hole: 2 inch diam.
Tubing Size:	- [/][/]
3/8 inch diam.,	Cement Type: Quikrete
Teflon lined	Concrete (0.3 to 1) ft*
polyethylene	VV
Hydrated X Chips	1 ft* Top of Bentonite
Bentonite Pellets	4.3.5 ft* Dry Pontonito
Dentonite Pellets	4-3.5 ft* Dry Bentonite 4 ft* Bottom of Bentonite
	4.5 ft* Top of screen
Well Screen (inch):	
, type:	Filter Pack: #0
Stainless Steel	Sand
	5.0 ft* Bottom of screen

Project Name and No.:		Lockheed Martin Utica						
Location:	SG-IND-2	Address: Indium						
Town/City:	Utica	State: NY						
Land-Surface	Elevation a	and Datum:						
	NA	feet Surveyed Estimated						
Coordinates-	Northing:	NA Easting: NA						
Installation Da	ite(s):	11/14/2012						
Drilling Contra		Zebra						
Installation Me		Hand Auger/Drill rig						
Equipment Us	ed:	Shovel, Rig						
Groundwater I	Information	::						
Well ID:		<u>NA</u>						
Well Screen S	etting:	NA						
Static Depth to	o Water:	NA						
Vapor Point Purpose:		Perimeter Evaluation						
Remarks:	Soil Borin	ng ID = SB-IND-2						
**Measuring P	oint is Top	of Well Casing Unless Otherwise Noted.						
Prepared by		Dan Zuck						

Location:	SB-IND-2		Pro	oject Name and No.	Lockheed	Martin Ut	ca				
Site Location	Utica, NY (I	ndium)				Drilling Started	11/14/2012		Drilling Completed	11/14/2012	
Total Depth	Drilled	5	feet	Hole Diameter	2	inches	Sampling I	nterval	0.0 - 5.0 feet		
Length and of Sampling		1.5 ft x 4 ft		_	Type of	Sampling	Device	Liner			
Drilling Met	hod	Geoprobe		_		Drilling Fl	uid Used			NA	
Drilling Con	tractor	Zebra		Driller	Will McAl	ister		Helper	J. Plank		
Prepared By	D.Zuck				Hammer Weight				Hammer Drop	NA	inches
	le Depth land surface)	Sample Recovery	Sample Interval								
From	То	(feet)	(feet)	ı		Sample De	scription				PID (ppm)
0	5	3.8	0.0 - 1.7	Orangish Brown subangular to a					and, trace fine	to medium	0.0
			1.7 - 3.8	Brownish Grey, subangular to a					, some mediun	n to coarse	0.0
				J	<u> </u>		,				

Permanent Soil Vapor Point Construction Log

Surface completion	Titt	Project Name and No.: L	Lockneed Martin Utica
Type: 6" MH	↓ LAND SURFACE		
	Drilled hole:	Location: SG-IND-3	Address: Indium
	2 inch diam.	Town/City: Utica	State: NY
Fubing Size: 3/8 inch diam., Feflon lined	Cement Type: Quikrete Concrete (0.3 to 1) ft*	Land-Surface Elevation and	
oolyethylene	KIKI	NA	feet Surveyed Estimated
Hydrated X Chips	1 ft* Top of Bentonite	Coordinates- Northing: N	NA Easting: NA
Bentonite Pellets	4-3.5 ft* Dry Bentonite	Installation Date(s): 1	11/14/2012
	4 ft* Bottom of Bentonite	Drilling Contractor:	Zebra
	4.5 ft* Top of screen	(Diller/Helper) Installation Method:	Hand Auger/Drill rig
/ell Screen (inch):	Filter Pack: #0	Equipment Used:	Shovel, Rig
		Groundwater Information:	
	5.0 ft* Bottom of screen	Well ID:	NA
	5.0 ft* BH depth	Well Screen Setting:	NA
		Static Depth to Water:	NA
		Vapor Point Purpose:	Perimeter Evaluation
		Remarks: Soil Boring	ID = SB-IND-3

Prepared by

**Measuring Point is Top of Well Casing Unless Otherwise Noted.

Dan Zuck

Location:	SB-IND-3		_ Pr	oject Name and No	o. Lockhee	d Martin Ut	ica				
Site						Drilling			Drilling		
Location	Utica, NY (I	ndium)				Started	11/14/201	2	Completed	11/14/2012	
Total Depth	Drilled	5	feet	Hole Diameter	2	inches	Sampling	ıInterval	0.0 - 5.0 feet		
Length and	Diameter										
of Sampling	Device	1.5 ft x 4 ft		_	Type of	f Sampling	Device	Liner			
Drilling Met	hod	Geoprobe				Drillina F	luid Used			NA	
3				_		J					
Drilling Con	tractor	Zebra		Drille	er Will McA	lister		Helper	J. Plank		
Prepared By	D.Zuck				Hamme Weigh				Hammer Drop	NA	inches
Бу	D.Zuck				Weigh	' NA				NA .	IIICIIES
	le Depth land surface)	Sample	Sample								
(leet below	ianu suriace)	Recovery	Interval								
From	То	(feet)	(feet)	T		Sample De	escription				PID (ppm)
				Orangish Brow	n, Sandy	SILT, fine	to medium	n subang	ular to subrou	ınded Sand	,
_				loose, dry, trac	e coarse s	subangula	ar Gravel, f	ew to littl			
0	5	1.7	0.0 - 1.7	subangular to	subrounde	ed Gravel,	NP, no od	or.			0.0
				+							

Permanent Soil Vapor Point Construction Log

	_	<u>0</u>						
Surface completion		i.	Project Name	and No.:	Lockheed Mart	tin Utica		
Type: 6" MH	+	↓ LAND SURFACE	Location:	SG-IND-4		Addro	ss: Indium	
Y/	ИX	Drilled hole:	Location.	36-1110-4		Addres	ss. <u>Illululli</u>	
//	41/1	2 inch diam.	Town/City:	Utica		Sta	nte: NY	
Tubing Size: 3/8 inch diam., Teflon lined		Cement Type: Quikrete Concrete (0.3 to 1) ft*	Land-Surface	Elevation a			Surveyed	Estimated
polyethylene	ЛV			NA	те	eet	Surveyed	Estimated
Hydrated X Chips		1 ft* Top of Bentonite	Coordinates-	Northing:	NA		Easting: NA	
Bentonite Pellets		8.5-9 ft* Dry Bentonite	Installation Da	ate(s):	11/14/2012			
<u>—</u>	7	9 ft* Bottom of Bentonite	Drilling Contr		Zebra			
		9.5 ft* Top of screen	(Diller/Helper) Installation M		Hand Au	uger/Drill	l rig	
Well Screen (inch):		Filter Pack: #0	Equipment Us	sed:	Shovel,	Rig		
Stainless Steel		Sand						
			Groundwater	Information	:			
<u> </u>		10.0 ft* Bottom of screen	Well ID:		NA			
			Well Screen S	Setting:	NA			
			Static Depth t	o Water:	NA			
			Vapor Point P	urpose:	Perimete	er Evalua	ation	
			Remarks:	Saturated	soils noted at ~	-10 feet		

Soil Boring ID = SB-IND-4

Prepared by

**Measuring Point is Top of Well Casing Unless Otherwise Noted.

Dan Zuck

Location:	SB-IND-4		Pi	roject Name and No	o. Lockheed	d Martin Ut	ica				
Site Location	Utica, NY (Indium)	_			Drilling Started	11/14/201	2	Drilling Completed	11/14/2012	
Location	Otioa, ivi (i	indiani,				_ Otal tea	11/14/201		_ completed	11/1-7/2012	
Total Depth	Drilled	16	feet	Hole Diameter	3 to 2	inches	Sampling	Interval	0.0 - 15.0 feet	t	
Length and of Sampling		1.5 ft x 4 ft		_	Type of	f Sampling	Device	Liner			
Drilling Me	thod	Geoprobe		_		Drilling F	luid Used			NA	
Drilling Cor	ntractor	Zebra		Drille	er Will McAl	lister		Helper	J. Plank		
Prepared				_	Hammer	r			Hammer		
Ву	D.Zuck				Weight	t NA			_ Drop	NA	inches
-	ole Depth / land surface)	Sample Recovery	Sample Interval								
From	То	(feet)	(feet)			Sample De	scription				PID (ppm)
0	4	NA	NA	Hand cleared, D angular gravel,				medium	to coarse sul	bangular to	0.0
4	8	3.8	0.0 - 3.8	Medium Brown, coarse subangu	-		-				0.0
8	12	3.6	0.0 - 3.0	Medium Brown, coarse subangu	-		-				0.0
			3.0 - 3.6	Brownish Grey, wet, little mediu	-	-			-		0.0
12	16	3.7	0.0 - 0.4	Slough.							0.0
			0.4 - 0.9	Brownish Grey, wet, little mediu	-	-			-		0.0
			0.9 - 3.7	Brownish Grey, coarse subangu					y stiff, moist,	some fine to	0.0
				Note: Set SG-IN	D-6 at 10 t	to 9.5 feet	based on	soil satur	ation.		

Location:	SB-IND-	5	Pr	oject Name and No	o. Lockheed	Martin U	Itica				
Site Location	Utica, NY (I	Indium)				Drilling Started	11/14/201	2	Drilling Completed	11/14/2012	2
Total Depth	Drilled	11	feet	Hole Diameter	2	inches	Sampling	Interval	0.0 - 11.0 feet	<u>t</u>	
Length and of Sampling		1.5 ft x 4 ft		_	Type of	Sampling	g Device	Liner			
Drilling Met	hod	Geoprobe		_		Drilling	Fluid Used			NA	
Drilling Cor	ntractor	Zebra		Drille	er Will McAl	lister		Helper	J. Plank		
Prepared By	D.Zuck				Hammer Weight				Hammer Drop	NA	inches
(feet below	le Depth land surface)	Sample Recovery	Sample Interval			Samula D					DID (nnm)
From	То	(feet)	(feet)	Hand cleared, 0	Greyish Br	-	escription	L, fine to (coarse subang	ular to	PID (ppm)
0	4	NA	NA	subrounded Gr	-		-		_		0.0
4	7	3.8	0.0 - 1.0	Slough.							0.0
			1.0 - 3.8	Orangish Brow subangular to a							0.0
7	11	3.2	0.0 - 3.2	Orangish Brow subangular to a						nedium	0.0

Location:	SB-IND-6		_	Project Name and No.	Lockheed	d Martin Ut	ica				
Site Location	Utica, NY (Indium)				Drilling Started	11/14/201	2	Drilling Completed	11/14/2012	
Total Depth	n Drilled	4	feet	Hole Diameter	2	inches	Sampling	Interval	0.0 - 5.0 feet		
Length and of Sampling		1.5 ft x 4 ft		_	Type of	Sampling	Device	Liner			
Drilling Me	thod	Geoprobe		_		Drilling F	luid Used			NA	
Drilling Co	ntractor	Zebra		Driller	Will McA	lister		Helper	J. Plank		
Prepared By	D.Zuck			_	Hammer Weight			<u>-</u>	Hammer Drop	NA	inches
	ole Depth v land surface)	Sample Recovery	Sample Interval								
From	То	(feet)	(feet)	_		Sample De	scription				PID (ppm)
0	2.5	NA	NA	Hand Cleared, Me NP.	dium Bro	own, Sand	ly SILT, mo	ist, loose	e, very fine to	fine Sand,	0.0
2.5	4	NA	NA	Redish Brown, Cla				saturate	d, TP to SP, r	no odor, few	0.0
	-										
	-										
	-										

Appendix B

Indoor/Ambient Air Sample Collection Log

		Sample ID:	AMB-112012
Client:	LMC	Date/Day:	11/20/12
Project:	LMC Utica	Sample Intake Height:	~5' ALS
Location:	Indium Corp., Utica, NY	Subcontractor:	NA
Project #:	NJ001032	Miscellaneous	a
Samplers:	Daniel Zuck	Equipment:	Cones and Truck
Coordinates:	See Figure	Time Start:	10:17
Outdoor/Indoor:	Outside	Time Stop:	17:10

Instrument Readings:

Time	Canister	Temperature	Relative	Air Speed	Barometric	PID
(Collected	Pressure	(F)	Humidity	(MPH)	Pressure	(ppb)
Sample)	(inches Hg)		(%)			
10:17	-31	39.3	59.8	0	30.09	0
12:00	-28	NC	NC	0	NC	0
15:00	-22	47.8	42.1	0	30.01	0
17:10	-18	40.1	57.2	0	30.02	0

Size (circle one): 1 L 6 L Canister ID: Arc: 322 / IND: 130 263 Flow Controller ID:

General Observations/Notes:

SUMMA Canister Information

Photo Number: 101-1809
NC: not collected

		Sample ID:	SG-IND-1
Client:	LMC	Date/Day:	11/20/12
Project:	LMC Utica	Sample Intake Height:	1' ALS
Location:	Indium Corp., Utica, NY	Subcontractor:	NA
Project #:	NJ001032	Miscellaneous Equipment:	Truck
Samplers:	Daniel Zuck	Subcontractor:	None
Logged By:	Daniel Zuck	Equipment:	Hand Pump
Sampling Depth:	2' - 2.5'	Moisture Content of Sampling Zone (circle one):	Dry Moist
Probe (circle one):	Permanent Temporary	Approximate Volume of Sampling Train::	9 mL x 5 = 45 mL
Time of Collection:	Start: 14:32 Finish: 16:42	Approximate Purge Volume:	[(45 + 20.18 mL) = 65 mL * (3v)] = 195 mL purged pre-sample.

Nearby Groundwater Monitoring Wells/Water Levels:

Well ID	Depth to Groundwater (feet)

SUMMA Canister Information

Size (circle one):	1L 6L
Size (circle one):	1L) 6L

Canister ID: ARC: 458 / IND: 364

Flow Controller ID: 342

Tracer Gas Information (if applicable)

Tracer Gas: Helium

Canister Pressure (inches Hg):					
Measured Prior to Sample Collection	Measured Following Sample Collection				
-28.5	-11.5				

Tracer Gas Concentration (if applicable):			
Measured from Soil Vapor Tubing	Me	asured in 'Concentrated' Area	
Post Purge / Post Sample	Prior to Purging	Post Purge / Post Purging	
0.0 ppm / 13.2 ppm	80.3%	66.9% / 23.1%	

General Observations/Notes:

Photo ID: 101-1810
0 ppb reading following sample collection in sample tube.

Approximating One-Well Volume (for purging temporary points):

A 6-inch sampling area will have sampling volume of approximately 20.18 mL. Each foot of ¼-inch tubing will have a volume of approximately 8.62 mL.

		Sample ID:	SG-IND-2
Client:	LMC	Date/Day:	11/20/12
Project:	LMC Utica	Sample Intake Height:	1' ALS
Location:	Indium Corp., Utica, NY	Subcontractor:	NA
Project #:	NJ001032	Miscellaneous Equipment:	Truck
Samplers:	Daniel Zuck	Subcontractor:	None
Logged By:	Daniel Zuck	Equipment:	Hand Pump
Sampling Depth:	4.5' – 5'	Moisture Content of Sampling Zone (circle one):	Dry Moist
Probe (circle one):	Permanent Temporary	Approximate Volume of Sampling Train::	9 mL x 8 = 72 mL
Time of Collection:	Start: 13:40 Finish: 16:25	Approximate Purge Volume:	[(72 + 20.18 mL) = 92 mL * (3v)] = 276 mL purged pre-sample.

Nearby Groundwater Monitoring Wells/Water Levels:

Well ID	Depth to Groundwater (feet)

SUMMA Canister Information

Size (circle one):	1L) 6L
--------------------	--------

Canister ID: ARC: 553 / IND: 240

Flow Controller ID: 153

Tracer Gas Information (if applicable)

Tracer Gas: Helium

asured Following Sample Collection
asured Following Sample Collection
-7.5
•

Tracer Gas Concentration (if applicable):			
Measured from Soil Vapor Tubing	Me	asured in 'Concentrated' Area	
Post Purge / Post Sample	Prior to Purging	Post Purge / Post Purging	
0.0 ppm / 0.0 ppm	69.0%	61.2% / 34.6%	

General Observations/Notes:

Photo ID: 101-1808
0 ppb reading following sample collection in sample tube.

Approximating One-Well Volume (for purging temporary points):

A 6-inch sampling area will have sampling volume of approximately 20.18 mL. Each foot of ¼-inch tubing will have a volume of approximately 8.62 mL.

		Sample ID:	SG-IND-3
Client:	LMC	Date/Day:	11/20/12
Project:	LMC Utica	Sample Intake Height:	1' ALS
Location:	Indium Corp., Utica, NY	Subcontractor:	NA
Project #:	NJ001032	Miscellaneous Equipment:	Truck
Samplers:	Daniel Zuck	Subcontractor:	None
Logged By:	Daniel Zuck	Equipment:	Hand Pump
Sampling Depth:	4.5' – 5'	Moisture Content of Sampling Zone (circle one):	Dry Moist
Probe (circle one):	Permanent Temporary	Approximate Volume of Sampling Train::	9 mL x 8 = 72 mL
Time of Collection:	Start: 12:45 Finish: 15:32	Approximate Purge Volume:	[(72 + 20.18 mL) = 92 mL * (3v)] = 276 mL purged pre-sample.

Nearby Groundwater Monitoring Wells/Water Levels:

Well ID	Depth to Groundwater (feet)

SUMMA Canister Information

Size (circle one): 1L 6 L		
Canister ID:	ARC: 285 / IND: 459	
Flow Controller ID:	281	
Tracer Gas Information (if applicable)		
Tracer Gas imormation (ii applicable)		

Tracer Gas: Helium

Canister Pressure (inches Hg):		
Measured Prior to Sample Collection	Measured Following Sample Collection	
-29	-7.5	

Tracer Gas Concentration (if applicable):			
Measured from Soil Vapor Tubing Measured in 'Concentrated' Area			
Post Purge / Post Sample	Prior to Purging	Post Purge / Post Purging	
0.0 ppm / 0.0 ppm	65.0%	62.6% / 56.1%	

General Observations/Notes:

Photo ID: 101-1807
0 ppb reading following sample collection in sample tube.

Approximating One-Well Volume (for purging temporary points):

A 6-inch sampling area will have sampling volume of approximately 20.18 mL. Each foot of ¼-inch tubing will have a volume of approximately 8.62 mL.

			Sample ID:	SG-IND-4		
Client:	LMC		Date/Day:	11/20/12		
Project:	LMC Utica		Sample Intake Height:	1' ALS		
Location:	Indium Corp.,	Utica, NY	Subcontractor:	NA		
Project #:	NJ001032		Miscellaneous Equipment:	Truck		
Samplers:	Daniel Zuck		Subcontractor:	None		
Logged By:	Daniel Zuck		Equipment:	Hand Pump		
Sampling Depth:	9.0' –	9.5'	Moisture Content of Sampling Zone (circle one):	Dry Moist		
Probe (circle one):	Permanent	Temporary	Approximate Volume of Sampling Train::	NA, see note.		
Time of Collection:	Start: Finish: NA	A, see note.	Approximate Purge NA, see note.			

Nearby Groundwater Monitoring Wells/Water Levels:

Well ID	Depth to Groundwater (feet)

SUMMA Canister Information

Size (circle one): 1L 6 L			
Canister ID:	ARC: 481 / IND: 325		
Flow Controller ID:	187		

Tracer Gas Information (if applicable)

Tracer Gas:	Helium
-------------	--------

Canister Pressure (inches Hg):	
Measured Prior to Sample Collection	Measured Following Sample Collection
NA.	NA .
NA, see note.	NA, see note.

Tracer Gas Concentration (if applicable):			
Measured from Soil Vapor Tubing Measured in 'Concentrated' Area			
Post Purge / Post Sample	Prior to Purging	Post Purge / Post Purging	
NA, see note.	NA, see note.	NA, see note.	

General Observations/Notes:

Cultural Constitutions (Country Country Countr
Photo ID: NA, see note.
Note: Water in purge line prior to sample attempt. No sample collected.
NA – Not Applicable

Approximating One-Well Volume (for purging temporary points):

A 6-inch sampling area will have sampling volume of approximately 20.18 mL. Each foot of 1/4-inch tubing will have a volume of approximately 8.62 mL.

Appendix C

TO-15 Package Review Checklist

Client: <u>arcadis</u>	Project: LMC Utica	SDG:	01.	211047
		<u>YES</u>	<u>NO</u>	<u>NA</u>
Analytical Results TIC's present	Present and Complete Present and Complete Holding Times Met	<u></u>		
Comments:	_			
Chain-of-Custody	Present and Complete	<u> </u>		
Surrogate Recovery	Present and Complete Recoveries within limits Sample(s) reanalyzed	<u>`</u>		
Internal Standards Recovery	Present and Complete Recoveries within limits Sample(s) reanalyzed	<u></u>	<u> </u>	
Comments:				
Lab Control Sample (LCS)	Present and Complete Recoveries within limits	<u>`</u>		
Lab Control Sample Dupe (LCSD)	Present and Complete Recoveries within limits	<u>\</u>		<u> </u>
MS/MSD ·	Present and Complete Recoveries within limits	Martin Co.		<u>\</u>
Comments:	~o ns/nsn			
Sample Raw Data	Present and Complete Spectra present for all samples	<u>`</u>		
Comments:				

Centek Laboratories, LLC

Private and Confidential

Page I of 2

TO-15 Package Review Checklist

Client: <u>Oncadi's</u>	Project: <u>LMC-Utica</u>	SDG:	01	211047
		VEC	NO	NΙΛ
Standards Data		<u>YES</u>	<u>NO</u>	<u>NA</u>
Initial Calibration Summary	Present and Complete	`		
initial Canolidaen Cammay	Calibration(s) met criteria			
Continuing Calibration Summary	Present and Complete			
-	Calibration(s) met criteria	<u> </u>		***************************************
Standards Raw Data	Present and Complete			
Comments:				
Raw Quality Control Data	·			
Tune Criteria Report	Present and Complete			
Method Blank Data	MB Results <pql< td=""><td><u>`</u></td><td></td><td></td></pql<>	<u>`</u>		
	Associated results flagged "B"			
LCS sample data	Present and Complete			
LCSD sample data	Present and Complete	<u>`</u>		
MS/MSD sample data	Present and Complete			
Comments:	-	<u>. </u>		
Logbooks				
Injection Log	Present and Complete	<u></u>		
Standards Log	Present and Complete	<u> </u>		
Can Cleaning Log	Present and Complete			
	Raw Data Present	-		
Calculation sheet	Present and Complete	`		
IDL's	Present and Complete	<u>`</u>		
Bottle Order Form	Present and Complete	<u>`</u>		
Sample Tracking Form	Present and Complete		-	
Additional Comments:				
- / ^) .).		
Section Supervisor: With Da	Date: 12	. / LS	2	
QC Supervisor: Mature	Date:	Had	(2	-

Centek Laboratories, LLC

Private and Confidential

Page 2 of 2

Analytical Report

Jeff Bonsteel Arcadis - Newtown 10 Friends Lane, Suite 200 Newtown, PA 18940

TEL: (267) 685-1874

FAX

RE: LMC Utica

Dear Jeff Bonsteel:

Friday, November 30, 2012 Order No.: C1211047

Centek Laboratories, LLC received 4 sample(s) on 11/21/2012 for the analyses presented in the following report.

I certify that this data package is in compliance with the terms and conditions of the Contract, both technically and for completeness. Release of the data contained in this hardcopy data package and/or in the computer readable data submitted has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

All method blanks, laboratory spikes, and/or matrix spikes met quality assurance objective except as indicated in the case narrative. All samples were received and analyzed within the EPA recommended holding times. Test results are not Method Blank (MB) corrected for contamination.

Centek Laboratories is distinctively qualified to meet your needs for precise and timely volatile organic compound analysis. We perform all analyses according to EPA, NIOSH or OSHA-approved analytical methods. Centek Laboratories is dedicated to providing quality analyses and exceptional customer service. Samples were analyzed using the methods outlined in the following references:

Compendium of Methods for the Determination of Toxic Organic Compounds, Compendium Method TO-15, January 1999.

Analytical results relate to samples as received at laboratory. We do our best to make our reporting format clear and understandable and hope you are thoroughly satisfied with our services.

Please contact your client service representative at (315) 431-9730 or myself, if you would like any additional information regarding this report.

This report can not be reproduced except in its entirety, without prior written authorization.

Page 3 of 204

Sincerely,

William Dobbin

Lead Technical Director

with Jall-

Disclaimer: The test results and procedures utilized, and laboratory interpretations of the data obtained by Centek as contained in this report are believed by Centek to be accurate and reliable for sample(s) tested. In accepting this report, the customer agrees that the full extent of any and all liability for actual and consequential damages of Centek for the services performed shall be equal to the fee charged to the customer for the services as liquidated damages. ELAP does not offer certification for the following parameters by this method at present time, they are: 4ethyltoluene, ethyl acetate and propylene.4-ethyltoluene, ethyl acetate and propylene.

Centek Laboratories, LLC Terms and Conditions

Sample Submission

All samples sent to Centek Laboratories should be accompanied by our Request for Analysis Form or Chain of Custody Form. A Chain of Custody will be provided with each order shipped for all sampling events, or if needed, one is available at our website www.CentekLabs.com. Samples received after 3:00pm are considered to be a part of the next day's business.

Sample Media

Samples can be collected in an canister or a Tedlar bag. Depending on your analytical needs, Centek Laboratories may receive a bulk, liquid, soil or other matrix sample for headspace analysis.

Blanks

Every sample is run with a surrogate or tracer compound at a pre-established concentration. The surrogate compound run with each sample is used as a standard to measure the performance of each run of the instrument. If required, a Minican can be provided containing nitrogen to be run as a trip blank with your samples.

Sampling Equipment

Centek Laboratories will be happy to provide the canisters to carry-out your sampling event at no charge. The necessary accessories, such as regulators, tubing or personal sampling belts, are also provided to meet your sampling needs. The customer is responsible for all shipping charges to the client's destination and return shipping to the laboratory. Client assumes all responsibility for lost, stolen and any dameges of equipment.

Turn Around time (TAT)

Centek Laboratories will provide results to its clients in one business-week by 6:00pm EST after receipt of samples. For example, if samples are received on a Monday they are due on the following Monday by 6:00pm EST. Results are faxed or emailed to the requested location indicated on the Chain of Custody. Non-routine analysis may require more than the one business-week turnaround time. Please confirm non-routine sample turnaround times.

Reporting

Results are emailed or faxed at no additional charge. A hard copy of the result report is mailed

Page 4 of 204

within 24 hours of the faxing or emailing of your results. Cat "B" like packages are within 3-4 weeks from time of analysis. Standard Electronic Disk Deliverables (EDD) is also available at no additional charge.

Payment Terms

Payment for all purchases shall be due within 30 days from date of invoice. The client agrees to pay a finance charge of 1.5% per month on the overdue balance and cost of collection, including attorney fees, if collection proceedings are necessary. You must have a completed credit application on file to extend credit. Purchase orders or checks information must be submitted for us to release results

Rush Turnaround Samples

Expedited turn around times is available. Please confirm rush turnaround times with Client Services before submitting samples.

Applicable Surcharges for Rush Turnaround Samples: Same day TAT = 200%

Next business day TAT by Noon = 150%

Next business day TAT by 6:00pm = 100%

Second business day TAT by 6:00pm = 75%

Third business day TAT by 6:00pm = 50%

Fourth business day TAT by 6:00pm = 35%

Fifth business day = Standard

Statement of Confidentiality

Centek Laboratories, LLC is aware of the importance of the confidentiality of results to many of our clients. Your name and data will be held in the strictest of confidence. We will not accept business that may constitute a conflict of interest. We commonly sign Confidential Nondisclosure Agreements with clients prior to beginning work. All research, results and reports will be kept strictly confidential. Secrecy Agreements and Disclosure Statements will be signed for the client if so specified. Results will be provided only to the addressee specified on the Chain of Custody Form submitted with the samples unless law requires release. Written permission is required from the addressee to release results to any other party.

Limitation on Liability

Centek Laboratories, LLC warrants the test results to be accurate to the methodology and sample type for each sample submitted to Centek Laboratories, LLC. In no event shall Centek Laboratories, LLC be liable for direct, indirect, special, punitive, incidental, exemplary or consequential damages, or any damages whatsoever, even if Centek Laboratories, LLC has been previously advised of the possibility of such damages whether in an action under contract, negligence, or any other theory, arising out of or in connection with the use, inability to use or performance of the information, services, products and materials available from the laboratory or this site. These limitations shall apply notwithstanding any failure of essential purpose of any limited remedy. Because some jurisdictions do not allow limitations on how long an implied warranty lasts, or the exclusion or limitation of liability for consequential or incidental damages, the above limitations may not apply to you. This is a comprehensive limitation of liability that applies to all damages of any kind, including (without limitation) compensatory, direct, indirect or consequential damages, loss of data, income or profit and or loss of or damage to property and claims of third parties.

Date: 20-Dec-12

CLIENT:

Arcadis - Newtown

Project:

LMC Utica

Lab Order:

C1211047

CASE NARRATIVE

Samples were analyzed using the methods outlined in the following references:

Compendium of Methods for the Determination of Toxic Organic Compounds, Compendium Method TO-15, January 1999 and Centek Laboratories, LLC SOP TS-80:

All method blanks, laboratory spikes, and/or matrix spikes met quality assurance objective except as indicated in the corrective action report(s). All samples were received and analyzed within the EPA recommended holding times. Test results are not Method Blank (MB) corrected for contamination.

NYSDEC ASP samples:

Canisters should be evacuated to a reading of less than or equal to 50 millitorr prior to shipment to sampling personnel. The vacuum in the canister will be field checked prior to sampling, and must read 28" of Hg (±2", vacuum, absolute) before a sample can be collected. After the sample has been collected, the pressure of the canister will be read and recorded again, and must be 5" of Hg (±1", vacuum, absolute) for the sample to be valid. Once received at the laboratory, the canister vacuum should be confirmed to be 5" of Hg,±1". Please record and report the pressure/vacuum of received canisters on the sample receipt paperwork. A pressure/vacuum reading should also be taken just prior to the withdrawal of sample from the canister, and recorded on the sample preparation log sheet. All regulators are calibrated to meet these requirements before they leave the laboratory. However, due to environmental conditions and use of the equipment Centek can not guarantee that this criteria can always be achieved.

	Centek Chain of Custody	ustody		Site Name: / M / 1/4-rra	1400		1	Γ
				1	4	יייייייייייייייייייייייייייייייייייייי	report Level	
Contak Laboratones	143 Midler Fark Drive			Project: Ludiam		h Sppby	Levell	
J	Syracuse, NY 13206			PO#: 1/5001032		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Level	
y	315-431-9730 www.CentekLabs.com	Vapor Intrusion & IAQ		Quote # Q-		1ug/M3 +TCE .25		
Check Turnaround Time: One	k Rush TAT Due	Company:	Arcodis		Company:	()		
5 Business Days		Report to: 7.	TEFF Bonstool	100	Imploise to:	- 11		
4 Business Days	25%	Address: 10	Fren de	LONE 54, L. 200	Address:			
o business Days	50%	City, State, Zip	. 9		City, State, Zip	J.D		
Next Day by And	1008/	くかくおどれ	t d	8 940				
Next Day by Noon	150%	Emall: 1 Bonsler	(b)	PATOTALS-45, CON	Email:			
Same Day	200%	Phone: 2 6	1267-1	1874	Phone:			
Sample ID	Date Sampled	Canister		Analysis Request		Comments	Vacuum	
SG-TND-1 (Mrc)	11/20/12 1432	85 h	342	10 15			Start/Stop	
SG-TNO-2(An)	0,460	\$53	557	10-(5			12/12/20	
SG-TND-3(AR)	5,721	582	182	たって				
AM13-112017	1017	325	592	70-15				
							┺	
								T
								T
				, ,				
Chain of Custody	Print Name		Signatúre //		Date/Time	Courier; CIRCEE ONE	Ш	
Sampled by:	Janiel Buch		ンカボ	2	11/24/2 174c FedEx(UPS	Pickup/Dropoff	
Relinquished by:	7~		9			Z		1
Received at Lab by:	301/Ja12			10 X 0	11/21/12	///21//12 Work Order # _ C /c	C/01/04/	(E
by signing Centek Labs Chain of Custody, you are accepting C	ain of Custody, you are acc	epting Centek	Laibs Terms a	entek/Labs Terms and Conditions listed on the reverse side.	ı the reverse	side.		

Date: 20-Dec-12

CLIENT:

Arcadis - Newtown

Project:

LMC Utica

Lab Order:

C1211047

Work Order Sample Summary

Lab Order:	C1211047			
Lab Sample ID	Client Sample ID	Tag Number	Collection Date	Date Received
C1211047-001A	SG-IND-1 (ARC)	458,342	11/20/2012	11/21/2012
·				
C1211047-002A	. SG-IND-2 (ARC)	553,153	11/20/2012	11/21/2012
	`.	·		
C1211047-003A	SG-IND-3 (ARC)	285,281	11/20/2012	11/21/2012
C1211047-004A	AMB-112012	322,263	11/20/2012	11/21/2012

CENTEK LABORATO	RIES, LLC				Sample Rece	ipt Checklist
	مر				•	•
Client Name: ARCADIS - NEWTOWN				Date and Tim	ne Received:	11/21/2012
Work Order Number C1211047			,	Received by:		
~ / /	\[\]		//	·		, ,
Checklist completed by	Ar Ve	/	[21/12	Reviewed by:	Initials	11/11/12 Date
	Į.	1	, ,			ľ.
Matrix:	Carrier name:	<u>UPS</u>	<u> </u>			
Shipping containe/cooler in good condition?		Yes	\checkmark	No 🗆	Not Present	
Custody seals intact on shippping container/cooler	?	Yes	\checkmark	No 🗌	Not Present	
Custody seals intact on sample bottles?		Yes		No 🗆	Not Present 🗹	
Chain of custody present?		Yes	\checkmark	No 🗌		
Chain of custody signed when relinquished and rec	ceived?	Yes	\checkmark	No □		
Chain of custody agrees with sample labels?		Yes	\checkmark	No 🗆		
Samples in proper container/bottle?		Yes	\checkmark	No 🗆		
Sample containers intact?		Yes	\checkmark	No 🗆		
Sufficient sample volume for indicated test?		Yes	\checkmark	No 🗌		
All samples received within holding time?		Yes	\checkmark	No 🗆		
Container/Temp Blank temperature in compliance?		Yes	\checkmark	No 🗆		
Water - VOA vials have zero headspace?	No VOA vials submi	itted	\checkmark	Yes 🗌	No 🗌	
Water - pH acceptable upon receipt?		Yes		No 🗹		
	Adjusted?		Chec	ked by		
Any No and/or NA (not applicable) response must l	oe delailed in the comr	nents — —	section below	w. — — — — –		
Client contacted:	Date contacted:			Perso	on contacted:	
Contacted by:	Regarding:					
Comments:						
			,			
Corrective Action:				-		
			***************************************		······································	
•						
THE RESERVE THE PERSON OF THE						

DATES REPORT

20-Dec-12

Centek Laboratories, LLC

C1211047

Lab Order:

Client:	Arcadis - Newtown				DATES REPORT	
Project:	LMC Utica		:			
Sample ID	Client Sample ID	Collection Date	Matrix	Test Name	TCLP Date Prep Date	Analysis Date
C1211047-001A	SG-IND-1 (ARC)	11/20/2012		1 ug/M3 by Method TO15		11/29/2012
				lug/M3 by Method TO15		11/29/2012
				lug/M3 by Method TO15		11/28/2012
C1211047-002A	SG-IND-2 (ARC)		Air	lug/M3 by Method TO15		11/29/2012
				lug/M3 by Method TO15		11/28/2012
C1211047-003A	SG-IND-3 (ARC)			lug/M3 by Method TO15		11/29/2012
				lug/M3 by Method TO15		11/28/2012
C1211047-004A	AMB-112012			lug/M3 by Method TO15		11/29/2012
				lug/M3 by Method TO15		11/28/2012

CANISTER ORDER

3353

20-Dec-12

Air Quality Testing. At's a Gas 143 Midler Park Drive * Syracuse, NY 13206 TEL: 315-431-9730 * FAX: 315-431-9731

SHIPPED TO:

Company:

Arcadis - Newtown

Contact:

Address:

Newtown, PA 18940

Phone:

Project:

Quote ID;

Jeff Bonsteel

10 Friends Lane, Suite 200

267-685-1800

Submitted By:

MadeBy:

11/15/2012

VIA: FedEx

11/19/2012

Bottle Code

Bottle Type

TEST(s)

Ship Date:

Due Date:

QTY

MC1000CC

Can / Reg ID

553

1L Mini-Can

Description

1L Mini-Can - 121 VI

1ug/M3 by Method TO15

jan

8

153	Time-Set Reg - 648 VI
263	Time-Set Reg - 838R VI
274	1L Mini-Can - 1189 Vi
281	Time-Set Reg - 637 VI
285	1L Mini-Can - 1061 VI
322	1L Mini-Can - 1285 VI
342	Time-Set Reg - 739 VI
458	1L Mini-Can - 1361 VI

Comments: 7 (1L) @ 2 hrs +T's for dupes + 1(L) @8hrs + full Helium setup dan zackWAC110312D-I

ASP CAT B DELIVERABLE PACKAGE Table of Contents

- 1. Package Review Check List
- 2. Case Narrative
 - a. Corrective actions
- 3. Sample Summary Form
- 4. Sample Tracking Form
- 5. Bottle Order
- 6. Analytical Results
- a. Form 1
- 7. Quality Control Summary
- a. Qc Summary Report
- b. IS Summary Report
- c. MB Summary Report
- d. LCS Summary Report
- e. MSD Summary Report
- f. IDL's
- g. Calculation
- 8. Sample Data
 - a. Form 1 (if requested) TIC's
 - b. Quantitation Report with Spectra
- 9. Standards Data
 - a. Initial Calibration with Quant Report
 - b. Continuing Calibration with Quant Report
- 10. Raw Data
 - a. Tuning Data
- 11. Raw QC Data
 - a. Method Blank
 - b. LCS
 - c. MS/MSD
- 12. Log Books
 - a. Injection Log Book
 - b. Standards Log Book
 - c. QC Canister Log Book

CLIENT: Arcadis - Newtown

Lab Order:

C1211047

Project:

LMC Utica

Lab ID:

C1211047-001A

Date: 14-Dec-12

Client Sample ID: SG-IND-1 (ARC)

Tag Number: 458,342

Collection Date: 11/20/2012

Matrix:

Analyses	Result	**Limit Qua	al Units	ÐF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum in	-11		"Hg		11/21/2012
Lab Vacuum Out	-30		"Hg		11/21/2012
1UG/M3 BY METHOD TO15		TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.15	0.15	ppbV	1	11/28/2012 6:58:00 PM
1,1,2,2-Tetrachloroethane	< 0.15	0.15	ppbV	1	11/28/2012 6:58:00 PM
1,1,2-Trichloroethane	< 0.15	0.15	ppbV	1	11/28/2012 6:58:00 PM
1,1-Dichloroethane	< 0.15	0.15	ppbV	1	11/28/2012 6:58:00 PM
1,1-Dichloroethene	< 0.15	0.15	ppbV	1	11/28/2012 6:58:00 PM
1,2,4-Trichlorobenzene	< 0.15	0.15	ppbV	1	11/28/2012 6:58:00 PM
1,2,4-Trimethylbenzene	2.5	0.15	ppbV	1	11/28/2012 6;58;00 PM
1,2-Dibromoethane	< 0.15	0.15	ppbV	1	11/28/2012 6:58:00 PM
1,2-Dichlorobenzene	< 0.15	0.15	ppbV	1	11/28/2012 6:58:00 PM
1,2-Dichloroethane	< 0.15	0.15	ppbV	1	11/28/2012 6:58:00 PM
1,2-Dichloropropane	< 0.15	0.15	ppbV	1	11/28/2012 6:58:00 PM
1,3,5-Trimethylbenzene	0,63	0.15	ppbV	1	11/28/2012 6:58:00 PM
1,3-butadiene	< 0.15	0.15	ppbV	1	11/28/2012 6:58:00 PM
1,3-Dichlorobenzene	< 0.15	0.15	ppbV	1	11/28/2012 6:58:00 PM
1,4-Dichlorobenzene	< 0.15	0.15	ppbV	1	11/28/2012 6:58:00 PM
1,4-Dioxane	< 0.30	0.30	ppbV	1	11/28/2012 6:58:00 PM
2,2,4-trimethylpentane	3.5	1.5	ppbV	10	11/29/2012 1:27:00 AM
4-ethyltoluene	0.83	0.15	ppbV	1	11/28/2012 6:58:00 PM
Acetone	12	3.0	ppbV	10	11/29/2012 1:27:00 AM
Allyl chloride	< 0.15	0.15	ppbV	1	11/28/2012 6:58:00 PM
Benzene	6.4	1.5	ppbV	10	11/29/2012 1:27:00 AM
Benzyl chloride	< 0.15	0.15	ppbV	1	11/28/2012 6:58:00 PM
Bromodichloromethane	< 0.15	0.15	ppbV	1	11/28/2012 6:58:00 PM
Bromoform	< 0.15	0.15	ppbV	1 -	11/28/2012 6:58:00 PM
Bromomethane	< 0.15	0.15	ppbV	1	11/28/2012 6:58:00 PM
Carbon disulfide	0.22	0.15	ppbV	1	11/28/2012 6:58:00 PM
Carbon tetrachloride	< 0.15	0.15	ppbV	1	11/28/2012 6:58:00 PM
Chlorobenzene	< 0.15	0.15	ppbV	1	11/28/2012 6:58:00 PM
Chloroethane	< 0,15	0.15	ppbV	1	11/28/2012 6:58:00 PM
Chloroform	< 0.15	0.15	ppbV	1	11/28/2012 6:58:00 PM
Chloromethane	< 0.15	0.15	ppbV	1	11/28/2012 6:58:00 PM
cis-1,2-Dichloroethene	< 0.15	0.15	ppbV	1	11/28/2012 6:58:00 PM
cis-1,3-Dichloropropene	< 0.15	0.15	ppbV	1	11/28/2012 6:58:00 PM
Cyclohexane	46	6.0	ppbV	40	11/29/2012 2:01:00 AM
Dibromochloromethane	< 0.15	0.15	ppbV	1	11/28/2012 6:58:00 PM
Ethyl acetate	< 0.15	0.15	ppbV	1	11/28/2012 6:58:00 PM

Qualifiers:

- * Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 1 of 8

Arcadis - Newtown

Lab Order:

_....

CLIENT:

C1211047

Project: Lab ID: LMC Utica C1211047-001A Date: 14-Dec-12

Client Sample ID: SG-IND-1 (ARC)

Tag Number: 458,342

Collection Date: 11/20/2012

Matrix:

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-	·15			Analyst: RJP
Ethylbenzene	2.1	0.15		ppbV	1	11/28/2012 6:58:00 PM
Freon 11	0.19	0.15		ppbV	1	11/28/2012 6:58:00 PM
Freon 113	0.12	0.15	J	ppbV	1	11/28/2012 6:58:00 PM
Freon 114	< 0.15	0.15		ppbV	1	11/28/2012 6:58:00 PM
Freon 12	0.40	0.15		ppbV	1	11/28/2012 6:58:00 PM
Heptane	5.7	1.5		ppbV	10	11/29/2012 1:27:00 AM
Hexachioro-1,3-butadiene	< 0.15	0.15		ppbV	1	11/28/2012 6:58:00 PM
Нехапе	37	6.0		ppbV	40	11/29/2012 2:01:00 AM
Isopropyl alcohol	< 0.15	0.15		ppbV	1	11/28/2012 6:58:00 PM
m&p-Xylene	4.0	3.0		ppbV	10	11/29/2012 1:27:00 AM
Methyl Butyl Ketone	< 0.30	0.30		ppbV	1	11/28/2012 6:58:00 PM
Methyl Ethyl Ketone	< 0.30	0.30		ppbV	1	11/28/2012 6:58:00 PM
Methyl Isobutyl Ketone	< 0.30	0.30		ppbV	1	11/28/2012 6:58:00 PM
Methyl tert-butyl ether	< 0.15	0.15		ppbV	1	11/28/2012 6:58:00 PM
Methylene chloride	< 0.15	0.15		ppbV	1	11/28/2012 6:58:00 PM
o-Xylene	2.6	0.15		ppbV	1	11/28/2012 6:58:00 PM
Propylene	< 0.15	0.15		ppbV	1	11/28/2012 6:58:00 PM
Styrene	< 0.15	0.15		ppbV	1	11/28/2012 6:58:00 PM
Tetrachloroethylene	0,55	0.15		ppbV	1	11/28/2012 6:58:00 PM
Tetrahydrofuran	< 0.15	0.15		ppbV	1	11/28/2012 6:58:00 PM
Toluene	15	1.5		ppbV	10	11/29/2012 1:27:00 AM
trans-1,2-Dichloroethene	< 0.15	0.15		ppbV	1	11/28/2012 6;58:00 PM
trans-1,3-Dichloropropene	< 0.15	0.15		ppbV	1	11/28/2012 6:58:00 PM
Trichloroethene	0.46	0.15		ppbV	1	11/28/2012 6:58:00 PM
Vinyl acetate	< 0.15	0.15		ppbV	1	11/28/2012 6:58:00 PM
Vinyi Bromide	< 0.15	0.15		ppbV	1	11/28/2012 6:58:00 PM
Vinyl chloride	< 0.15	0.15		ppbV	1	11/28/2012 6:58:00 PM
Surr: Bromofluorobenzene	109	70-130		%REC	1	11/28/2012 6:58:00 PM

Qualific	:rs
----------	-----

Reporting Limit

Page 2 of 8

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Value above quantitation range

J Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit

CLIENT: Arcadis - Newtown

Lab Order:

01011045

Project:

C1211047 LMC Utica

Lab ID:

C1211047-001A

Date: 14-Dec-12

Client Sample ID: SG-IND-1 (ARC)

Tag Number: 458,342

Collection Date: 11/20/2012

Matrix:

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TC)-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.83	0,83		ug/m3	1	11/28/2012 6:58:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0		ug/m3	1	11/28/2012 6:58:00 PM
1,1,2-Trichloroethane	< 0.83	0.83		ug/m3	1	11/28/2012 6:58:00 PM
1,1-Dichloroethane	< 0.62	0.62		ug/m3	1	11/28/2012 6:58:00 PM
1,1-Dichloroethene	< 0.60	0.60		ug/m3	1	11/28/2012 6:58:00 PM
1,2,4-Trichlorobenzene	< 1.1	1.1		ug/m3	1	11/28/2012 6:58:00 PM
1,2,4-Trimethylbenzene	12	0.75		ug/m3	1	11/28/2012 6:58:00 PM
1,2-Dibromoethane	< 1.2	1.2		ug/m3	1	11/28/2012 6:58:00 PM
1,2-Dichlorobenzene	< 0.92	0.92		ug/m3	1	11/28/2012 6:58:00 PM
1,2-Dichloroethane	< 0.62	0.62		ug/m3	1	11/28/2012 6:58:00 PM
1,2-Dichloropropane	< 0.70	0.70		ug/m3	1	11/28/2012 6:58:00 PM
1,3,5-Trimethylbenzene	3.1	0.75		ug/m3	1	11/28/2012 6:58:00 PM
1,3-butadiene	< 0.34	0.34		ug/m3	1	11/28/2012 6:58:00 PM
1,3-Dichlorobenzene	< 0.92	0.92		ug/m3	1	11/28/2012 6:58:00 PM
1,4-Dichlorobenzene	< 0.92	0.92		ug/m3	1	11/28/2012 6:58:00 PM
1,4-Dioxane	< 1.1	1.1		ug/m3	1	11/28/2012 6:58:00 PM
2,2,4-trimethylpentane	17	7.1		ug/m3	10	11/29/2012 1:27:00 AM
4-ethyltoluene	4.1	0.75		ug/m3	1	11/28/2012 6:58:00 PM
Acetone	29	7.2		ug/m3	10	11/29/2012 1:27:00 AM
Allyl chloride	< 0.48	0.48		ug/m3	1	11/28/2012 6:58:00 PM
Benzene	21	4.9		ug/m3	10	11/29/2012 1:27:00 AM
Benzyl chloride	< 0.88	0.88		ug/m3	1	11/28/2012 6:58:00 PM
Bromodichloromethane	< 1.0	1.0		ug/m3	1	11/28/2012 6;58:00 PM
Bromoform	< 1.6	1.6		ug/m3	1	11/28/2012 6:58:00 PM
Bromomethane	< 0.59	0.59		ug/m3	1	11/28/2012 6:58:00 PM
Carbon disulfide	0.70	0.47		ug/m3	1	11/28/2012 6:58:00 PM
Carbon tetrachloride	< 0.96	0.96		ug/m3	1	11/28/2012 6:58:00 PM
Chlorobenzene	< 0.70	0.70		ug/m3	1	11/28/2012 6:58:00 PM
Chloroethane	< 0.40	0.40		ug/m3	1	11/28/2012 6:58:00 PM
Chloroform	< 0.74	0.74		ug/m3	1	11/28/2012 6:58:00 PM
Chloromethane	< 0.31	0.31		ug/m3	1	11/28/2012 6:58:00 PM
cis-1,2-Dichloroethene	< 0.60	0.60		ug/m3	1	11/28/2012 6:58:00 PM
cis-1,3-Dichloropropene	< 0.69	0,69		ug/m3	1	11/28/2012 6:58:00 PM
Cyclohexane	160	21		ug/m3	40	11/29/2012 2:01:00 AM
Dibromochloromethane	< 1.3	1.3		ug/m3	1	11/28/2012 6:58:00 PM
Ethyl acetate	< 0.92	0.92		ug/m3	1	11/28/2012 6:58:00 PM
Ethylbenzene	9.4	0.66		ug/m3	1	11/28/2012 6:58:00 PM
Freon 11	1.1	0.86		ug/m3	1	11/28/2012 6:58:00 PM
Freon 113	0.93	1.2	J ·	ug/m3	1	11/28/2012 6:58:00 PM
Freon 114	< 1.1	1.1		ug/m3	1	11/28/2012 6:58:00 PM

Qualifiers:

- Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 1 of 8

CLIENT: Arcadis - Newtown

Lab Order:

C1211047

Project:

LMC Utica

Lab ID:

C1211047-001A

Date: 14-Dec-12

Client Sample ID: SG-IND-1 (ARC)

Tag Number: 458,342

Collection Date: 11/20/2012

Matrix:

Analyses	Result	**Limit Qu	ıal Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-15			Analyst: RJP
Freon 12	2.0	0.75	ug/m3	1	11/28/2012 6:58:00 PM
Heptane	24	6.2	ug/m3	10	11/29/2012 1:27:00 AM
Hexachloro-1,3-butadiene	< 1.6	1,6	ug/m3	1	11/28/2012 6:58:00 PM
Hexane	130	21	ug/m3	40	11/29/2012 2:01:00 AM
Isopropyl alcohol	< 0.37	0.37	ug/m3	1	11/28/2012 6:58:00 PM
m&p-Xylene	18	13	ug/m3	10	11/29/2012 1:27:00 AM
Methyl Butyl Ketone	< 1.2	1.2	ug/m3	1	11/28/2012 6:58:00 PM
Methyl Ethyl Ketone	< 0.90	0.90	ug/m3	1	11/28/2012 6:58:00 PM
Methyl Isobutyl Ketone	< 1.2	1.2	ug/m3	1	11/28/2012 6:58:00 PM
Methyl tert-butyl ether	< 0.55	0,55	ug/m3	1	11/28/2012 6:58:00 PM
Methylene chloride	< 0.53	0.53	ug/m3	1	11/28/2012 6:58:00 PM
o-Xylene	11	0.66	ug/m3	1	11/28/2012 6:58:00 PM
Propylene	< 0.26	0.26	ug/m3	1	11/28/2012 6:58:00 PM
Styrene	< 0.65	0.65	ug/m3	1	11/28/2012 6:58:00 PM
Tetrachloroethylene	3.8	1.0	ug/m3	1	11/28/2012 6:58:00 PM
Tetrahydrofuran	< 0.45	0.45	ug/m3	1	11/28/2012 6:58:00 PM
Toluene	57	5.7	ug/m3	10	11/29/2012 1:27:00 AM
trans-1,2-Dichloroethene	< 0.60	0.60	ug/m3	1	11/28/2012 6:58:00 PM
trans-1,3-Dichloropropene	< 0.69	0.69	ug/m3	1	11/28/2012 6:58:00 PM
Trichloroethene	2.5	0.82	ug/m3	1	11/28/2012 6:58:00 PM
Vinyl acetate	< 0.54	0.54	ug/m3	1	11/28/2012 6:58:00 PM
Vinyl Bromide	< 0.67	0.67	ug/m3	1	11/28/2012 6:58:00 PM
Vinyl chloride	< 0.39	0.39	ug/m3	1	11/28/2012 6:58:00 PM

n	111	Hi	Ge	re

- ** Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 2 of 8

CLIENT:

Arcadis - Newtown

Lab Order:

C1211047

Project:

LMC Utica

Lab ID:

C1211047-002A

Date: 14-Dec-12

Client Sample ID: SG-IND-2 (ARC)

Tag Number: 553,153

Collection Date: 11/20/2012

Matrix: AIR

Analyses	Result	**Limit Q	Qual (Units	DF	Date Analyzed
FIELD PARAMETERS		FLD)			Analyst:
Lab Vacuum In	-7		11	Hg		11/21/2012
Lab Vacuum Out	-30		*1	Hg	•	11/21/2012
1UG/M3 BY METHOD TO15		TO-1	5			Analyst: RJP
1,1,1-Trichloroethane	< 0.15	0.15	р	pbV	1	11/28/2012 7:33:00 PM
1,1,2,2-Tetrachloroethane	< 0.15	0.15	р	pbV	1	11/28/2012 7:33:00 PM
1,1,2-Trichloroethane	< 0.15	0.15	р	pbV	1	11/28/2012 7:33:00 PM
1,1-Dichtoroethane	< 0.15	0.15	р	pbV	1	11/28/2012 7:33:00 PM
1,1-Dichloroethene	< 0.15	0.15	р	pbV	1	11/28/2012 7:33:00 PM
1,2,4-Trichlorobenzene	< 0.15	0.15	р	pbV	1	11/28/2012 7:33:00 PM
1,2,4-Trimethylbenzene	0.40	0.15	р	pbV	1	11/28/2012 7:33:00 PM
1,2-Dibromoethane	< 0.15	0.15	р	pbV	1	11/28/2012 7:33:00 PM
1,2-Dichlorobenzene	< 0.15	0.15	р	pbV	1	11/28/2012 7:33:00 PM
1,2-Dichloroethane	< 0.15	0.15	р	pbV	1	11/28/2012 7:33:00 PM
1,2-Dichloropropane	< 0.15	0.15	р	pbV	1	11/28/2012 7:33:00 PM
1,3,5-Trimethylbenzene	0.10	0.15	J p	pbV	1	11/28/2012 7:33:00 PM
1,3-butadiene	< 0.15	0.15	р	pbV	1	11/28/2012 7:33:00 PM
1,3-Dichlorobenzene	< 0.15	0.15	р	pbV	1	11/28/2012 7:33:00 PM
1,4-Dichlorobenzene	< 0.15	0.15	Р	pbV	1	11/28/2012 7:33:00 PM
1,4-Dioxane	< 0.30	0.30	Р	pbV	1	11/28/2012 7:33:00 PM
2,2,4-trimethylpentane	0.12	0.15	J p	pbV	1	11/28/2012 7:33:00 PM
4-ethyltoluene	0.13	0.15	J p	рЬV	1	11/28/2012 7:33:00 PM
Acetone	12	3.0	р	pbV	10	11/29/2012 2:35:00 AM
Allyl chloride	< 0.15	0.15	Р	pbV	1	11/28/2012 7:33:00 PM
Benzene	0.41	0.15	р	pb∨	1	11/28/2012 7:33:00 PM
Benzyl chloride	< 0.15	0.15	р	pbV	1	11/28/2012 7:33:00 PM
Bromodichloromethane	< 0.15	0.15	р	pbV	1	11/28/2012 7:33:00 PM
Bromoform	< 0.15	0.15	р	pbV	1	11/28/2012 7:33:00 PM
Bromomethane	< 0.15	0.15	р	pbV	1	11/28/2012 7:33:00 PM
Carbon disulfide	0.58	0.15	р	pbV	1	11/28/2012 7:33:00 PM
Carbon tetrachloride	< 0.15	0.15	p	pbV	1	11/28/2012 7:33:00 PM
Chiorobenzene	< 0.15	0.15		pbV	1	11/28/2012 7:33:00 PM
Chloroethane	< 0.15	0.15	p.	pbV	1	11/28/2012 7:33:00 PM
Chloroform	0.27	0.15	p.	pbV	1	11/28/2012 7:33:00 PM
Chloromethane	< 0.15	0.15	•	pbV	1	11/28/2012 7:33:00 PM
cis-1,2-Dichloroethene	< 0.15	0.15		pbV	1	11/28/2012 7:33:00 PM
cls-1,3-Dichloropropene	< 0.15	0.15		pbV	1	11/28/2012 7:33:00 PM
Cyclohexane	0.74	0.15		pbV	1	11/28/2012 7:33:00 PM
Dibromochloromethane	< 0.15	0.15		pbV	1	11/28/2012 7:33:00 PM
Ethyl acetate	< 0.25	0.25		pbV	1	11/28/2012 7:33:00 PM

Qualifiers:

- ** Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 3 of 8

CLIENT: Arcadis - Newtown

Lab Order:

Project:

C1211047 LMC Utica

Lab ID:

C1211047-002A

Date: 14-Dec-12

Client Sample ID: SG-IND-2 (ARC)

Tag Number: 553,153

Collection Date: 11/20/2012

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO	-15			Analyst: RJP
Ethylbenzene	0.26	0.15		ppbV	1	11/28/2012 7:33:00 PM
Freon 11	0.19	0.15		ppbV	1	11/28/2012 7:33:00 PM
Freon 113	0.14	0.15	J	ppbV	1	11/28/2012 7:33:00 PM
Freon 114	< 0.15	0.15		ppbV	1	11/28/2012 7:33:00 PM
Freon 12	0.48	0.15		ppbV	1	11/28/2012 7:33:00 PM
Heptane	0.31	0.15		ppbV	1	11/28/2012 7:33:00 PM
Hexachloro-1,3-butadiene	< 0.15	0.15		ppb∨	1	11/28/2012 7:33:00 PM
Hexane	0.76	0.15		ppb∨	1	11/28/2012 7:33:00 PM
Isopropyl alcohol	< 0.15	0.15		ppbV	1	11/28/2012 7:33:00 PM
m&p-Xylene	0.84	0.30		ppbV	1	11/28/2012 7:33:00 PM
Methyl Butyl Ketone	< 0.30	0.30		ppbV	1	11/28/2012 7:33:00 PM
Methyl Ethyl Ketone	< 0.30	0.30		ppbV	1	11/28/2012 7:33:00 PM
Methyl Isobutyl Ketone	⁻ < 0.30	0.30		ppbV	1	11/28/2012 7:33:00 PM
Methyl tert-butyl ether	< 0.15	0.15		ppbV	1	11/28/2012 7:33:00 PM
Methylene chloride	< 0.15	0.15		ppbV	1	11/28/2012 7:33:00 PM
o-Xylene	0.25	0.15		ppb∨	1	11/28/2012 7:33:00 PM
Propylene	< 0.15	0.15		ppbV	1	11/28/2012 7:33:00 PM
Styrene	< 0.15	0.15		ppbV	1	11/28/2012 7:33:00 PM
Tetrachloroethylene	0.57	0.15		ppbV	1	11/28/2012 7:33:00 PM
Tetrahydrofuran	< 0.15	0.15		ppbV	1	11/28/2012 7:33:00 PM
Toluene	1.8	0.15		ppbV	1	11/28/2012 7:33:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15		ppbV	1	11/28/2012 7:33:00 PM
trans-1,3-Dichloropropene	< 0.15	0.15		ppbV	1	11/28/2012 7:33:00 PM
Trichloroethene	0.12	0.15	J	ppbV	1	11/28/2012 7:33:00 PM
Vinyl acetate	< 0.15	0.15		ppbV	1	11/28/2012 7:33:00 PM
Vinyl Bromide	< 0.15	0.15		ppbV	1	11/28/2012 7:33:00 PM
Vinyl chloride	< 0.15	0.15		ppbV	1	11/28/2012 7:33:00 PM
Surr: Bromofluorobenzene	107	70-130		%REC	1	11/28/2012 7:33:00 PM

Qualifiers:

Page 4 of 8

Reporting Limit

В Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

JN Non-routine analyte, Quantitation estimated.

Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

Ε Value above quantitation range

Analyte detected at or below quantitation limits

Not Detected at the Reporting Limit

CLIENT: Arcadis

Arcadis - Newtown

Lab Order:

C1211047

Project:

LMC Utica

Lab ID:

C1211047-002A

Date: 14-Dec-12

Client Sample ID: SG-IND-2 (ARC)

Tag Number: 553,153

Collection Date: 11/20/2012

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	. DF	Date Analyzed
1UG/M3 BY METHOD TO15		TC)-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.83	0.83		ug/m3	1	11/28/2012 7:33:00 PM
1,1,2,2-Tetrachioroethane	< 1.0	1.0		ug/m3	1	11/28/2012 7:33:00 PM
1,1,2-Trichtoroethane	< 0.83	0.83		ug/m3	1	11/28/2012 7:33:00 PM
1,1-Dichloroethane	< 0.62	0.62		ug/m3	1	11/28/2012 7:33:00 PM
1,1-Dichloroethene	< 0.60	0.60		ug/m3	1	11/28/2012 7:33:00 PM
1,2,4-Trichlorobenzene	< 1.1	1.1		ug/m3	1	11/28/2012 7:33:00 PM
1,2,4-Trimethylbenzene	2.0	0.75		ug/m3	1	11/28/2012 7:33:00 PM
1,2-Dibromoethane	< 1.2	1.2		ug/m3	1	11/28/2012 7:33:00 PM
1,2-Dichlorobenzene	< 0.92	0.92		ug/m3	1	11/28/2012 7:33:00 PM
1,2-Dichloroethane	< 0.62	0.62		ug/m3	1	11/28/2012 7:33:00 PM
1,2-Dichloropropane	< 0.70	0.70		ug/m3	1	11/28/2012 7:33:00 PM
1,3,5-Trimethylbenzene	0.50	0.75	J	ug/m3	1	11/28/2012 7:33:00 PM
1,3-butadiene	< 0.34	0.34		ug/m3	1	11/28/2012 7:33:00 PM
1,3-Dichlorobenzene	< 0.92	0.92		ug/m3	1	11/28/2012 7:33:00 PM
1,4-Dichlorobenzene	< 0.92	0.92		ug/m3	1	11/28/2012 7:33:00 PM
1,4-Dioxane	< 1.1	1.1		ug/m3	1	11/28/2012 7:33:00 PM
2,2,4-trimethylpentane	0.57	0.71	J	ug/m3	1	11/28/2012 7:33:00 PM
4-ethyltoluene	0.65	0.75	J	ug/m3	1	11/28/2012 7:33:00 PM
Acetone	28	7.2		ug/m3	10	11/29/2012 2:35:00 AM
Allyl chloride	< 0.48	0.48		ug/m3	1	11/28/2012 7:33:00 PM
Benzene	1.3	0.49		ug/m3	1	11/28/2012 7:33:00 PM
Benzyl chloride	< 0.88	0.88		ug/m3	1	11/28/2012 7:33:00 PM
Bromodichloromethane	< 1.0	1.0		ug/m3	1	11/28/2012 7:33:00 PM
Bromoform	< 1.6	1.6		ug/m3	1	11/28/2012 7:33:00 PM
Bromomethane	< 0.59	0.59		ug/m3	1	11/28/2012 7:33:00 PM
Carbon disulfide	1.8	0.47		ug/m3	1 .	11/28/2012 7:33:00 PM
Carbon tetrachloride	< 0.96	0.96		ug/m3	1	11/28/2012 7:33:00 PM
Chlorobenzene	< 0.70	0.70		ug/m3	1	11/28/2012 7:33:00 PM
Chloroethane	< 0.40	0.40		ug/m3	1	11/28/2012 7:33:00 PM
Chloroform	1.3	0.74		ug/m3	1	11/28/2012 7:33:00 PM
Chloromethane	< 0.31	0.31		ug/m3	1	11/28/2012 7:33:00 PM
cis-1,2-Dichloroethene	< 0.60	0.60		ug/m3	1	11/28/2012 7:33:00 PM
cis-1,3-Dichloropropene	< 0.69	0.69		ug/m3	1	11/28/2012 7:33:00 PM
Cyclohexane	2.6	0.52		ug/m3	1	11/28/2012 7:33:00 PM
Dibromochloromethane	< 1.3	1.3		ug/m3	1	11/28/2012 7:33:00 PM
Ethyl acetate	< 0.92	0.92		ug/m3	1	11/28/2012 7:33:00 PM
Ethylbenzene	1.1	0.66		ug/m3	1	11/28/2012 7:33:00 PM
Freon 11	1.1	0.86		ug/m3	1	11/28/2012 7:33:00 PM
Freon 113	1.1	1.2	J	ug/m3	1	11/28/2012 7:33:00 PM
Freon 114	···· < 1.1	1.1	-	ug/m3	1	11/28/2012 7:33:00 PM

Qualifiers:

- ** Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 3 of 8

CLIENT:

Arcadis - Newtown

Lab Order:

C1211047

Project:

LMC Utica

Lab ID:

C1211047-002A

Date: 14-Dec-12

Client Sample ID: SG-IND-2 (ARC)

Tag Number: 553,153

Collection Date: 11/20/2012

Matrix: AIR

Analyses	Result	**Limit	Qual Units	DF DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO	-15		Analyst: RJP
Freon 12	2.4	0.75	ug/m3	1	11/28/2012 7:33:00 PM
Heptane	1.3	0.62	ug/m3	1	11/28/2012 7:33:00 PM
Hexachloro-1,3-butadiene	< 1.6	1.6	ug/m3	1	11/28/2012 7:33:00 PM
Hexane	2.7	0.54	ug/m3	1	11/28/2012 7:33:00 PM
Isopropyl alcohol	< 0.37	0.37	ug/m3	1	11/28/2012 7:33:00 PM
m&p-Xylene	3.7	1.3	ug/m3	1	11/28/2012 7:33:00 PM
Methyl Butyl Ketone	< 1.2	1,2	ug/m3	1	11/28/2012 7:33:00 PM
Methyl Ethyl Ketone	< 0.90	0.90	ug/m3	1	11/28/2012 7:33:00 PM
Methyl Isobutyl Ketone	< 1.2	1.2	ug/m3	1	11/28/2012 7:33:00 PM
Methyl tert-butyl ether	< 0.55	0.55	ug/m3	1	11/28/2012 7:33:00 PM
Methylene chloride	< 0.53	0.53	ug/m3	1	11/28/2012 7:33:00 PM
o-Xylene	1,1	0.66	ug/m3	1	11/28/2012 7:33:00 PM
Propylene	< 0.26	0.26	ug/m3	1	11/28/2012 7:33:00 PM
Styrene	< 0.65	0.65	ug/m3	1	11/28/2012 7:33:00 PM
Tetrachloroethylene	3.9	1.0	ug/m3	1	11/28/2012 7:33:00 PM
Tetrahydrofuran	< 0.45	0.45	ug/m3	1	11/28/2012 7:33:00 PM
Toluene	6.8	0.57	ug/m3	1	11/28/2012 7:33:00 PM
trans-1,2-Dichloroethene	< 0.60	0.60	ug/m3	1	11/28/2012 7:33:00 PM
trans-1,3-Dichloropropene	< 0.69	0.69	ug/m3	. 1	11/28/2012 7:33:00 PM
Trichloroethene	0.66	0.82	J ug/m3	1	11/28/2012 7:33:00 PM
Vinyl acetate	< 0.54	0.54	ug/m3	1	11/28/2012 7:33:00 PM
Vinyl Bromide	< 0.67	0.67	ug/m3		11/28/2012 7:33:00 PM
Vinyl chloride	< 0.39	0.39	ug/m3	1	11/28/2012 7:33:00 PM

O	ЦΒ	lii	٦e	ES:

- ** Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

Spike Recovery outside accepted recovery limits

- JN Non-routine analyte. Quantitation estimated.
- . Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 4 of 8

CLIENT: Arcadis - Newtown

Lab Order:

C1211047

Project:

LMC Utica

Lab ID:

C1211047-003A

Date: 14-Dec-12

Client Sample ID: SG-IND-3 (ARC)

Tag Number: 285,281 **Collection Date:** 11/20/2012

Matrix: AIR

Analyses	Result	**Limit Q	Qual U	nits	DF	Date Analyzed
FIELD PARAMETERS		FLD)			Analyst:
Lab Vacuum In	-7		"H	lg		11/21/2012
Lab Vacuum Out	-30		"Н	lg		11/21/2012
1UG/M3 BY METHOD TO15		TO-1	5			Analyst: RJP
1,1,1-Trichloroethane	< 0.15	0.15	рр	ьV	1	11/28/2012 8:09:00 PM
1,1,2,2-Tetrachloroethane	< 0.15	0.15	pp	bV	1	11/28/2012 8:09:00 PM
1,1,2-Trichloroethane	< 0.15	0.15	рр	bV	1	11/28/2012 8:09:00 PM
1,1-Dichloroethane	< 0.15	0.15	рр	bV	1	11/28/2012 8:09:00 PM
1,1-Dichloroethene	< 0.15	0.15	рр	ıbV	1	11/28/2012 8:09:00 PM
1,2,4-Trichlorobenzene	< 0.15	0.15	pp	bV	1	11/28/2012 8:09:00 PM
1,2,4-Trimethylbenzene	0.45	0.15	рр	bV	1	11/28/2012 8:09:00 PM
1,2-Dibromoethane	< 0.15	0.15	рр	bV	1	11/28/2012 8:09:00 PM
1,2-Dichlorobenzene	< 0.15	0.15	рр	bV	1	11/28/2012 8:09:00 PM
1,2-Dichloroethane	< 0.15	0.15	pp	bV	1	11/28/2012 8:09:00 PM
1,2-Dichloropropane	< 0.15	0.15	pР	bV	1	11/28/2012 8:09:00 PM
1,3,5-Trimethylbenzene	0.10	0.15	Ј рр	bV	1	11/28/2012 8:09:00 PM
1,3-butadiene	< 0.15	0.15	рр	bV	1	11/28/2012 8:09:00 PM
1,3-Dichlorobenzene	< 0.15	0.15	pp	bV	1	11/28/2012 8:09:00 PM
1,4-Dichlorobenzene	< 0.15	0.15	pp	bV	1	11/28/2012 8:09:00 PM
1,4-Dioxane	< 0.30	0.30	рр	bV	1	11/28/2012 8:09:00 PM
2,2,4-trimethylpentane	< 0.15	0.15	pp	bV	1	11/28/2012 8:09:00 PM
4-ethyltoluene	0.12	0.15	Ј рр	bV	1	11/28/2012 8:09:00 PM
Acetone	9.4	3.0	рр	bV	10	11/29/2012 3:45:00 AM
Allyl chloride	< 0.15	0.15	pp	bV	1	11/28/2012 8:09:00 PM
Benzene	0.20	0.15	pp	bV	1	11/28/2012 8:09:00 PM
Benzyl chloride	< 0.15	0.15	pР	bV	1	11/28/2012 8:09:00 PM
Bromodichloromethane	< 0.15	0.15	pp	bV	1	11/28/2012 8:09:00 PM
Bromoform	< 0.15	0.15	PP	bV	1	11/28/2012 8:09:00 PM
Bromomethane	< 0.15	0.15	pp		1	11/28/2012 8:09:00 PM
Carbon disulfide	< 0.15	0.15	pp		1	11/28/2012 8:09:00 PM
Carbon tetrachloride	< 0.15	0.15	PP [*]		1	11/28/2012 8:09:00 PM
Chlorobenzene	< 0.15	0.15	PP		1	11/28/2012 8:09:00 PM
Chloroethane	< 0.15	0.15	pp		1	11/28/2012 8:09:00 PM
Chloroform	< 0.15	0.15	ppi		1	11/28/2012 8:09:00 PM
Chloromethane	< 0.15	0.15	pp		1	11/28/2012 8:09:00 PM
cis-1,2-Dichloroethene	< 0.15	0.15		bV	1	11/28/2012 8:09:00 PM
cis-1,3-Dichloropropene	< 0.15	0.15		bV	1	11/28/2012 8:09:00 PM
Cyclohexane	< 0.15	0.15		bV	1	11/28/2012 8:09:00 PM
Dibromochloromethane	< 0.15	0.15	ppl		1	11/28/2012 8:09:00 PM
Ethyl acetate	< 0.25	0.25		bV	1	11/28/2012 8:09:00 PM

Qualifiers:

- ** Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated.
- S Spike Recovery outside accepted recovery limits

- Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 5 of 8

Arcadis - Newtown

CLIENT: Lab Order:

C1211047

LMC Utica

Project: Lab ID:

C1211047-003A

Date: 14-Dec-12

Client Sample ID: SG-IND-3 (ARC)

Tag Number: 285,281

Collection Date: 11/20/2012

Matrix: AIR

Analyses	Result	**Limit (Qual Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-1	5		Analyst: RJP
Ethylbenzene	0,24	0.15	ppbV	1	11/28/2012 8:09:00 PM
Freon 11	0.16	0.15	ppbV	1	11/28/2012 8:09:00 PM
Freon 113	< 0.15	0.15	ppbV	1	11/28/2012 8:09:00 PM
Freon 114	< 0.15	0.15	ppbV	1	11/28/2012 8:09:00 PM
Freon 12	21	1.5	ppbV	10	11/29/2012 3:45:00 AM
Heptane	< 0.15	0.15	ppbV	1	11/28/2012 8:09:00 PM
Hexachloro-1,3-butadiene	< 0.15	0.15	ррьV	1	11/28/2012 8:09:00 PM
Hexane	0.61	0.15	ppbV	1	11/28/2012 8:09:00 PM
isopropyl alcohol	< 0.15	0.15	ppbV	1	11/28/2012 8:09:00 PM
m&p-Xylene	0.97	0.30	ppbV	1	11/28/2012 8:09:00 PM
Methyl Butyl Ketone	< 0.30	0.30	ppbV	1	11/28/2012 8:09:00 PM
Methyl Ethyl Ketone	< 0.30	0.30	ppbV	1	11/28/2012 8:09:00 PM
Methyl Isobutyl Ketone	< 0.30	0.30	ppbV	1	11/28/2012 8:09:00 PM
Methyl tert-butyl ether	< 0.15	0.15	ppbV	1	11/28/2012 8:09:00 PM
Methylene chloride	< 0.15	0.15	ppbV	1	11/28/2012 8:09:00 PM
o-Xylene	0.29	0.15	ppbV	1	11/28/2012 8:09:00 PM
Propylene	< 0.15	0.15	ppbV	1	11/28/2012 8:09:00 PM
Styrene	< 0.15	0.15	ppbV	1	11/28/2012 8:09:00 PM
Tetrachloroethylene	2.2	1.5	ppbV	10	11/29/2012 3:45:00 AM
Tetrahydrofuran	< 0.15	0.15	ppb∨	1	11/28/2012 8:09:00 PM
Toluene	1.7	0.15	ppbV	1	11/28/2012 8:09:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15	ppb∨	1	11/28/2012 8:09:00 PM
trans-1,3-Dichloropropene	< 0,15	0.15	ppbV	1	11/28/2012 8:09:00 PM
Trichloroethene	< 0.15	0.15	ppbV	1	11/28/2012 8:09:00 PM
Vinyl acetate	< 0.15	0.15	ppb∨	1	11/28/2012 8:09:00 PM
Vinyl Bromide	< 0.15	0.15	ppb∨	1	11/28/2012 8:09:00 PM
Vinyl chloride	< 0.15	0.15	ppbV	1	11/28/2012 8:09:00 PM
Surr: Bromofluorobenzene	90.0	70-130	%REC	1	11/28/2012 8:09:00 PM
NOTES:					

Sample has large interfering compound in begging of run. Used 10x dilution for Freon 12.

Qualifiers:

- Reporting Limit
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded

Spike Recovery outside accepted recovery limits

- JN Non-routine analyte, Quantitation estimated.
- Е Value above quantitation range
- J Analyte detected at or below quantitation limits

Results reported are not blank corrected

Not Detected at the Reporting Limit ND

Page 6 of 8

CLIENT: Arcadis - Newtown

Lab Order:

C1211047 LMC Utica

Project: Lab ID:

C1211047-003A

Date: 14-Dec-12

Client Sample ID: SG-IND-3 (ARC)

Tag Number: 285,281

Collection Date: 11/20/2012

Matrix: AIR

Analyses	Result	**Limit	Oual	Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15 1,1,1-Trichloroethane	< 0.83)-15			Analyst: RJP
1,1,2,2-Tetrachloroethane		0.83		ug/m3	1	11/28/2012 8:09:00 PM
1,1,2,2-retraction oetilarie 1,1,2-Trichloroethane	< 1.0	1.0		ug/m3	1	11/28/2012 8:09:00 PM
1,1-Dichloroethane	< 0.83	0.83		ug/m3	1	11/28/2012 8:09:00 PM
1,1-Dichloroethene	< 0.62 < 0.60	0.62		ug/m3	1	11/28/2012 8:09:00 PM
1,2,4-Trichlorobenzene	< 1.1	0.60		ug/m3	1	11/28/2012 8:09:00 PM
1,2,4-Trichlolobenzene	2,2	1.1		ug/m3	1	11/28/2012 8:09:00 PM
· · · · · · · · · · · · · · · · · · ·		0.75		ug/m3	1	11/28/2012 8:09:00 PM
1,2-Dibromoethane	< 1.2	1.2		ug/m3	1	11/28/2012 8:09:00 PM
1,2-Dichlorobenzene	< 0.92	0,92		ug/m3	1	11/28/2012 8:09:00 PM
1,2-Dichloroethane	< 0.62	0.62		ug/m3	1	11/28/2012 8:09:00 PM
1,2-Dichloropropane	< 0.70	0.70		ug/m3	1	11/28/2012 8:09:00 PM
1,3,5-Trimethylbenzene	0.50	0.75	J	ug/m3	1	11/28/2012 8:09:00 PM
1,3-butadiene	< 0.34	0.34		ug/m3	1	11/28/2012 8:09:00 PM
1,3-Dichlorobenzene	< 0.92	0.92		ug/m3	1	11/28/2012 8:09:00 PM
1,4-Dichlorobenzene	< 0.92	0.92		ug/m3	· 1	11/28/2012 8:09:00 PM
1,4-Dioxane	< 1.1	1.1		ug/m3	1	11/28/2012 8:09:00 PM
2,2,4-trimethylpentane	< 0.71	0.71		ug/m3	1	11/28/2012 8:09:00 PM
4-ethyltoluene	0.60	0.75	J	ug/m3	1	11/28/2012 8:09:00 PM
Acetone	23	7.2		ug/m3	10	11/29/2012 3:45:00 AM
Allyl chloride	< 0.48	0.48		ug/m3	1	11/28/2012 8:09:00 PM
Benzene	0.65	0.49		ug/m3	1	11/28/2012 8:09:00 PM
Benzyl chloride	< 0.88	88.0		ug/m3	1	11/28/2012 8:09:00 PM
Bromodichloromethane	< 1.0	1.0		ug/m3	. 1	11/28/2012 8:09:00 PM
Bromoform	< 1.6	1.6		ug/m3	1	11/28/2012 8:09:00 PM
Bromomethane	< 0.59	0.59		ug/m3	1	11/28/2012 8:09:00 PM
Carbon disulfide	< 0.47	0.47		ug/m3	1	11/28/2012 8:09:00 PM
Carbon tetrachloride	< 0.96	0.96		ug/m3	1	11/28/2012 8:09:00 PM
Chlorobenzene	< 0.70	0.70		ug/m3	1	11/28/2012 8:09:00 PM
Chloroethane	< 0.40	0.40		ug/m3	1	11/28/2012 8:09:00 PM
Chloroform	< 0.74	0.74		ug/m3	1	11/28/2012 8:09:00 PM
Chloromethane	< 0.31	0.31		ug/m3	1	11/28/2012 8:09:00 PM
cis-1,2-Dichloroethene	< 0.60	0.60		ug/m3	1	11/28/2012 8:09:00 PM
cis-1,3-Dichloropropene	< 0.69	0.69		ug/m3	1	11/28/2012 8:09:00 PM
Cyclohexane	< 0.52	0.52		ug/m3	1	11/28/2012 8:09:00 PM
Dibromochioromethane	< 1.3	1.3		ug/m3	1	11/28/2012 8:09:00 PM
Ethyl acetate	< 0.92	0.92		ug/m3	1	11/28/2012 8:09:00 PM
Ethylbenzene	1.1	0.66		ug/m3	1	11/28/2012 8:09:00 PM
Freon 11	0.91	0.86		ug/m3	1	11/28/2012 8:09:00 PM
Freon 113	< 1.2	1.2		ug/m3	1	11/28/2012 8:09:00 PM
Freon 114	< 1.1	1.1		ug/m3	1	11/28/2012 8:09:00 PM

Qualifiers:

- Reporting Limit
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Value above quantitation range
- Analyte detected at or below quantitation limits
- Not Detected at the Reporting Limit

Page 5 of 8

CLIENT: Arcadis - Newtown

Lab Order:

Project:

C1211047 LMC Utica

Lab ID:

C1211047-003A

Date: 14-Dec-12

Client Sample ID: SG-IND-3 (ARC)

Tag Number: 285,281

Collection Date: 11/20/2012

Matrix: AIR

Analyses	Result	**Limit Qu	al Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-15			Analyst: RJP
Freon 12	110	7.5	ug/m3	10	11/29/2012 3:45:00 AM
Heptane	< 0.62	0.62	ug/m3	1	11/28/2012 8:09:00 PM
Hexachloro-1,3-butadiene	< 1.6	1.6	ug/m3	1	11/28/2012 8:09:00 PM
Hexane	2.2	0.54	ug/m3	1	11/28/2012 8:09:00 PM
Isopropyl alcohol	< 0.37	0.37	ug/m3	1	11/28/2012 8:09:00 PM
m&p-Xylene	4.3	1.3	ug/m3	1	11/28/2012 8:09:00 PM
Methyl Butyl Ketone	< 1.2	1.2	ug/m3	1	11/28/2012 8:09:00 PM
Methyl Ethyl Ketone	< 0.90	0.90	ug/m3	1	11/28/2012 8:09:00 PM
Methyl Isobutyl Ketone	< 1.2	1.2	ug/m3	1	11/28/2012 8:09:00 PM
Methyl tert-butyl ether	< 0.55	0.55	ug/m3	1	11/28/2012 8:09:00 PM
Methylene chloride	< 0.53	0.53	ug/m3	1	11/28/2012 8:09:00 PM
o-Xylene	1.3	0.66	ug/m3	1	11/28/2012 8:09:00 PM
Propylene	< 0.26	0.26	ug/m3	1	11/28/2012 8:09:00 PM
Styrene	< 0.65	0.65	ug/m3	1	11/28/2012 8:09:00 PM
Tetrachloroethylene	15	10	ug/m3	10	11/29/2012 3:45:00 AM
Tetrahydrofuran	< 0.45	0.45	ug/m3	1	11/28/2012 8:09:00 PM
Toluene	6.7	0.57	ug/m3	1	11/28/2012 8:09:00 PM
trans-1,2-Dichloroethene	< 0.60	0,60	ug/m3	1	11/28/2012 8:09:00 PM
trans-1,3-Dichloropropene	< 0.69	0.69	ug/m3	1	11/28/2012 8:09:00 PM
Trichloroethene	< 0.82	0.82	ug/m3	1	11/28/2012 8:09:00 PM
Vinyl acetate	< 0.54	0.54	ug/m3	1	11/28/2012 8:09:00 PM
Vinyl Bromide	< 0.67	0.67	ug/m3	1	11/28/2012 8:09:00 PM
Vinyl chloride	< 0.39	0.39	ug/m3	1	11/28/2012 8:09:00 PM
NOTES:					

Sample has large interfering compound in begging of run. Used 10x dilution for Freon 12.

Qualifiers:

- ** Reporting Limit
- Analyte detected in the associated Method Blank В
- Н Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated,
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- Е Value above quantitation range
- j Analyte detected at or below quantitation limits
- Not Detected at the Reporting Limit

Page 6 of 8

CLIENT: Arcadis - Newtown

Lab Order:

C1211047

Project:

LMC Utica

Lab ID:

C1211047-004A

Date: 14-Dec-12

Client Sample ID: AMB-112012

Tag Number: 322,263

Collection Date: 11/20/2012

Matrix: AIR

Analyses	Result	**Limit Qu	al Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	-18		"Hg		11/21/2012
Lab Vacuum Out	-30		"Hg		11/21/2012
1UG/M3 BY METHOD TO15		TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.15	0.15	ppbV	1	11/28/2012 8:46:00 PM
1,1,2,2-Tetrachloroethane	< 0.15	0.15	ppbV	1	11/28/2012 8:46:00 PM
1,1,2-Trichloroethane	< 0.15	0.15	ppbV	1	11/28/2012 8:46:00 PM
1,1-Dichloroethane	< 0.15	0.15	ppb∨	1	11/28/2012 8:46:00 PM
1,1-Dichloroethene	< 0.15	0.15	ppb∨	1	11/28/2012 8:46:00 PM
1,2,4-Trichlorobenzene	< 0.15	0,15	ppbV	1	11/28/2012 8:46:00 PM
1,2,4-Trimethylbenzene	1.5	0.15	ppbV	1	11/28/2012 8:46:00 PM
1,2-Dibromoethane	< 0.15	0.15	ppbV	1	11/28/2012 8:46:00 PM
1,2-Dichlorobenzene	< 0.15	0.15	ppbV	1	11/28/2012 8:46:00 PM
1,2-Dichloroethane	< 0.15	0.15	ppbV	1	11/28/2012 8:46:00 PM
1,2-Dichloropropane	< 0.15	0.15	ppbV	1	11/28/2012 8:46:00 PM
1,3,5-Trimethylbenzene	0.52	0.15	ppbV	1	11/28/2012 8:46:00 PM
1,3-butadiene	< 0.15	0.15	ppbV	1	11/28/2012 8:46:00 PM
1,3-Dichlorobenzene	< 0.15	0.15	ppbV	1	11/28/2012 8:46:00 PM
1,4-Dichlorobenzene	< 0.15	0.15	ppbV	1	11/28/2012 8;46:00 PM
1,4-Dioxane	< 0.30	0.30	ppbV	1	11/28/2012 8;46:00 PM
2,2,4-trimethylpentane	1.7	1.5	ppbV	10	11/29/2012 4:55:00 AM
4-ethyltoluene	0.55	0.15	ppbV	1	11/28/2012 8:46:00 PM
Acetone	7.7	3.0	ppbV	10	11/29/2012 4:55:00 AM
Allyl chloride	< 0.15	0.15	ppbV	1	11/28/2012 8:46:00 PM
Benzene	2.8	1.5	ppbV	10	11/29/2012 4:55:00 AM
Benzyl chloride	< 0.15	0.15	ppb∨	1	11/28/2012 8:46:00 PM
Bromodichloromethane	< 0.15	0.15	ppbV	1	11/28/2012 8:46:00 PM
Bromoform	< 0.15	0.15	ppbV	1	11/28/2012 8:46:00 PM
Bromomethane	< 0.15	0.15	ppbV	1	11/28/2012 8:46:00 PM
Carbon disulfide	< 0.15	0.15	ppbV	1	11/28/2012 8:46:00 PM
Carbon tetrachloride	< 0.15	0.15	ppbV	1	11/28/2012 8:46:00 PM
Chlorobenzene	< 0.15	0.15	ppbV	1	11/28/2012 8:46:00 PM
Chloroethane	< 0.15	0.15	ppbV	1	11/28/2012 8:46:00 PM
Chloroform	< 0.15	0.15	ppbV	1	11/28/2012 8:46:00 PM
Chloromethane	< 0.15	0.15	ppbV	1	11/28/2012 8:46:00 PM
cis-1,2-Dichloroethene	< 0.15	0.15	ppb∨	1	11/28/2012 8:46:00 PM
cis-1,3-Dichloropropene	< 0.15	0.15	ppbV	1	11/28/2012 8:46:00 PM
Cyclohexane	8.6	1.5	ppbV	10	11/29/2012 4:55:00 AM
Dibromochloromethane	< 0.15	0.15	ppbV	1	11/28/2012 8:46:00 PM
Ethyl acetate	< 0.25	0.25	ppbV	1	11/28/2012 8:46:00 PM

Qualifiers:

Page 7 of 8

Reporting Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Value above quantitation range

J Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit

Arcadis - Newtown

Lab Order:

C1211047

Project:

CLIENT:

LMC Utica

Lab ID:

C1211047-004A

Date: 14-Dec-12

Client Sample ID: AMB-112012

Tag Number: 322,263

Collection Date: 11/20/2012

Matrix: AIR

Analyses	Result	**Limit Ç	ual Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-1	5		Analyst: RJP
Ethylbenzene	1.2	0.15	ppbV	1	11/28/2012 8:46:00 PM
Freon 11	0.25	0.15	ppbV	1	11/28/2012 8:46:00 PM
Freon 113	< 0.15	0.15	ppbV	1	11/28/2012 8:46:00 PM
Freon 114	< 0.15	0.15	ppbV	1	11/28/2012 8:46:00 PM
Freon 12	0.52	0.15	ppbV	1	11/28/2012 8:46:00 PM
Heptane	2.3	1.5	ppbV	10	11/29/2012 4:55:00 AM
Hexachloro-1,3-butadiene	< 0.15	0.15	ppbV	. 1	11/28/2012 8:46:00 PM
Hexane	8.5	1.5	ppbV	10	11/29/2012 4:55:00 AM
Isopropyl alcohol	11	1.5	ppbV	10	11/29/2012 4:55:00 AM
m&p-Xylene	3.4	3.0	ppbV	10	11/29/2012 4:55:00 AM
Methyl Butyl Ketone	< 0.30	0.30	ppbV	1	11/28/2012 8:46:00 PM
Methyl Ethyl Ketone	< 0.30	0.30	ppbV	1	11/28/2012 8:46:00 PM
Methyl Isobutyl Ketone	< 0.30	0.30	ppbV	1	11/28/2012 8:46:00 PM
Methyl tert-butyl ether	< 0.15	0.15	ppbV	1	11/28/2012 8:46:00 PM
Methylene chloride	< 0.15	0.15	ppbV	1	11/28/2012 8:46:00 PM
o-Xylene	1.5	0.15	ppb∨	1	11/28/2012 8:46:00 PM
Propylene	< 0.15	0.15	ppb∨	1	11/28/2012 8:46:00 PM
Styrene	< 0.15	0.15	ppbV	1	11/28/2012 8:46:00 PM
Tetrachloroethylene	< 0.15	0.15	ppbV	1	11/28/2012 8:46:00 PM
Tetrahydrofuran	< 0.15	0.15	ppbV	1	11/28/2012 8:46:00 PM
Toluene	6.9	1.5	ppb∨	10	11/29/2012 4:55:00 AM
trans-1,2-Dichloroethene	< 0.15	0.15	ppbV	1	11/28/2012 8:46:00 PM
trans-1,3-Dichloropropene	< 0.15	0.15	ppbV	1	11/28/2012 8:46:00 PM
Trichloroethene	2.5	1.5	ppb∨	10	11/29/2012 4:55:00 AM
Vinyl acetate	< 0.15	0.15	ppbV	1	11/28/2012 8:46:00 PM
Vinyl Bromide	< 0.15	0.15	ppb∨	1	11/28/2012 8:46:00 PM
Vinyl chloride	< 0.15	0.15	ppb∨	1	11/28/2012 8:46:00 PM
Surr: Bromofluorobenzene	100	70-130	%REC	1	11/28/2012 8:46:00 PM

_		
Oua	lifiers	

Reporting Limit

Page 8 of 8

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Value above quantitation range

J Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit

Arcadis - Newtown

CLIENT: Lab Order:

C1211047

Project:

LMC Utica

Lab ID:

C1211047-004A

Date: 14-Dec-12

Client Sample ID: AMB-112012

Tag Number: 322,263

Collection Date: 11/20/2012

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TC)-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.83	0.83		ug/m3	1	11/28/2012 8:46:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0		ug/m3	1	11/28/2012 8:46:00 PM
1,1,2-Trichloroethane	< 0.83	0.83		ug/m3	1	11/28/2012 8:46:00 PM
1,1-Dichloroethane	< 0.62	0.62		ug/m3	1	11/28/2012 8:46:00 PM
1,1-Dichloroethene	< 0.60	0.60		ug/m3	1	11/28/2012 8:46:00 PM
1,2,4-Trichlorobenzene	< 1.1	1.1		ug/m3	1	11/28/2012 8:46:00 PM
1,2,4-Trimethylbenzene	7.5	0.75		ug/m3	1	11/28/2012 8:46:00 PM
1,2-Dibromoethane	< 1.2	1.2		ug/m3	1	11/28/2012 8:46:00 PM
1,2-Dichlorobenzene	< 0.92	0.92		ug/m3	1	11/28/2012 8:46:00 PM
1,2-Dichloroethane	< 0.62	0.62		ug/m3	1	11/28/2012 8:46:00 PM
1,2-Dichloropropane	< 0.70	0.70		ug/m3	1	11/28/2012 8:46:00 PM
1,3,5-Trimethylbenzene	2.6	0.75		ug/m3	1	11/28/2012 8:46:00 PM
1,3-butadiene	< 0.34	0.34		ug/m3	1	11/28/2012 8:46:00 PM
1,3-Dichlorobenzene	< 0.92	0.92		ug/m3	1	11/28/2012 8:46:00 PM
1,4-Dichlorobenzene	< 0.92	0.92		ug/m3	1	11/28/2012 8:46:00 PM
1,4-Dioxane	< 1.1	1.1		ug/m3	1	11/28/2012 8:46:00 PM
2,2,4-trimethylpentane	8.1	7.1		ug/m3	10	11/29/2012 4:55:00 AM
4-ethyltoluene	2.7	0.75		ug/m3	. 1	11/28/2012 8:46:00 PM
Acetone	19	7.2		ug/m3	10	11/29/2012 4:55:00 AM
Allyl chloride	< 0.48	0.48		ug/m3	1	11/28/2012 8:46:00 PM
Benzene	9.1	4.9		ug/m3	10	11/29/2012 4:55:00 AM
Benzyl chloride	< 0.88	0.88		ug/m3	1	11/28/2012 8:46:00 PM
Bromodichloromethane	< 1.0	1,0		ug/m3	1	11/28/2012 8:46:00 PM
Bromoform	< 1.6	1.6		ug/m3	1	11/28/2012 8:46:00 PM
Bromomethane	< 0.59	0.59		ug/m3	1	11/28/2012 8:46:00 PM
Carbon disulfide	< 0.47	0.47		ug/m3	: 1	11/28/2012 8:46:00 PM
Carbon tetrachloride	< 0.96	0.96		ug/m3	1	11/28/2012 8:46:00 PM
Chlorobenzene	< 0.70	0.70		ug/m3	1	11/28/2012 8:46:00 PM
Chloroethane	< 0.40	0.40		ug/m3	1	11/28/2012 8:46:00 PM
Chloroform	< 0.74	0.74		ug/m3	1	11/28/2012 8:46:00 PM
Chloromethane	< 0.31	0.31		ug/m3	1	11/28/2012 8:46:00 PM
cis-1,2-Dichloroethene	< 0.60	0.60		ug/m3	1	11/28/2012 8:46:00 PM
cis-1,3-Dichloropropene	< 0.69	0.69		ug/m3	1	11/28/2012 8:46:00 PM
Cyclohexane	30	5.2		ug/m3	10	11/29/2012 4:55:00 AM
Dibromochioromethane	< 1.3	1.3		ug/m3	1	11/28/2012 8:46:00 PM
Ethyl acetate	< 0.92	0,92		ug/m3	1	11/28/2012 8:46:00 PM
Ethylbenzene	5.2	0.66		ug/m3	1	11/28/2012 8:46:00 PM
Freon 11	1.4	0.86		ug/m3	1	11/28/2012 8:46:00 PM
Freon 113	< 1.2	1,2		ug/m3	1	11/28/2012 8:46:00 PM
Freon 114	< 1.1	1.1		ug/m3	1	11/28/2012 8:46:00 PM

Qualifiers:

- Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 7 of 8

CLIENT: Arcadis

Arcadis - Newtown

Lab Order:

C1211047

Project: Lab ID: LMC Utica

C1211047-004A

Date: 14-Dec-12

Client Sample ID: AMB-112012

Tag Number: 322,263

Collection Date: 11/20/2012

Matrix: AIR

Analyses	Result	**Limit	Qual Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		то	-15		Analyst: RJP
Freon 12	2,6	0.75	ug/m3	1	11/28/2012 8:46:00 PM
Heptane	9.6	6,2	ug/m3	10	11/29/2012 4:55:00 AM
Hexachloro-1,3-butadiene	< 1.6	1.6	ug/m3	1	11/28/2012 8:46:00 PM
Нехапе	30	5.4	ug/m3	10	11/29/2012 4:55:00 AM
isopropyl alcohol	28	3.7	ug/m3	10	11/29/2012 4:55:00 AM
m&p-Xylene	15	13	ug/m3	10	11/29/2012 4:55:00 AM
Methyl Butyl Ketone	< 1.2	1.2	ug/m3	1	11/28/2012 8:46:00 PM
Methyl Ethyl Ketone	< 0.90	0.90	ug/m3	1	11/28/2012 8:46:00 PM
Methyl Isobutyl Ketone	< 1.2	1.2	ug/m3	1	11/28/2012 8:46:00 PM
Methyl tert-butyl ether	< 0.55	0.55	ug/m3	1	11/28/2012 8:46:00 PM
Methylene chloride	< 0.53	0.53	ug/m3	1	11/28/2012 8:46:00 PM
o-Xylene	6.6	0.66	ug/m3	1	11/28/2012 8:46:00 PM
Propylene	< 0.26	0.26	ug/m3	1	11/28/2012 8:46:00 PM
Styrene	< 0.65	0.65	ug/m3	1	11/28/2012 8:46:00 PM
Tetrachloroethylene	< 1.0	1.0	ug/m3	1	11/28/2012 8:46:00 PM
Tetrahydrofuran	< 0.45	0.45	ug/m3	1	11/28/2012 8:46:00 PM
Toluene	26	5.7	ug/m3	10	11/29/2012 4:55:00 AM
trans-1,2-Dichloroethene	< 0.60	0.60	ug/m3	1	11/28/2012 8:46:00 PM
trans-1,3-Dichloropropene	< 0.69	0.69	ug/m3	1	11/28/2012 8:46:00 PM
Trichloroethene	14	8.2	ug/m3	10	11/29/2012 4:55:00 AM
Vinyl acetate	< 0.54	0.54	ug/m3	1	11/28/2012 8:46:00 PM
Vinyl Bromide	< 0.67	0.67	ug/m3	1	11/28/2012 8:46:00 PM
Vinyl chloride	< 0.39	0.39	ug/m3	1	11/28/2012 8:46:00 PM

O	 ωį	lii	Ti i	n	٠

- ** Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 8 of 8

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15 ANALYTICAL RESULTS

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15 QUALITY CONTROL SUMMARY

Date: 14-Dec-12

QC SUMMARY REPORT SURROGATE RECOVERIES

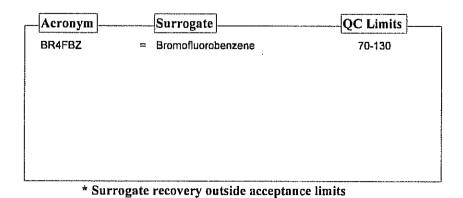
CLIENT:

Arcadis - Newtown

Work Order:

C1211047

Project:


LMC Utica

Test No:

TO-15

Matrix: A

Sample ID	BR4FBZ					
ALCS1UG-112812	100	i :		 		
AMB1UG-112812	85.0					
C1211047-001A	109	- VALUE III		 ***************************************	· · · · · · · · · · · · · · · · · · ·	
C1211047-002A	107				-	
C1211047-003A	90.0	****				
C1211047-004A	100					

CenflekMSaledræfonder,ckL@eport

Tune File : C:\HPCHEM\1\DATA\AJ112802.D
Tune Time : 28 Nov 2012 9:59 am

Daily Calibration File : C:\HPCHEM\1\DATA\AJ112802.D

·		(BFB)		(IS1) 26582	(IS2) 101349	(IS3) 90677	
File	Sample	DL Su	rrogate	Recovery %	Internal	Standard	Responses	".
AJ112803.D	ALCS1UG-112812	100			25336	100153	89043	
AJ112804.D	AMB1UG-112812	85			23038	88115	69769	
AJ112817.D	C1211047-001A	109			26264	101406	104815	
AJ112818.D	C1211047-002A	107			25017	97070	84857	
AJ112819.D	C1211047-003A	90			30800	99719	75084	
AJ112820.D	C1211047-004A	100		· 	25027	106641	98628	
AJ112828.D	C1211047-001A	10X	82		22808	921	58 78659)
AJ112829.D	C1211047-001A	40X	78		22685	850	75 69040)
AJ112830.D	C1211047-002A	10X	83		21393	3 777	64 62413	3
AJ112832.D	C1211047-003A	10X	93		21713	807	07 63880)
AJ112834.D	C1211047-004A	10X	83	_	21355	831	87 67510)
AJ112836.D	ALCS1UGD-11281	.2	99		21995	851	.16 73497	7

t - fails 24hr time check * - fails criteria

Created: Fri Dec 14 14:39:08 2012 MSD #1/

CENTEK LABORATORIES, LLC

ANALYTICAL QC SUMMARY REPORT

Date: 14-Dec-12

Arcadis - Newtown CLIENT:

Work Order: C1211047 Project: LMC Utica				·			TestCode:	lugM3_TO15
Sample ID ALCS1UG-112812	SampType: LCS	TestCode	TestCode: 1ugM3_TO15 Units: ppbV	Units: ppbV		Prep Date:	e:	RunNo: 6410
Client ID: ZZZZZ	Batch ID: R6410	TestN	TestNo: TO-15		4	Analysis Date:	e: 11/28/2012	SeqNo: 75163
Analyte	Result	Pol	SPK value SPK	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	al %RPD RPDLimit Qual
1,1,1-Trichloroethane	0.9600	0.15	-	0	96.0	70	130	
1,1,2,2-Tetrachloroethane	0.9500	0.15	-	0	95.0	70	130	
1,1,2-Trichloroethane	0.9600	0.15	-	0	96.0	70	130	
1,1-Dichloroethane	0.9400	0.15	-	0	94.0	70	130	
1,1-Dichloroethene	1.060	0.15	-	0	106	70	130	
1,2,4-Trichlorobenzene	0.8100	0.15	-	0	81.0	70	130	
1,2,4-Trimethylbenzene	0.9500	0.15	-	0	95.0	70	130	
1,2-Dibromoethane	0.9500	0.15	-	0	95.0	70	130	
1,2-Dichlorobenzene	0.9100	0.15	-	0	91.0	70	130	
1,2-Dichloroethane	1.000	0.15	-	0	100	70	130	
1,2-Dichloropropane	1.000	0.15	-	0	100	70	130	
1,3,5-Trimethylbenzene	1.030	0.15			103	70	130	
1,3-butadiene	1.010	0.15	-	0	101	70	130	
1,3-Dichlorobenzene	0.9400	0.15	-	0	94.0	70	130	
1,4-Dichlorobenzene	0.9700	0.15	-	0	97.0	20	130	
1,4-Dioxane	0.9200	0.30	-	0	92.0	70	130	
2,2,4-trimethylpentane	0.9800	0.15	-	0	98.0	70	130	
4-ethyltoluene	1.040	0.15	-	0	104	70	130	
Acetone	1.110	0.30	-	0	11	70	130	
Allyl chloride	1,080	0.15	-	0	108	70	130	
Benzene	1.020	0.15	-	0	102	70	. 130	
Benzyl chloride	0.9100	0.15	τ-	0	91.0	70	130	
Bromodichloromethane	0.9600	0.15	₩	0	96.0	70	130	
Вготогот	0.7900	0.15	-	0	79.0	20	130	
Bromomethane	1.050	0.15	-	0	105	02	130	
Qualifiers: Results report	Results reported are not blank corrected		E Value above	Value above quantitation range			H Holding times	Holding times for preparation or analysis exceeded
	Analyte detected at or below quantitation limits	nits	ND Not Detected	Not Detected at the Reporting Limit	imit		R RPD outside	RPD outside accepted recovery limits
S Spike Recove	Spike Recovery oulside accepted recovery limits	mits						Price 1 of 3

Project: LMC Utica							TestCode:	lugM3_TO15	
Sample ID ALCS1UG-112812	SampType: LCS	TestCode	TestCode: 1ugM3_T015	5 Units: ppbV		Prep Date:		RunNo: 6410	
Client ID: ZZZZZ	Batch ID: R6410	TestNo	TestNo: TO-15		•	Analysis Date:	11/28/2012	SeqNo: 75163	
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RPD Ref Val	%RPD RPDLimit Q	Qual
Carbon disulfide	0.7300	0.15	_	0	73.0	70	130		
Carbon tetrachloride	0.8700	0.15	-	0	87.0	22	130		
Chlorobenzene	0.9700	0.15	-	0	97.0	02	130		
Chloroethane	1.020	0.15	•	0	102	02	130		
Chloroform	1.000	0.15	-	0	100	20	130		
Chloromethane	1.060	0.15	-	0	106	70	130		
cis-1,2-Dichloroethene	1.040	0.15	-	0	104	70	130		
cis-1,3-Dichloropropene	0.9500	0.15	-	0	95.0	70	130		
Cyclohexane	0.9400	0.15	-	0	94.0	70	130		
Dibromochloromethane	0.9400	0.15		0	94.0	70	130		
Ethyl acetate	0.9800	0.25	-	0	98.0	20	130		
Ethylbenzene	0.9800	0.15	-	0	98.0	70	130		
Freon 11	1.030	0.15	-	0	103	22	130		
Freon 113	1.010	0.15		0	101	70	130		
Freon 114	1.070	0.15	-	0	107	70	130		
Freon 12	1.050	0.15	-	0	105	70	130		
Heptane	0.9900	0.15	-	0	99.0	70	130		
Hexachloro-1,3-butadiene	0.9500	0.15	-	0	95.0	70	130		
Hexane	1.040	0.15	-	0	104	70	130		
isopropyl alcohol	1.110	0.15	-	0	11	70	130		
m&p-Xylene	2.070	0.30	2	0	104	70	130		
Methyl Butyl Ketone	0.8500	0.30	-	0	85.0	70	130		
Methyl Ethyl Ketone	0.9400	0.30	-	0	94.0	70	130		
Methyl Isobutyl Ketone	0.9000	0.30	-	0	90.0	70	130		
Methyl tert-butyl ether	0.9700	0.15	-	0	97.0	02	130		
Methylene chloride	0.8700	0.15	-	0	87.0	02	130		
o-Xylene	0.9900	0.15	-	0	99.0	70	130		
Propylene	1.040	0.15	-	0	104	70	130		
Styrene	1.000	0.15	-	0	100	70	130		
Tetrachloroethylene	1.000	0.15	-	0	100	70	130		
Tetrahydrofuran	0.8300	0.15	-	0	83.0	2	130		
Qualifiers: Results report	Results reported are not blank corrected		E Value at	Value above quantitation range	25	٠	H Holding times for	Holding times for preparation or analysis exceeded	
	Analyte detected at or below quantitation limits	nits	ND Not Dete	Not Detected at the Reporting Limit	Limit		R RPD outside acc	RPD outside accepted recovery limits	
S Spike Recove	Spike Recovery outside accepted recovery limits	imits						Page	Page 2 of 3

Arcadis - Newtown C1211047 LMC Utica

CLIENT: Work Order:

Project:	LMC Utica							I	TestCode: 11	1ugM3_TO15	16	
Sample ID ALCS1 Client ID: ZZZZZ	ALCS1UG-112812 ZZZZZ	SampType: LCS Batch ID: R6410	TestCor Testh	TestCode: 1ugM3_TO15 TestNo: TO-15	O15 Units: ppbV		Prep Date: Analysis Date:	te: 11/28/2012	012	RunNo: 6410 SeqNo: 75163	8	
Analyte		Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD F	RPDLimit Q	Quai
Toluene		0.9800	0.15	-	0	98.0	2	130		i i]
trans-1,2-Dichloroethene	ethene	0.8500	0.15	•	0	85.0	70	130				
trans-1,3-Dichloropropene	propene	0.9200	0.15	-	0	92.0	70	130				
Trichloroethene		0.9100	0.15	•	0	91.0	2	130				
Vinyl acetate		0.9700	0.15	-	0	97.0	20	130				
Vinyl Bromide		1.060	0.15	•	0	106	70	130				
Vinyl chloride		1.010	0.15	•	0	101	70	130				
A ben men de ben mit de be de ben de met met de ben de												
Qualifiers: J	Results report Analyte detec Soike Recove	Results reported are not blank corrected Analyte detected at or below quantitation limits Soike Recovery outside accented recovery limits	ts jis	E Value ND Not De	Value above quantitation range Not Detected at the Reporting Limit	ge Limit		R R	Holding times for preparation or analysis exceeded RPD outside accepted recovery limits	reparation or and ted recovery limits	ysis exceeded	
1		in franch paidage animo fr	2								Page	Page 3 of 3

Arcadis - Newtown C1211047 LMC Utica

Work Order: CLIENT:

TestCode: 1ugM3_TO15

CENTEK LABORATORIES, LLC

ANALYTICAL QC SUMMARY REPORT

Date: 14-Dec-12

Arcadis - Newtown C1211047 Work Order: CLIENT:

LMC Utica

Project:

Sample ID AMB1UG-112812	SampType: MBLK	TestCoc	te: 1ugM3_T	TestCode: 1ugM3_TO15 Units: ppbV		Prep Date:	ie:	RunNo: 6410		
Client ID: ZZZZZ	Batch ID: R6410	TestN	TestNo: TO-15		1	Analysis Da	Analysis Date: 11/28/2012	SeqNo: 75162	2	
Analyte	Result	Pal	SPK value	SPK value SPK Ref Val	%REC	LowLimit	%REC LowLimit HighLimit RPD Ref Val	%RPD	%RPD RPDLimit Qual	Qual
1,1,1-Trichloroethane	< 0.15	0.15								
1,1,2,2-Tetrachloroethane	< 0.15	0.15								

0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.30 0.15

,2,4-Trimethylbenzene

,2-Dichlorobenzene

,2-Dibromoethane

,2,4-Trichlorobenzene

,1-Dichloroethene

,1-Dichloroethane

< 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15

,1,2-Trichloroethane

Вготобот	< 0.15 0.1	15	
Bromomethane	< 0.15 0.1	15	
Qualifiers: J	Results reported are not blank corrected Analyte detected at or below quantitation limits	E Value above quantitation range ND Not Detected at the Reporting Limit	H Holding times for preparation or analysis exceeded R RPD outside accepted recovery limits

0.15

< 0.15 < 0.15 < 0.15

< 0.30 < 0.15 < 0.15

2,2,4-trimethylpentane

1,4-Dioxane

4-ethyltoluene

Allyl chloride

Acetone

Benzene

< 0.15 < 0.15

,3,5-Trimethylbenzene

,3-Dichlorobenzene 1,4-Dichlorobenzene

,3-butadiene

,2-Dichloropropane

,2-Dichloroethane

0.15 0.15 0.15 0.15

< 0.15 < 0.15 < 0.15

Bromodichloromethane

Benzyl chloride

< 0.30

CLIENT: Arcadis - Newtown Work Order: C1211047	lewtown							
Project: LMC Utica	1					TestCode:	1ugM3_T015	
Sample ID AMB1UG-112812	SampType: MBLK	TestCode;	TestCode: 1ugM3_T015	Units: ppbV	Prep Date:		RunNo: 6410	
Client ID: ZZZZZ	Batch ID: R6410	TestNo: TO-15	TO-15		Analysis Date:	11/28/2012	SeqNo: 75162	
Analyte	Result	POL	SPK value SF	SPK Ref Val %REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Carbon disulfide	< 0.15	0.15		777				
Carbon tetrachloride	< 0.15	0.15						
Chlorobenzene	< 0.15	0.15						
Chloroethane	< 0.15	0.15						
Chloroform	< 0.15	0.15						
Chloromethane	< 0.15	0.15						
cis-1,2-Dichloroethene	< 0.15	0.15						
cis-1,3-Dichloropropene	< 0.15	0.15						
Cyclohexane	< 0.15	0.15		•				
Dibromochloromethane	< 0.15	0.15						
Ethyl acetate	< 0.25	0.25						
Ethylbenzene	< 0.15	0.15						
Freon 11	< 0.15	0.15						
Freon 113	< 0.15	0.15						
Freon 114	< 0.15	0.15						
Freon 12	< 0.15	0.15						
Heptane	< 0.15	0.15						
Hexachloro-1,3-butadiene	< 0.15	0.15						
Hexane	< 0.15	0.15						
Isopropyl alcohol	< 0,15	0.15						
m&p-Xylene	< 0.30	0:30						
Methyl Butyl Ketone	< 0.30	0.30						
Methyl Ethyl Ketone	< 0.30	0.30						
Methyl Isobutyl Ketone	< 0.30	0:30						
Methyl tert-butyl ether	< 0.15	0.15						
Methylene chloride	< 0.15	0.15				•		
o-Xylene	< 0.15	0.15						
Propylene	< 0.15	0.15				-		
Styrene	< 0.15	0.15						
Tetrachloroethylene	< 0.15	0.15				•		
Tetrahydrofuran	< 0.15	0.15						
	Results reported are not blank corrected			Value above quantitation range			Holding times for preparation or analysis exceeded	
	Analyte detected at or below quantitation limits		ND Not Detect	Not Detected at the Reporting Limit		R RPD outside acce	RPD outside accepted recovery limits	
S Spike Recove	Spike Recovery autside accepted recovery limits	mils					Pay	Page 2 of 3

CLIENT: Work Order:	Arcadis - Newtown C1211047	ewtown						
Project:	LMC Utica					TestCode: 1	1ugM3_T015	
Sample ID AMB1L Client ID: ZZZZZ	AMB1UG-112812 22222	SampType: MBLK Batch ID: R6410	TestCor	TestCode: 1ugM3_TO15 Units: ppbV TestNo: TO-15	Prep Date: Analysis Date: 1	11/28/2012	RunNo: 6410 SeqNo: 75162	
Analyte		Result	Pal	SPK value SPK Ref Val	%REC LowLimit High	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Toluene		< 0.15	0.15					
trans-1,2-Dichloroethene	oethene	< 0.15	0.15					
trans-1,3-Dichloropropene	opropene	< 0.15	0.15					
Trichloroethene		< 0.15	0.15					
Vinyl acetate		< 0.15	0.15					
Vinyl Bromide		< 0.15	0.15					
Vinyl chloride		< 0.15	0.15					
,								
			·					
Qualifiers:	Results report J Anniyte detect S Spike Recove	Results reported are not blank corrected Analyte detected at or below quantitation limits Spike Recovery outside accepted recovery limits	5 51	E Value above quantitation range ND Not Detected at the Reporting Limit	ge ; Limit	H Holding times for R R RPD outside accep	Holding times for preparation or analysis exceeded RPD outside accepted recovery limits	eded Page 3 of 3

ethod TO-15	Units=ppb
Wet.	

1ug/m3 Detection Limit January 2012

Centek Laboratories IDL Study

Page 39 of 204

Compound	Amt	IDL #1	IDL #2	IDL #3	IDL #4	IDL #2	IDL #6	IDL #7	AVG	StdDev	%Rec	חסר	
Propylene	0.4	0.34	0.3	0.32	0.32	0.32	0.33	0.32	0.32	0.01	80.4%	0.038	
Freon 12	0.4	0.35	0.38	0.36	0.37	0.34	0.37	0.37	0.36	0.01	%2.05	0.063	
Chloromethane	0.4	0.35	0.32	0.36	0.37	0.35	0.33	0.38	0.35	0.00	87.0%	0.00	
Freon 114	0.4	0.36	0.35	0.35	0.37	0.36	0.37	0.39	0.36	20:0	27.5%	0.00	
Vinyl Chloride	0.4	0.32	0.31	0.31	0.32	0.31	0.32	0.33	0.32	0.0	79.3%	0.00	
I,3-butadiene	0.4	0.37	0.35	0.37	0.4	0.33	0.35	0.39	0.37	0.02	91.4%	0.077	
Bromomethane	0.4	0.39	0.36	0.34	0.35	0.35	0.35	0.35	0.36	0,02	88.9%	0.051	
Ethanol	0.4	0.33	0.31	0.41	0.35	0.32	0.35	0,33	0.34	0.03	85.7%	0.104	
Acrolein	0.4	0.39	0.34	0.36	0.31	0.36	0.36	0.34	0.35	0.02	87.9%	0.078	
Chloroethane	9.4	0.39	0.32	0.39	0.38	0.36	0.36	0.36	0.37	0.02	91.4%	0.077	
Vinyl Bromide	0.4	0,35	0.36	0.34	0.35	0.37	0.35	0.4	0.36	0.02	90.0%	0.063	
Freon 11	9.4	0.37	0.36	0.37	0.37	0.37	0.37	0.39	0.37	0.01	92.9%	0.028	
Acetone	9.4	0.39	0.31	0.36	0.36	0.35	0.31	0.35	0.35	0.03	86.8%	0.090	
sopropyl alcohol	9.4	0.4	0.41	0.39	0.41	0.4	0.36	0.37	0.39	0.02	97.9%	0.061	
1,1-dichloroethene	0.4	0.36	0.36	0.36	0.35	0.37	0.34	0.37	0.36	0.01	89.6%	0.034	
Freon 113	0.4	0.35	0.34	0.34	0.36	0.32	0.42	0.37	0.36	0.03	89.3%	0.101	
Methylene chloride	0.4	0.33	0.34	0.35	0.35	0.32	0.42	0.34	0.35	0.03	87.5%	0.103	
Allyl chloride	0.4	0.34	0.32	0.38	0.36	0.38	0.31	0.32	0.34	0.03	86.1%	0.092	
Carbon disulfide	0.4	0.36	0.4	0.35	0.36	0.32	0.4	0.4	0.37	0.03	92.5%	0.098	
trans-1,2-dichloroethene	0.4	0.37	0.34	0.29	0.33	0.31	0.32	0.37	0.33	0.03	83.2%	0.094	
methyl tert-butyl ether	0.4	0.35	0.3	0.33	0.33	0.33	0.28	0.27	0.31	0.03	78.2%	0.094	
I,1-dichloroethane	0.4	0.35	0.34	0.38	0.36	0.35	0.35	0.34	0.35	0.01	88.2%	0.043	
Vinyl acetate	0.4	0.33	0.33	0.37	0.36	0.32	0.3	0.3	0.33	0.03	82.5%	0.085	
Methyl Ethyl Ketone	0.4	0.36	0.33	0.34	0.37	0.32	0.33	0.3	0.34	0.02	83.9%	0.075	
cis-1,2-dichloroethene	0.4	0.35	0.34	0.32	0.34	0.36	0.33	0.36	0.34	0.01	85.7%	0.047	
Hexane	0.4	0.34	0.28	0.34	0.34	0.36	0.3	0.32	0.33	0.03	81.4%	0.087	
Ethyl acetate	0.4	0.38	0.31	0.36	0.35	0.35	0.32	0.3	0.34	0.03	84.6%	0.092	
Chloroform	0.4	0.37	0.35	0.39	0.38	0.35	0.35	0.35	0.36	0.02	90.7%	0.054	
l etrahydrofuran	0.4	0.38	0.33	0.32	0.36	0.3	0.31	0.31	0.33	0.03	82.5%	0.093	
1,z-dichloroethane	0.4	0.38	0.33	0.37	0.38	0.35	0.34	0.38	0.36	0.02	90.4%	0.066	
I, 1, 1-trichloroethane	0.4	0.42	0.4	0.38	0.38	0.37	0.37	0.38	0.39	0.02	96.4%	0.057	
Cyclonexane	0.4	0.35	0.36	0.37	0.36	0.33	0.33	0.35	0.35	0.02	87.5%	0.048	
carbon tetrachioride	0.4	0.39	0.37	0.37	0.36	0.34	0.36	0.36	0.36	0.02	91.1%	0.048	
benzene	0.4	0.38	0.38	0.37	0.39	0.4	0.34	0.38	0.38	0.02	94.3%	0.059	
Metnyl methacrylate	0.4	0.36	0.32	0.32	0.3	0.33	0.31	0.3	0.32	0.02	80.0%	0.065	
1,4-dioxane	0.4	0.36	0.33	0.33	0.3	0.36	0.28	0.3	0.32	0.03	80.7%	0.097	
2,2,4-trimethylpentane	0.4	0.35	0.34	0.35	0.35	0.32	0.32	0.33	0.34	0.01	84.3%	0.043	
Heptane	0.4	0.37	0.32	0.35	0.35	0.29	0.3	0.32	0.33	0.03	82 1%	260.0	
								-	 - -) - -)) 1	

Method TO-15	Units≔ppb

1ug/m3 Detection Limit January 2012

Centek Laboratories

IDL Study

0.106 0.088 0.0590.060 0.075 0.104 0.128 0.110 0.098 0.087 0.092 0.103 0.075 0.098 0.113 0.097 0.062 3.088 0.068 3.038 0.086 0.072 0.142 0.084 0.094 0.145 91.8% 73.9% 73.6% 103.1% 73.6% 86.4% 66.1% 69.6% 68.9% 69.3% 90.0% 92.1% 96.8% 80.4% 70.4% 94.3% 72.9% 95.0% 99.6% 92.1% 84.3% 88.9% 90.0% StdDev 0.05 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.01 0.03 0.02 0.03 0.02 0.39 0.32 0.28 0.38 0.29 0.38 0.37 0.30 0.59 0.29 0.29 0.35 0.34 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.36 0.36 0.35 0.37 0.35 0.35 0.35 0.3 0.37 0.29 0.37 0.34 0.26 0.26 0.29 0.32 0.33 0.34 0.23 0.33 0.35 0.35 0.35 0.37 0.32 0.34 0.33 0.27 0.58 0.26 0.31 0.22 0.95 0.34 0.34 0.25 0.26 0.25 0.35 0.36 0.28 0.36 0.37 0.37 0.35 0.29 0.23 0.35 0.36 0.28 0.28 0.28 0.28 0.28 0.28 0.39 0.39 0.39 0.31 [] 0.35 0.26 0.39 0.63 0.35 0.31 1.04 0.37 0.28 0.29 0.29 0.36 0.35 0.38 0.4 0.39 0.39 0.32 0.26 0.38 0.39 0.63 0.38 0.27 1.06 0.39 0.32 0.29 0.33 0.31 0.3 0.27 0.37 0.4 0.33 0.32 0.39 0.27 0.39 0.37 0.31 0.29 0.36 0.39 0.39 0.28 0.28 0.28 0.38 0.37 0.42 0.430.33 0.41 0.34 0.4 0.42 0.31 0.64 0.32 0.35 0.26 1.05 0.4 0.41 0.33 0.32 0.32 0.41 0.34 0.41 0.8 0.4 rans-1,3-dichloropropene Hexachloro-1,3-butadiene 1,1,2,2-tetrachioroethane cis-1,3-dichloropropene Bromodichloromethane Dibromochloromethane ,3,5-trimethylbenzene ,2,4-trimethylbenzene Methyl Isobutyl Ketone ,2,4-trichlorobenzene Bromofluorobenzene 1,1,2-trichloroethane ,3-dichlorobenzene 1,4-dichlorobenzene ,2-dichlorobenzene 1,2-dichloropropane Compound Methyl Butyl Ketone Tetrachloroethylene 1,2-dibromoethane 2-Chlorotoluene **Frichloroethene** benzyl chloride Chlorobenzene 4-ethyltoluene Ethylbenzene Naphthalene m&p-xylene Bromoform o-xylene Coluene Styrene

Confidential

Compound	Amt	IDL #1	IDL #2	IDL #3	ID 本	IDL #2	9# TQI	IDL #7 AVG	AVG	StdDev	%Rec	<u> </u>
View Orlean	7	7.7	7							- 1	22101	1
	<u>-</u>	L.:.	L.)		0.11			-,	-		105 7%	3000
Oshon totrockings			!	•				:	- ;		200	0.020
Cal DOLL TELL ACTION DE	_ _	0.13	0.12	0,73	0.13	5		272	0.10		100 007	700
Triable	,	. (<u>.</u>			7.7		122.370	0.024
	_ 	0.11	0.13	0.11	0.12	0.12		<u>_</u>	7		111 /0/	070
Totrochiospathalan		,	(!		;	5		2 + -	2.042
l en acino oeinyiene	 	0.14	0.12	0.12	0.12	0.12		0 14	0.17		121 40%	0.052

Confidential

GC/MS-Whole Air Calculations

Relative Response Factor (RRF)

$$RRF = Ax * Cis$$
 $Ais * Cx$

where: Ax = area of the characteristic ion for the compound being measured

Ais = area of the characteristic ion for the specific internal standard of the compound being measured

Cx = concentration of the compound being measured (ppbv)

Cis = concentration of the internal standard (ppbv)

Percent Relative Standard Deviation (%RSD)

Percent Difference (%D)

where: RRFc = relative response factor from the continuing calibration mean RRFi = mean relative response factor from the initial calibration

Sample Calculations

$$ppbv = \underbrace{Ax * Is * Df}_{Ais * RRF}$$

where: Ax = area of the characteristic ion for the compound being measured

Ais = area of the characteristic ion for the specific internal standard of the compound being measured

Is = Concentration of the internal standard injected (ppbv)

RRF= relative response factor for the compound being measured

Df = Dilution factor

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15

SAMPLE DATA

Arcadis - Newtown

CLIENT: Lab Order:

C1211047

Project:

LMC Utica

Lab ID:

C1211047-001A

Date: 14-Dec-12

Client Sample ID: SG-IND-1 (ARC)

Tag Number: 458,342 **Collection Date:** 11/20/2012

Matrix:

C1211047-001A			1415	iti ix:	
Analyses	Result	**Limit Qual	Units	DF	Date Analyzcd
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum in	-11		"Hg		11/21/2012
Lab Vacuum Out	-30		"Hg		11/21/2012
1UG/M3 BY METHOD TO15		TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.15	0.15	ppbV	1	11/28/2012 6:58:00 PM
1,1,2,2-Tetrachloroethane	< 0.15	0.15	ppbV	1	11/28/2012 6:58:00 PM
1,1,2-Trichloroethane	< 0.15	0.15	ppbV	1	11/28/2012 6:58:00 PM
1,1-Dichloroethane	< 0.15	0.15	ррЬ∨	1	11/28/2012 6:58:00 PM
1,1-Dichloroethene	< 0.15	0.15	ppbV	1	11/28/2012 6:58:00 PM
1,2,4-Trichlorobenzene	< 0.15	0.15	ppbV	1	11/28/2012 6:58:00 PM
1,2,4-Trimethylbenzene	2.5	0.15	ppbV	1	11/28/2012 6:58:00 PM
1,2-Dibromoethane	< 0.15	0.15	ppbV	1	11/28/2012 6:58:00 PM
1,2-Dichlorobenzene	< 0.15	0.15	ppbV	1	11/28/2012 6:58:00 PM
1,2-Dichloroethane	< 0.15	0.15	ppbV	1	11/28/2012 6:58:00 PM
1,2-Dichloropropane	< 0.15	0.15	ppbV	1	11/28/2012 6:58:00 PM
1,3,5-Trimethylbenzene	0.63	0.15	ppbV	1	11/28/2012 6:58:00 PM
1,3-butadiene	< 0.15	0.15	ppbV	1	11/28/2012 6:58:00 PM
1,3-Dichlorobenzene	< 0.15	0.15	ppbV	1	11/28/2012 6:58:00 PM
1,4-Dichlorobenzene	< 0.15	0,15	ppbV	1	11/28/2012 6:58:00 PM
1,4-Dioxane	< 0.30	0.30	ppbV	1	11/28/2012 6:58:00 PM
2,2,4-trimethylpentane	3.5	1.5	ppbV	10	11/29/2012 1:27:00 AM
4-ethyltoluene	0.83	0.15	ppbV	1	11/28/2012 6:58:00 PM
Acetone	12	3.0	ppbV	10	11/29/2012 1:27:00 AM
Allyl chloride	< 0.15	0.15	ppbV	1	11/28/2012 6:58:00 PM
Benzene	6.4	1.5	ppbV	10	11/29/2012 1:27:00 AM
Benzyl chloride	< 0.15	0.15	ppbV	1	11/28/2012 6:58:00 PM
Bromodichloromethane	< 0.15	0.15	ppbV	1	11/28/2012 6:58:00 PM
Bromoform	< 0.15	0.15	ppbV	1	11/28/2012 6:58:00 PM
Bromomethane	< 0.15	0.15	ppbV	1	11/28/2012 6:58:00 PM
Carbon disulfide	0.22	0.15	ppbV	1	11/28/2012 6:58:00 PM
Carbon tetrachloride	< 0.15	0.15	ppbV	1	11/28/2012 6:58:00 PM
Chiorobenzene	< 0.15	0.15	ppbV	1	11/28/2012 6:58:00 PM
Chloroethane	< 0.15	0.15	ppbV	1	11/28/2012 6:58:00 PM
Chloroform	< 0.15	0.15	ppbV	1	11/28/2012 6:58:00 PM
Chloromethane	< 0.15	0.15	ppbV	1	11/28/2012 6:58:00 PM
cis-1,2-Dichloroethene	< 0.15	0.15	ppbV	1	11/28/2012 6:58:00 PM
cis-1,3-Dichlorоргорепе	< 0.15	0.15	ppbV	1	11/28/2012 6:58:00 PM
Cyclohexane	46	6.0	ppbV	40	11/29/2012 2:01:00 AM
Dibromochloromethane	< 0.15	0.15	ppbV	1	11/28/2012 6:58:00 PM
Ethyl acetate	< 0.25	0,25	ppbV	1	11/28/2012 6:58:00 PM

Qualifiers:

- ** Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- . Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 1 of 8

CLIENT: Arcadis - Newtown

Lab Order:

C1211047

Project:

LMC Utica

Lab ID:

C1211047-001A

Date: 14-Dec-12

Client Sample ID: SG-IND-1 (ARC)

Tag Number: 458,342

Collection Date: 11/20/2012

Matrix:

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-	-15			Analyst: RJP
Ethylbenzene	2.1	0.15		ppbV	1	11/28/2012 6:58:00 PM
Freon 11	0.19	0.15		ppbV	1	11/28/2012 6:58:00 PM
Freon 113	0.12	0.15	J	ppbV	1	11/28/2012 6:58:00 PM
Freon 114	< 0.15	0.15		ppbV	1	11/28/2012 6;58:00 PM
Freon 12	0.40	0.15		ppbV	1	11/28/2012 6;58:00 PM
Heptane	5.7	1.5		ppbV	10	11/29/2012 1:27:00 AM
Hexachloro-1,3-butadiene	< 0.15	0.15		ppbV	1	11/28/2012 6:58:00 PM
Hexane	37	6.0		ppbV	40	11/29/2012 2:01:00 AM
Isopropyl alcohol	< 0.15	0.15		ppbV	1	11/28/2012 6:58:00 PM
m&p-Xylene	4.0	3.0		ppbV	10	11/29/2012 1:27:00 AM
Methyl Butyl Ketone	< 0.30	0.30		ppbV	1	11/28/2012 6:58:00 PM
Methyl Ethyl Ketone	< 0.30	0.30		ppbV	1	11/28/2012 6:58:00 PM
Methyl Isobutyl Ketone	< 0.30	0.30		ppbV	1	11/28/2012 6:58:00 PM
Methyl tert-butyl ether	< 0.15	0.15		ppbV	1	11/28/2012 6:58:00 PM
Methylene chloride	< 0.15	0.15		ppbV	1	11/28/2012 6:58:00 PM
o-Xylene	2.6	0.15		ppbV	1	11/28/2012 6;58:00 PM
Propylene	< 0.15	0.15		ppbV	1	11/28/2012 6:58:00 PM
Styrene	< 0.15	0.15		ppbV	1	11/28/2012 6:58:00 PM
Tetrachloroethylene	0.55	0.15		ppbV	1	11/28/2012 6:58:00 PM
Tetrahydrofuran	< 0.15	0.15		ppbV	1	11/28/2012 6:58:00 PM
Toluene	15	1.5		ppbV	10	11/29/2012 1:27:00 AM
trans-1,2-Dichloroethene	< 0.15	0.15		ррbV	1	11/28/2012 6:58:00 PM
trans-1,3-Dichloropropene	< 0.15	0.15		ppbV	1	11/28/2012 6:58:00 PM
Trichloroethene	0.46	0.15		ppbV	1	11/28/2012 6:58:00 PM
Vinyl acetate	< 0.15	0.15		ррbV	1	11/28/2012 6:58:00 PM
Vinyl Bromide	< 0.15	0.15		ррbV	1	11/28/2012 6:58:00 PM
Vinyl chloride	< 0.15	0.15		ppbV	1	11/28/2012 6:58:00 PM
Surr: Bromofluorobenzene	109	70-130		%REC	1	11/28/2012 6:58:00 PM

Ou	al	ili	o	re

^{**} Reporting Limit

Page 2 of 8

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

IN Non-routine analyte, Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Value above quantitation range

J Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit

Arcadis - Newtown

Lab Order:

Project:

CLIENT:

C1211047 LMC Utica

Lab ID:

C1211047-001A

Date: 14-Dec-12

Client Sample ID: SG-IND-1 (ARC)

Tag Number: 458,342

Collection Date: 11/20/2012

Matrix:

Analyses	Result	**Limit	Qual Unit	s DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-	15		Analyst: RJP
1,1,1-Trichloroethane	< 0.83	0.83	ug/m:	3 1	11/28/2012 6:58:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	ug/m:	3 1	11/28/2012 6:58:00 PM
1,1,2-Trichloroethane	< 0.83	0.83	ug/m3	3 1	11/28/2012 6:58:00 PM
1,1-Dichloroethane	< 0.62	0.62	ug/m:	3 1	11/28/2012 6:58:00 PM
1,1-Dichloroethene	< 0.60	0.60	ug/m3	3 1	11/28/2012 6:58:00 PM
1,2,4-Trichlorobenzene	< 1.1	1.1	ug/m:	3 1	11/28/2012 6:58:00 PM
1,2,4-Trimethylbenzene	12	0.75	ug/m:	3 1	11/28/2012 6:58:00 PM
1,2-Dibromoethane	< 1.2	1.2	ug/m:	3 1	11/28/2012 6:58:00 PM
1,2-Dichlorobenzene	< 0.92	0.92	ug/m:	3 1	11/28/2012 6:58:00 PM
1,2-Dichloroethane	< 0.62	0.62	ug/m:		11/28/2012 6:58:00 PM
1,2-Dichloropropane	< 0.70	0.70	ug/m:		11/28/2012 6:58:00 PM
1,3,5-Trimethylbenzene	3.1	0.75	ug/m:		11/28/2012 6:58:00 PM
1,3-butadiene	< 0.34	0.34	ug/m:		11/28/2012 6:58:00 PM
1,3-Dichlorobenzene	< 0.92	0.92	ug/m:		11/28/2012 6:58:00 PM
1,4-Dichlorobenzene	< 0.92	0.92	· ug/m3		11/28/2012 6:58:00 PM
1.4-Dioxane	< 1.1	1.1	ug/m:		11/28/2012 6:58:00 PM
2,2,4-trimethylpentane	17	7.1	ug/m:		11/29/2012 1:27:00 AM
4-ethyltoluene	4.1	0.75	ug/m:		11/28/2012 6:58:00 PM
Acetone	29	7.2	ug/m:		11/29/2012 1:27:00 AM
Allyl chloride	< 0.48	0.48	ug/m:		11/28/2012 6:58:00 PM
Benzene	21	4.9	ug/m:		11/29/2012 1:27:00 AM
Benzyl chloride	< 0.88	0.88	ug/m:		11/28/2012 6:58:00 PM
Bromodichloromethane	< 1.0	1.0	ug/m:		11/28/2012 6:58:00 PM
Bromoform	< 1.6	1.6	ug/m:		11/28/2012 6:58:00 PM
Bromomethane	< 0.59	0.59	ug/m:		11/28/2012 6:58:00 PM
Carbon disulfide	0.70	0.47	ug/m:		11/28/2012 6:58:00 PM
Carbon tetrachloride	< 0.96	0.96	ug/m:		11/28/2012 6:58:00 PM
Chlorobenzene	< 0.70	0.70	ug/m:		11/28/2012 6;58:00 PM
Chloroethane	< 0.40	0.40	ug/m:		11/28/2012 6:58:00 PM
Chloroform	< 0.74	0.74	ug/m:		11/28/2012 6:58:00 PM
Chloromethane	< 0.31	0.31	ug/m:		11/28/2012 6:58:00 PM
cis-1,2-Dichloroethene	< 0.60	0.60	ug/m:		11/28/2012 6:58:00 PM
cis-1,3-Dichloropropene	< 0.69	0.69	ug/m:		11/28/2012 6:58:00 PM
Cyclohexane	160	21	ug/m:		11/29/2012 2:01:00 AM
Dibromochloromethane	< 1.3	1.3	ug/m:		11/28/2012 6:58:00 PM
Ethyl acetate	< 0.92	0.92	ug/m:		11/28/2012 6:58:00 PM
Ethylbenzene	9.4	0.66	ug/m:		11/28/2012 6:58:00 PM
Freon 11	1.1	0.86	ug/m:		11/28/2012 6:58:00 PM
Freon 113	0.93	1.2	J ug/m:		11/28/2012 6:58:00 PM
Freon 114	< 1.1	1.1	ug/m:		11/28/2012 6:58:00 PM

Qualifiers:

- Reporting Limit
- Analyte detected in the associated Method Blank В
- Holding times for preparation or analysis exceeded Н
- JN Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits

- Results reported are not blank corrected
- Ε Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 1 of 8

CLIENT:

Arcadis - Newtown

Lab Order:

C1211047

Project:

LMC Utica

Lab ID:

C1211047-001A

Date: 14-Dec-12

Client Sample ID: SG-IND-1 (ARC)

Tag Number: 458,342

Collection Date: 11/20/2012

Matrix:

Analyses	Result	**Limit	Qual Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		то	-15		Analyst: RJP
Freon 12	2.0	0.75	ug/m3	1	11/28/2012 6;58:00 PM
Heptane	24	6.2	ug/m3	10	11/29/2012 1:27:00 AM
Hexachioro-1,3-butadiene	< 1.6	1.6	ug/m3	1	11/28/2012 6;58;00 PM
Hexane	130	21	ug/m3	40	11/29/2012 2:01:00 AM
Isopropyl alcohol	< 0.37	0.37	ug/m3	1	11/28/2012 6:58:00 PM
m&p-Xylene	18	13	ug/m3	10	11/29/2012 1:27:00 AM
Methyl Butyl Ketone	< 1.2	1.2	ug/m3	1	11/28/2012 6:58:00 PM
Methyl Ethyl Ketone	< 0.90	0.90	ug/m3	1	11/28/2012 6;58:00 PM
Methyl isobutyl Ketone	< 1.2	1.2	սց/m3	1	11/28/2012 6:58:00 PM
Methyl tert-butyl ether	< 0.55	0.55	иg/m3	1	11/28/2012 6:58:00 PM
Methylene chloride	< 0.53	0.53	ug/m3	1	11/28/2012 6:58:00 PM
o-Xylene	11	0.66	ug/m3	1	11/28/2012 6:58:00 PM
Propylene	< 0.26	0.26	ид/m3	1	11/28/2012 6:58:00 PM
Styrene	< 0.65	0.65	ид/m3	1	11/28/2012 6:58:00 PM
Tetrachioroethylene	3.8	1.0	սց/m3	1	11/28/2012 6:58:00 PM
Tetrahydrofuran	< 0.45	0.45	ug/m3	1	11/28/2012 6:58:00 PM
Toluene	57	5.7	ug/m3	10	11/29/2012 1:27:00 AM
trans-1,2-Dichloroethene	< 0.60	0.60	ug/m3	1	11/28/2012 6:58:00 PM
trans-1,3-Dichloropropene	< 0.69	0.69	ug/m3	1	11/28/2012 6:58:00 PM
Trichloroethene	2.5	0.82	ug/m3	1	11/28/2012 6:58:00 PM
Vinyl acetate	< 0.54	0.54	ug/m3	1	11/28/2012 6:58:00 PM
Vinyl Bromide	< 0.67	0.67	ug/m3	1	11/28/2012 6:58:00 PM
Vinyl chloride	< 0.39	0.39	ug/m3	1	11/28/2012 6;58;00 PM

Δ	-116	e _	
Ou	шин	ıс	Г5

- Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits

- Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 2 of 8

Centek Laboratories, LQCantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AJ112817.D Vial: 10 : 28 Nov 2012 6:58 pm Operator: RJP : C1211047-001A Sample Inst : MSD #1 : AN23_1UG Misc Multiplr: 1.00

MS Integration Params: RTEINT.P Quant Time: Nov 29 07:37:12 2012 Quant Results File: AN23_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\AN23_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Tue Nov 27 16:12:35 2012
Response via : Initial Calibration

DataAcq Meth : 1UG_T015

	_									
Inte	rnal Standards		R.	т.	QIon	Response	Conc	Units	Dev	(Min)
33)	Bromochloromethan 1,4-difluorobenze Chlorobenzene-d5			98	114		1.0	00 ppb 00 ppb		0.00 0.00 0.00
61)	em Monitoring Comp Bromofluorobenzen iked Amount 1	e			95 - 130	67091 Recove		9 ppb 109		
	et Compounds								Qva	alue
	Freon 12				85			dqq 0		98
	Freon 11					58229		.9 ppb		92
	Acetone		6.			295553	12.4	2 ppb	#	1
	Freon 113		6.	75	101	18012	0.1	2 ppb	#	62
	Carbon disulfide					38334				76
	Hexane		8.			1167423		7 ppb		
	Cyclohexane		8.			720042		1 ppb		
	Benzene		11.	31	78	717259	7.8	2 ppb		87
	2,2,4-trimethylpe	ntane	12.	15	57	604747				25
	Heptane					320152	9.1	4 ppb		95
	Trichloroethene				130	25034		6 ppb		83
	Toluene		14.	54	92	1399336	18.4	9 ppb		95
	Tetrachloroethyle	ne			164		0.5	5 ppb		99
	Ethylbenzene		16.	62	91	344594	2.1	2 ppb		99
	m&p-xylene				91	1176773	8.3	7 ppb		96
	o-xylene		17.	23	91	498643	2.5	8 ppb		90
	4-ethyltoluene		18.	36	105	498643 126283m 129421m	0.8	3 ppb		
	1,3,5-trimethylbe		18.	41			/ 0.6	3 ppb		
66)	1,2,4-trimethylbe	nzene	18.		105	370515		8 ppb		100

1000000

Time->

Abundance 1.2e+07 1.1e+07

1e+07

0000006

8000000

7000000

6000000

5000000

4000000

3000000

(QT Reviewed)

Quantitation Report

MSD #1

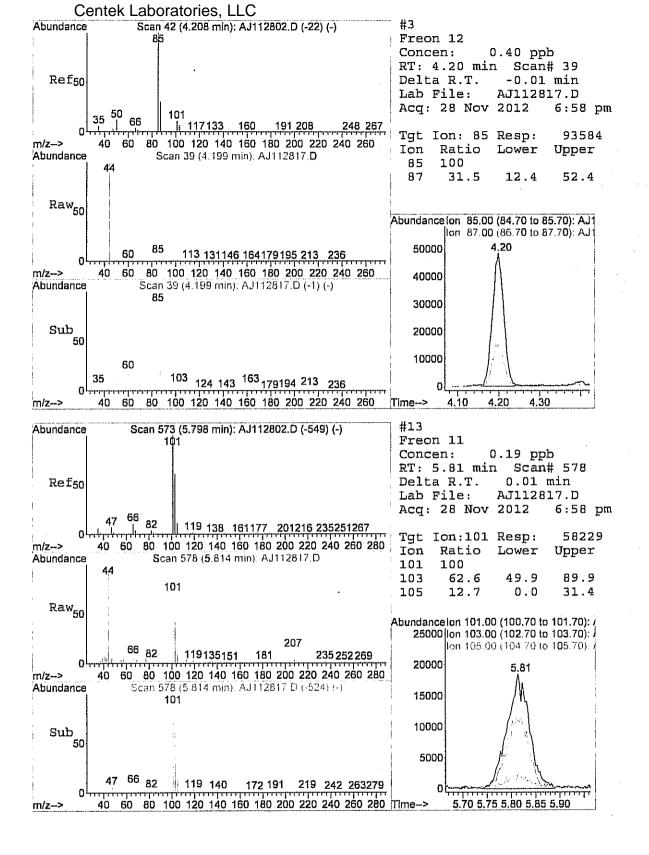
RJP

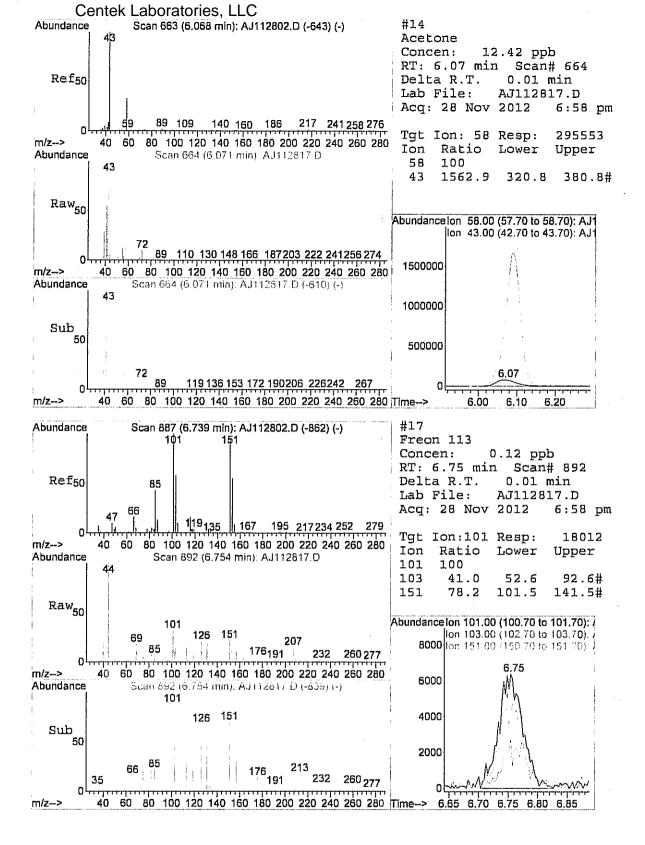
Operator:

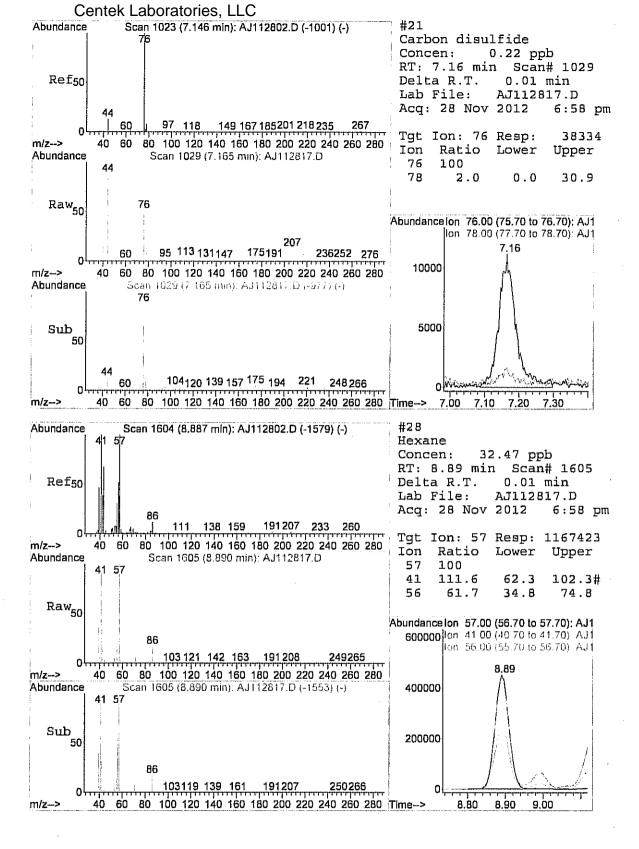
Inst

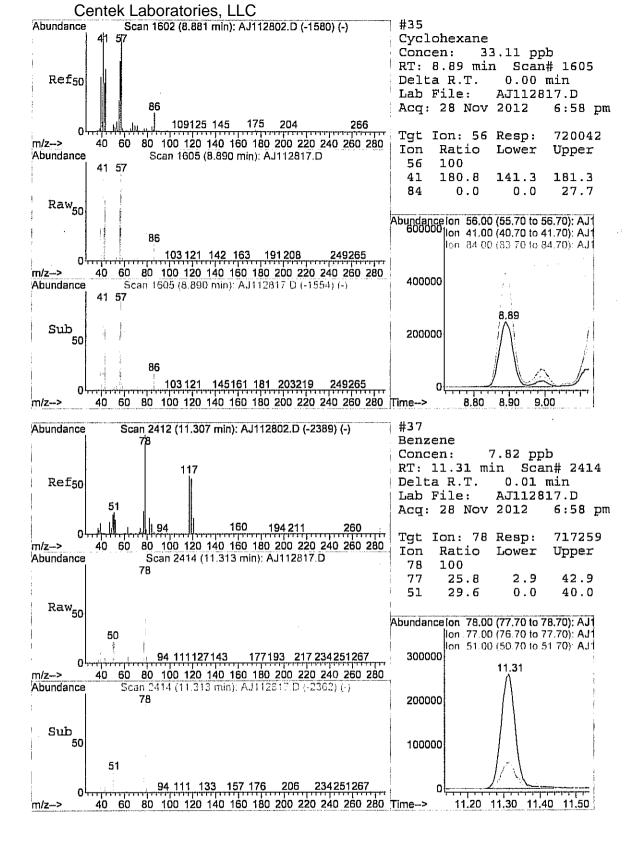
Vial:

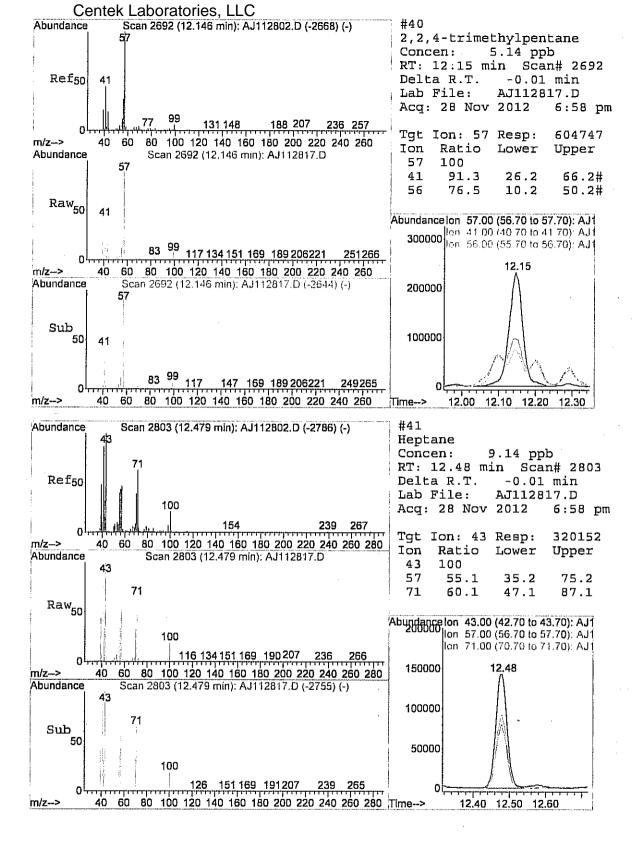
C:\HPCHEM\1\DATA\AJ112817.D

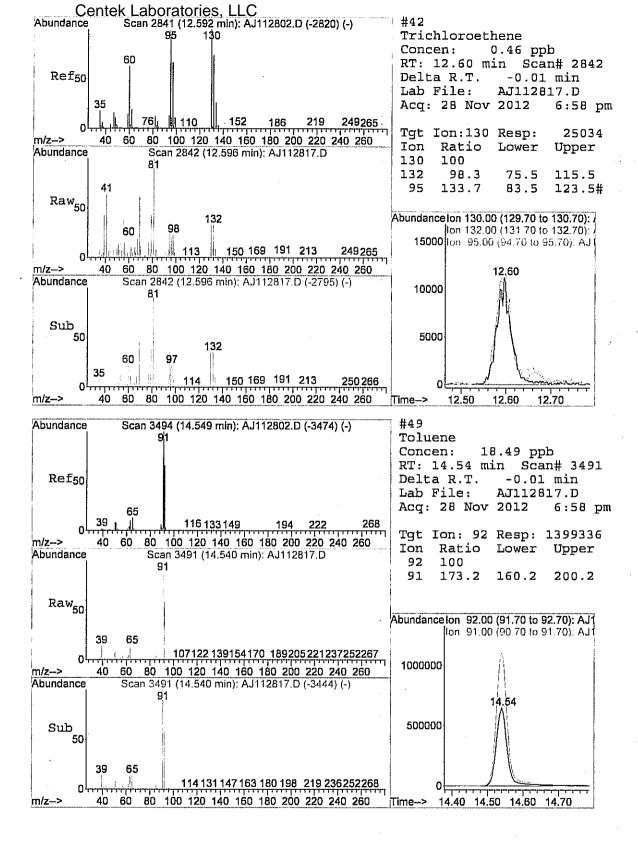

Data File

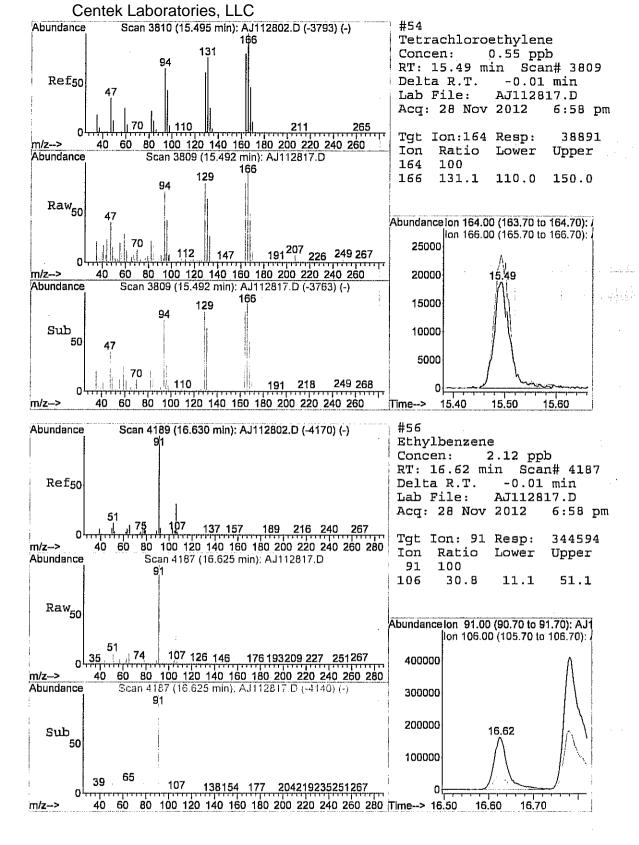

6:58 рт

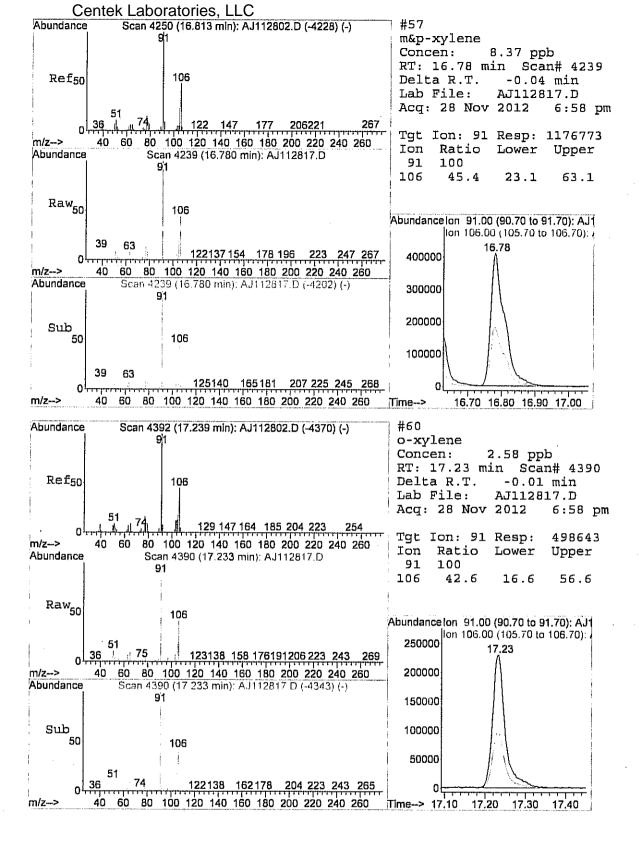

C1211047-001A 28 Nov 2012

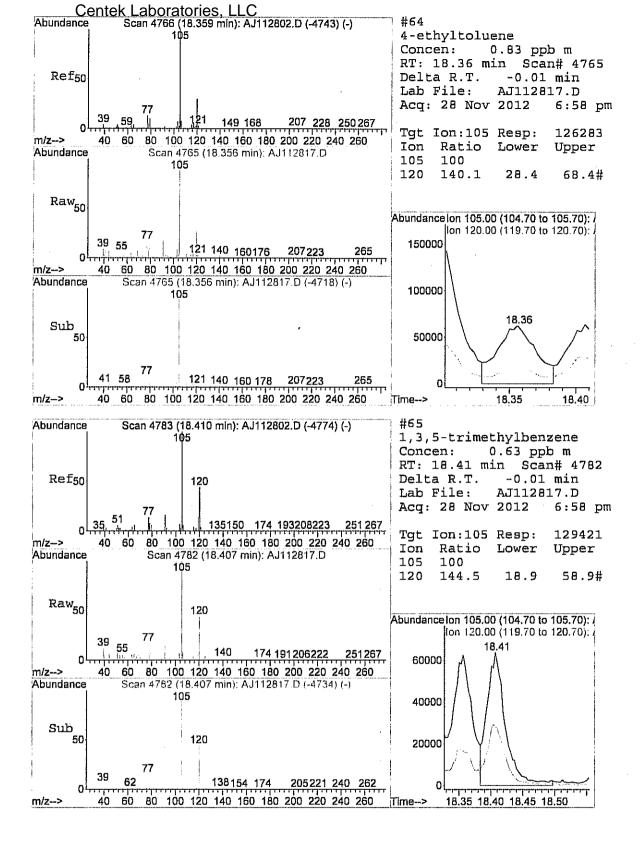

Sample Acq On

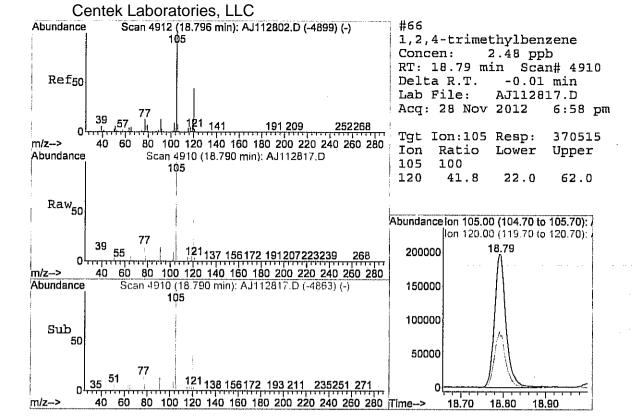

Misc









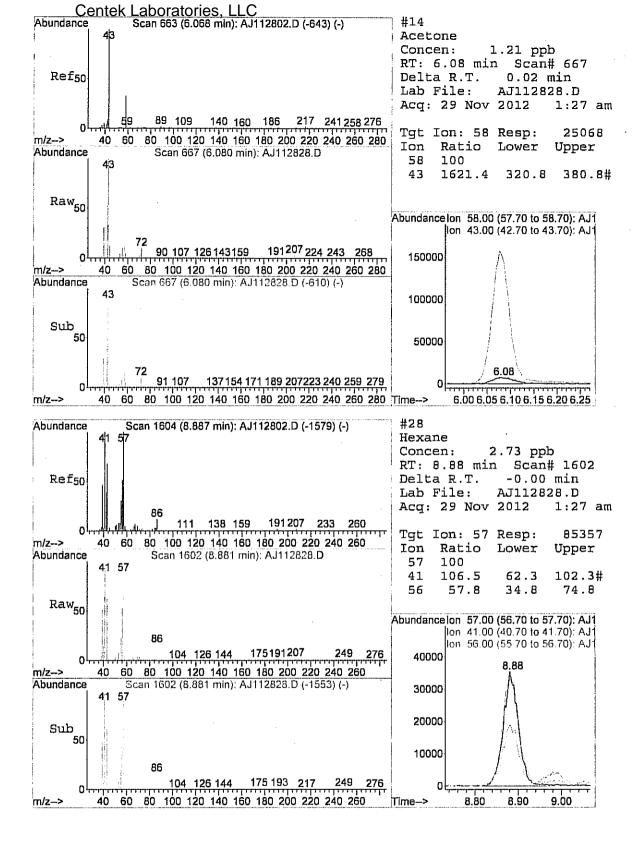


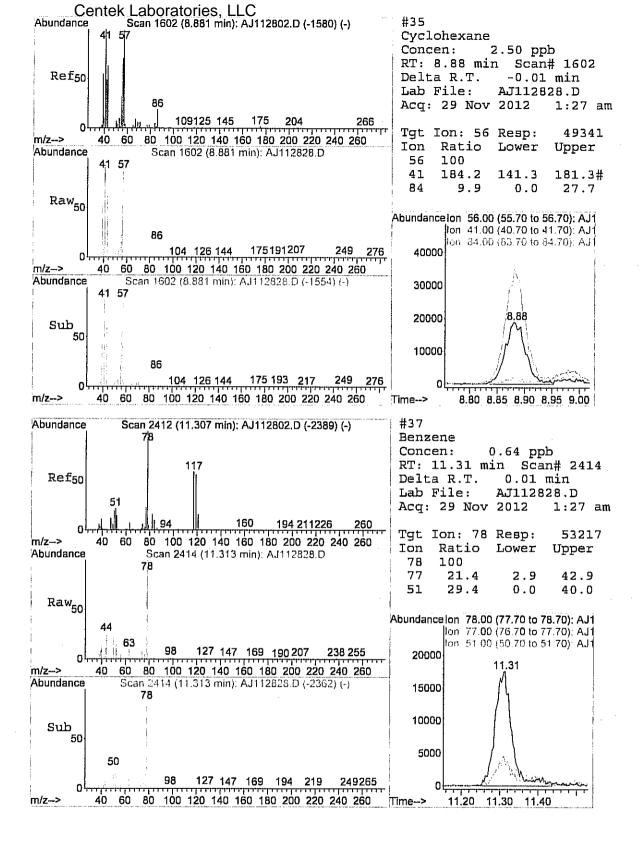
Centek Laboratories, Lecantitation Report (QT Reviewed)

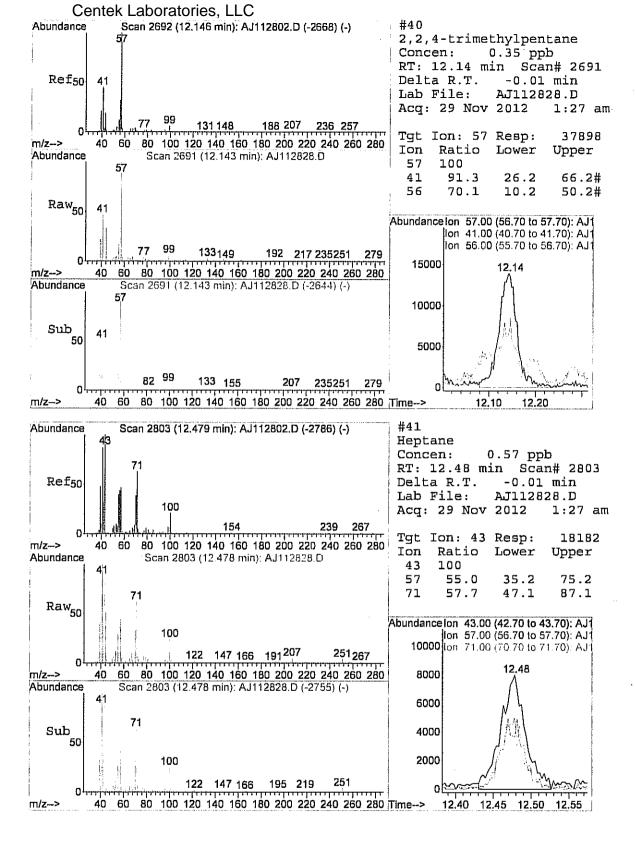
Data File : C:\HPCHEM\1\DATA\AJ112828.D Vial: 49 : 29 Nov 2012 1:27 am Operator: RJP Sample : C1211047-001A 10X Inst : MSD #1 Misc : AN23_1UG Multiplr: 1.00

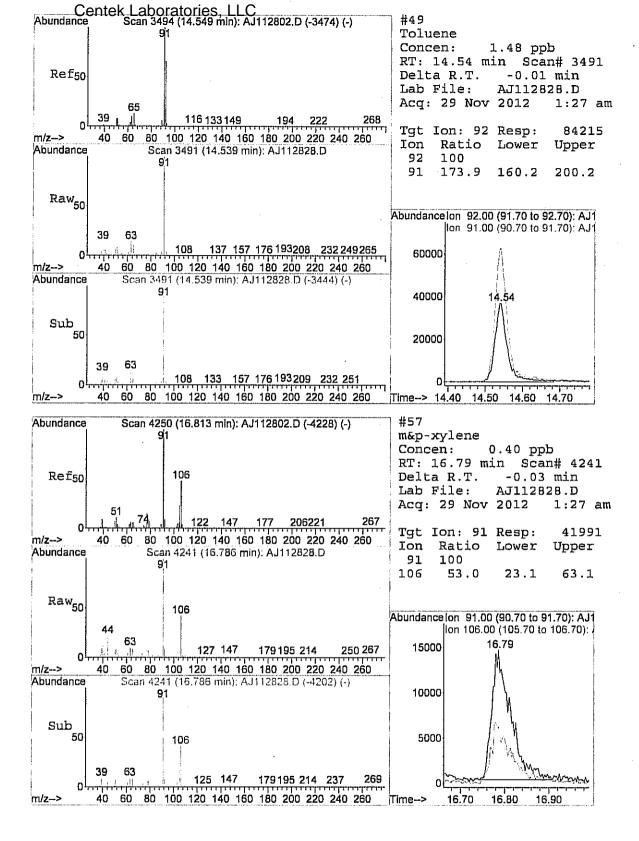
MS Integration Params: RTEINT.P

Quant Time: Nov 29 07:37:23 2012 Quant Results File: AN23 1UG.RES


Quant Method : C:\HPCHEM\1\METHODS\AN23_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Tue Nov 27 16:12:35 2012
Response via : Initial Calibration
DataAcq Meth : 1UG_T015


Internal Standards	R.T.	QIon	Response (Conc U	nits	Dev(Min)
	11.98	114	22808 92158 78659	1.00	ppb ppb	0.00
System Monitoring Compounds 61) Bromofluorobenzene Spiked Amount 1.000	17.83 Range 70	95 - 130	37986 Recovery	0.82	ppb 82	-0.01 .00%
Target Compounds 14) Acetone 28) Hexane 35) Cyclohexane 37) Benzene 40) 2,2,4-trimethylpentane 41) Heptane 49) Toluene 57) m&p-xylene		57 56 78 57 43 92	25068 85357 49341 53217 37898 18182 84215 41991	2.73 2.50 0.64 0.35 0.57	ppb ppb ppb ppb ppb ppb ppb	# 82 # 83 89 # 30 94


^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed AJ112828.D AN23_1UG.M Fri Dec 14 12:50:32 2012 MSD1


(OT Reviewed)

Quantitation Report

Centek Laboratories, LloCantitation Report

(QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AJ112829.D Acq On : 29 Nov 2012 2:01 am

Vial: 50 Operator: RJP Inst : MSD #1 Multiplr: 1.00

Sample : C1211047-001A 40X Misc : AN23_1UG Misc

MS Integration Params: RTEINT.P

Quant Time: Nov 29 07:37:24 2012 Quant Results File: AN23 1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\AN23_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Tue Nov 27 16:12:35 2012
Response via : Initial Calibration

DataAcq Meth : 1UG_T015

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
1) Bromochloromethane 33) 1,4-difluorobenzene 48) Chlorobenzene-d5	9.73 11.98 16.35	128 114 117	22685 85075 69040	1.00 ppb 1.00 ppb 1.00 ppb	0.00
System Monitoring Compounds 61) Bromofluorobenzene Spiked Amount 1.000	17.84	95 - 130	31645 Recover	0.78 ppb ry = 78	
Target Compounds 28) Hexane 35) Cyclohexane	8.88 8.87	57 56	28589 20777	0.92 ppb 1.14 ppb	

100000

50000

Time-

150000

800000

Abundance

750000

700000

650000

600000

550000

500000

450000

400000

350000

300000

250000

200000

Method Title

(QT Reviewed)

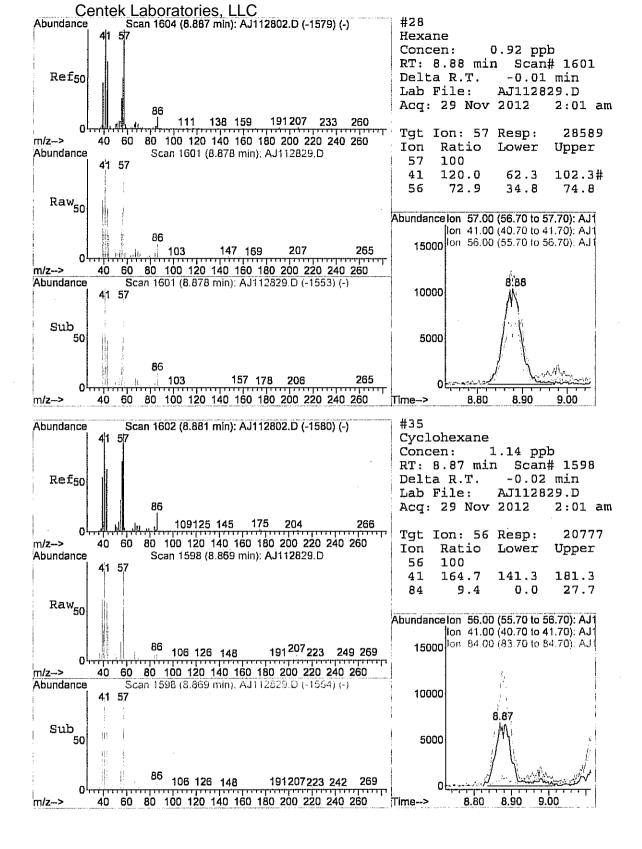
Quantitation Report

MSD #1

RJP

Operator: Vial:

C:\HPCHEM\1\DATA\AJ112829.D


Data File Acq On Sample

2:01 am

C1211047-001A 40X

29 Nov 2012

Inst

CLIENT: Arcadis - Newtown

Lab Order:

C1211047

Project:

LMC Utica

Lab ID:

C1211047-002A

Date: 14-Dec-12

Client Sample ID: SG-IND-2 (ARC)

Tag Number: 553,153

Collection Date: 11/20/2012

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	· DF	Date Analyzed
FIELD PARAMETERS		FL	D			Analyst:
Lab Vacuum In	-7			"Hg		11/21/2012
Lab Vacuum Out	-30			"Hg		11/21/2012
1UG/M3 BY METHOD TO15		TO-	15			Analyst: RJP
1,1,1-Trichloroethane	< 0.15	0.15		ppbV	1	11/28/2012 7:33:00 PM
1,1,2,2-Tetrachloroethane	< 0.15	0.15		ppbV	1	11/28/2012 7:33:00 PM
1,1,2-Trichloroethane	< 0.15	0.15		ppbV	1	11/28/2012 7:33:00 PM
1,1-Dichloroethane	< 0.15	0.15		ppbV	1	11/28/2012 7:33:00 PM
1,1-Dichloroethene	< 0.15	0.15		ppbV	1	11/28/2012 7:33:00 PM
1,2,4-Trichlorobenzene	< 0.15	0.15		ppbV	1	11/28/2012 7:33:00 PM
1,2,4-Trimethylbenzene	0.40	0.15		ppbV	1	11/28/2012 7:33:00 PM
1,2-Dibromoethane	< 0.15	0.15		ppbV	1	11/28/2012 7:33:00 PM
1,2-Dichlorobenzene	< 0.15	0.15		ppbV	1	11/28/2012 7:33:00 PM
1,2-Dichloroethane	< 0.15	0.15		ppbV	1	11/28/2012 7:33:00 PM
1,2-Dichloropropane	< 0.15	0.15		ppbV	1	11/28/2012 7:33:00 PM
1,3,5-Trimethylbenzene	0.10	0.15	J	ppbV	1	11/28/2012 7:33:00 PM
1,3-butadiene	< 0.15	0.15		ppbV	1	11/28/2012 7:33:00 PM
1,3-Dichlorobenzene	< 0.15	0.15		ppbV	1	11/28/2012 7:33:00 PM
1,4-Dichlorobenzene	< 0.15	0.15		ppbV	1	11/28/2012 7:33:00 PM
1,4-Dioxane	< 0.30	0.30		ppbV	1	11/28/2012 7:33:00 PM
2,2,4-trimethylpentane	0.12	0.15	J	ppbV	1	11/28/2012 7:33:00 PM
4-ethyltoluene	0.13	0.15	J	ppbV	1	11/28/2012 7:33:00 PM
Acetone	12	3.0		ppbV	10	11/29/2012 2:35:00,AM
Allyl chloride	< 0.15	0.15		ppbV	1	11/28/2012 7:33:00 PM
Benzene	0.41	0.15		ppbV	1	11/28/2012 7:33:00 PM
Benzyl chloride	< 0.15	0.15		ppbV	1	11/28/2012 7:33:00 PM
Bromodichloromethane	< 0.15	0.15		ppbV	1	11/28/2012 7:33:00 PM
Bromoform	< 0.15	0.15		ppbV	1	11/28/2012 7:33:00 PM
Bromomethane	< 0.15	0.15		ppbV	1	11/28/2012 7:33:00 PM
Carbon disulfide	0.58	0.15		ppbV	1	11/28/2012 7:33:00 PM
Carbon tetrachloride	< 0.15	0.15		ppbV	1	11/28/2012 7:33:00 PM
Chlorobenzene	< 0.15	0.15		ppbV	1	11/28/2012 7:33:00 PM
Chloroethane	< 0.15	0.15		ppbV	1	11/28/2012 7:33:00 PM
Chloroform	0.27	0.15		ppbV	1	11/28/2012 7:33:00 PM
Chloromethane	< 0.15	0.15		ppbV	1	11/28/2012 7:33:00 PM
cis-1,2-Dichloroethene	< 0.15	0.15		ppbV	1	11/28/2012 7:33:00 PM
cis-1,3-Dichloropropene	< 0.15	0.15		ppbV	1	11/28/2012 7:33:00 PM
Cyclohexane	0.74	0.15		ppbV	1	11/28/2012 7:33:00 PM
Dibromochloromethane	< 0.15	0.15		ppbV	1	11/28/2012 7:33:00 PM
Ethyl acetate	< 0.25	0.25		ppbV	1	11/28/2012 7:33:00 PM

Qualifiers:

- ** Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 3 of 8

Arcadis - Newtown

CLIENT: Lab Order:

C1211047

Project:

LMC Utica

Lab ID:

C1211047-002A

Date: 14-Dec-12

Client Sample ID: SG-IND-2 (ARC)

Tag Number: 553,153

Collection Date: 11/20/2012

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed	
1UG/M3 BY METHOD TO15	TO-15				Analyst: RJP		
Ethylbenzene	0.26	0.15		ppbV	1	11/28/2012 7:33:00 PM	
Freon 11	0.19	0.15		ppbV	1	11/28/2012 7:33:00 PM	
Freon 113	0.14	0.15	J	ppbV	1	11/28/2012 7:33:00 PM	
Freon 114	< 0.15	0.15		ррьV	1	11/28/2012 7:33:00 PM	
Freon 12	0.48	0.15		ppbV	1	11/28/2012 7:33:00 PM	
Heptane	0.31	0.15		ppbV	1	11/28/2012 7:33:00 PM	
Hexachloro-1,3-butadiene	< 0.15	0.15		ppbV	1	11/28/2012 7:33:00 PM	
Hexane	0.76	0.15		ppbV	1	11/28/2012 7:33:00 PM	
isopropyi alcohol	< 0.15	0.15		ppbV	1	11/28/2012 7:33:00 PM	
m&p-Xylene	0.84	0.30		ppbV	1	11/28/2012 7:33:00 PM	
Methyl Butyl Ketone	< 0.30	0.30		ppbV	1	11/28/2012 7:33:00 PM	
Methyl Ethyl Ketone	< 0.30	0.30		ppbV	1	11/28/2012 7:33:00 PM	
Methyl Isobutyl Ketone	< 0.30	0.30		ppbV	1	11/28/2012 7:33:00 PM	
Methyl tert-butyl ether	< 0.15	0.15		ppbV	1	11/28/2012 7:33:00 PM	
Methylene chloride	< 0.15	0.15		ppbV	1	11/28/2012 7:33:00 PM	
o-Xylene	0.25	0.15		ppbV	1	11/28/2012 7:33:00 PM	
Propylene	< 0.15	0.15		ppbV	1	11/28/2012 7:33:00 PM	
Styrene	< 0.15	0.15		ppbV	1	11/28/2012 7:33:00 PM	
Tetrachloroethylene	0.57	0.15		ppbV	1	11/28/2012 7:33:00 PM	
Tetrahydrofuran	< 0.15	0.15		ppbV	1	11/28/2012 7:33:00 PM	
Toluene	1.8	0.15		ppbV	1	11/28/2012 7:33:00 PM	
trans-1,2-Dichloroethene	< 0.15	0.15		ppbV	1	11/28/2012 7:33:00 PM	
trans-1,3-Dichloropropene	< 0.15	0.15		ppbV	1	11/28/2012 7:33:00 PM	
Trichloroethene	0.12	0.15	J	ppbV	1	11/28/2012 7:33:00 PM	
Vinyl acetate	< 0.15	0.15		ppbV	1	11/28/2012 7:33:00 PM	
Vinyl Bromide	< 0.15	0.15		ppbV	1	11/28/2012 7:33:00 PM	
Vinyl chloride	< 0.15	0.15		ppbV	1	11/28/2012 7:33:00 PM	
Surr: Bromofluorobenzene	107	70-130		%REC	1	11/28/2012 7:33:00 PM	

Quali	fiers:
~	

- Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 4 of 8

CLIENT: Arcadis - Newtown

Lab Order:

Project:

C1211047 LMC Utica

Lab ID:

C1211047-002A

Date: 14-Dec-12

Client Sample ID: SG-IND-2 (ARC)

Tag Number: 553,153

Collection Date: 11/20/2012

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed		
1UG/M3 BY METHOD TO15	TO-15					Analyst: RJP		
1,1,1-Trichloroethane	< 0.83	0.83		ug/m3	1	11/28/2012 7:33:00 PM		
1,1,2,2-Tetrachloroethane	< 1.0	1.0		ug/m3	1	11/28/2012 7:33:00 PM		
1,1,2-Trichloroethane	< 0.83	0.83		ug/m3	1	11/28/2012 7:33:00 PM		
1,1-Dichloroethane	< 0.62	0.62		ug/m3	1	11/28/2012 7:33:00 PM		
1,1-Dichloroethene	< 0.60	0.60		ug/m3	1	11/28/2012 7:33:00 PM		
1,2,4-Trichlorobenzene	< 1.1	1.1		ug/m3	1	11/28/2012 7:33:00 PM		
1,2,4-Trimethylbenzene	2.0	0.75		ug/m3	1	11/28/2012 7:33:00 PM		
1,2-Dibromoethane	< 1.2	1.2		ug/m3	1	11/28/2012 7:33:00 PM		
1,2-Dichlorobenzene	< 0.92	0.92		ug/m3	1	11/28/2012 7:33:00 PM		
1,2-Dichloroethane	< 0.62	0.62		ug/m3	1	11/28/2012 7:33:00 PM		
1,2-Dichloropropane	< 0.70	0.70		ug/m3	1	11/28/2012 7:33:00 PM		
1,3,5-Trimethylbenzene	0.50	0.75	J	ug/m3	1	11/28/2012 7:33:00 PM		
1,3-butadiene	< 0.34	0.34		ug/m3	1	11/28/2012 7:33:00 PM		
1,3-Dichlorobenzene	< 0.92	0.92		ug/m3	1	11/28/2012 7:33:00 PM		
1,4-Dichlorobenzene	< 0.92	0,92		ug/m3	1	11/28/2012 7:33:00 PM		
1,4-Dioxane	< 1.1	1.1		ug/m3	1	11/28/2012 7:33:00 PM		
2,2,4-trimethylpentane	0.57	0.71	J	ug/m3	1	11/28/2012 7:33:00 PM		
4-ethyltoluene	0.65	0.75	J	ug/m3	1	11/28/2012 7:33:00 PM		
Acetone	28	7.2		ug/m3	10	11/29/2012 2:35:00 AM		
Allyl chloride	< 0.48	0.48		ug/m3	1	11/28/2012 7:33:00 PM		
Benzene	1.3	0.49		ug/m3	1	11/28/2012 7:33:00 PM		
Benzyl chloride	< 0.88	0.88		ug/m3	1	11/28/2012 7:33:00 PM		
Bromodichloromethane	< 1.0	1.0		ug/m3	1	11/28/2012 7:33:00 PM		
Bromoform	< 1.6	1.6		ug/m3	1	11/28/2012 7:33:00 PM		
Bromomethane	< 0.59	0.59		ug/m3	1	11/28/2012 7:33:00 PM		
Carbon disulfide	1.8	0.47		ug/m3	1	11/28/2012 7:33:00 PM		
Carbon tetrachloride	< 0.96	0.96		ug/m3	1	11/28/2012 7:33:00 PM		
Chlorobenzene	< 0.70	0.70		ug/m3	1	11/28/2012 7:33:00 PM		
Chloroethane	< 0.40	0.40		ug/m3	1	11/28/2012 7:33:00 PM		
Chloroform	1.3	0.74		ug/m3	1	11/28/2012 7:33:00 PM		
Chloromethane	< 0.31	0.31		ug/m3	1	11/28/2012 7:33:00 PM		
cis-1,2-Dichloroethene	< 0.60	0.60		ug/m3	1	11/28/2012 7:33:00 PM		
cis-1,3-Dichloropropene	< 0.69	0.69		ug/m3	1	11/28/2012 7:33:00 PM		
Cyclohexane	2.6	0.52		ug/m3	1	11/28/2012 7:33:00 PM		
Dibromochloromethane	< 1.3	1.3		ug/m3	1	11/28/2012 7:33;00 PM		
Ethyl acetate	< 0.92	0.92		ug/m3	1	11/28/2012 7:33:00 PM		
Ethylbenzene	1.1	0.66		ug/m3	1	11/28/2012 7:33:00 PM		
Freon 11	1.1	0.86		ug/m3	1	11/28/2012 7:33:00 PM		
Freon 113	1.1	1.2	J	ug/m3	1	11/28/2012 7:33:00 PM		
Freon 114	< 1.1	1.1	_	ug/m3	1	11/28/2012 7:33:00 PM		

Qualifiers:

- ** Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 3 of 8

Arcadis - Newtown

CLIENT: Lab Order:

C1211047

Project:

LMC Utica

Lab ID:

C1211047-002A

Date: 14-Dec-12

Client Sample ID: SG-IND-2 (ARC)

Tag Number: 553,153

Collection Date: 11/20/2012

Matrix: AIR

Analyses	Result	**Limit	Qual Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-15			Analyst: RJP
Freon 12	2.4	0.75	ug/m3	1	11/28/2012 7:33:00 PM
Heptane	1.3	0.62	ug/m3	1	11/28/2012 7:33:00 PM
Hexachloro-1,3-butadiene	< 1.6	1.6	ug/m3	1	11/28/2012 7:33:00 PM
Hexane	2.7	0.54	ug/m3	1	11/28/2012 7:33:00 PM
Isopropyl alcohol	< 0.37	0.37	ug/m3	1	11/28/2012 7:33:00 PM
m&p-Xylene	3.7	1.3	ug/m3	· 1	11/28/2012 7:33:00 PM
Methyl Butyl Ketone	< 1.2	1.2	ug/m3	1	11/28/2012 7:33:00 PM
Methyl Ethyl Ketone	< 0.90	0.90	ug/m3	1	11/28/2012 7:33:00 PM
Methyl Isobutyl Ketone	< 1.2	1.2	ug/m3	1	11/28/2012 7:33:00 PM
Methyl tert-butyl ether	< 0.55	0.55	ug/m3	1	11/28/2012 7:33:00 PM
Methylene chloride	< 0.53	0.53	ug/m3	1 .	11/28/2012 7:33:00 PM
o-Xylene	1.1	0.66	ug/m3	1	11/28/2012 7:33:00 PM
Propylene	< 0.26	0,26	ug/m3	1	11/28/2012 7:33:00 PM
Styrene	< 0.65	0.65	ug/m3	1	11/28/2012 7:33:00 PM
Tetrachloroethylene	3.9	1.0	ug/m3	1	11/28/2012 7:33:00 PM
Tetrahydrofuran	< 0.45	0.45	ug/m3	1	11/28/2012 7:33:00 PM
Toluene	6.8	0.57	ug/m3	1	11/28/2012 7:33:00 PM
trans-1,2-Dichloroethene	< 0.60	0.60	ug/m3	1	11/28/2012 7:33:00 PM
trans-1,3-Dichloropropene	< 0.69	0.69	ug/m3	1	11/28/2012 7:33:00 PM
Trichloroethene	0.66	0.82	J ug/m3	1	11/28/2012 7:33:00 PM
Vinyl acetate	< 0.54	0.54	ug/m3	1	11/28/2012 7:33:00 PM
Vinyl Bromide	< 0.67	0.67	ug/m3	1	11/28/2012 7:33:00 PM
Vinyl chloride	< 0.39	0.39	ug/m3	1	11/28/2012 7:33:00 PM

Qualifiers:

Page 4 of 8

^{*} Reporting Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Value above quantitation range

J Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit

Centek Laboratories, LLQCantitation Report

(QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AJ112818.D Vial: 11 : 28 Nov 2012 7:33 pm : C1211047-002A Operator: RJP Sample Inst : MSD #1 Misc : AN23_1UG Multiplr: 1.00

MS Integration Params: RTEINT.P Quant Time: Nov 29 07:37:13 2012

Quant Results File: AN23_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\AN23_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration
Last Update : Tue Nov 27 16:12:35 2012
Response via : Initial Calibration

DataAcq Meth : 1UG T015

Internal Standards	R.T.	QIon	Response C	onc U	nits	Dev	(Min)
1) Bromochloromethane 33) 1,4-difluorobenzene 48) Chlorobenzene-d5	9.73 11.99 16.35	128 114 117	97070		ppb		0.00 0.00 0.00
System Monitoring Compounds					_		
61) Bromofluorobenzene Spiked Amount 1.000		95 - 130	53299 Recovery	1.07	ppb 107	.00%	-0.01
Target Compounds						Qva	alue
3) Freon 12	4.19	85	106071	0.48	dqq		99
13) Freon 11	5.79	101	54010	0.19			93
14) Acetone	6.06	58	195044	8.60	ppb	#	69
17) Freon 113	6.76	101	20624	0.14	ppb	#	57
21) Carbon disulfide	7.14		94938	0.58	ppb		99
28) Hexane	8.89			0.76			79
30) Chloroform	9.89	83	27711	0.27	ppb		94
35) Cyclohexane	8.90	56	15472	0.74	ppb		86
37) Benzene		78		0.41	ppb		92
40) 2,2,4-trimethylpentane	12.14	57	13264	0.12	ppb		87
41) Heptane	12.48	43	10425	0.31	ppb	#	75
42) Trichloroethene	12.60		6175	0.12			96
49) Toluene		92		1.78			96
54) Tetrachloroethylene		164		0.57			99
56) Ethylbenzene	16.63	91	33728	0.26			99
57) m&p-xylene		91		0.84			95
60) o-xylene		91		0.25			80
64) 4-ethyltoluene	18.35 18.41	105	15651m 🦍	0.13			
65) 1,3,5-trimethylbenzene				0.10			
66) 1,2,4-trimethylbenzene	18.79	105	48788	0.40	ppb		98

Abundance

1e+07

0000006

8000000

6000000

5000000

7000000

4000000

2000000

10000001

(QT Reviewed)

Quantitation Report

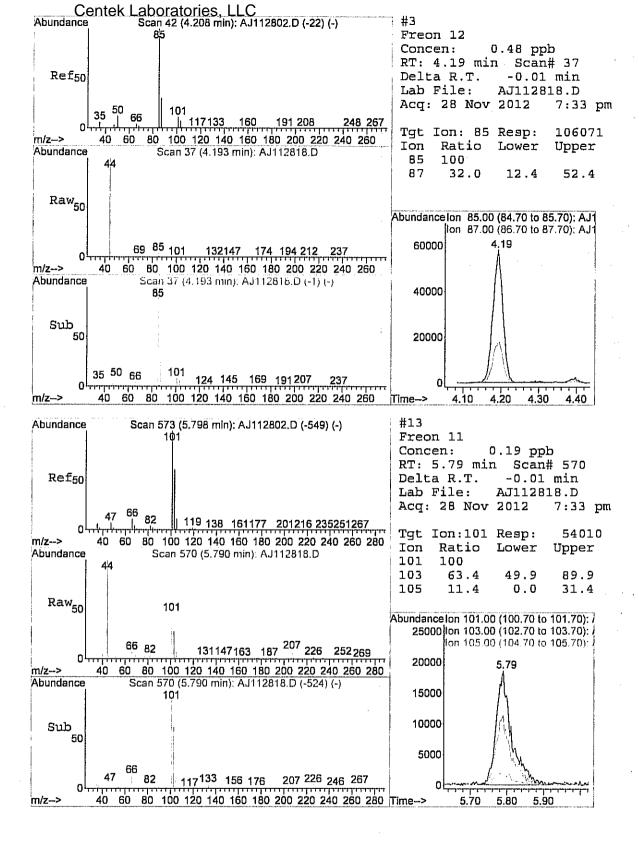
MSD #1

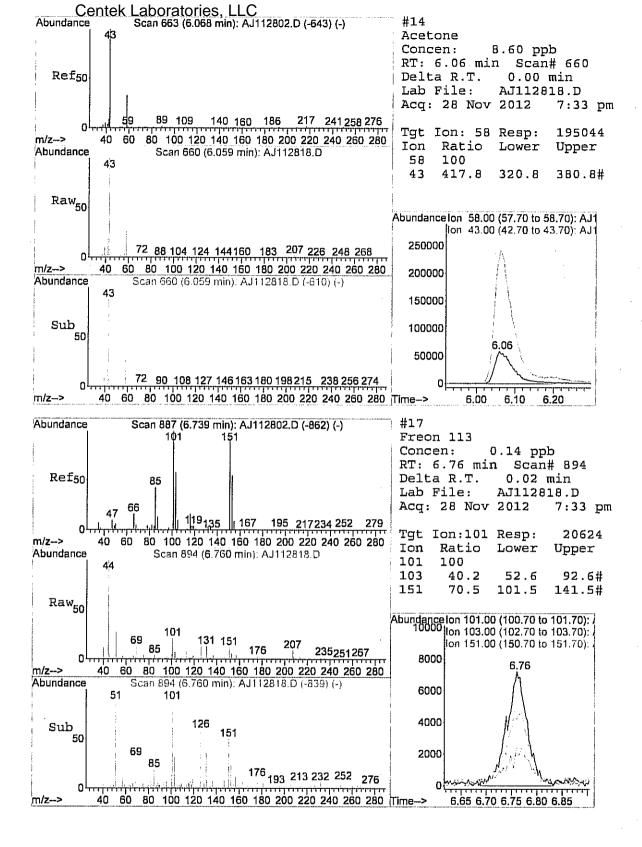
RJP

Operator: Vial:

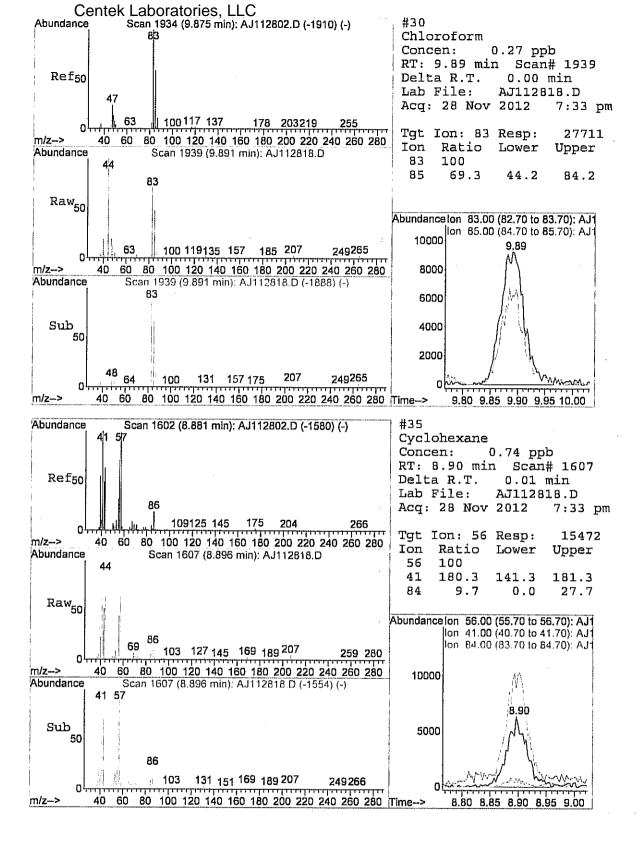
C:\HPCHEM\1\DATA\AJ112818.D

Data File

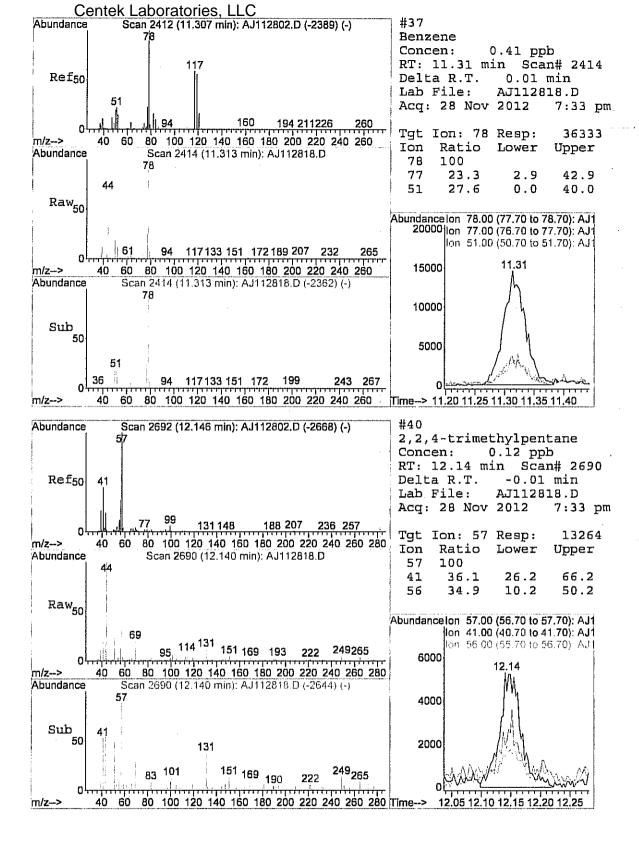

Acq On Sample

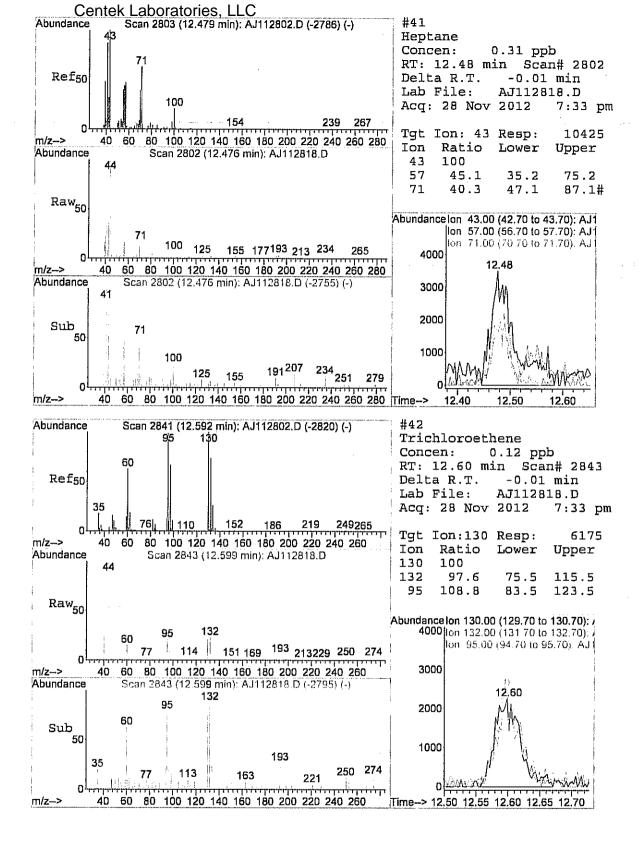

Misc

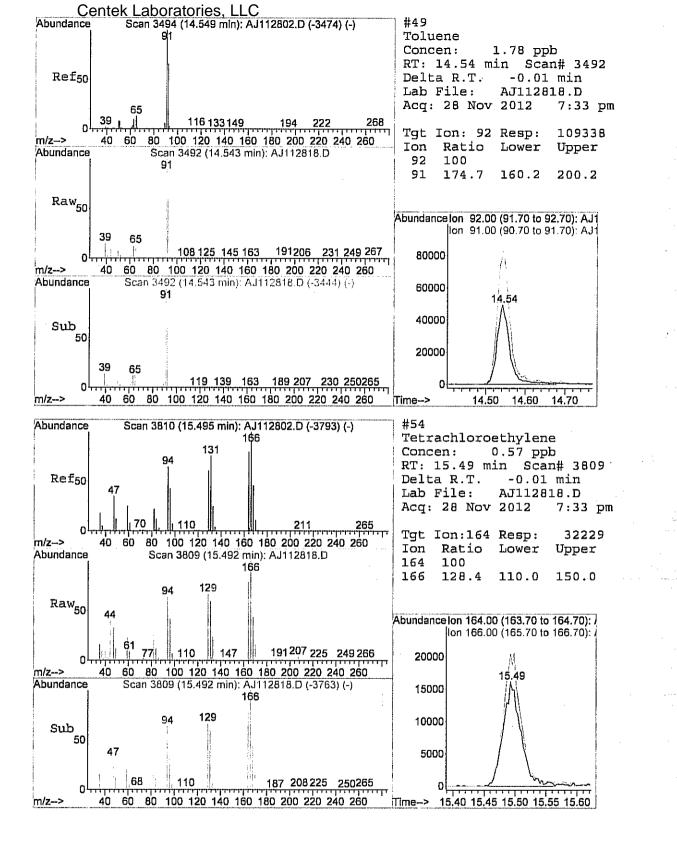

7:33 pm

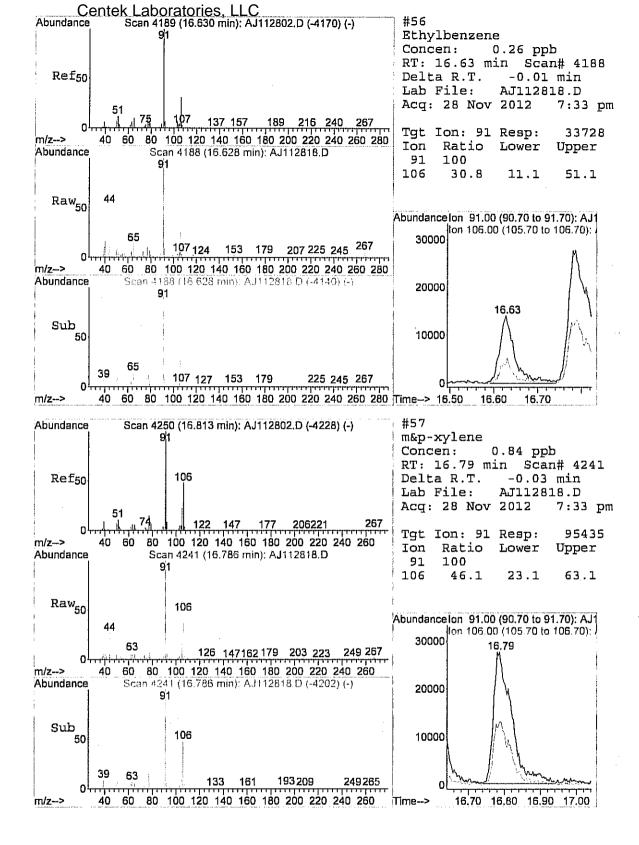

C1211047-002A 28 Nov 2012

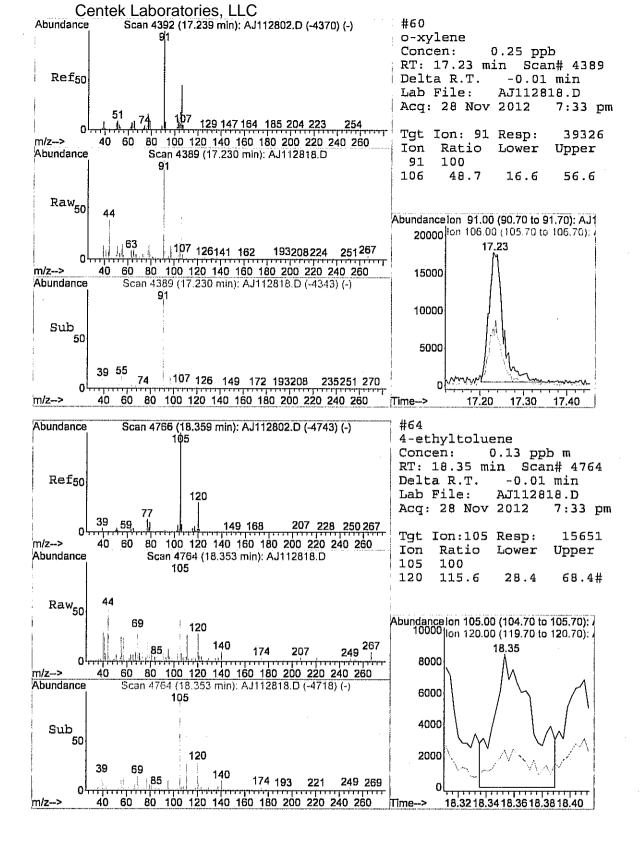
Inst

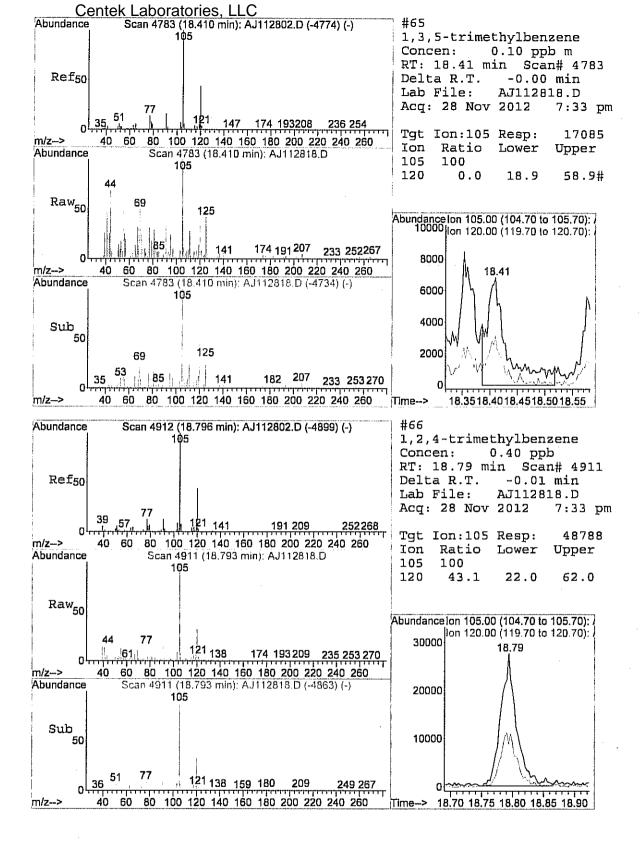







Page 78 of 204


MSD1

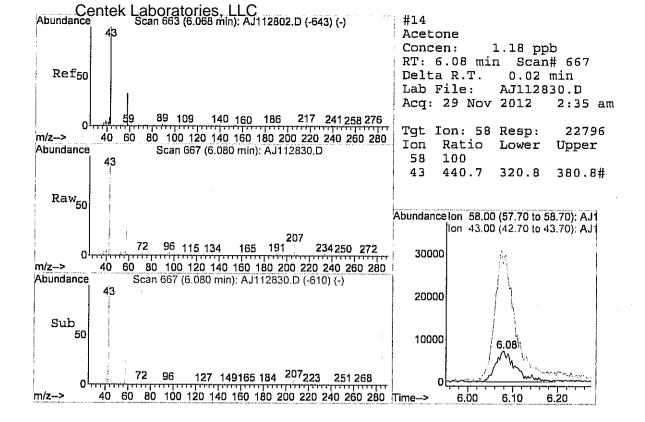


Centek Laboratories, LQcantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AJ112830.D Acq On : 29 Nov 2012 2:35 am Sample : C1211047-002A 10X

Vial: 51 Operator: RJP Inst : MSD #1 Misc : AN23_1UG Multiplr: 1.00

MS Integration Params: RTEINT.P


Quant Time: Nov 29 07:37:25 2012 Quant Results File: AN23 1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\AN23_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Tue Nov 27 16:12:35 2012
Response via : Initial Calibration
DataAcq Meth : 1UG_T015

Internal Standards	R.T.	QIon	Response (Conc Un	its Dev(Min)
1) Bromochloromethane 33) 1,4-difluorobenzene 48) Chlorobenzene-d5	9.73 11.98 16.35		21393 77764 62413	1.00 1.00 1.00	ppb 0.00
System Monitoring Compounds 61) Bromofluorobenzene Spiked Amount 1.000	17.83 Range 70		30447m /	0.83 ; 7 =	ppb -0.01 83.00%
Target Compounds 14) Acetone	6.08	58	22796	1.18	Qvalue ppb # 59

(QT Reviewed)

Quantitation Report

MSD1

CLIENT: Arcadis - Newtown

11100013 - 1101

Lab Order:

C1211047

Project:

LMC Utica

Lab ID:

C1211047-003A

Date: 14-Dec-12

Client Sample ID: SG-IND-3 (ARC)

Tag Number: 285,281

Collection Date: 11/20/2012

Matrix: AIR

Analyses	Result	**Limit Q	ual Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	-7		"Hg		11/21/2012
Lab Vacuum Out	-30		"Hg		11/21/2012
1UG/M3 BY METHOD TO15		TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.15	0.15	ppbV	1	11/28/2012 8:09:00 PM
1,1,2,2-Tetrachloroethane	< 0.15	0.15	ppbV	1	11/28/2012 8:09:00 PM
1,1,2-Trichloroethane	< 0.15	0.15	ppbV	1	11/28/2012 8:09:00 PM
1,1-Dichloroethane	< 0.15	0.15	ppbV	1	11/28/2012 8:09:00 PM
1,1-Dichloroethene	< 0.15	0.15	ppbV	1	11/28/2012 8:09:00 PM
1,2,4-Trichlorobenzene	< 0.15	0.15	ppbV	1	11/28/2012 8:09:00 PM
1,2,4-Trimethylbenzene	0.45	0.15	ppbV	1	11/28/2012 8:09:00 PM
1,2-Dibromoethane	< 0.15	0.15	ppbV	1	11/28/2012 8:09:00 PM
1,2-Dichlorobenzene	< 0.15	0.15	ppbV	1	11/28/2012 8:09:00 PM
1,2-Dichloroethane	< 0.15	0.15	ppbV	1	11/28/2012 8:09:00 PM
1,2-Dichloropropane	< 0.15	0.15	ppbV	1	11/28/2012 8:09:00 PM
1,3,5-Trimethylbenzene	0.10	0.15	l ppbV	1	11/28/2012 8:09:00 PM
1,3-butadiene	< 0.15	0,15	ppbV	1	11/28/2012 8:09:00 PM
1,3-Dichlorobenzene	< 0.15	0.15	ppbV	1	11/28/2012 8:09:00 PM
1,4-Dichlorobenzene	< 0.15	0.15	ppbV	1	11/28/2012 8:09:00 PM
1,4-Dioxane	< 0.30	0.30	ppbV	1	11/28/2012 8:09:00 PM
2,2,4-trimethylpentane	< 0.15	0.15	ppbV	1	11/28/2012 8:09:00 PM
4-ethyltoluene	0.12	0,15	l ppbV	1	11/28/2012 8:09:00 PM
Acetone	9.4	3.0	ppbV	10	11/29/2012 3:45:00 AM
Allyl chloride	< 0.15	0.15	ppbV	1	11/28/2012 8:09:00 PM
Benzene	0.20	0.15	ppbV	1	11/28/2012 8:09:00 PM
Benzyl chloride	< 0.15	0.15	ppbV	1	11/28/2012 8:09:00 PM
Bromodichloromethane	< 0.15	0.15	ppbV	1	11/28/2012 8:09:00 PM
Bromoform	< 0.15	0.15	ppbV	1	11/28/2012 8:09:00 PM
Bromomethane	< 0.15	0.15	ppbV	1	11/28/2012 8:09:00 PM
Carbon disulfide	< 0.15	0.15	ppbV	1	11/28/2012 8:09:00 PM
Carbon tetrachloride	< 0.15	0.15	ppbV	1	11/28/2012 8:09:00 PM
Chlorobenzene	< 0.15	0.15	ppb∨	1	11/28/2012 8:09:00 PM
Chloroethane	< 0.15	0.15	ppbV	1	11/28/2012 8:09:00 PM
Chloroform	< 0.15	0,15	ppbV	1	11/28/2012 8:09:00 PM
Chloromethane	< 0.15	0.15	ppb∨	1	11/28/2012 8:09:00 PM
cis-1,2-Dichloroethene	< 0.15	0.15	Vdqq	1	11/28/2012 8:09:00 PM
cis-1,3-Dichloropropene	< 0.15	0.15	ppbV	1	11/28/2012 8:09:00 PM
Cyclohexane	< 0.15	0.15	ppbV	1	11/28/2012 8:09:00 PM
Dibromochloromethane	< 0.15	0.15	ppbV	1	11/28/2012 8:09:00 PM
Ethyl acetate	< 0.25	0.25	ppbV	1	11/28/2012 8:09:00 PM

Qualifiers:

- ** Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 5 of 8

CLIENT: Arcadis - Newtown

Lab Order:

C1211047

Project:

LMC Utica

Lab ID:

C1211047-003A

Date: 14-Dec-12

Client Sample ID: SG-IND-3 (ARC)

Tag Number: 285,281

Collection Date: 11/20/2012

Matrix: AIR

Analyses	Result	**Limit	Qual Unit	s DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO		Analyst: RJP	
Ethylbenzene	0.24	0.15	ppbV	• 1	11/28/2012 8:09:00 PM
Freon 11	0.16	0.15	ppbV	1	11/28/2012 8:09:00 PM
Freon 113	< 0.15	0.15	ppbV	1	11/28/2012 8:09:00 PM
Freon 114	< 0.15	0.15	ppbV	1	11/28/2012 8:09:00 PM
Freon 12	21	1.5	ppbV	10	11/29/2012 3:45:00 AM
Heptane	< 0.15	0.15	ppbV	1	11/28/2012 8:09:00 PM
Hexachloro-1,3-butadiene	< 0.15	0.15	ppb∨	1	11/28/2012 8:09:00 PM
Hexane	0.61	0.15	ppbV	1	11/28/2012 8:09:00 PM
Isopropyl alcohol	< 0.15	0.15	ppbV	1	11/28/2012 8:09:00 PM
m&p-Xylene	0.97	0.30	ppbV	1	11/28/2012 8:09:00 PM
Methyl Butyl Ketone	< 0.30	0.30	ppbV	1	11/28/2012 8:09:00 PM
Methyl Ethyl Ketone	< 0.30	0.30	ppbV	1	11/28/2012 8:09:00 PM
Methyl isobutyl Ketone	< 0.30	0.30	ppbV	•1	11/28/2012 8:09:00 PM
Methyl tert-butyl ether	< 0.15	0.15	ppbV	1	11/28/2012 8:09:00 PM
Methylene chloride	< 0.15	0.15	ppbV	1	11/28/2012 8:09:00 PM
o-Xylene	0.29	0.15	ppbV	1	11/28/2012 8:09:00 PM
Propylene	< 0.15	0.15	ppbV	1	11/28/2012 8:09:00 PM
Styrene	< 0.15	0.15	ppbV	1	11/28/2012 8:09:00 PM
Tetrachloroethylene	2.2	1.5	ppbV	10	11/29/2012 3:45:00 AM
Tetrahydrofuran	< 0.15	0.15	ррЬV	1	11/28/2012 8:09:00 PM
Toluene	1.7	0.15	ppbV	1	11/28/2012 8:09:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15	ррЬV	1	11/28/2012 8:09:00 PM
trans-1,3-Dichloropropene	< 0.15	0.15	ppbV	1	11/28/2012 8:09:00 PM
Trichloroethene	< 0.15	0.15	ppbV	1	11/28/2012 8:09:00 PM
Vinyl acetate	< 0.15	0.15	ppbV	1	11/28/2012 8:09:00 PM
Vinyl Bromide	< 0.15	0.15	ppbV	1	11/28/2012 8:09:00 PM
Vinyl chloride	< 0.15	0.15	ppbV	1	11/28/2012 8:09:00 PM
Surr: Bromofluorobenzene	90.0	70-130	%REC	1	11/28/2012 8:09:00 PM
NOTES:					

Sample has large interfering compound in begging of run. Used 10x dilution for Freon 12.

Qualifiers:

Reporting Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Value above quantitation range

J Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit

Page 6 of 8

CLIENT: Arcadis - Newtown

Lab Order:

C1211047

Project:

LMC Utica

Lab ID:

C1211047-003A

Date: 14-Dec-12

Client Sample ID: SG-IND-3 (ARC)

Tag Number: 285,281

Collection Date: 11/20/2012

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TC)-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.83	0.83		ug/m3	1	11/28/2012 8:09:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0		ug/m3	1	11/28/2012 8:09:00 PM
1,1,2-Trichloroethane	< 0.83	0.83		ug/m3	1	11/28/2012 8:09:00 PM
1,1-Dichloroethane	< 0.62	0.62		ug/m3	1	11/28/2012 8:09:00 PM
1,1-Dichloroethene	< 0.60	0.60		ug/m3	1 .	11/28/2012 8:09:00 PM
1,2,4-Trichlorobenzene	< 1.1	1.1		ug/m3	1	11/28/2012 8:09:00 PM
1,2,4-Trimethylbenzene	2.2	0.75		ug/m3	1	11/28/2012 8:09:00 PM
1,2-Dibromoethane	< 1.2	1.2		ug/m3	1	11/28/2012 8:09:00 PM
1,2-Dichlorobenzene	< 0.92	0.92		ug/m3	1	11/28/2012 8:09:00 PM
1,2-Dichloroethane	< 0.62	0.62		ug/m3	1	11/28/2012 8:09:00 PM
1,2-Dichloropropane	< 0.70	0.70		ug/m3	1	11/28/2012 8:09:00 PM
1,3,5-Trimethylbenzene	0.50	0.75	J	ug/m3	1	11/28/2012 8:09:00 PM
1,3-butadiene	< 0.34	0.34		ug/m3	1	11/28/2012 8:09:00 PM
1,3-Dichlorobenzene	< 0.92	0.92		ug/m3	1	11/28/2012 8:09:00 PM
1,4-Dichlorobenzene	< 0.92	0.92		ug/m3	1	11/28/2012 8:09:00 PM
1,4-Dioxane	< 1.1	1.1		ug/m3	1	11/28/2012 8:09:00 PM
2,2,4-trimethylpentane	< 0.71	0.71		ug/m3	1	11/28/2012 8:09:00 PM
4-ethyltoluene	0.60	0.75	J	ug/m3	1	11/28/2012 8:09:00 PM
Acetone	23	7.2		ug/m3	10	11/29/2012 3:45:00 AM
Allyl chloride	< 0.48	0.48		ug/m3	1	11/28/2012 8:09:00 PM
Benzene	0.65	0.49		ug/m3	1	11/28/2012 8:09:00 PM
Benzyl chloride	< 0.88	0.88		ug/m3	1	11/28/2012 8:09:00 PM
Bromodichloromethane	< 1.0	1.0		ug/m3	1	11/28/2012 8:09:00 PM
Bromoform	< 1.6	1.6		ug/m3	1	11/28/2012 8:09:00 PM
Bromomethane	< 0.59	0.59		ug/m3	1	11/28/2012 8:09:00 PM
Carbon disulfide	< 0.47	0.47		ug/m3	11	11/28/2012 8:09:00 PM
Carbon tetrachloride	< 0.96	0.96		ug/m3	1	11/28/2012 8:09:00 PM
Chlorobenzene	< 0.70	0.70		ug/m3	1	11/28/2012 8:09:00 PM
Chloroethane	< 0.40	0.40		ug/m3	. 1	11/28/2012 8:09:00 PM
Chloroform	< 0.74	0.74		ug/m3	1	11/28/2012 8:09:00 PM
Chloromethane	< 0.31	0.31		ug/m3	1	11/28/2012 8:09:00 PM
cis-1,2-Dichloroethene	< 0.60	0.60		ug/m3	1	11/28/2012 8:09:00 PM
cis-1,3-Dichloropropene	< 0.69	0.69		ug/m3	1	11/28/2012 8:09:00 PM
Cyclohexane	< 0.52	0.52		ug/m3	1	11/28/2012 8:09:00 PM
Dibromochloromethane	< 1.3	1.3		ug/m3	1	11/28/2012 8:09:00 PM
Ethyl acetate	< 0.92	0.92		ug/m3	1	11/28/2012 8:09:00 PM
Ethylbenzene	1.1	0.66		ug/m3	1	11/28/2012 8:09:00 PM
Freon 11	0.91	0.86		ug/m3	1	11/28/2012 8:09:00 PM
Freon 113	< 1.2	1.2		ug/m3	1	11/28/2012 8:09:00 PM
Freon 114	< 1.1	1.1		ug/m3	1	11/28/2012 8:09:00 PM

Qualifiers:

- ** Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 5 of 8

CLIENT:

Arcadis - Newtown

Lab Order:

C1211047

Project:

LMC Utica

Lab ID:

C1211047-003A

Date: 14-Dec-12

Client Sample ID: SG-IND-3 (ARC)

Tag Number: 285,281

Collection Date: 11/20/2012

Matrix: AIR

Analyses	Result	**Limit Qua	al Units	DF	Date Analyzed	
1UG/M3 BY METHOD TO15	· · · · · · · · · · · · · · · · · ·	TO-15			Analyst: RJP	
Freon 12	110	7.5	ug/m3	10	11/29/2012 3:45:00 AM	
Heptane	< 0.62	0.62	ug/m3	1	11/28/2012 8:09:00 PM	
Hexachloro-1,3-butadiene	< 1.6	1.6	ug/m3	1	11/28/2012 8:09:00 PM	
Hexane	2.2	0.54	ug/m3	1	11/28/2012 8:09:00 PM	
Isopropyl alcohol	< 0.37	0.37	ug/m3	1	11/28/2012 8:09:00 PM	
m&p-Xylene	4.3	1.3	ug/m3	1	11/28/2012 8:09:00 PM	
Methyl Butyl Ketone	< 1.2	1.2	ug/m3	1	11/28/2012 8:09:00 PM	
Methyl Ethyl Ketone	< 0.90	0.90	ug/m3	1	11/28/2012 8:09:00 PM	
Methyl Isobutyl Ketone	< 1.2	1.2	ug/m3	1	11/28/2012 8:09:00 PM	
Methyl tert-butyl ether	< 0.55	0.55	ug/m3	1	11/28/2012 8:09:00 PM	
Methylene chloride	< 0.53	0.53	ug/m3	1	11/28/2012 8:09:00 PM	
o-Xylene	1.3	0.66	ug/m3	1	11/28/2012 8:09:00 PM	
Propylene	< 0.26	0.26	ug/m3	1	11/28/2012 8:09:00 PM	
Styrene	< 0.65	0.65	ug/m3	1	11/28/2012 8:09:00 PM	
Tetrachloroethylene	15	10	ug/m3	10	11/29/2012 3:45:00 AM	
Tetrahydrofuran	< 0.45	0.45	ug/m3	1	11/28/2012 8:09:00 PM	
Toluene	6.7	0.57	ug/m3	1	11/28/2012 8:09:00 PM	
trans-1,2-Dichloroethene	< 0.60	0.60	ug/m3	1	11/28/2012 8:09:00 PM	
trans-1,3-Dichloropropene	< 0.69	0.69	ug/m3	. 1	11/28/2012 8:09:00 PM	
Trichloraethene	< 0.82	0.82	ug/m3	1	11/28/2012 8:09:00 PM	
Vinyl acetate	< 0.54	0.54	ug/m3	1	11/28/2012 8:09:00 PM	
Vinyl Bromide	< 0.67	0.67	ug/m3	1	11/28/2012 8:09:00 PM	
Vinyl chloride	< 0.39	0.39	ug/m3	1	11/28/2012 8:09:00 PM	
NOTES:						

Sample has large interfering compound in begging of run. Used 10x dilution for Freon 12.

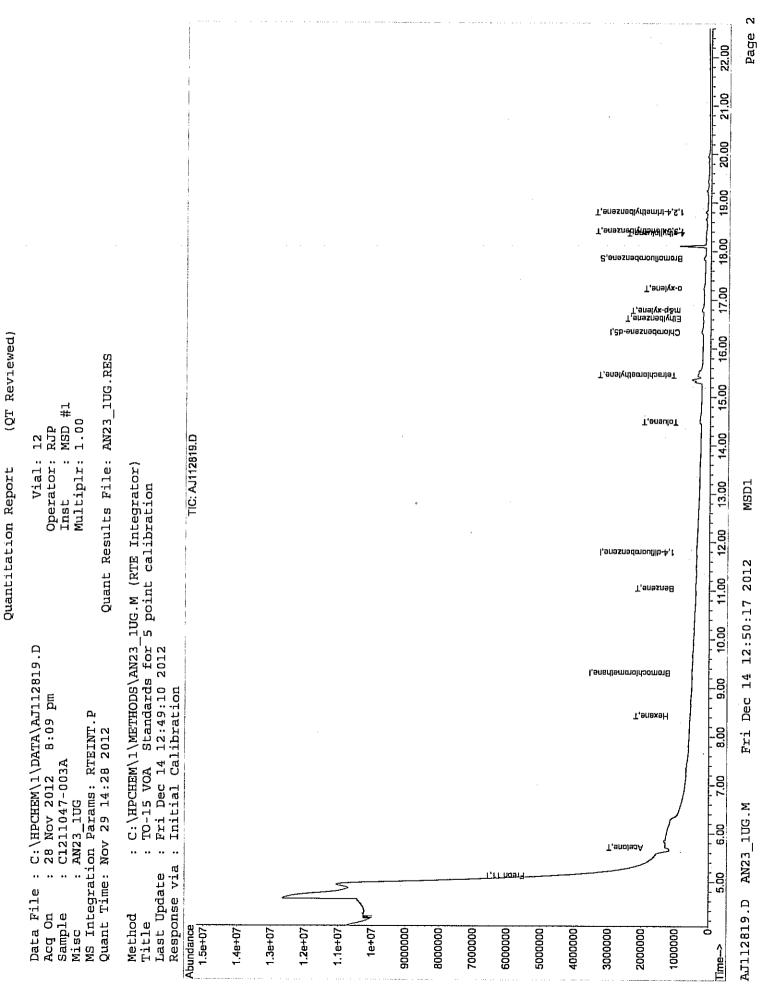
- ** Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

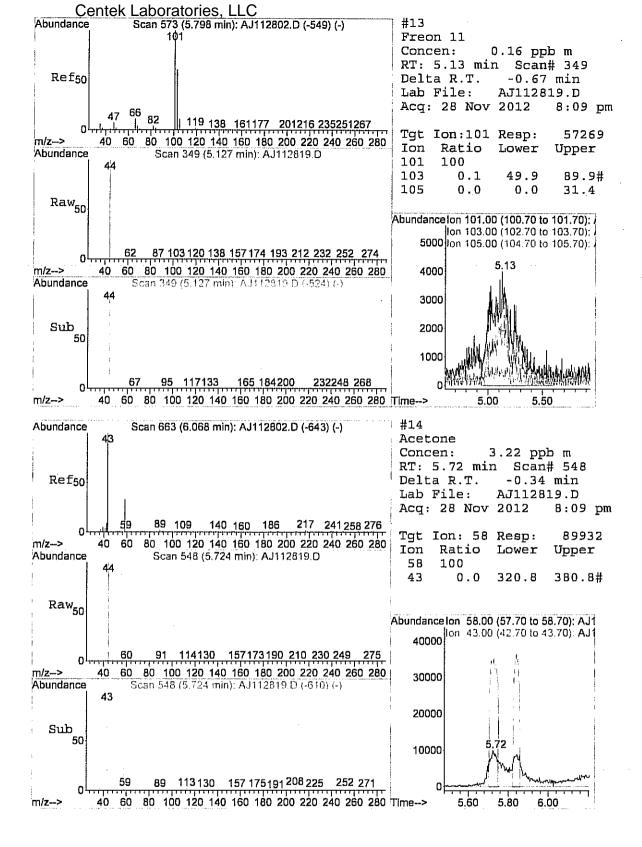
Page 6 of 8

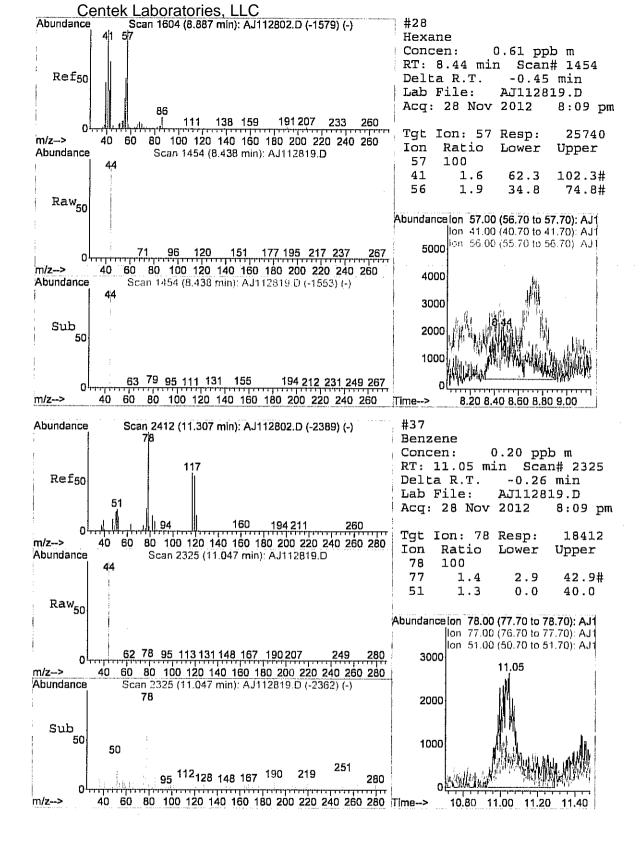
Centek Laboratories, LQCantitation Report (QT Reviewed)

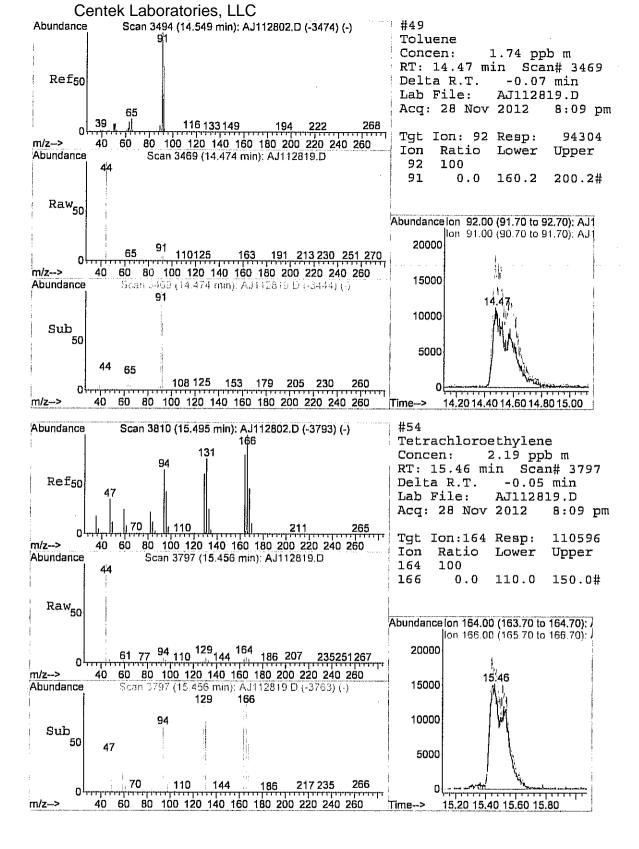
MS Integration Params: RTEINT.P Quant Time: Nov 29 07:37:14 2012

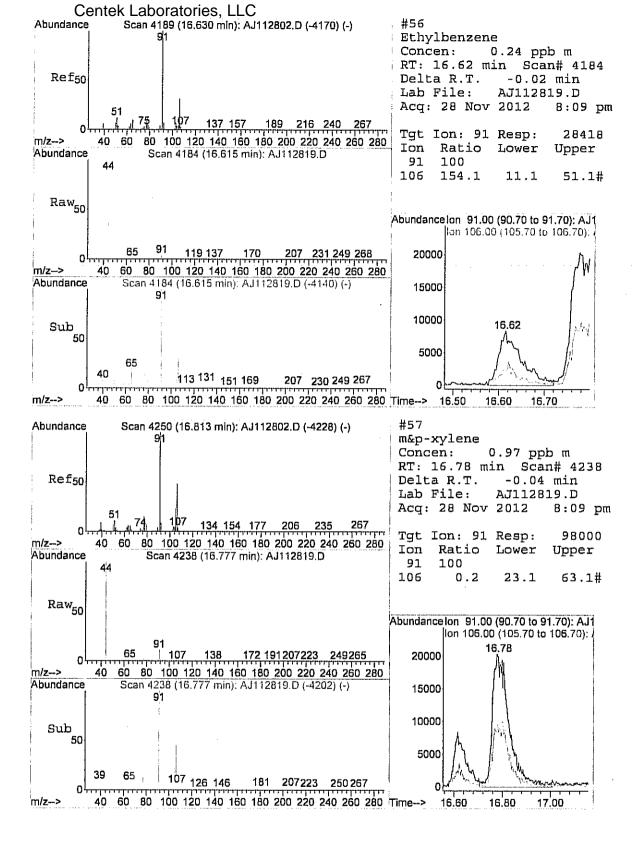
Quant Results File: AN23_1UG.RES

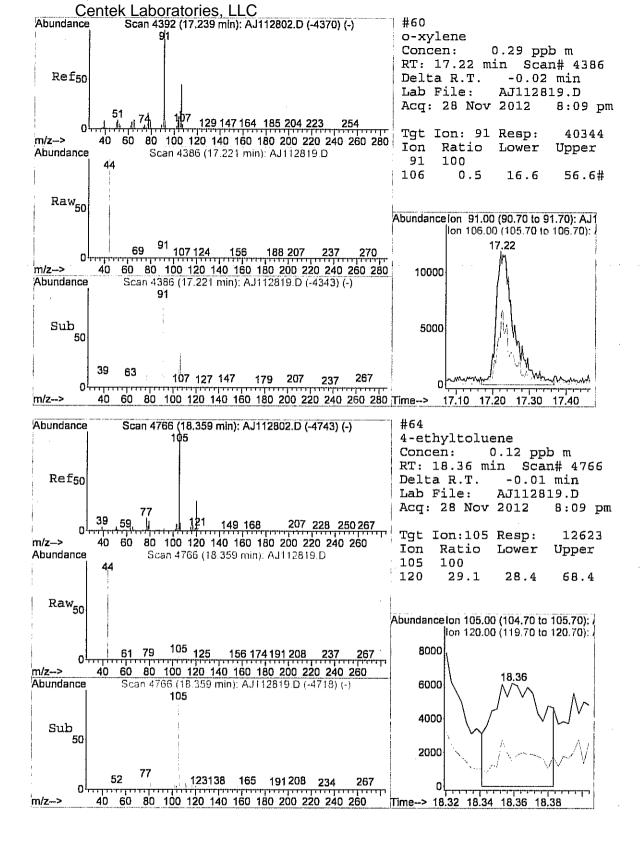

Quant Method : C:\HPCHEM\1\METHODS\AN23_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

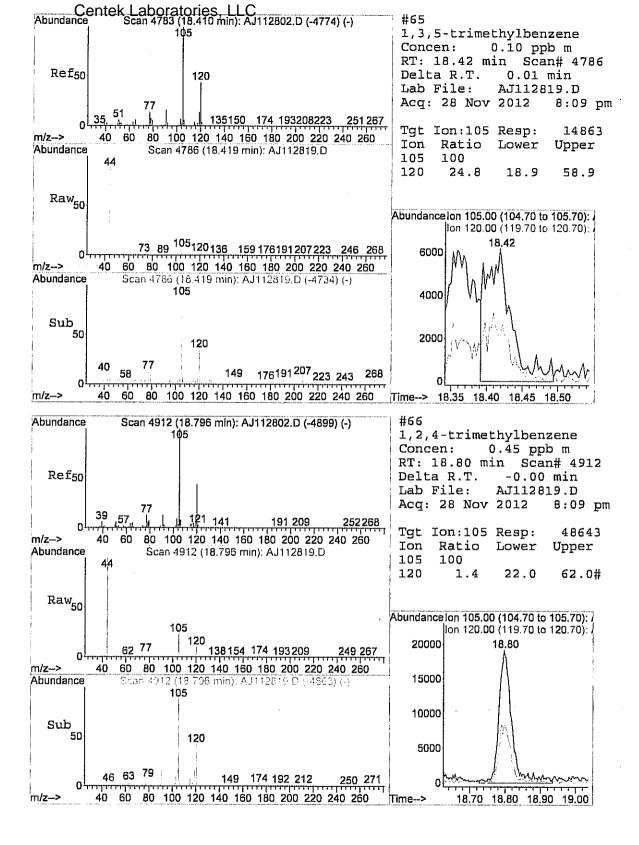

Last Update : Tue Nov 27 16:12:35 2012


Response via : Initial Calibration


DataAcq Meth : 1UG_T015


Internal Standards	R.T.	QIon	Response Conc Units Dev(Min	n)
1) Bromochloromethane 33) 1,4-difluorobenzene 48) Chlorobenzene-d5	9.30 11.79 16.33	128 114 117	30800m 1.00 ppb -0.4 99719m 1.00 ppb -0.5 75084m 1.00 ppb -0.6	19
System Monitoring Compounds 61) Bromofluorobenzene Spiked Amount 1.000	17.85 Range 70	95 - 130	39966m f 0.90 ppb 0.6 Recovery = 90.00%	00 .
Target Compounds 13) Freon 11 14) Acetone 28) Hexane 37) Benzene 49) Toluene 54) Tetrachloroethylene 56) Ethylbenzene 57) m&p-xylene 60) o-xylene 64) 4-ethyltoluene	5.13 5.72 8.44 11.05 14.47 15.46 16.62 16.78 17.22 18.36	58 57 78 92 164 91 91 91	89932m 3.22 ppb 25740m 0.61 ppb 18412m 0.20 ppb 94304m 1.74 ppb 110596m 2.19 ppb 28418m 0.24 ppb 98000m 0.97 ppb 40344m 0.29 ppb 12623m 0.12 ppb	
65) 1,3,5-trimethylbenzene 66) 1,2,4-trimethylbenzene			14863m 0.10 ppb	





MSD1

Centek Laboratories, LloCantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AJ112832.D Vial: 53 Acq On : 29 Nov 2012 3:45 am Operator: RJP Sample : C1211047-003A 10X Misc : AN23_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Nov 29 07:37:27 2012 Quant Results File: AN23_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\AN23_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Tue Nov 27 16:12:35 2012
Response via : Initial Calibration

DataAcq Meth : 1UG_T015

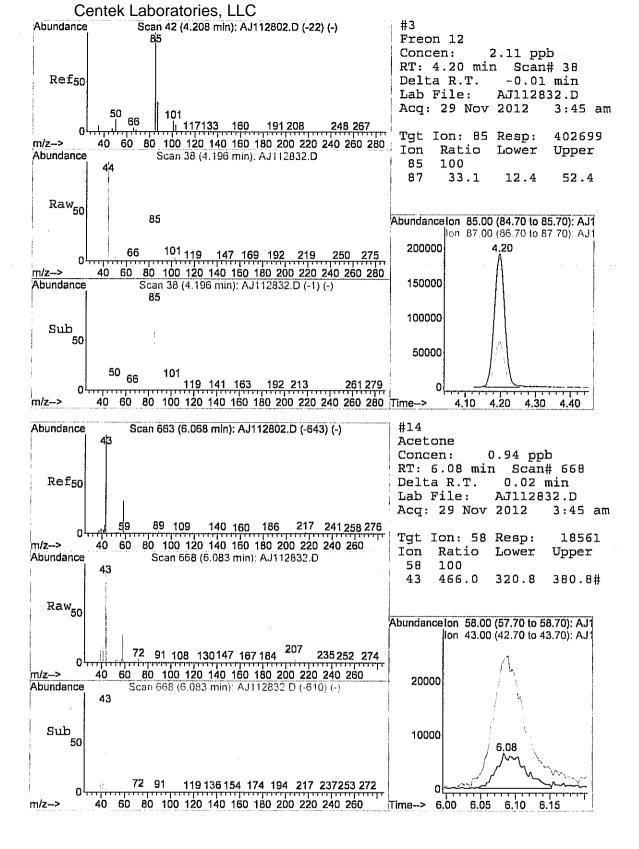
Internal Standards	R.T.	QIon	Response	Conc U	nits	Dev(Min)
1) Bromochloromethane 33) 1,4-difluorobenzene 48) Chlorobenzene-d5	9.74 11.98 16.35	128 114 117	21713 80707 63880	1.00 1.00 1.00	ppb	0.01 0.00 0.00
System Monitoring Compounds 61) Bromofluorobenzene Spiked Amount 1.000	17.83 Range 70		35053m /			
Target Compounds						Qvalue
3) Freon 12	4.20	85	402699	2.11	ppb	99
14) Acetone	6.08	58	18561	0.94		# 47
54) Tetrachloroethylene	15.49	164	9524	0.22	ppb	97

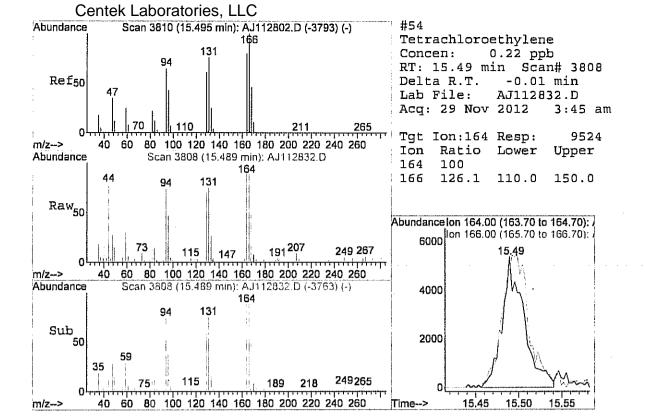
TIMe->

(QT Reviewed)

Quantitation Report

Operator: RJP


Inst


Vial:

C:\HPCHEM\1\DATA\AJ112832.D 29 Nov 2012 3:45 am

Data File Acq On Sample

C1211047-003A 10X

Arcadis - Newtown

Lab Order:

C1211047

Project:

CLIENT:

LMC Utica

Lab ID:

C1211047-004A

Date: 14-Dec-12

Client Sample 1D: AMB-112012

Tag Number: 322,263

Collection Date: 11/20/2012

Matrix: AIR

Analyses	Result	**Limit Qua	l Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	-18		"Hg		11/21/2012
Lab Vacuum Out	-30		"Hg		11/21/2012
1UG/M3 BY METHOD TO15		TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.15	0.15	ppbV	1	11/28/2012 8:46:00 PM
1,1,2,2-Tetrachloroethane	< 0.15	0.15	ppbV	1	11/28/2012 8:46:00 PM
1,1,2-Trichloroethane	< 0.15	0.15	ppbV	1	11/28/2012 8:46:00 PM
1,1-Dichloroethane	< 0.15	0.15	ppbV	1	11/28/2012 8:46:00 PM
1,1-Dichloroethene	< 0.15	0.15	ppbV	1	11/28/2012 8:46:00 PM
1,2,4-Trichlorobenzene	< 0.15	0.15	ppbV	1	11/28/2012 8:46:00 PM
1,2,4-Trimethylbenzene	1,5	0.15	ppbV	1	11/28/2012 8:46:00 PM
1,2-Dibromoethane	< 0.15	0.15	ppbV	1	11/28/2012 8:46:00 PM
1,2-Dichlorobenzene	< 0.15	0.15	ppbV	1	11/28/2012 8:46:00 PM
1,2-Dichloroethane	< 0.15	0.15	ppbV	1	11/28/2012 8:46:00 PM
1,2-Dichloropropane	< 0.15	0.15	ppbV	1	11/28/2012 8:46:00 PM
1,3,5-Trimethylbenzene	0.52	0.15	ppbV	1	11/28/2012 8:46:00 PM
1,3-butadiene	< 0.15	0.15	ppbV	1	11/28/2012 8:46:00 PM
1,3-Dichlorobenzene	< 0.15	0.15	ppbV	1	11/28/2012 8:46:00 PM
1,4-Dichlorobenzene	< 0.15	0.15	ppbV	1	11/28/2012 8:46:00 PM
1.4-Dioxane	< 0.30	0.30	ppbV	1 1	11/28/2012 8:46:00 PM
2,2,4-trimethylpentane	1.7	1.5	ppbV	10	11/29/2012 4:55:00 AM
4-ethyltoluene	0.55	0.15	ppbV	1	11/28/2012 8:46:00 PM
Acetone	7.7	3.0	ppbV	10	11/29/2012 4:55:00 AM
Allyi chloride	< 0.15	0.15	ppbV	1	11/28/2012 8:46:00 PM
Benzene	2.8	1.5	ppbV	10	11/29/2012 4:55:00 AM
Benzyl chloride	< 0.15	0.15	ppbV	1	11/28/2012 8:46:00 PM
Bromodichloromethane	< 0.15	0,15	ppbV	1	11/28/2012 8:46:00 PM
Bromoform	< 0.15	0.15	ppbV	1	11/28/2012 8:46:00 PM
Bromomethane	< 0.15	0.15	ppbV	1	11/28/2012 8:46:00 PM
Carbon disulfide	< 0.15	0.15	ppbV	1	11/28/2012 8:46:00 PM
Carbon tetrachloride	< 0.15	0.15	ppbV	1	11/28/2012 8:46:00 PM
Chlorobenzene	< 0.15	0.15	ppbV	1	11/28/2012 8:46:00 PM
Chloroethane	< 0.15	0.15	ppbV	1	11/28/2012 8:46:00 PM
Chloroform	< 0.15	0.15	ppbV	1	11/28/2012 8:46:00 PM
Chloromethane	< 0.15	0.15	PpbV	1	11/28/2012 8:46:00 PM
cis-1,2-Dichloroethene	< 0.15	0.15	ppbV	1	11/28/2012 8:46:00 PM
cis-1,3-Dichloropropene	< 0.15	0.15	ppbV	1	11/28/2012 8:46:00 PM
Cyclohexane	8.6	1.5	ppbV	10	11/29/2012 4:55:00 AM
Dibromochloromethane	< 0.15	0.15	ppbV	1	11/28/2012 8:46:00 PM
Ethyl acetate	< 0.25	0.25	ppbV	1	11/28/2012 8:46:00 PM

Qualifiers:

- ** Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated.
- S Spike Recovery outside accepted recovery limits

- Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 7 of 8

CLIENT: Arcadis - Newtown

Lab Order:

C1211047

Project:

LMC Utica

Lab ID:

C1211047-004A

Date: 14-Dec-12

Client Sample ID: AMB-112012

Tag Number: 322,263

Collection Date: 11/20/2012

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15	TO-15				Analyst: RJP	
Ethylbenzene	1,2	0.15		opbVVdqc		11/28/2012 8:46:00 PM
Freon 11	0.25	0.15	ŗ	opbV	1	11/28/2012 8:46:00 PM
Freon 113	< 0.15	0.15	F	opbV	1	11/28/2012 8:46:00 PM
Freon 114	< 0.15	0.15	F	opbV	1	11/28/2012 8:46:00 PM
Freon 12	0.52	0.15	k	opbV		11/28/2012 8:46:00 PM
Heptane	2.3	1.5	ŗ	opbV	10	11/29/2012 4:55:00 AM
Hexachloro-1,3-butadiene	< 0.15	0.15	F	pbV	1	11/28/2012 8:46:00 PM
Hexane	8.5	1.5	F	pbV	10	11/29/2012 4:55:00 AM
isopropyl alcohol	11	1.5	F	opbV	10	11/29/2012 4:55:00 AM
m&p-Xylene	3.4	3.0	F	opbV	10	11/29/2012 4:55:00 AM
Methyl Butyl Ketone	< 0.30	0.30	F	pbV	1	11/28/2012 8:46:00 PM
Methyl Ethyl Ketone	< 0.30	0.30	ŗ	pbV	1	11/28/2012 8:46:00 PM
Methyl isobutyl Ketone	< 0.30	0.30	ŗ	pbV	1	11/28/2012 8:46:00 PM
Methyl tert-butyl ether	< 0.15	0.15	F	pbV	1	11/28/2012 8:46:00 PM
Methylene chloride	< 0.15	0.15	F	pbV	1	11/28/2012 8:46:00 PM
o-Xylene	1.5	0.15	F	pbV	1	11/28/2012 8:46:00 PM
Propylene	< 0.15	0.15	F	pbV	1	11/28/2012 8:46:00 PM
Styrene	< 0.15	0.15	F	pbV	1	11/28/2012 8:46:00 PM
Tetrachloroethylene	< 0.15	0.15	р	pbV	1	11/28/2012 8:46:00 PM
Tetrahydrofuran	< 0.15	0.15	P	pbV	1	11/28/2012 8:45:00 PM
Toluene	6,9	1.5	P	pbV	10	11/29/2012 4:55:00 AM
trans-1,2-Dichloroethene	< 0.15	0.15	P	pbV	1	11/28/2012 8:46:00 PM
trans-1,3-Dichloropropene	< 0.15	0.15	p	pbV	1	11/28/2012 8:46:00 PM
Trichloroethene	2.5	1.5	- P	pbV	10	11/29/2012 4:55:00 AM
Vinyl acetate	< 0.15	0.15	P	pbV	1	11/28/2012 8:46:00 PM
Vinyl Bromide	< 0.15	0.15	p	pbV	1	11/28/2012 8:46:00 PM
Vinyl chloride	< 0.15	0.15	р	pbV	1	11/28/2012 8:46:00 PM
Surr: Bromofluorobenzene	100	70-130		6REC	1	11/28/2012 8:46:00 PM

Reporting Limit

Page 8 of 8

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Value above quantitation range

J Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit

CLIENT:

Arcadis - Newtown

Lab Order:

C1211047

Project:

LMC Utica

Lab ID:

C1211047-004A

Date: 14-Dec-12

Client Sample ID: AMB-112012

Tag Number: 322,263

Collection Date: 11/20/2012

Matrix: AIR

Analyses	Result	**Limit (Qual Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-1	5		Analyst: RJP
1,1,1-Trichloroethane	< 0.83	0.83	ug/m3	1	11/28/2012 8:46:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	ug/m3	1	11/28/2012 8:46:00 PM
1,1,2-Trichloroethane	< 0.83	0.83	ug/m3	1	11/28/2012 8:46:00 PM
1,1-Dichloroethane	< 0.62	0.62	ug/m3	1	11/28/2012 8:46:00 PM
1,1-Dichloroethene	< 0.60	0.60	ug/m3	1	11/28/2012 8:46:00 PM
1,2,4-Trichlorobenzene	< 1.1	1.1	ug/m3	1	11/28/2012 8:46:00 PM
1,2,4-Trimethylbenzene	7.5	0.75	ug/m3	1	11/28/2012 8:46:00 PM
1,2-Dibromoethane	< 1.2	1,2	ug/m3	1	11/28/2012 8:46:00 PM
1,2-Dichlorobenzene	< 0.92	0.92	ug/m3	1	11/28/2012 8:46:00 PM
1,2-Dichloroethane	< 0.62	0.62	ug/m3	1	11/28/2012 8:46:00 PM
1,2-Dichloropropane	< 0.70	0.70	ug/m3		11/28/2012 8:46:00 PM
1,3,5-Trimethylbenzene	2,6	0.75	ug/m3	1	11/28/2012 8:46:00 PM
1,3-butadiene	< 0.34	0.34	ug/m3	1	11/28/2012 8:46:00 PM
1,3-Dichlorobenzene	< 0.92	0.92	ug/m3	1	11/28/2012 8:46:00 PM
1,4-Dichlorobenzene	< 0.92	0.92	ug/m3	1	11/28/2012 8:46:00 PM
1,4-Dioxane	< 1.1	1. 1	ug/m3	1	11/28/2012 8:46:00 PM
2,2,4-trimethylpentane	8.1	7.1	ug/m3	10	11/29/2012 4:55:00 AM
4-ethyltoluene	2.7	0.75	ug/m3	1	11/28/2012 8:46:00 PM
Acetone	19	7.2	ug/m3	10	11/29/2012 4:55:00 AM
Allyl chloride	< 0.48	0.48	ug/m3	1	11/28/2012 8:46:00 PM
Benzene	9.1	4.9	ug/m3	10	11/29/2012 4:55:00 AM
Benzyl chloride	< 0.88	0.88	ug/m3	1	11/28/2012 8:46:00 PM
Bromodichloromethane	< 1.0	1.0	ug/m3	1	11/28/2012 8:46:00 PM
Bromoform	< 1.6	1.6	ug/m3	1	11/28/2012 8:46:00 PM
Bromomethane	< 0.59	0.59	ug/m3	1	11/28/2012 8:46:00 PM
Carbon disulfide	< 0.47	0.47	ug/m3	1	11/28/2012 8:46:00 PM
Carbon tetrachloride	< 0.96	0.96	ug/m3	1	11/28/2012 8:46:00 PM
Chlorobenzene	< 0.70	0.70	ug/m3	1	11/28/2012 8:46:00 PM
Chloroethane	< 0.40	0.40	ug/m3		11/28/2012 8:46:00 PM
Chloroform	< 0.74	0.74	ug/m3	1	11/28/2012 8:46:00 PM
Chloromethane	. < 0.31	0.31	ug/m3	1	11/28/2012 8:46:00 PM
cis-1,2-Dichloroethene	< 0.60	0.60	ug/m3	1	11/28/2012 8:46:00 PM
cis-1,3-Dichloropropene	< 0.69	0.69	ug/m3	1	11/28/2012 8:46:00 PM
Cyclohexane	30	5.2	ug/m3	10	11/29/2012 4:55:00 AM
Dibromochloromethane	< 1.3	1.3	ug/m3	1	11/28/2012 8:46:00 PM
Ethyl acetate	< 0.92	0.92	ug/m3	1	11/28/2012 8:46:00 PM
Ethylbenzene	5.2	0.66	ug/m3	1	11/28/2012 8:46:00 PM
Freon 11	1.4	0.86	ug/m3	1	11/28/2012 8:46:00 PM
Freon 113	< 1.2	1.2	ug/m3	1	11/28/2012 8:46:00 PM
Freon 114	< 1.1	1.1	ug/m3	1	11/28/2012 8:46:00 PM

Qualifiers:

- ** Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 7 of 8

CLIENT:

Arcadis - Newtown

Lab Order:

C1211047

Project:

LMC Utica

Lab ID:

C1211047-004A

Date: 14-Dec-12

Client Sample ID: AMB-112012

Tag Number: 322,263

Collection Date: 11/20/2012

Matrix: AIR

Analyses	Result	**Limit Q	ual Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15	· · <u>-</u> · · · · ·	TO-1	5		Analyst: RJP
Freon 12	2.6	0.75	ug/m3	1	11/28/2012 8:46:00 PM
Heptane	9.6	6.2	ug/m3	10	11/29/2012 4:55:00 AM
Hexachloro-1,3-butadiene	< 1.6	1.6	ug/m3	1	11/28/2012 8:46:00 PM
Hexane	30	5.4	ug/m3	10	11/29/2012 4:55:00 AM
Isopropyl alcohol	28	3.7	ug/m3	10	11/29/2012 4:55:00 AM
m&p-Xylene	15	13	ug/m3	10	11/29/2012 4:55:00 AM
Methyl Butyl Ketone	< 1.2	1.2	ug/m3	1	11/28/2012 8:46:00 PM
Methyl Ethyl Ketone	< 0.90	0.90	ug/m3	1	11/28/2012 8:46:00 PM
Methyl Isobutyl Ketone	< 1.2	1.2	ug/m3	1	11/28/2012 8:46:00 PM
Methyl tert-butyl ether	< 0.55	0.55	ug/m3	1	11/28/2012 8:46:00 PM
Methylene chloride	< 0.53	0.53	ug/m3	1	11/28/2012 8:46:00 PM
o-Xylene	6.6	0.66	ug/m3	1	11/28/2012 8:46:00 PM
Propylene	< 0.26	0.26	ug/m3	1	11/28/2012 8:46:00 PM
Styrene	< 0.65	0.65	ug/m3	1	11/28/2012 8:46:00 PM
Tetrachloroethylene	< 1.0	1.0	ug/m3	1	11/28/2012 8:46:00 PM
Tetrahydrofuran	< 0.45	0.45	ug/m3	1	11/28/2012 8:46:00 PM
Toluene	26	5.7	ug/m3	10	11/29/2012 4:55:00 AM
trans-1,2-Dichloroethene	< 0.60	0.60	ug/m3	1	11/28/2012 8:46:00 PM
trans-1,3-Dichloropropene	< 0.69	0.69	ug/m3	1	11/28/2012 8:46:00 PM
Trichloroethene	14	8.2	ug/m3	10	11/29/2012 4:55:00 AM
Vinyl acetate	< 0.54	0.54	ug/m3	1	11/28/2012 8:46:00 PM
Vinyl Bromide	< 0.67	0.67	ug/m3	1	11/28/2012 8:46:00 PM
Vinyl chloride	< 0.39	0.39	ug/m3	1	11/28/2012 8:46:00 PM

Qualifiers:

- ** Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

Spike Recovery outside accepted recovery limits

JN Non-routine analyte. Quantitation estimated.

- Results reported are not blank corrected
- E Volue above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

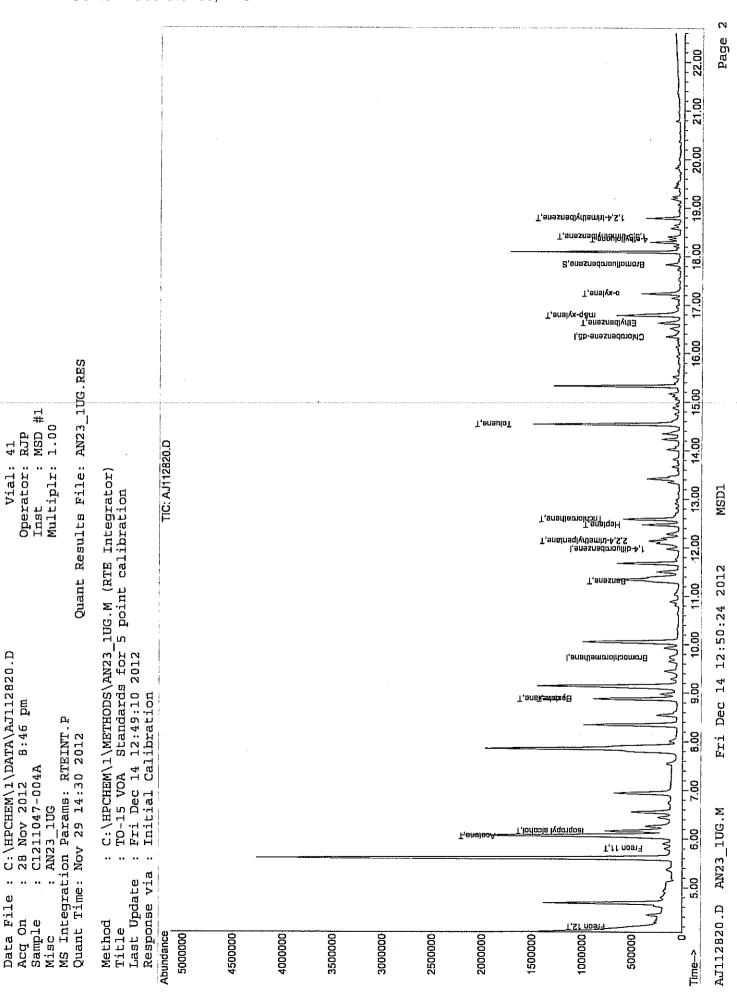
Page 8 of 8

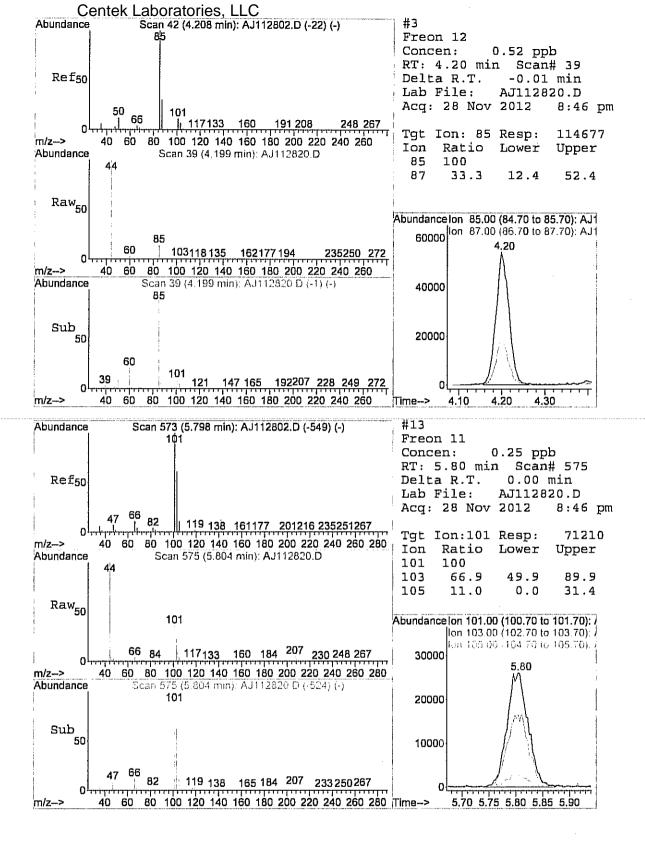
Centek Laboratories, LoCantitation Report (QT Reviewed)

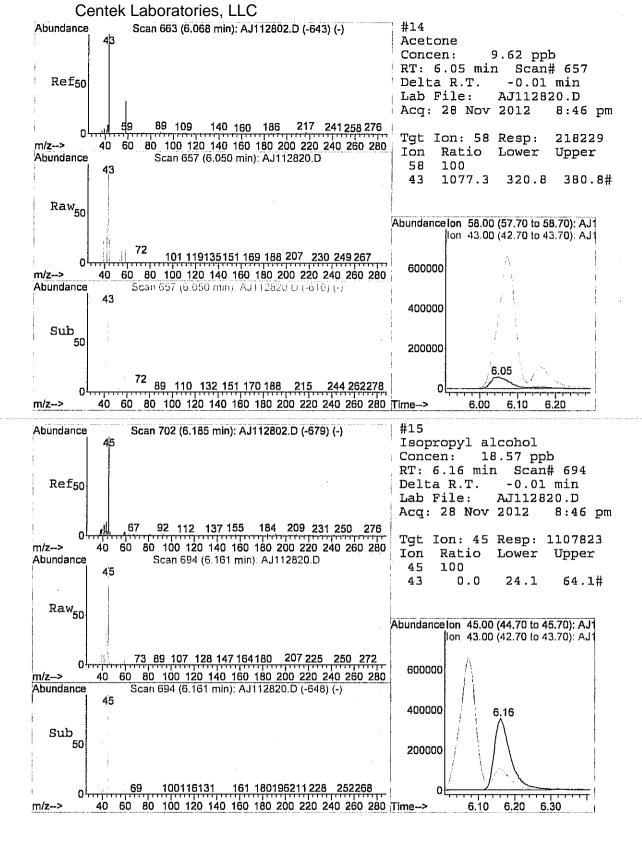
Data File : C:\HPCHEM\1\DATA\AJ112820.D Vial: 41 Acq On : 28 Nov 2012 8:46 pm Sample : C1211047-004A Misc : AN23_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00

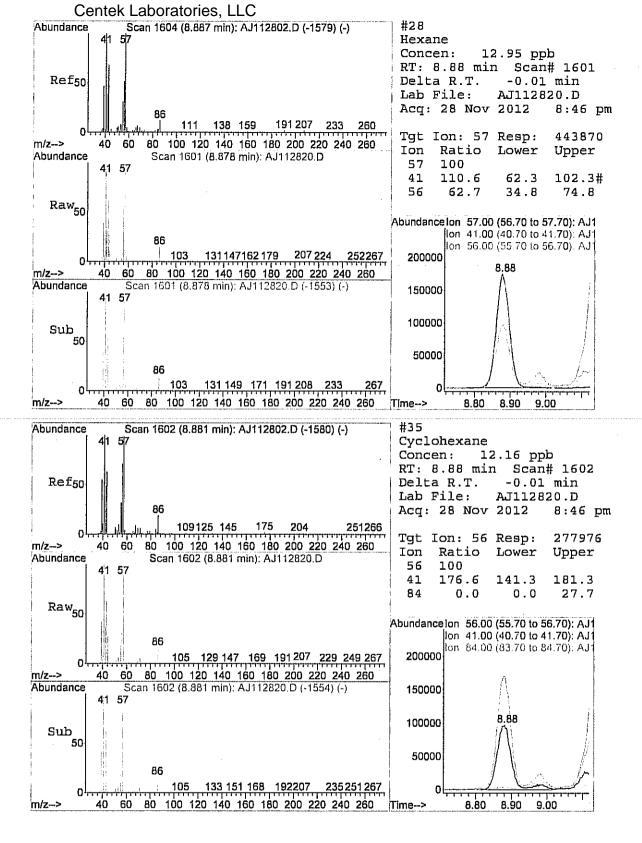
MS Integration Params: RTEINT.P

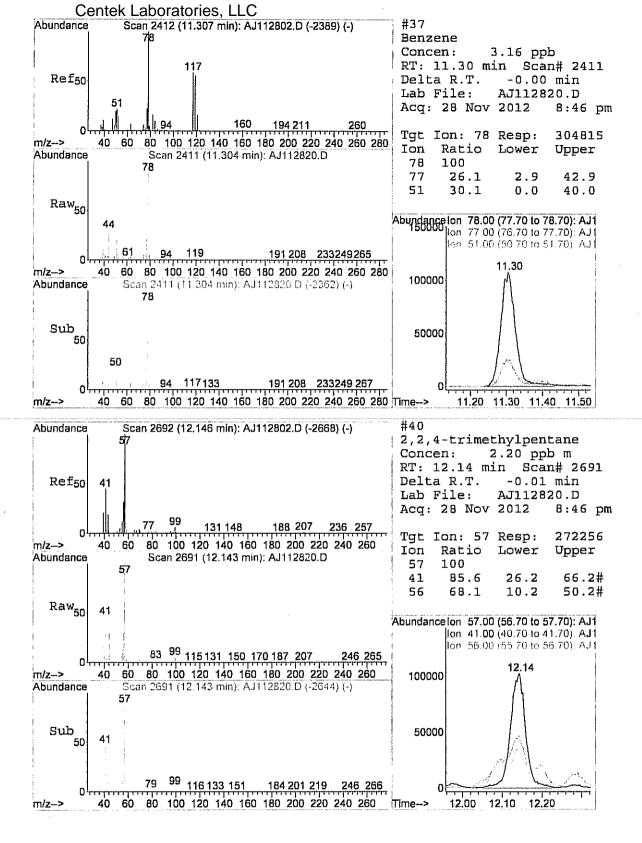
Quant Time: Nov 29 07:37:15 2012 Quant Results File: AN23 1UG.RES

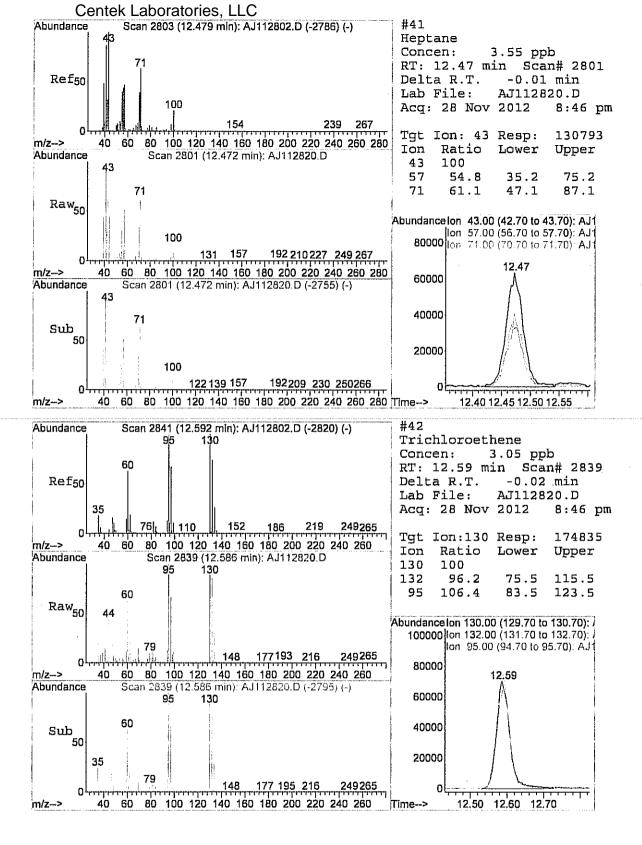

Quant Method : C:\HPCHEM\1\METHODS\AN23_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration
Last Update : Tue Nov 27 16:12:35 2012
Response via : Initial Calibration

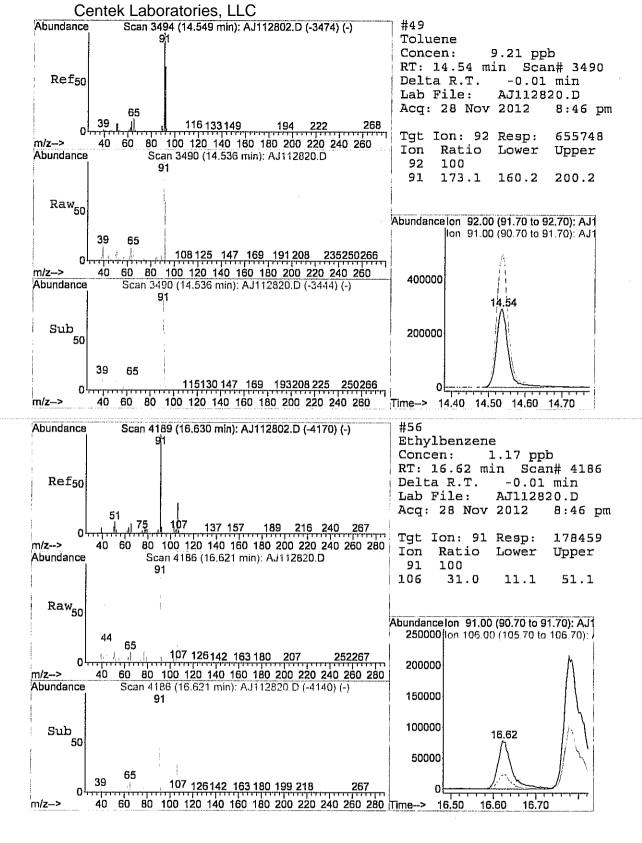

DataAcq Meth : 1UG T015

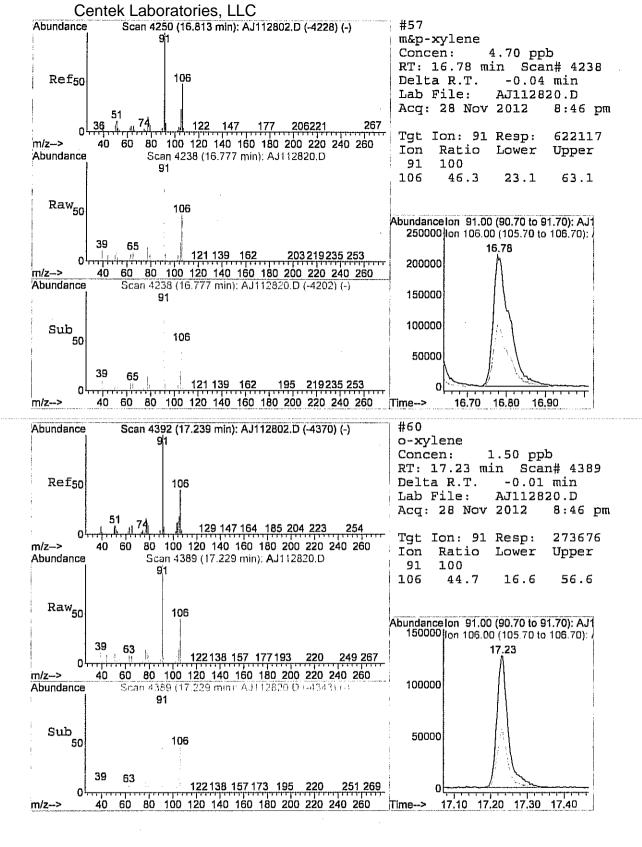

Internal Standards	R.T.	QIon	Response	Conc U	nits	Dev(Min)
1) Bromochloromethane 33) 1,4-difluorobenzene 48) Chlorobenzene-d5	9.73 11.97 16.34	114		1.00	ppb	0.00 -0.01 0.00
System Monitoring Compounds 61) Bromofluorobenzene Spiked Amount 1.000	17.83 Range 70				ppb 100.	
Target Compounds						Ovalue
3) Freon 12	4.20	85	114677	0.52	ppb	
13) Freon 11	5.80	101	71210	0.25	ppb	97
14) Acetone			218229			
15) Isopropyl alcohol				18.57		
28) Hexane	8.88		443870			
35) Cyclohexane	8.88					
37) Benzene	11.30	78	304815	, 3.16	ppb	86
40) 2,2,4-trimethylpentane	12.14	57	272256m 🔏	2.20	ppb	
41) Heptane	12.47	43	130793	3.55	ppb	96
42) Trichloroethene	12.59	130	174835			
·	14.54					
56) Ethylbenzene	16.62					
57) m&p-xylene	16.78					
60) o-xylene	17.23			0 1.50		. 86
64) 4-ethyltoluene	18.35					
65) 1,3,5-trimethylbenzene	18.40	-		,		
66) 1,2,4-trimethylbenzene	18.79	105	211237	1.50	gqq	96

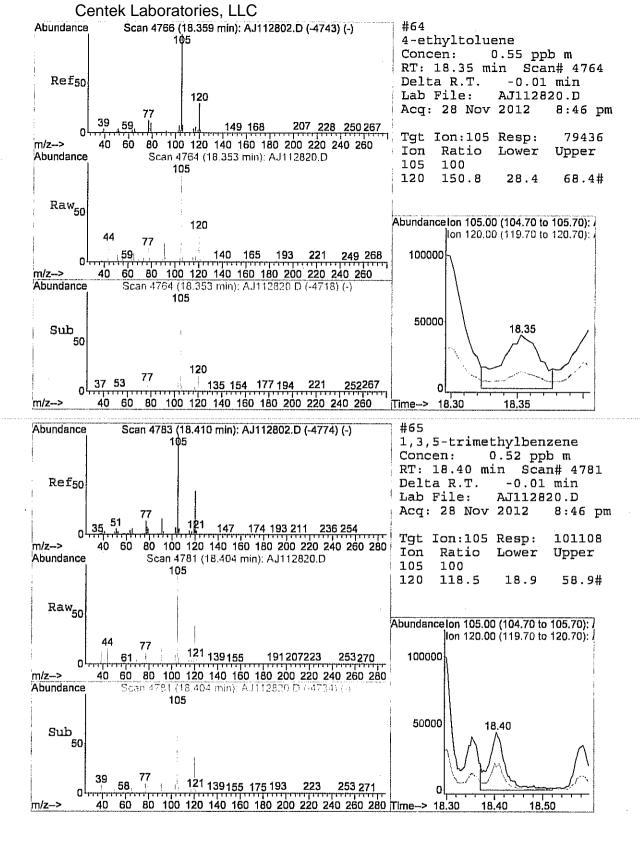

(QT Reviewed)

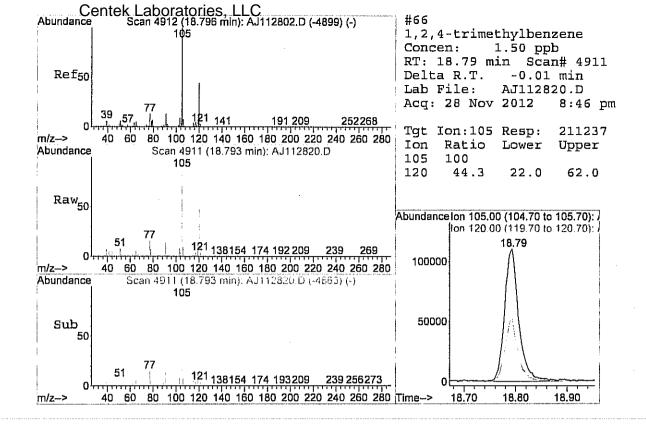

Quantitation Report











Centek Laboratories, LoCantitation Report

(QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AJ112834.D Vial: 55 : 29 Nov 2012 4:55 am Operator: RJP Sample : C1211047-004A 10X Misc : AN23_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P Quant Time: Nov 29 07:37:29 2012

Quant Results File: AN23_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\AN23_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Tue Nov 27 16:12:35 2012
Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response C	one U	nits	Dev	(Min)
1) Bromochloromethane	9.72	128	21355	1.00	ppb		0.00
33) 1,4-difluorobenzene			83187		ppb		0.00
48) Chlorobenzene-d5			67510		ppb		0.00
System Monitoring Compounds							
61) Bromofluorobenzene	17.84	95	32922	0.83	daa		0.00
Spiked Amount 1.000	Range 70	- 130	Recovery				
Target Compounds						Qva	alue
14) Acetone	6.09	58	14907	0.77	ppb		1
<pre>15) Isopropyl alcohol</pre>	6.19	45	56782		ppb		32
28) Hexane	8.88	57	24814	0.85	ppb	#	68
35) Cyclohexane	8.88	56	15425	0.86	ppb	#	71
37) Benzene	11.31	78	21193 7		ppb		97
40) 2,2,4-trimethylpentane	12.14	57	16487m 🖊	0.17	ppb		
41) Heptane	12.47	43	6724	0.23	ppb		98
42) Trichloroethene	12.60	130	11184	0.25	ppb		93
49) Toluene	14.55	92	33402		ppb		93
57) m&p-xylene	16.79	91	30725m 🗲	0.34	ppb		

2400000

2200002

2000000

800000

2600000

2800000

3000000

1200000

1000000

800000

400000

600000

200000

Time->

1600000

400000

Abundance

3800000

3400000 3200000

3600000

(QT Reviewed)

Quantitation Report

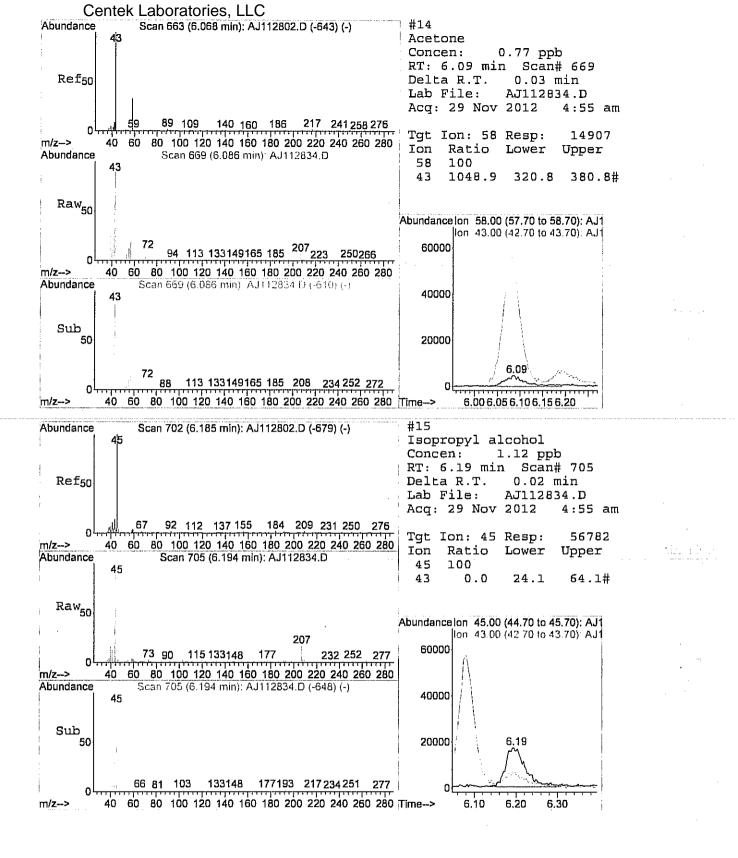
MSD #1

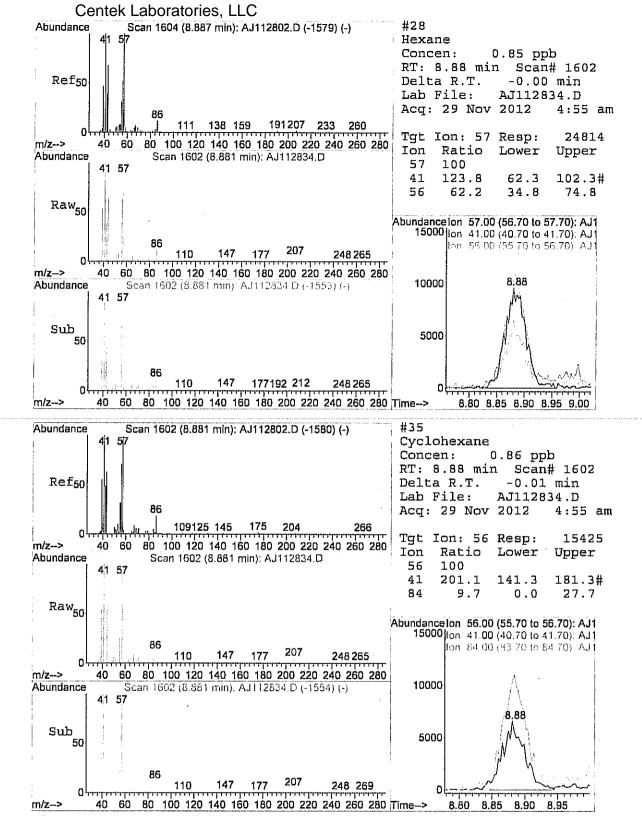
RJP

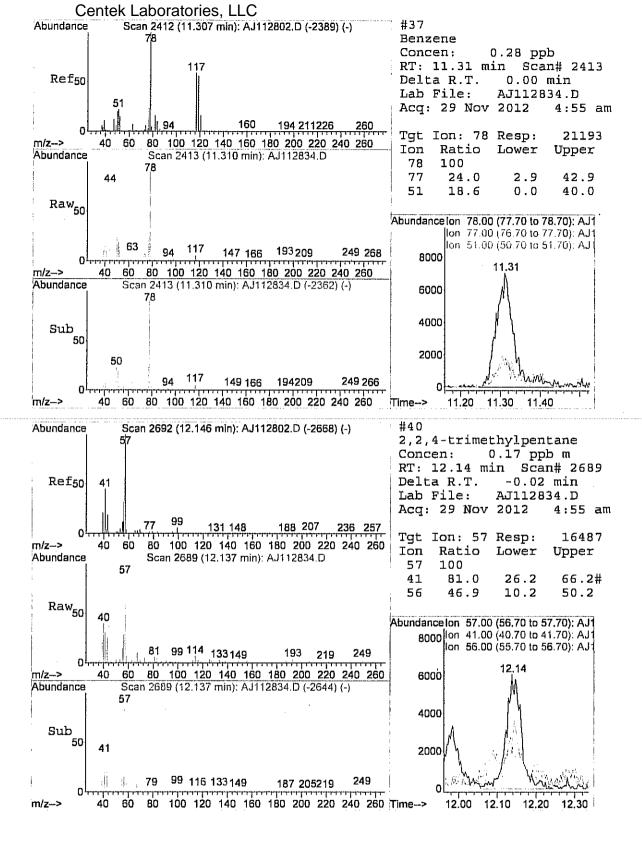
Operator: Vial:

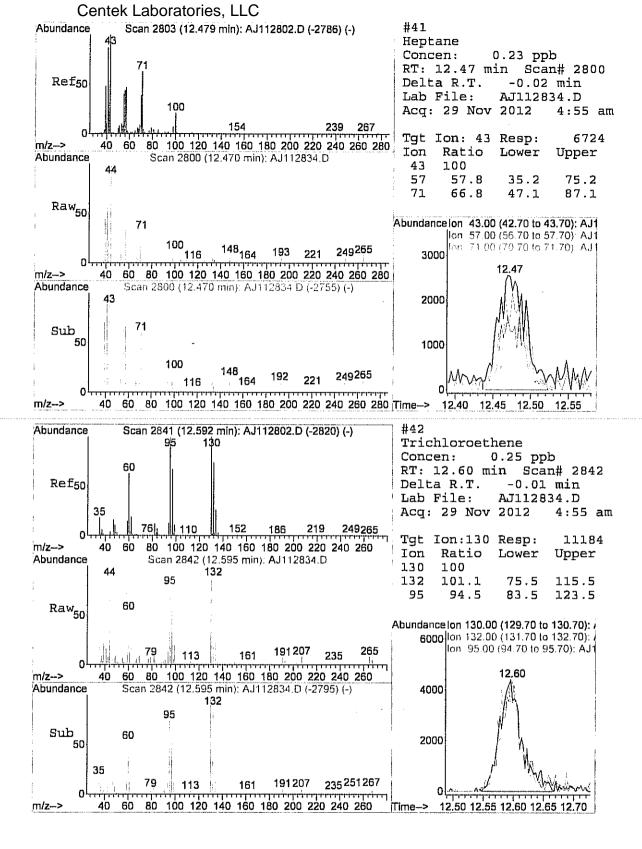
C:\HPCHEM\1\DATA\AJ112834.D

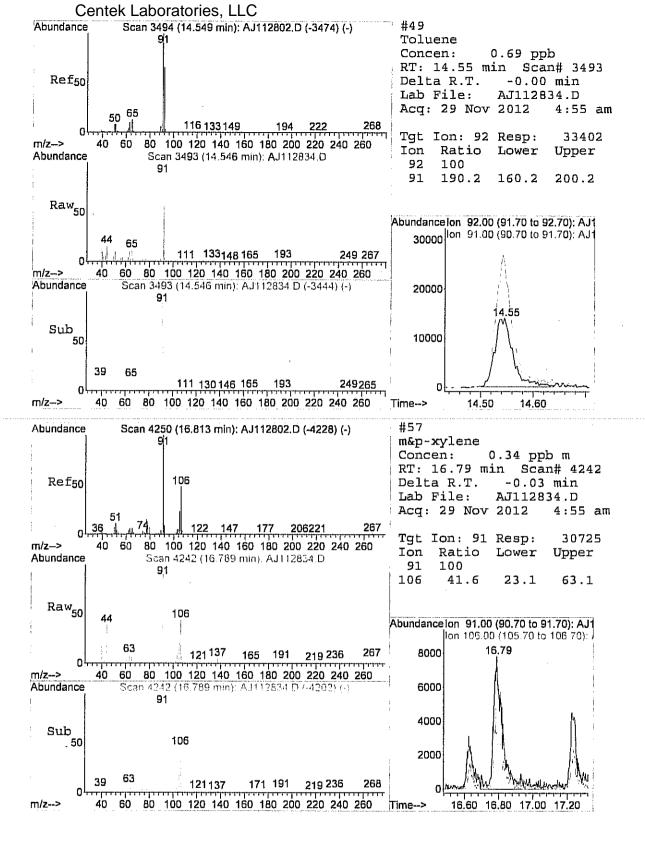
Data File


4:55 am


C1211047-004A 10X


Sample Acq On


Misc


29 Nov 2012

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15

STANDARDS DATA

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15

INITIAL CALIBRATION

Method : C:\HPCHEM\1\METHODS\AN23_lUG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Last Update : Wed Dec 12 14:36:43 2012

Response via : Initial Calibration

Calibration Files

0.04 =AJ112315.D 0.10 =AJ112314.D 0.15 =AJ112311.D 0.30 =AJ112310.D 0.50 =AJ112309.D 0.75 =AJ112308.D

Compound 0.04 0.10 0.15 0.30 0.50 0.75 Avg %RSD 1) I Bromochloromethane ------ISTD------1,4-difluorobenzene
1,1,1-trichloro
1.822 1.458 1.369 1.335 1.388 13.50
Cyclohexane
0.250 0.215 0.203 0.204 0.214 7.10
Carbon tetrachl
2.958 2.248 2.174 1.768 1.529 1.591 1.825 26.87
Benzene
1.059 0.912 0.871 0.913 0.905 7.43
Methyl methacry
0.336 0.291 0.266 0.210 0.271 13.97
1,4-dioxane
0.173 0.175 0.135 0.139 0.147 12.04
2,2,4-trimethyl
1.318 1.134 1.056 1.103 1.159 6.76
Heptane
0.265 0.345 0.319 0.347 0.346 11.34
Trichloroethene
0.805 0.585 0.631 0.489 0.480 0.478 0.538 20.24 33) I 34) T 35) T 36) T 37) T 39) T 40) T 41) T 42) T

 43) T
 1,2-dichloropro
 0.386
 0.363
 0.332
 0.334
 0.337
 7.26

 44) T
 Bromodichlorome
 1.524
 1.237
 1.149
 1.151
 1.221
 10.33

 45) T
 cis-1,3-dichlor
 0.544
 0.418
 0.432
 0.430
 0.479
 10.10

 46) T
 trans-1,3-dichl
 0.507
 0.499
 0.431
 0.498
 0.477
 6.67

 47) T
 1,1,2-trichloro
 0.598
 0.505
 0.468
 0.469
 0.490
 9.26

 48) I Chlorobenzene-d5
49) T Toluene 0.884 0.706 0.653 0.686 0.722 9.77
50) T Methyl Isobutyl 0.728 0.698 0.558 0.586 0.594 14.28
51) T Dibromochlorome 1.610 1.273 1.151 1.181 1.217 13.72

^{(#) =} Out of Range ### Number of calibration levels exceeded format ### AN23_1UG.M Fri Dec 14 12:44:41 2012 MSD1

Centek Laboratories, LLC

Response Factor Report MSD #1

Method : C:\HPCHEM\1\METHODS\AN23_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration
Last Update : Wed Dec 12 14:36:43 2012

Response via : Initial Calibration

Calibration Files

0.04 =AJ112315.D 0.10 =AJ112314.D 0.15 =AJ112311.D 0.30 =AJ112310.D 0.50 =AJ112309.D 0.75 =AJ112308.D

52) T Methyl Butyl Ke 0.466 0.631 0.476 0.439 53) T 1,2-dibromoetha 0.930 0.754 0.701 0.709 54) T Tetrachloroethy 0.931 0.727 0.631 0.624	Compound		0.30	0.50	0.75	Avg	%RSD
55) T Chlorobenzene 1.374 1.138 1.036 1.031 56) T Ethylbenzene 1.754 1.486 1.370 1.466 57) T m&p-xylene 1.289 1.179 1.144 1.274 58) T Styrene 0.661 0.764 0.708 0.742 59) T Bromoform 1.415 1.216 1.120 1.132 60) T o-xylene 1.905 1.676 1.482 1.684 61) S Bromofluorobenz 0.516 0.547 0.550 0.527 0.579 0.609 62) T 1,1,2,2-tetrach 1.345 1.021 0.947 1.002 63) T 2-Chlorotoluene 1.595 1.141 1.060 1.132 64) T 4-ethyltoluene 1.391 1.268 1.125 1.323 65) T 1,3,5-trimethyl 2.091 1.640 1.586 1.740 66) T 1,2,4-trimethyl 1.554 1.168 1.080 1.280 67) T 1,3-dichloroben 1.037 0.872 0.910 0.959 68) T benzyl chloride 0.969 0.897 0.730 0.893 69) T 1,4-dichloroben 1.019 0.963 0.777 0.912 70) T 1,2-dichloroben 1.183 0.883 0.928 0.971 71) T 1,2,4-trichloro 0.685 0.593 0.489 0.536 72) T Naphthalene 1.290 0.959 0.935 0.944 73) T Hexachloro-1,3-	2) T Methyl Butyl Ke 3) T 1,2-dibromoetha 4) T Tetrachloroethy 5) T Chlorobenzene 6) T Ethylbenzene 7) T m&p-xylene 8) T Styrene 9) T Bromoform 0) T o-xylene 1) S Bromofluorobenz 2) T 1,1,2,2-tetrach 3) T 2-Chlorotoluene 4) T 4-ethyltoluene 5) T 1,3,5-trimethyl 6) T 1,2,4-trimethyl 7) T 1,3-dichloroben 8) T benzyl chloride 9) T 1,4-dichloroben 1) T 1,2-dichloroben 1) T 1,2,4-trichloro 2) T Naphthalene	0.4 0.9 0.9 1.3 1.7 1.2 0.6 1.4 1.9 0.516 0.547 0.5 1.3 2.0 1.5 1.3 2.0 1.5 1.0 0.9 1.0 1.1 0.6 1.2	6 0.631 0 0.754 1 0.727 4 1.138 4 1.486 9 1.179 1 0.764 5 1.216 5 1.676 0 0.527 5 1.021 1 1.268 1 1.640 4 1.168 7 0.872 9 0.963 3 0.883 5 0.593 0 0.959	0.476 0.701 0.631 1.036 1.370 1.144 0.708 1.120 1.482 0.579 0.947 1.060 1.125 1.586 1.080 0.910 0.730 0.777 0.928 0.489 0.935	0.439 0.709 0.624 1.031 1.466 1.274 0.742 1.132 1.684 0.609 1.002 1.132 1.323 1.740 1.280 0.959 0.912 0.971 0.536 0.944	0.467 0.755 0.672 1.099 1.551 1.342 0.793 1.194 1.845 0.589 1.061 1.267 1.455 1.972 1.426 1.040 0.999 1.015 1.047 0.582 1.099	18.74 9.77 16.64 10.66 7.59 10.43 10.99 7.93 11.40 8.84 11.40 13.18 15.33 13.98 16.33 11.07

Centek Laboratories, L Gantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AJ112304.D Acq On : 23 Nov 2012 11:44 am Vial: 1 Operator: RJP : A1UG_2.0 : AN06_1UG Sample Inst : MSD #1 Misc Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Nov 23 19:59:29 2012 Quant Results File: AN23 1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\AN23_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Fri Nov 23 13:52:43 2012

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AJ112303.D

Internal Standards	R.T.	QIon	Response	Conc U	nits	Dev(Min)
1) Bromochloromethane	9.71	128	29278	1.00	daa	-0.02
33) 1,4-difluorobenzene	11.97		110712	1.00		
48) Chlorobenzene-d5	16.34		106964	1.00		
,						
System Monitoring Compounds						
61) Bromofluorobenzene	17.83	95	69216	1.01	ppb	-0.01
Spiked Amount 1.000	Range 70	- 130	Recove	cy =	101	. 00%
Target Compounds						Qvalue
2) Propylene	4.15	41	55723	1.69		92
3) Freon 12	4.20	85	444645	1.89		99
4) Chloromethane	4.40	50	117325	1.81		98
5) Freon 114			380117			
6) Vinyl Chloride	4.58	62	100800	1.73		99
7) 1,3-butadiene	4.68		79977m			0.0
8) Bromomethane	5.02	94	129901	1.80		98
9) Ethanol	5.36	45	35392m	2.10		
10) Acrolein	5.91	56	30094m			0.0
11) Chloroethane	5.19	64	48573	1.88		99
12) Vinyl Bromide	5.52	106	131022	1.72		97 95
13) Freon 11	5.79	101	569646 48334π	1.84		33
14) Acetone	6.03	58 45	115886	1.51		# 32
15) Isopropyl alcohol	6.15	45 06	1	1.80 1.90		100
16) 1,1-dichloroethene	6.53 6.73	96	114359 289956	1.83		
17) Freon 113 18) t-Butyl alcohol	6.88	101 59	177830m	1.54		# 02
19) Methylene chloride	6.99	84	93855	1.74		95
20) Allyl chloride	6.97	41	86243	1.66		98
21) Carbon disulfide	7.14	76	315525	1.77		95
22) trans-1,2-dichloroethene		61	106697	1.84		# 73
23) methyl tert-butyl ether	8.01	73	195115	1.90		89
24) 1,1-dichloroethane	8.34	63	138705	1.81		98
25) Vinyl acetate	8.37	43	103421	1.99		97
26) Methyl Ethyl Ketone	8.91	72	29514	2.03		# 100
27) cis-1,2-dichloroethene	9.27	61	B4990	1.86		98
28) Hexane	8.87	57	81170	1.96		89
29) Ethyl acetate	9.50	43	115780	1.83		100
30) Chloroform	9.86	83		1.81		97
31) Tetrahydrofuran	10.14	42	44266	1.86		94
32) 1,2-dichloroethane	10.98	62	154000	1.84		98
34) 1,1,1-trichloroethane	10.68	97	275719	1.99		100
35) Cyclohexane	8.87	56	45616	2.05		91
36) Carbon tetrachloride	11.33	117	327718	1.98		92
37) Benzene	11.30	78	193694	2.04	ppb	91
38) Methyl methacrylate	12.85	41	63154	2.25		98
39) 1,4-dioxane	12.97	88	31666	2.19	ppb	77
40) 2,2,4-trimethylpentane	12.13	57	263858	2.14	ppb	97
41) Heptane	12.47	43	84829	2.17		98
42) Trichloroethene	12.58	130	103420	1.99		98
43) 1,2-dichloropropane	12.69		72441	2.13		96
44) Bromodichloromethane	13.00		259258	2.02		99
45) cis-1,3-dichloropropene	13.76	75	114982	2.21	ppb	94
					- -	

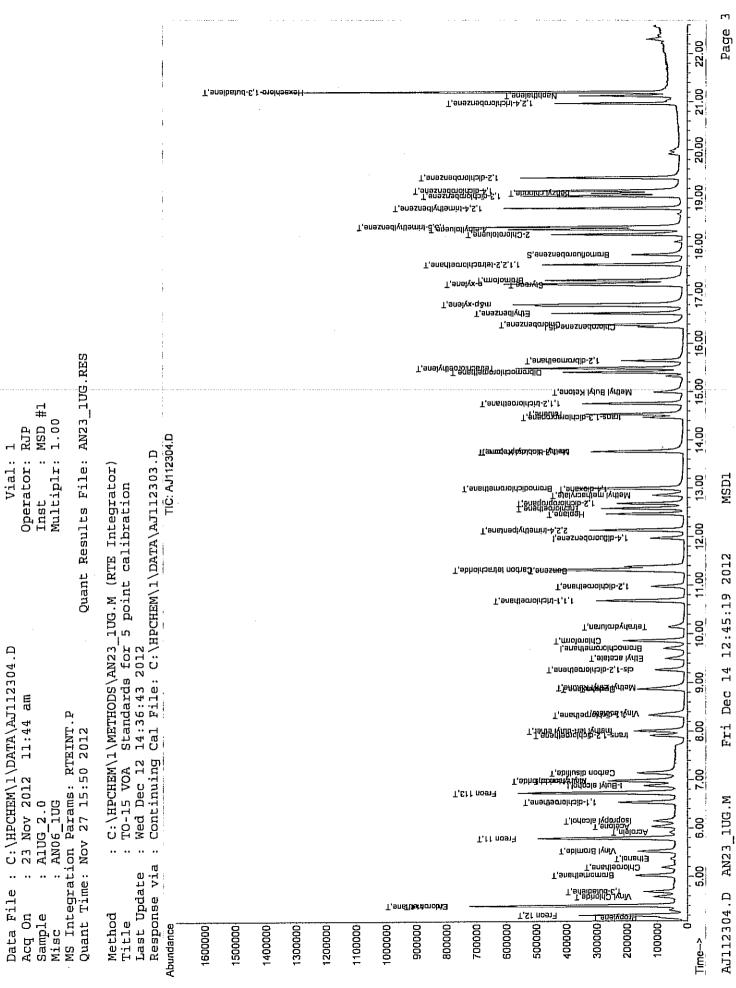
^{(#) =} qualifier out of range (m) = manual integration AJ112304.D AN23 1UG.M Fri Dec 14 12:45:18 2012

Centek Laboratories, LLCantitation Report (QT Reviewed)

MS Integration Params: RTEINT.P

Quant Time: Nov 23 19:59:29 2012 Quant Results File: AN23_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\AN23_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration


Last Update : Fri Nov 23 13:52:43 2012

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AJ112303.D

	Compound	R.T.	QIon	Response	Conc Unit	Qν	alue
46)	trans-1,3-dichloropropene	14.47	 75	109384	2.23 ppb		94
	1,1,2-trichloroethane	14.76	97	104582	2.16 ppb		95
49)	Toluene	14.54	92	152771	2.03 ppb		94
50)	Methyl Isobutyl Ketone	13.76	43	125197	1.98 ppb		67
51)	Dibromochloromethane	15.41	129	234927	1.91 ppb		96 -
52)	Methyl Butyl Ketone	14.99	43	102993	1.83 ppb	#	37
53)	1,2-dibromoethane	15.65	107	152855	1.96 ppb		97
54)	Tetrachloroethylene	15.49	164	127239	1.95 ppb		99
	Chlorobenzene	16.39	112	217562	1.97 ppb		97
56)	Ethylbenzene	16.62	91	345359	2.15 ppb		99
57)	m&p-xylene	16.81	91	637344	4.35 ppb		94
58)	Styrene	17.20	104	189413	2.16 ppb		93
59)	Bromoform	17.30	173	245069	2.01 ppb		97
60)	o-xylene	17.23	91	445096	2.25 ppb		100
62)	1,1,2,2-tetrachloroethane	17.63	83	217957	1.96 ppb		96
63)	2-Chlorotoluene	18.25	91	284331	1.98 ppb		98
64)	4-ethyltoluene	18.36	105	365975m	2.08 ppb		
65)	1,3,5-trimethylbenzene	18.40	105	473080m ,	አ 2.16 ppb		
66)	1,2,4-trimethylbenzene	18.79	105	365143	2.32 ppb		99
67)	1,3-dichlorobenzene	19.05	146	250503	2.20 ppb		98
68)	benzyl chloride	19.10	91	260055	2.30 ppb		95
69)	1,4-dichlorobenzene	19.16	146	250596	2.27 ppb		97
70)	1,2-dichlorobenzene	19.42	146	244788	2.17 ppb		96
71)	1,2,4-trichlorobenzene	20.96	180	138312	2.11 p pb	#	1
72)	Naphthalene	21.12	128	278434	2.18 ppb		95
73)	Hexachloro-1,3-butadiene	21.20	225	222831	2.05 ppb	#	100

CI REVIEWED

gnantitation Report

Page 132 of 204

Centek Laboratories, LoCantitation Report

(QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AJ112305.D Vial: 2 Acq On : 23 Nov 2012 12:22 pm Operator: RJP Sample : AlUG_1.5 Misc : AN06_1UG Inst : MSD #1 Misc Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Nov 23 19:59:53 2012 Quant Results File: AN23_1UG.RES

Quant Method : C:\HPCHEM\l\METHODS\AN23 1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration

Last Update : Fri Nov 23 13:52:43 2012

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AJ112303.D

DataAcq Meth : 1UG_T015

расын	ed ween . 188_1813						
Inte	rnal Standards	R.T.	QIon	Response			Dev(Min)
1)	Bromochloromethane	9.70	128	28669	1.00	dqq	-0.02
33)	1,4-difluorobenzene		114	110020	1.00		
	Chlorobenzene-d5	16.35	117	103521	1.00		
- •							
Syst	em Monitoring Compounds						
	Bromofluorobenzene	17.84	95	67541	1.02	ppb	0.00
		Range 70		Recover		102	.00%
-		_			-		
Tarq	et Compounds						Qvalue
2)	Propylene	4.15	41	52807	1.64	ppb	84
	Freon 12	4.20	85	365265	1.59	ppb	99
4)	Chloromethane	4.39	50	97048	1.53	ppb	99
	Freon 114	4.39	85	303014	1.50	ppb	93
6)	Vinyl Chloride	4.58	62	85556 62626m / i	1.50	ppb	98
	1,3-butadiene	4.68	39	62626m 🖁	1.48	ppb	
8)	Bromomethane	5.02	94	103890	1.47		99
9)	Ethanol	5.36	45	24674m	1.49	ppb	
10)	Acrolein	5.91	56	21355	1.53	ppb	80
11)	Chloroethane	5.19	64	39112	1.55	ppb	95
12)	Vinyl Bromide	5.52	106	108738	1.46		95
	Freon 11	5.79	101	443659	1.46	ppb	94
14)	Acetone	6.03	58	41075m ₺			
15)	Isopropyl alcohol	6.15	45	97277	1.54	ppb	85
	1,1-dichloroethene	6.54	96	91754	1.55	ppb	99
17)	Freon 113	6.73	101	229261	1,48	ppb	# 83
18)	t-Butyl alcohol	6.87	59	156593	1.39	ppb	# 77
	Methylene chloride	6.98	84	78174	1.48	ppb	97
20)		6.97	41	76000	1.49	ppb	94
21)	Carbon disulfide	7.15	76	251133	1.44	ppb	96
22)	trans-1,2-dichloroethene	7.91	61	79857	1.40	ppb	# . 76
23)	methyl tert-butyl ether	8.01	73	151120	1.51	ppb	86
24)	1,1-dichloroethane	8.33	63	108608	1.45	ppb	97
25)	Vinyl acetate	8.37	43	81784	1.61	ppb	96
26)	Methyl Ethyl Ketone	8.91	72	21766	1.53	ppb	
27)	cis-1,2-dichloroethene	9.26	61	65548	1.47		98
28)	Hexane	8.87	57	62927	1.55		87
29)	Ethyl acetate	9.50	43	92420	1.49		98
30)	Chloroform	9.86		170304	1.47	ppb	
	Tetrahydrofuran	10.15		35252	1.51		97
32)	1,2-dichloroethane	10.98	62	119477	1.46		99
34)	1,1,1-trichloroethane	10.69	97	213206	1.55		99
35)	Cyclohexane	8.88	56	35664	1.61		89
36)	Carbon tetrachloride	11.33	117	246890	1.50		93
37)	Benzene	11.30	78	143931	1.53	ppb	89
38)	Methyl methacrylate	12.86	41	47186	1.69	ppb	95
39)	1,4-dioxane	12.98	88	24223	1.69	ppb	84
40)	2,2,4-trimethylpentane	12.14	57	195745	1.60		97
41)	Heptane	12.47	43	63573	1.64		98
42)	Trichloroethene	12.59	130	81283	1.58		99
43)	1,2-dichloropropane	12.68	63	52025	1.54		94
•	Bromodichloromethane	13.00	83	196213	1.54		99
45)	cis-1,3-dichloropropene	13.77	75	85964	1.66	ppb	95
				 -	. 	<i>-</i> -	

^{(#) =} qualifier out of range (m) = manual integration

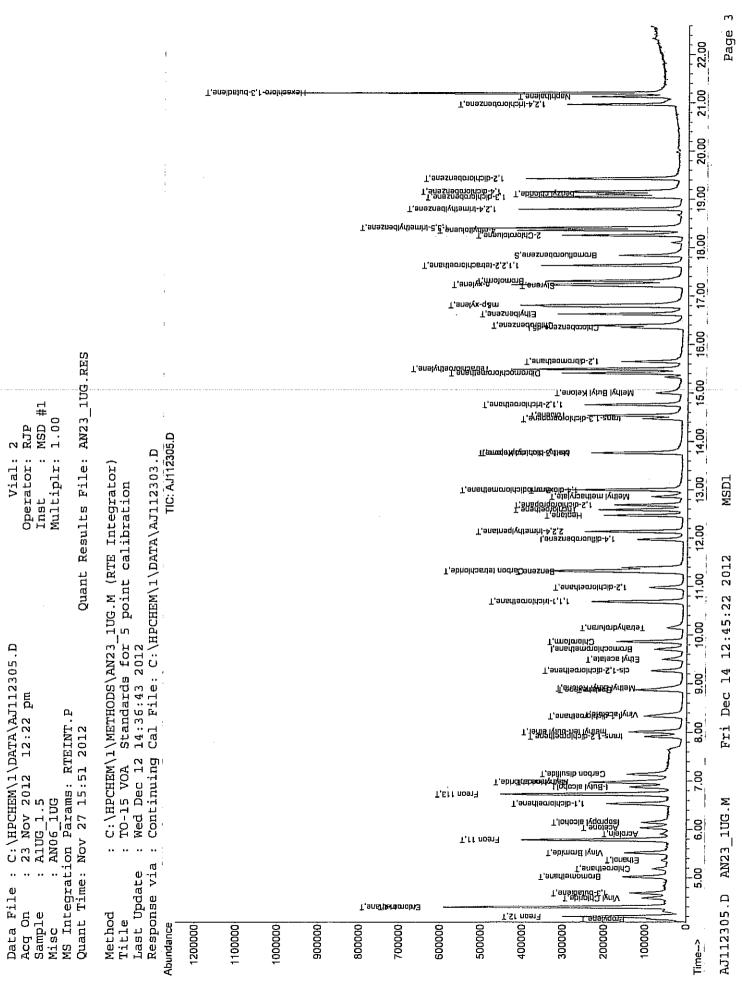
MSD1

Centek Laboratories, LLC Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AJ112305.D Vial: 2 Acq On : 23 Nov 2012 12:22 pm Sample : AlUG_1.5 Misc : AN06_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Nov 23 19:59:53 2012 Quant Results File: AN23 1UG.RES


Quant Method : C:\HPCHEM\l\METHODS\AN23_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Last Update : Fri Nov 23 13:52:43 2012
Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AJ112303.D

	Compound	R.T.	QIon	Response	Conc Unit	Qva	alue
46)	trans-1,3-dichloropropene	14.47	75	80957	1.66 ppb		96
47)		14.76	97	77401	1.61 ppb		96
49)	Toluene	14.54	92	110543	1.52 ppb		97
50)	Methyl Isobutyl Ketone	13.76	43	93355	1.53 ppb		67
51)	Dibromochloromethane	15.41	129	176267	1.48 ppb		95
52)	Methyl Butyl Ketone	15.00	43	77794	1.43 ppb	#	39
53)	1,2-dibromoethane	15.65	107	114276	1.51 ppb		96
54)	Tetrachloroethylene	15.49	164	96033	1.52 ppb		100
55)	Chlorobenzene	16.39	112	162603	1.52 ppb		99
56)	Ethylbenzene	16.63	91	249421	1.60 ppb		98
57)	m&p-xylene	16.81	91	457811	3.23 ppb		94
58)	Styrene	17.20	104	138393	1.63 ppb		92
59)	Bromoform	17.31	173	183204	1.55 ppb		95
60)	o-xylene	17.23	91	315123	1.65 ppb		100
62)	1,1,2,2-tetrachloroethane	17.63	83	164879	1.53 ppb		98
	2-Chlorotoluene	18.25	91	204114 A	1.47 ppb		99
64)	4-ethyltoluene	18.36	105	267797m <i>ի</i> ՝	1.58 ppb		
	1,3,5-trimethylbenzene	18.40	105	349828m V	1.65 ppb		
66)	1,2,4-trimethylbenzene	18.79	105	257008	1.69 ppb		98
67)	1,3-dichlorobenzene	19.05	146	178255	1.62 ppb		99
68)	benzyl chloride	19.10	91	177273	1.62 ppb		97
	1,4-dichlorobenzene	19.16	146	175373	1.64 ppb		99
	1,2-dichlorobenzene	19.43	146	172196	1.57 ppb		96
71)	1,2,4-trichlorobenzene	20.97	180	94230	1.48 ppb	#	1
	Naphthalene	21.13	128	186705	1.51 ppb		96
73)	Hexachloro-1,3-butadiene	21.20	225	162300	1.54 ppb	#	100

(OT Reviewed)

Quantitation Report

Page 135 of 204

Centek Laboratories, LLC (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AJ112306.D Vial: 3 Acq On : 23 Nov 2012 1:01 pm Operator: RJP Sample : AlUG_1.25 Misc : AN06_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Nov 23 20:00:32 2012 Quant Results File: AN23_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\AN23_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration

Last Update : Fri Nov 23 13:52:43 2012
Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AJ112303.D

DataAcq Meth : 1UG_T015

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
1) Bromochloromethane	9 70	128	27803	1.00 ppb	-0.02
33) 1,4-difluorobenzene					-0.01
48) Chlorobenzene-d5			98781		0.00
is, distributions as	20.33	,	20,01	1.00 PP-	• • • • • • • • • • • • • • • • • • • •
System Monitoring Compounds					
61) Bromofluorobenzene	17.83	95	64146	1.01 ppb	-0.02
Spiked Amount 1.000	Range 70	- 130	Recover	y = 101	
	-				
Target Compounds					Qvalue
<pre>2) Propylene</pre>	4.14		43070	1.38 ppb	
3) Freon 12	4.20	85	305475	1.37 ppb	
4) Chloromethane	4.39			1.36 ppb	100
5) Freon 114	4.39				
6) Vinyl Chloride	4.59	62 39	70607	1.28 ppb	
7) 1,3-butadiene	4.68	39	46383	1.13 ppb	
8) Bromomethane	5.02	94	91592	1.33 ppb	98
9) Ethanol	5.36		20457m /	1.28 ppb	5.5
10) Acrolein	5.92	56	17383	1.28 ppb	86
11) Chloroethane	5.19		~	1.39 ppb	95
12) Vinyl Bromide	5.52				99
13) Freon 11	5.79		382521 35942m /	1.30 ppb	95
14) Acetone	6.03 6.15	58	35942m / 81891		ш ээ
15) Isopropyl alcohol				1.34 ppb	
16) 1,1-dichloroethene	6.53	96	75513		
17) Freon 113	6.73	101	194826	1.30 ppb	
18) t-Butyl alcohol	6.88 6.98	59 84	124639	1.14 ppb	# 78 95
19) Methylene chloride 20) Allyl chloride	6.97		64416	1.26 ppb	78
21) Carbon disulfide	7.15		91294	1.85 ppb 1.28 ppb	98
22) trans-1,2-dichloroether			215795 70984	1.28 ppb	
23) methyl tert-butyl ether		73	123095		87
24) 1,1-dichloroethane	8.33	63	91821	1.26 ppb	95
25) Vinyl acetate	8.37	43	60582	1.23 ppb	93
26) Methyl Ethyl Ketone	8.91	72	17155	1.24 ppb	
27) cis-1,2-dichloroethene			54294	1.25 ppb	96
28) Hexane	8.87	57	51095	1.30 ppb	89
29) Ethyl acetate	9.50		74956	1.25 ppb	96
30) Chloroform	9.86	83	139989	1.24 ppb	
31) Tetrahydrofuran	10.16			1.22 ppb	
32) 1,2-dichloroethane	10.98	62	27624 99149	1.25 ppb	98
34) 1,1,1-trichloroethane	10.68		178634	1.31 ppb	99
35) Cyclohexane	8.87	56	28454	1.30 ppb	92
36) Carbon tetrachloride	11.33	117	207156	1.27 ppb	92
37) Benzene	11.30	78	121896	1.31 ppb	92
38) Methyl methacrylate	12.86	41	34091	1.24 ppb	94
39) 1,4-dioxane	12.98	88	17402m	1.23 ppb	
40) 2,2,4-trimethylpentane	12.14	57	158058	T.ST PPD	95
41) Heptane	12.48	43	50001	1.30 ppb	98
42) Trichloroethene	12.59	130	66840	1.31 ppb	99
43) 1,2-dichloropropane	12.68	63	43643	1.31 ppb	93
44) Bromodichloromethane	13.00	83	161652 67374	1.28 ppb	96
45) cis-1,3-dichloropropene					96

^{(#) =} qualifier out of range (m) = manual integration

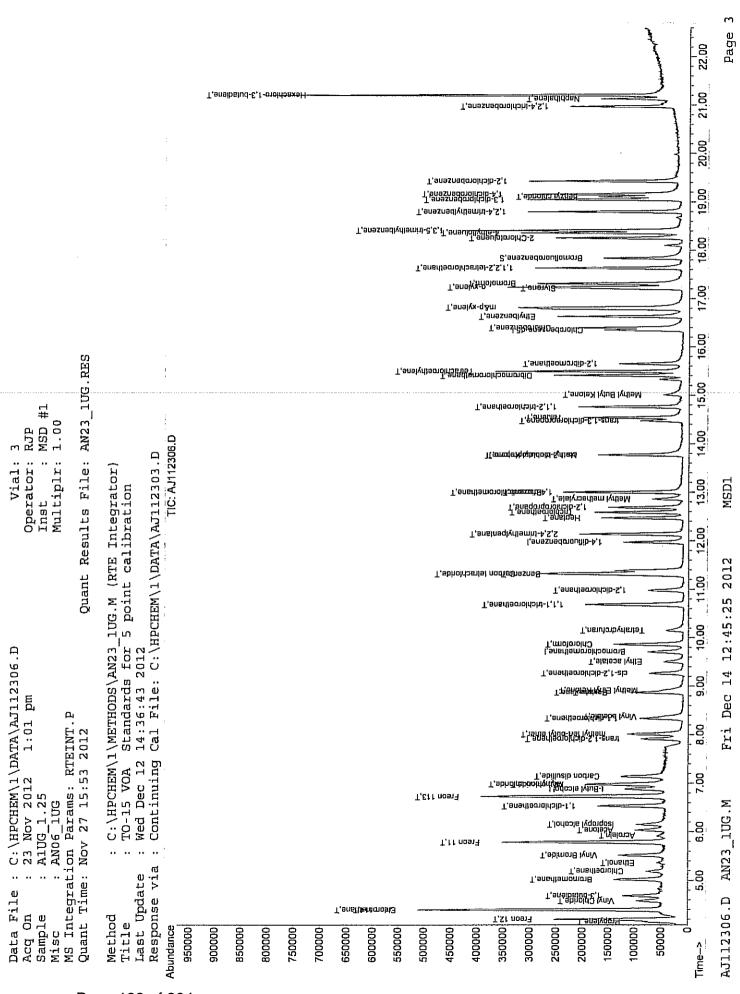
Page 1

MSD1

Centek Laboratories, LloCantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AJ112306.D Vial: 3 : 23 Nov 2012 1:01 pm Operator: RJP Acq On Sample : A1UG_1.25 Misc : AN06_1UG Inst : MSD #1 Multiplr: 1.00 Misc

MS Integration Params: RTEINT.P


Quant Time: Nov 23 20:00:32 2012 Quant Results File: AN23_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\AN23 1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration
Last Update : Fri Nov 23 13:52:43 2012
Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AJ112303.D

	Compound	R.T.	QIon	Response	Conc Unit	Qva	alue
46)	trans-1,3-dichloropropene	14.46	75	64506	1.34 ppb		95
47)	1,1,2-trichloroethane	14.76	97	64505	1.36 ppb		96
49)	Toluene	14.53	92	91653	1.32 ppb		93
50)	Methyl Isobutyl Ketone	13.76	43	64089	1.10 ppb		71
51)	Dibromochloromethane	15.41	129	138684m 🏳			
52)	Methyl Butyl Ketone	15.00	43	38902	0.75 ppb	#	50
53)	-	15.64	107	93756	1.30 ppb		98
54)		15.49	164	76230	1.27 ppb		99
55)	Chlorobenzene	16.39	112	132804	1.30 ppb		98
56)	Ethylbenzene	16.62	91	197673	1.33 ppb		98
57)	m&p-xylene	16.80	91	367627	2.72 ppb		94
58)	Styrene	17.20	104	107212	1.33 ppb		91
59)	Bromoform	17.31	173	146722	1.30 ppb		96
60)	o-xylene	17.23	91	248475	1.36 ppb		98
62)	1,1,2,2-tetrachloroethane	17.63		132462	1.29 ppb		96
63)		18.25	91	163578	1.23 ppb		98
64)	4-ethyltoluene	18.36			1.27 ppb		
65)	1,3,5-trimethylbenzene	18.40		275160m √	1.36 ppb		
66)		18.80		194748	1.34 ppb		96
67)	1,3-dichlorobenzene	19.04		141033	1.34 ppb		99
68)	-	19.10	91	137706	1.32 ppb		96
69)	1,4-dichlorobenzene	19.15		139993	1.37 ppb		99
70)	1,2-dichlorobenzene	19.42		137116	1.31 ppb		99
71)		20.97		70192	1.16 ppb	#	1
	Naphthalene	21.13		148024m /			
73)	Hexachloro-1,3-butadiene	21.20	225	124919	1.24 ppb	#	100

(OT Reviewed)

Quantitation Report

Page 138 of 204

Centek Laboratories, LLC Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AJ112307.D Vial: 4 Acq On : 23 Nov 2012 1:38 pm Sample : AlUG_1.0 Misc : AN06_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Ouant Time: Nov 23 20:01:00 2012 Quant Results File: AN23 1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\AN23_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Fri Nov 23 13:52:43 2012
Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AJ112303.D

DataAcq Meth : 1UG_T015

Internal Standards	R.T.	QIon	Response	Conc Ur	nits	Dev	(Min)
1) Bromochloromethane			28444	1.00			-0.03
33) 1,4-difluorobenzene	11.97		107016 96989	1.00			0.02
48) Chlorobenzene-d5	16.35	117	70707	1.00	րբո		0.00
System Monitoring Compounds							
61) Bromofluorobenzene	17.83						-0.01
Spiked Amount 1.000	Range 70	- 130	Recover	.y =	95.	00%	
Target Compounds						Ova	alue
2) Propylene	4.15	41	32534	1.02	daa	2,0	92
3) Freon 12	4.20	85	229237	1.00			100
4) Chloromethane	4.39	50	65324	1.04			99
5) Freon 114				1.02	daa		
6) Vinyl Chloride	4.57	62	54899	0.97			97
7) 1,3-butadiene	4.68						
8) Bromomethane	5.01	39 94	68099	0.97			97
9) Ethanol	5.36	45	14839m 🕏	0.90			
10) Acrolein	5.92	56	14480	1.04		#	74
11) Chloroethane	5.18	64	26270	1.05			96
12) Vinyl Bromide	5.51	64 106 101	68588	0.93			96
13) Freon 11	5.79	101	294595	0.98			95
14) Acetone	6.03	58	24346	0.78		#	76
<pre>15) Isopropyl alcohol</pre>	6.14	45	63127	1.01		#	32
16) 1,1-dichloroethene	6.53	96	55682	0.95			92
17) Freon 113	6.72	101	147651	0.96	ppb	#	84
18) t-Butyl alcohol	6.88	59	97559	0.87		#	71
19) Methylene chloride	6.99	84	50717	0.97	ppb		96
20) Allyl chloride	6.96	41	53456m 👂	1.06	ppb		
21) Carbon disulfide	7.14	76	162324	0.94	ppb		97
22) trans-1,2-dichloroethene	7.91	61	64813	1.15			86
23) methyl tert-butyl ether	8.02	73	99565	1.00			87
<pre>24) 1,1-dichloroethane</pre>	8.33	63	71076	0.95			97
25) Vinyl acetate	8.37	43	51046	1.01	ppb		95
26) Methyl Ethyl Ketone	8.91	72	12332	0.87		#	100
27) cis-1,2-dichloroethene	9.26	61	42148	0.95			98
28) Hexane	8.87	57	35646	0.89		#	76
29) Ethyl acetate	9.51	43	53465	0.87			97
30) Chloroform	9.85	83		0.92			97
31) Tetrahydrofuran	10.15		21019	0.91			97
32) 1,2-dichloroethane	10.98	62	77834	0.96	ppb		100
34) 1,1,1-trichloroethane	10.69	97		1.01	ppb		100
35) Cyclohexane	8.87	56	22636	1.05	ppp		90
36) Carbon tetrachloride	11.33	117	158588	0.99			93
37) Benzene	11.30	78	89499	0.98			96
38) Methyl methacrylate	12.86	41	25910	0.95			92
39) 1,4-dioxane	12.99	88	14460m /				97
40) 2,2,4-trimethylpentane	12.13	57 43	120015 37670	1.01 1.00			99
41) Heptane	12.47 12.58	130	49230	0.98			95
<pre>42) Trichloroethene 43) 1,2-dichloropropane</pre>	12.50	63	34309	1.04			95
44) Bromodichloromethane	13.00	83	123365	0.99			9B
45) cis-1,3-dichloropropene	13.77	75	50805	1.01			94
43) CIS-1,3-dichiolopiopene							

^{(#) =} qualifier out of range (m) = manual integration AJ112307.D AN23 1UG.M Fri Dec 14 12:45:27 2012

MSD1

Centek Laboratories, LLEGantitation Report (QT Reviewed)

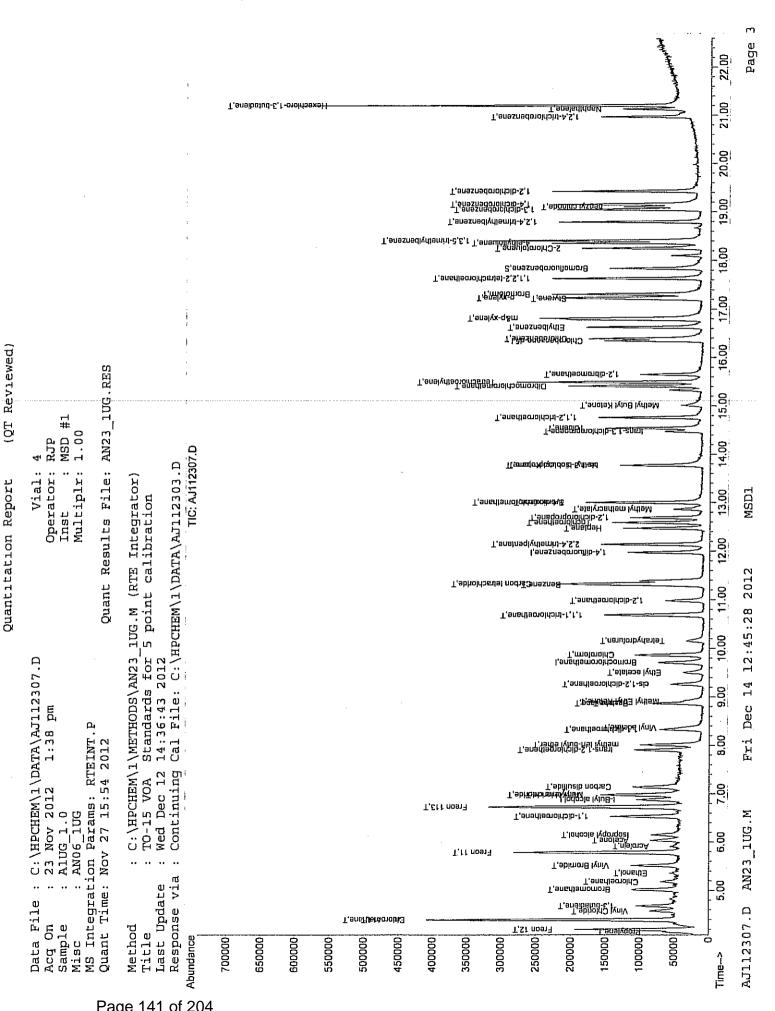
Data File : C:\HPCHEM\1\DATA\AJ112307.D Acq On

: 23 Nov 2012 1:38 pm

Vial: 4 Operator: RJP Inst : MSD #1

Sample : AlUG_1.0 Misc : AN06_1UG

Multiplr: 1.00


MS Integration Params: RTEINT.P Quant Time: Nov 23 20:01:00 2012

Quant Results File: AN23 1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\AN23_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Fri Nov 23 13:52:43 2012

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AJ112303.D

	Compound	R.T.	QIon	Response	Conc Unit	Qνa	alue
46)	trans-1,3-dichloropropene	14.46	75	45489	0.96 ppb		99
47)	1,1,2-trichloroethane	14.76	97	49930	1.07 ppb		99
49)	Toluene	14.54	92	65902	0.97 ppb		98
50)	Methyl Isobutyl Ketone	13.76	43	45961	0.80 ppb	#	62
51)	Dibromochloromethane	15.41	129	113136	1.01 ppb		97
52)	Methyl Butyl Ketone	15.01	43	41658m 🖊	0.82 ppb		
53)	1,2-dibromoethane	15.65	107	71641	1.01 ppb		97
54)	Tetrachloroethylene	15.49	164	61441	1.04 ppb		94
55)	Chlorobenzene	16.39	112	104399	1.04 ppb		99
56)	Ethylbenzene	16.62	_	146506	1.01 ppb		97
57)	m&p-xylene	16.81	91	2 7 1187	2.04 ppb		95
58)	Styrene	17.21		80335	1.01 ppb		88
59)	Bromoform		173				97
	o-xylene	17.23		183404	1.02 ppb		99
62)	1,1,2,2-tetrachloroethane	17.63		98919	0.98 ppb		96
63)		18.25		120319	0.92 ppb		98
	4-ethyltoluene	18.36		138857m /			
	1,3,5-trimethylbenzene	18.41		196662m 💃	0.99 ppb		
	1,2,4-trimethylbenzene	18.79		134252	0.94 ppb		92
67)	•	19.04		104840	1.02 ppb		99
68)	-	19.10		100112	0.98 ppb		95
69)	•	19.15		98101	0.98 ppb		94
	1,2-dichlorobenzene	19.43		101840	0.99 ppb		96
71)	• •	20.97		51620	0.87 ppb	#	1
72)	-	21.13			0.80 ppb		96
73)	Hexachloro-1,3-butadiene	21.20	225	94816	0.96 ppb	#	100

Centek Laboratories, LLCantication Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AJ112308.D Vial: 5 : 23 Nov 2012 Operator: RJP Acq On 2:15 pm Sample : AlUG_0.75 Misc : AN06_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Nov 23 20:01:26 2012 Quant Results File: AN23 1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\AN23_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration

Last Update : Fri Nov 23 13:52:43 2012

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AJ112303.D

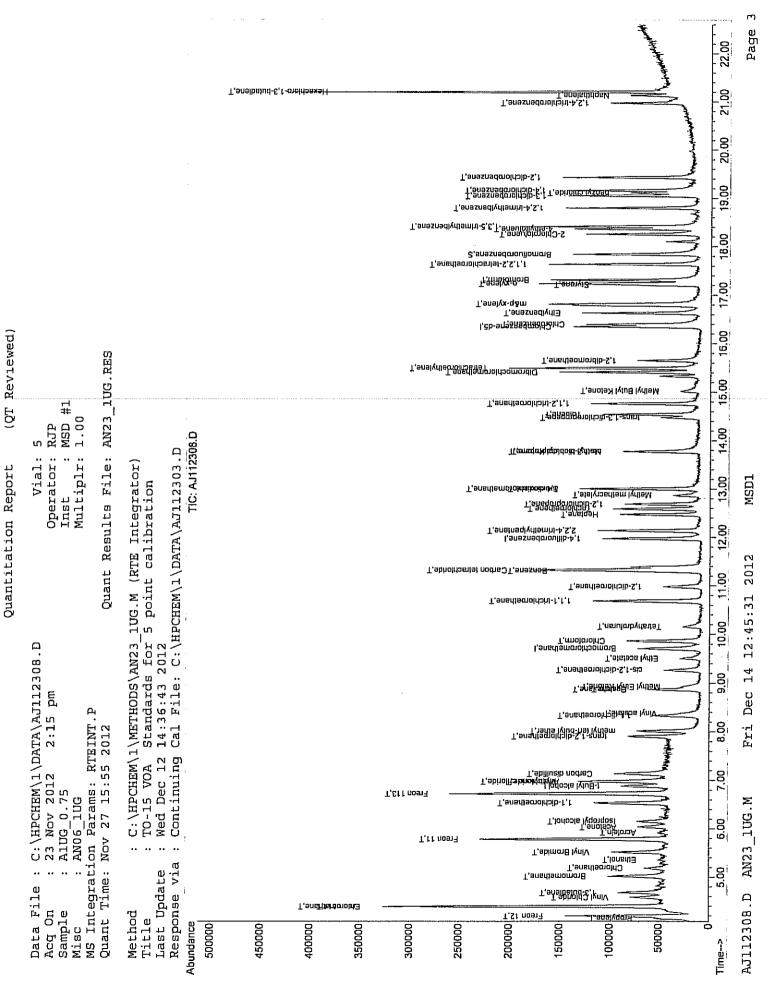
DataAcq Meth : 1UG T015

	* <u>-</u>							
Inte	rnal Standards	R.T.	QIon	Response	Conc U	nits	Dev	(Min)
							-	
	Bromochloromethane	9.70	128	27448	1.00			-0.02
	1,4-difluorobenzene	11.97			1.00			-0.01
48)	Chlorobenzene-d5	16.35	117	92795	1.00	ppb		0.00
	em Monitoring Compounds					_		
	Bromofluorobenzene	17.84	95					0.00
Sp	iked Amount 1.000	Range 70	- 130	Recover	ry =	95	. 00ቄ	
							_	-
	et Compounds					,	Qv	alue
	Propylene	4.15	41	23105	0.75			83
•	Freon 12	4.20	85	172051	0.78	pp.		100
	Chloromethane	4.39	50	50011	0.82			98
	Freon 114 Vinyl Chloride	4.39	85	158989 41924	0.82	pp.		91
		4.50	39		0.77			100
	1,3-butadiene Bromomethane	5.01	94	30377	0.75	pp		98
,	Ethanol	5.36	45	55128 9495	0.60			85
- •	Acrolein	5.92	56		0.80		#	75
	Chloroethane	5.19	64	19782	0.82		11	97
	Vinyl Bromide	5.51	106	55728	0.78			99
	Freon 11	5.78	101	233215	0.80	PPP		95
	Acetone	6.04	58	15127	0.50		#	44
15)		6.16	45	48968	0.81			32
	1,1-dichloroethene	6.54	96	47331	0.84		11	97
	Freon 113	6.72	101	113375	0.76		#	85
	t-Butyl alcohol	6.88	59	75195	0.70			71
	Methylene chloride	6.98	84	38839	0.77		**	97
	Allyl chloride	6.97	41	36437	0.75			97
	Carbon disulfide	7.13	76	127738	0.77			92
	trans-1,2-dichloroethene		61	47505	0.87			81
	methyl tert-butyl ether	8.01	73	67954	0.71			90
	1,1-dichloroethane	8.33	63	52761	0.73			97
	Vinyl acetate	8.38	43	30375	0.62			97
26)		8.93	72	8173	0.60		#	100
	cis-1,2-dichloroethene	9.26	61	30034	0.70			97
	Hexane	8.86	57	28083	0.72			85
29)		9.50	43	38219	0.64			96
30)	Chloroform	9.86	83	79528	0.71			100
31)	Tetrahydrofuran	10.15	42	16696m /	0.75	ppb		
32)	1,2-dichloroethane	10.98	62	56530	0.72	ppb		96
34)	1,1,1-trichloroethane	10.68	97	102008	0.80			100
	Cyclohexane	8.87	56	15574	0.76			81
36)	Carbon tetrachloride	11.32	117	121593	0.80			93
37)	Benzene	11.30	78	69786	0.80	ppb		98
38)		12.87	41	16065	0.62			86
	1,4-dioxane	13.00	88	10655m / /				
	2,2,4-trimethylpentane	12.14	57	84271	0.74			96
	Heptane	12.47	43	26486	0.74			96
	Trichloroethene	12.59	130	36518	0.76			98
	1,2-dichloropropane	12.68	63	25502	0.81			97
	Bromodichloromethane	12.99			0.75			100
	cis-1,3-dichloropropene			32831 	0.68			98
	- mulifier out of range							

MSD1

Centek Laboratories, L_{Quantitation Report} (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AJ112308.D Vial: 5 Acq On : 23 Nov 2012 2:15 pm Operator: RJP Sample : A1UG 0.75 Inst : MSD #1 Misc : ANO6_1UG Multiplr: 1.00


MS Integration Params: RTEINT.P

Quant Time: Nov 23 20:01:26 2012 Quant Results File: AN23_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\AN23_1UG.M (RTE Integrator) : TO-15 VOA Standards for 5 point calibration Title

Last Update : Fri Nov 23 13:52:43 2012
Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AJ112303.D

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
46)	trans-1,3-dichloropropene	14.48	75	38047m [0.84 ppb	
47)		14.76	97	35844	0.80 ppb	97
49)	Toluene	14.54		47720	0.73 ppb	90
50)	Methyl Isobutyl Ketone	13.77	43	40780m	0.74 ppb	
51)	Dibromochloromethane	15.41		82186	0.77 ppb	98
52)	Methyl Butyl Ketone	15.02	43	30519m 🕏	0.63 ppb	
53)	1,2-dibromoethane	15.65	107	49338	0.73 ppb	96
54)	•	15.49	164	43402	0.77 ppb	99
55)		16.39	112	71765	0.75 ppb	98
56)	Ethylbenzene	16.63	91	101996	0.73 ppb	97
57)	m&p-xylene	16.81	91	177310	1.40 ppb	96
	Styrene	17.20	104	51633	0.68 ppb	93
59)	Bromoform	17.31	173	78794	0.74 ppb	98
60)		17.23	91	117178	0.68 ppb	97
62)	1,1,2,2-tetrachloroethane	17.63	83	69742	0.72 ppb	94
63)		18.25	91	78764	0.63 ppb	94
64)		18.36	105	92098m 🏴	0.60 ppb	
65)	1,3,5-trimethylbenzene	18.41	105	121124m 。	0.64 ppb	
66)		18.80	105	89111	0.65 ppb	94
67)	1,3-dichlorobenzene	19.05	146	66720	0.68 ppb	99
68)	benzyl chloride	19.10	91	62153	0.63 ppb	99
69)	1,4-dichlorobenzene	19.16	146	63492	0.66 ppb	98
70)		19.43	146	67546	0.69 ppb	98
71)	1,2,4-trichlorobenzene	20.97	180	37295m 🌶	0.65 ppb	
	Naphthalene	21.13	128	65693m(/		
	Hexachloro-1,3-butadiene	21.20	225	63553	0.67 ppb	# 100

Page 144 of 204

Centek Laboratories, Ll_QC_{antitation Report} (QT Reviewed)

MS Integration Params: RTEINT.P

Quant Time: Nov 23 20:02:01 2012 Quant Results File: AN23_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\AN23_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration

Last Update : Fri Nov 23 13:52:43 2012

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AJ112303.D

Inte	rnal Standards	R.T.	QIon	Response	Conc U	nits	Dev	(Min)		
1)	Bromochloromethane	9.71	128	25050	1.00	nnh		-0.01		
	1,4-difluorobenzene			98995	1.00	daa		-0.01		
	Chlorobenzene-d5	16.35								
10,		20.02	,	0321		PF-		0.40		
System Monitoring Compounds										
	Bromofluorobenzene	17.84	95	51634	0.90	ppb		0.00		
Sp	iked Amount 1.000	Range 70	- 130	Recover	: y =	90	. 00 ቄ			
	et Compounds				_	_	Qv	alue		
	Propylene	4.15	41	16657	0.59	ppb		96		
	Freon 12	4.20	85	107908	0.54			99		
	Chloromethane	4.39	50	32516	0.59			92		
	Freon 114	4.40								
	Vinyl Chloride	4.58	62 39 94	25983	0.52			89		
	1,3-butadiene	4.69	39	20670	0.56			87		
•	Bromomethane	5.03			0.53			95		
	Ethanol	5.37			0.66			37		
	Acrolein	5.93	56 64	5437	0.44		#	54		
	Chloroethane	5.19	64	12483	0.57			84		
	Vinyl Bromide	5.53	700	33342	0.51			98		
- •	Freon 11	5.79	101	145330	0.55			95		
	Acetone	6.05	58	9176m / 26889 29459	0.33					
15)	Isopropyl alcohol	6.15	45	26889	0.49			32		
16)	1,1-dichloroethene	6.54	70	22422	0.57	ppb		91		
	Freon 113	6.73	101	73306 44938	0.54			82		
	t-Butyl alcohol	6.90	59	44938	0.46			61		
	Methylene chloride	6.98	84	23268	0.50		#	85		
	Allyl chloride	6.98	41	30147m 🖊	0.68	ppb				
	Carbon disulfide	7.14	76	85036	0.56			95		
	trans-1,2-dichloroethene		61	27445	0.55		#	70		
	methyl tert-butyl ether	8.04	73	38188	0.44			92		
	1,1-dichloroethane	8.34	63	34629	0.53			96		
	Vinyl acetate	8.39	43	23238m 🗸						
	Methyl Ethyl Ketone	8.95	72	5286m						
	cis-1,2-dichloroethene	9.27	61	18666	0.48			93		
	Hexane	8.88	57	15369	0.43			72		
	Ethyl acetate	9.52	43	21098	0.39			91		
	Chloroform	9.87	83	50967	0.50			100		
	Tetrahydrofuran	10.18	42			ppp				
32)	1,2-dichloroethane	10.98	62	33874	0.47	ppp		98		
	1,1,1-trichloroethane	10.69	97	67750	0.55	bbp		97		
	Cyclohexane	8.87	56	10061	0.50			89		
	Carbon tetrachloride	11.33	117	75687	0.51			94		
	Benzene	11.30	78	43132	0.51			99		
	Methyl methacrylate	12.87	41	13149m	0.52					
	1,4-dioxane	13.04	88	6679m J						
	2,2,4-trimethylpentane	12.14	57	52263	0.47			91		
	Heptane	12.47	43	15809	0.45			94		
	Trichloroethene	12.59	130	23770	0.51			93		
	1,2-dichloropropane	12.69	63	16416	0.54			95		
	Bromodichloromethane	13.00	83	56896	0.50			99		
45)	cis-1,3-dichloropropene	13.77	75	21364m 🏄	0.46	ppb				

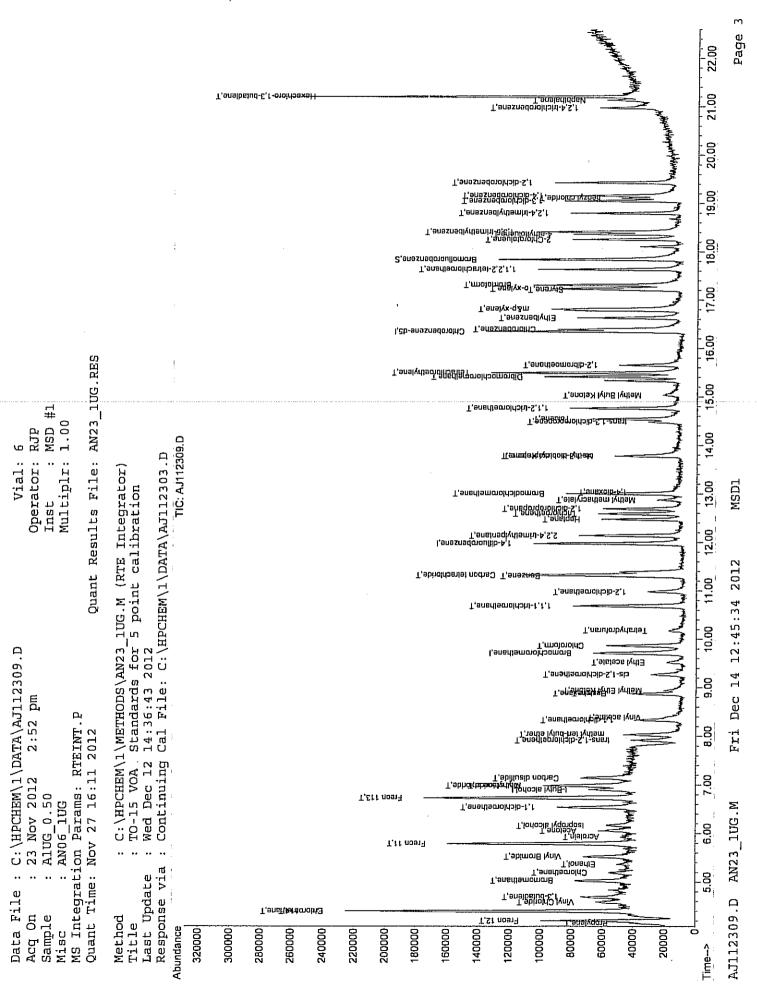
^{(#) =} qualifier out of range (m) = manual integration AJ112309.D AN23_1UG.M Fri Dec 14 12:45:33 2012

Centek Laboratories, LLC Quantitation Report

(QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AJ112309.D

Acq On : 23 Nov 2012 2:52 pm Sample : AlUG_0.50


Vial: 6 Operator: RJP Inst : MSD #1 Multiplr: 1.00

Misc : AN06_1UG MS Integration Params: RTEINT.P

Quant Time: Nov 23 20:02:01 2012 Quant Results File: AN23 1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\AN23_lUG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Fri Nov 23 13:52:43 2012
Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AJ112303.D

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
46)	trans-1,3-dichloropropene	14.48	75	21338	0.49 ppb	97
47)	1,1,2-trichloroethane	14.76	97	23143	0.53 ppb	99
49)	Toluene	14.54	92	29133	0.47 ppb	93
50)	Methyl Isobutyl Ketone	13.78	43	24885m 🖊	0.47 ppb	•
51)	Dibromochloromethane	15.41	129	51337 <i>j</i>	0.50 ppb	95
52)	Methyl Butyl Ketone	15.02	43	21247m / 5	0.45 p pb	
53)	1,2-dibromoethane	15.65	107	31266	0.48 ppb	97
54)	Tetrachloroethylene	15.49	164	28143	0.52 ppb	97
55)	Chlorobenzene	16.39	112	46199	0.50 ppb	97
56)	Ethylbenzene	16.63	91	61092	0.46 ppb	98
57)	m&p-xylene	16.80	91	102052	0.84 ppb	93
58)	Styrene	17.21	104	31587	0.43 ppb	86
59)	Bromoform	17.31	173	49954	0.49 ppb	97
60)	o-xylene	17.24	91	66089	0.40 ppb	96
62)	1,1,2,2-tetrachloroethane	17.63	83	42255	0.46 ppb	91
63)	2-Chlorotoluene	18.25	91	47268 ,	0.39 ppb	96
	4-ethyltoluene	18.36	105	50166m 🖊	0.34 ppb	
65)	1,3,5-trimethylbenzene	18.41	105	70757π.∤	0.39 ppb	
66)	1,2,4-trimethylbenzene	18.79	105	48175	0.37 ppb	87
67)	1,3-dichlorobenzene	19.05	146	40589	0.43 ppb	93
68)	benzyl chloride	19.11	91	32576	0.35 ppb	98
69)	1,4-dichlorobenzene	19.16	146	34653	0.38 ppb	97
70)	1,2-dichlorobenzene	19.43	146	41396	0.44 ppb	97
71)	1,2,4-trichlorobenzene	20.97	180	21807m / 0		
72)	Naphthalene	21.13	128	41707m ()		
73)	Hexachloro-1,3-butadiene	21.20	225	40317	0.44 ppb	# 100

Page 147 of 204

Centek Laboratories, $L_{Quantitation\ Report}^{C}$ (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AJ112310.D Vial: 7 Acq On : 23 Nov 2012 3:28 pm Operator: RJP : A1UG 0.30 Sample Inst : MSD #1 Misc : AN06 1UG Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Nov 23 20:02:28 2012 Quant Results File: AN23 1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\AN23_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Fri Nov 23 13:52:43 2012
Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AJ112303.D

DataAcq Meth : 1UG T015

Internal Standards	R.T.	QIon	Response	Conc Un	its	Dev	(Min)
1) Bromochloromethane	9.71	128	25414	1.00	daa		-0.01
33) 1,4-difluorobenzene				1.00			-0.01
48) Chlorobenzene-d5	11.97 16.35	117	B4526	1.00			0.00
,							
System Monitoring Compounds							
61) Bromofluorobenzene	17.83	95	44573	0.82	ppb		-0.01
Spiked Amount 1.000	Range 70	- 130	Recove	ry =	82.	00₺	
Target Compounds						Qva	alue
2) Propylene	4.16	41	10635	.0.37			75
3) Freon 12	4.20	85	71596	0.35			100
4) Chloromethane	4.39	50	19645	0.35	ppb		86
5) Freon 114			62707				
6) Vinyl Chloride	4.58 4.69	39	17212 10826	0.34			94 96
7) 1,3-butadiene			10020				95
8) Bromomethane	5.01 5.37	94 4 E	23640	0.38			93
9) Ethanol		45 56	5307 4250m /	0.34			23
10) Acrolein	5.93 5.19	64	7792	0.34			81
11) Chloroethane				0.33			93
12) Vinyl Bromide	5.51 5.79	106 101	21591 95760	0.35			94
13) Freon 11 14) Acetone	6.06	TOT	6623	0.24		#	45
•	6.17						32
15) Isopropyl alcohol	6.54	45	10222		DDD DDD	##	98
16) 1,1-dichloroethene	6.73	96 101	19339	0.37		#	84
17) Freon 113	6.90	59		0.33			: 73
18) t-Butyl alcohol	6.99	84	16561	0.31		Ħ	98
19) Methylene chloride 20) Allyl chloride	6.98	41	17815	0.35			80
21) Carbon disulfide	7.14	76	55606	0.36			87
22) trans-1,2-dichloroethene		61	16575	0.33		#	74
23) methyl tert-butyl ether		73	25145m /	0.28	ppb	73	' -
24) 1,1-dichloroethane	8.33	63	21555	0.32			98
25) Vinyl acetate	8.38	43	13731	0.31			92
26) Methyl Ethyl Ketone	8.93	72	3491m				
27) cis-1,2-dichloroethene							97
28) Hexane	8.87	61 57	11549 11125m	0.31	nnh		
29) Ethyl acetate	9.53	43	15934m	0.29			
30) Chloroform	9.87	83	32222	0.31	daa		96
31) Tetrahydrofuran	10.19	42	7403m L	0.36			
32) 1,2-dichloroethane	10.99	62	22631	0.31	daa		97
34) 1,1,1-trichloroethane	10.69	97	42105	0.35	dqq		100
35) Cyclohexane	8.87	56	6213	0.32	ppb	#	1
36) Carbon tetrachloride	11.32	117	51062	0.35	ppb		94
37) Benzene	11.30	78	26346	0.32			90
38) Methyl methacrylate	12.87	41	8411m /	0.34	ppb		
39) 1,4-dioxane	13.04	88	5053mi	0.40	ppb		
40) 2,2,4-trimethylpentane	12.14	57	32746	0.31	ppb		97
41) Heptane	12.48	43	9962	0.29	ppb		96
42) Trichloroethene	12.59	130	14118	0.31	ppb		93
43) 1,2-dichloropropane	12.69	63	10495	0.35			85
44) Bromodichloromethane	13.00	83	35713	0.32			97
45) cis-1,3-dichloropropene	13.78	75	12067	0.27	ppb		99
							-

^{(#) =} qualifier out of range (m) = manual integration AJ112310.D AN23 1UG.M Fri Dec 14 12:45:37 2012

MSD1

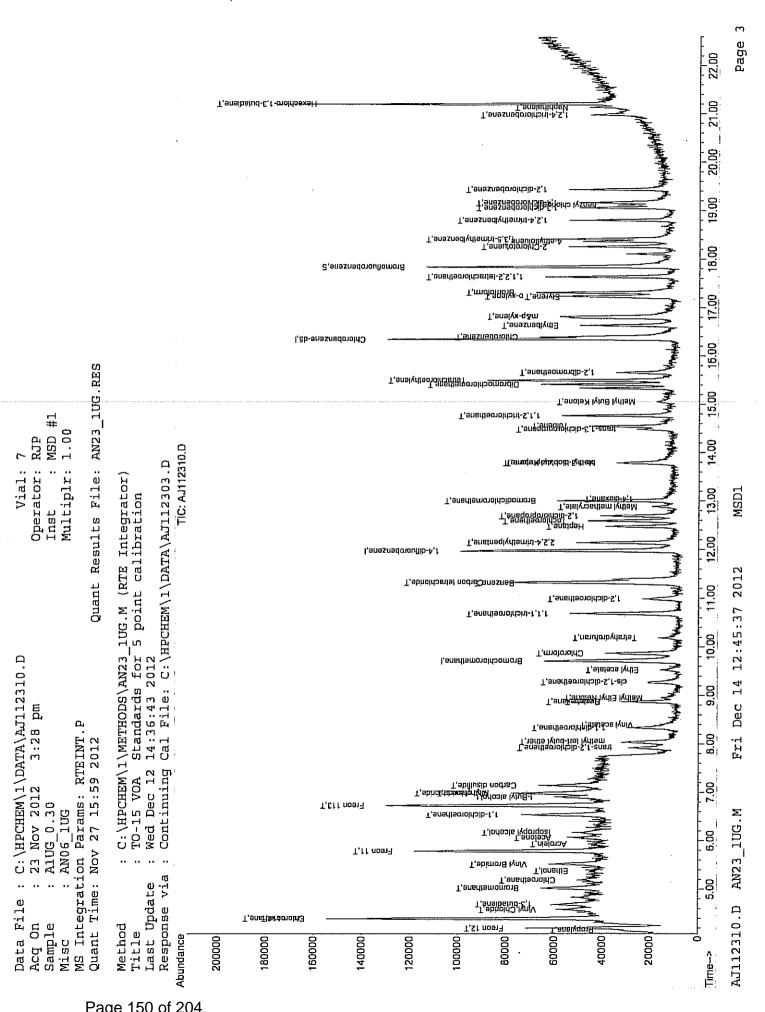
Centek Laboratories, LLQQantitation Report (QT Reviewed)

MS Integration Params: RTEINT.P

Quant Time: Nov 23 20:02:28 2012 Quant Results File: AN23_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\AN23_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Last Update : Fri Nov 23 13:52:43 2012


Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AJ112303.D

DataAcq Meth : 1UG_T015

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
46)	trans-1,3-dichloropropene	14.48	 75	14406m /	0.34 ppb	
47)	1,1,2-trichloroethane	14.76	97	14588	0.35 ppb	99
49)	Toluene	14.55	92	17894	0.30 ppb	94
50)	Methyl Isobutyl Ketone	13.79	43	17689m	0.35 ppb	
51)	Dibromochloromethane	15.41	129	32277	0.33 ppb	97
52)	Methyl Butyl Ketone	15.05	43	16002m 🐓	0.36 ppb	
53)	1,2-dibromoethane	15.65	107	19124	0.31 ppb	94
54)		15.49	164	18423	0.36 ppb	95
55)	Chlorobenzene	16.40	112	28863	0.33 ppb	94
56)	Ethylbenzene	16.63	91	37690	0.30 ppb	97
57)	m&p-xylene	16.81	91	59813	0.52 ppb	89
58)	Styrene	17.21	104	19366	0.28 ppb	82
59)	Bromoform	17.30	173	30836	0.32 ppb	94
60)	o-xylene	17.24	91	42508m P	0.27 ppb	
62)	1,1,2,2-tetrachloroethane	17.63	83	25893	0.30 ppb	94
63)	2-Chloroto l uene	18.25	91	28923	0.25 ppb	91
64)		18.36	105	32149m	0.23 ppb	
65)	1,3,5-trimethylbenzene	18.41	105	41584m	0.24 ppb	
66)		18.79	105	29626	0.24 ppb	93
67)	1,3-dichlorobenzene	19.05	146	22101	0.25 ppb	100
68)	benzyl chloride	19.11	91	22746m	0.25 ppb	
69)	1,4-dichlorobenzene	19.16	146	24424m	0.28 ppb	
70)	1,2-dichlorobenzene	19.43	146	22390	0.25 ppb	94
71)	1,2,4-trichlorobenzene	20.98	180	15039m	0.29 ppb	
72)	Naphthalene	21.13	128	24312m ↓		
73)	Hexachloro-1,3-butadiene	21.20	225	22644	0.26 ppb	# 100

COT REVIEWED

להמזור דרמר דרסוז צב מסדר

Centek Laboratories, L@@antitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AJ112311.D Vial: 8 Operator: RJP : 23 Nov 2012 Acq On 4:04 pm Sample : AlUG_0.15 Misc : AN06_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Nov 23 20:02:56 2012 Quant Results File: AN23 1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\AN23_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration

Last Update : Fri Nov 23 13:52:43 2012

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AJ112303.D

DataAcq Meth : 1UG T015

Internal Standards			Response		Dev(Min)
1) Bromochloromethane	9.72	128			0.00
33) 1,4-difluorobenzene				1.00 ppb	
48) Chlorobenzene-d5	11.98 16.35	117	78802	1.00 ppb	
				L L -	
System Monitoring Compounds					
61) Bromofluorobenzene				0.86 ppb	-0.01
Spiked Amount 1.000	Range 70	- 130	Recover	y = 86	.00₺
Target Compounds	4 4 5	4-	5040	0.011	Qvalue
2) Propylene	4.15		5848	0.21 ppb	93
3) Freon 124) Chloromethane	4.20	85	42106	0.21 ppb	98 83
5) Freon 114	4.40 4.39	50 85	12327 36844	0.22 ppb 0.21 ppb	
6) Vinyl Chloride	4.33	65	11116	0.21 ppb 0.22 ppb	
7) 1,3-butadiene	4.69	39	6734m /	0.18 ppb	
8) Bromomethane	4.69 5.02	94		0.18 ppb	
9) Ethanol	5.37		t t	0.20 ppb	
10) Acrolein	5.91	56	1949m	0.16 ppb	
11) Chloroethane	5.18	64	4324m	0.19 ppb	
12) Vinyl Bromide	5.51	106		0.18 ppb	
13) Freon 11	5.79	101	59164	0.22 ppb	92
14) Acetone	6.05	58		0.17 ppb	
15) Isopropyl alcohol	6.17	45		0.23 ppb	# 32
16) 1,1-dichloroethene	6.53	96	10271	0.20 ppb	
17) Freon 113	6.73	101	29472	0.22 ppb	# 82
18) t-Butyl alcohol	6.90	59	24146	0.24 ppb	90
19) Methylene chloride	6.99	84	9496m	0.20 ppb	
20) Allyl chloride	6.96	41	7502	0.17 ppb	
21) Carbon disulfide	7.14		34139	0.22 ppb	
22) trans-1,2-dichloroethene		61	8893	0.18 ppb	
23) methyl tert-butyl ether	8.04	73	14964	0.17 ppb	84
24) 1,1-dichloroethane	8.33	63	12440	0.19 ppb	97
25) Vinyl acetate	8.38	43	8013	0.18 ppb	79
26) Methyl Ethyl Ketone	8.94	72		0.18 ppb	" 50
27) cis-1,2-dichloroethene		61	6283	0.16 ppb	
28) Hexane	8.87	57		0.14 ppb	
29) Ethyl acetate	9.51	43 83	8369m	0.15 ppb	
30) Chloroform	9.87	83 42	19522	0.19 ppb 0.19 ppb	
31) Tetrahydrofuran 32) 1,2-dichloroethane	10.18 10.99	42 62	3856 12556	0.13 ppb	98
34) 1,1,1-trichloroethane		97		0.17 ppb 0.22 ppb	99
35) Cyclohexane	8.87	56	3480	0.19 ppb	# 1
36) Carbon tetrachloride	11.34	117	30241	0.22 ppb	93
37) Benzene	11.30	78	14725	0.19 ppb	99
38) Methyl methacrylate	12.88	41	4675m	0.20 ppb	
39) 1,4-dioxane	13.07	88	2411m	0.20 ppb	
40) 2,2,4-trimethylpentane	12.14	57	18332	0.18 ppb	90
41) Heptane	12.48	43	3684	0.11 ppb	# 20
42) Trichloroethene	12.59	130	8775	0.20 ppb	96
43) 1,2-dichloropropane	12.69	63	5367	0.19 ppb	85
44) Bromodichloromethane	13.00	83	21201	0.20 ppb	100
45) cis-1,3-dichloropropene			7572m 🕠	0.17 ppb	
				- 	

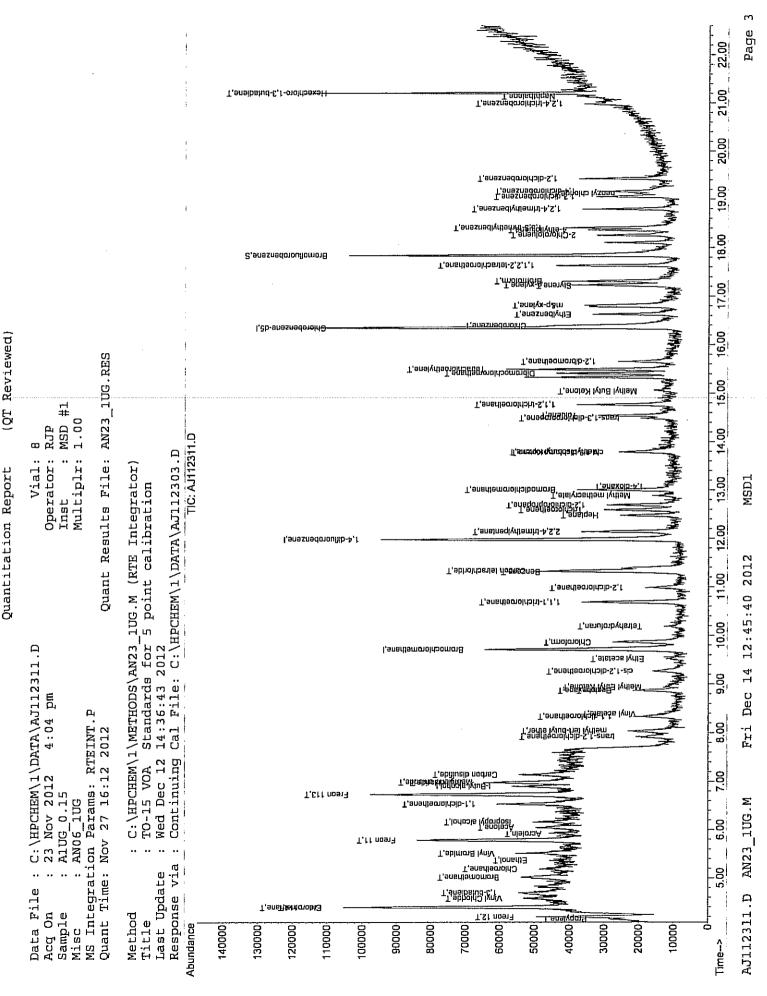
Page 1

Centek Laboratories, LLC (QT Reviewed)

MS Integration Params: RTEINT.P

Quant Time: Nov 23 20:02:56 2012 Quant Results File: AN23_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\AN23_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration


Last Update : Fri Nov 23 13:52:43 2012

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AJ112303.D

DataAcq Meth : 1UG_T015

	Compound	R.T.	QIon	Response	Conc Unit	Qva	alue
46)	trans-1,3-dichloropropene	14.48	 75	7055	0.17 ppb		95
47)	1,1,2-trichloroethane	14.77	97	8323	0.21 ppb		97
49)	Toluene	14.55	92	10444	0.19 ppb		98.
50)	Methyl Isobutyl Ketone	13.79	43	8607	0.18 ppb	#	63
51)	Dibromochloromethane	15.41	129	19028m ∕	0.21 ppb		
52)	Methyl Butyl Ketone	15.04	43	5506	0.13 ppb		91
53)	1,2-dibromoethane	15.65	107	10998	0.19 ppb		98
54)	Tetrachloroethylene	15.49	164	11008	0.23 ppb		99
55)	Chlorobenzene	16.40	112	16238	0.20 ppb		96
56)	Ethylbenzene	16.62	91	20736	0.18 ppb		96
57)	m&p-xylene	16.82	91	30466	0.28 ppb		84
58)-	Styrene	17.21	104	7810			91
59)	Bromoform	17.31	173	16723	0.19 ppb		97
60)	o-xylene	17.23	91	22522	0.15 ppb		98
62)	1,1,2,2-tetrachloroethane	17.64	83	15901	0.19 ppb		97
63)	2-Chlorotoluene	18.26	91	18859	0.18 ppb		91
64)	4-ethyltoluene	18.36	105	16443m	0.13 ppb		
65)		18.41	105	24720m	0.15 ppb		
66)	1,2,4-trimethylbenzene	18.80	105	18364	0.16 ppb		90
67)	1,3-dichlorobenzene	19.05		12257	0.15 ppb		98
68)	benzyl chloride	19.12	91	11458m	0.14 ppb		
69)	1,4-dichlorobenzene	19.16	_	12040	0.15 ppb		82
70)	1,2-dichlorobenzene	19.43		13982	0.17 ppb		95
71)	1,2,4-trichlorobenzene	20.99		8100m ↓	0.17 ppb		
72)		21.14		15253m V	' 0.16 ppb		
73)	Hexachloro-1,3-butadiene	21.20	225	14114	0.18 ppb	#	100

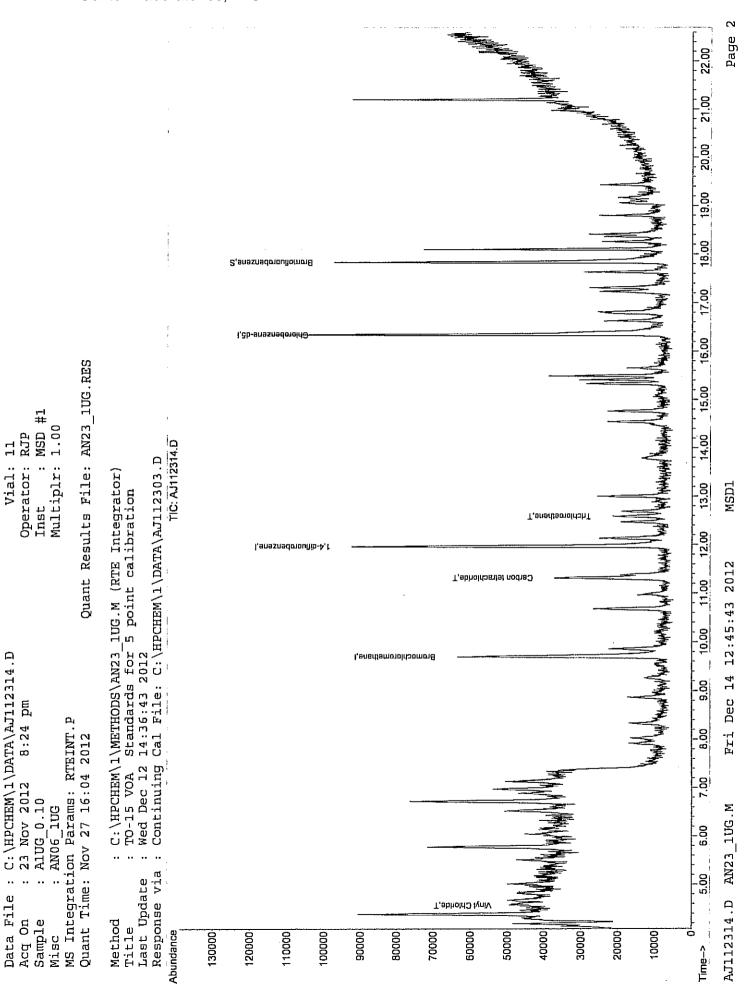
(QT Reviewed)

Page 153 of 204

Centek Laboratories, LoCantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AJ112314.D
Acq On : 23 Nov 2012 8:24 pm Vial: 11 Operator: RJP Sample : A1UG_0.10 Misc : AN06_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P


Quant Time: Nov 27 16:02:33 2012 Quant Results File: AN23_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\AN23_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Fri Nov 23 13:52:43 2012

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AJ112303.D

DataAcq Meth : 1UG_T015

Internal Standards	R.T.	QIon	Response C	onc U	nits	Dev(Min)
1) Bromochloromethane 33) 1,4-difluorobenzene 48) Chlorobenzene-d5	9.70 11.97 16.34		25298 90422 77091	1.00 1.00 1.00	ppb	
System Monitoring Compounds 61) Bromofluorobenzene Spiked Amount 1.000	17.83 Range 70		42188m / Recovery			
Target Compounds 6) Vinyl Chloride 36) Carbon tetrachloride	4.56 11.33		7182 20328m / 1	0.14 0.15	ppb	
42) Trichloroethene	12.58	130	5290	0.12	ppb	87

Page 155 of 204

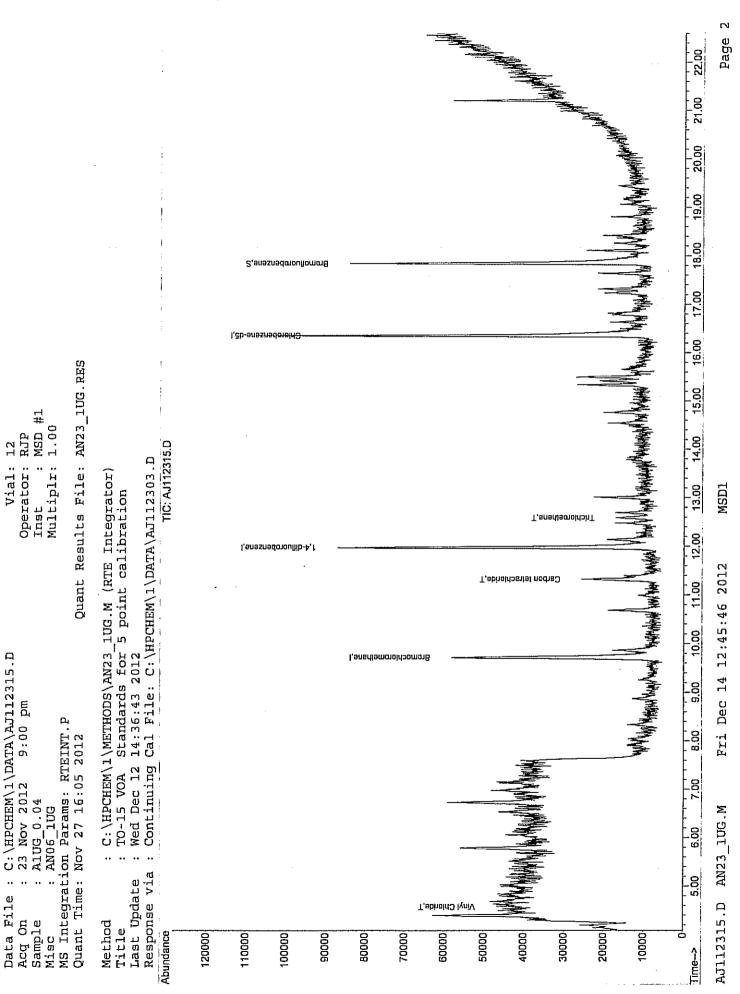
Centek Laboratories, LQCantitation Report (QT Reviewed)

MS Integration Params: RTEINT.P Quant Time: Nov 27 16:03:06 2012

Quant Results File: AN23_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\AN23_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Last Update : Fri Nov 23 13:52:43 2012


Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AJ112303.D

DataAcq Meth : 1UG_T015

Internal Standards	R.T.	QIon	Response (Conc Un	its Dev(Min)
1) Bromochloromethane 33) 1,4-difluorobenzene 48) Chlorobenzene-d5	9.71 11.97 16.35		23410 87566 74289	1.00 1.00 1.00	ppb -0.01
System Monitoring Compounds 61) Bromofluorobenzene Spiked Amount 1.000	17.83 Range 70			0.81 Y =	ppb -0.01 81.00%
Target Compounds 6) Vinyl Chloride 36) Carbon tetrachloride 42) Trichloroethene	4.57 11.32 12.58		2946m / 10361m / 2819m	0.08	ppb

(QT Reviewed)

Quantitation Report

Page 157 of 204

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15 CALIBRATION VERIFICATION

Centek Laboratories alluste Continuing Calibration Report

Data File : C:\HPCHEM\1\DATA\AJ112802.D Vial: 2 : 28 Nov 2012 9:59 am Operator: RJP Sample : AlUG 1.0 Inst : MSD #1 : AN23_1UG Misc Multiplr: 1.00

MS Integration Params: RTEINT.P

: C:\HPCHEM\l\METHODS\AN23_1UG.M (RTE Integrator) : TO-15 VOA Standards for 5 point calibration Method

Last Update : Fri Dec 14 12:49:10 2012 Response via : Multiple Level Calibration

: 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min

Max. Rel. Area : 150% Max. RRF Dev : 30%

	Compound	AvgRF	CCRF	%Dev	Area%	Dev(min)
1 I	Bromochloromethane	1.000	1.000	0.0	93	0.00
2 T	Propylene	1.244		-7.2		0.00
3 T	Freon 12		9.232	-4.9		0.00
4 T	Chloromethane	2.478	2.541	-2.5		0.00
5 T	Freon 114	7.725	8.035	-4.0		0.00
6 T	Vinyl Chloride	2.297	2.206	4.0		0.00
7 T	1,3-butadiene	1.473	1.370	7.0	98	0.00
8 T	Bromomethane	2.639	2.797	-6.0		0.00
9 T	Ethanol	0.620	0.544	12.3		0.00
10 T	Acrolein	0.506		9.3		0.00
11 T	Chloroethane		1.064	-9.6		0.00
12 T	Vinyl Bromide	2.653	2.872	-8.3		0.00
13 T	Freon 11	11.568	11.779			0.00
14 T	Acetone	0.906	1.052	-16.1		0.00
15 T	Isopropyl alcohol	2.384	2.758	-15.7	116	0.00
16 T	1,1-dichloroethene	2.265	2.252	0.6	107	0.00
17 T	Freon 113	5.820	5.972	-2.6	108	0.00
18 t	t-Butyl alcohol	3.930	4.497	-14.4	123	0.00
19 T	Methylene chloride	1.936	1.926	0.5	101	0.00
20 T	Allyl chloride	2.030	2.178	-7.3	108	0.00
21 T	Carbon disulfide	6.557	6.452	1.6	106	0.00
22 T	trans-1,2-dichloroethene		1.919	9.8	79	0.00
23 T	methyl tert-butyl ether	3.437	3.359	2.3	90	0.00
24 T	1,1-dichloroethane	2.685	2.665	0.7		0.00
25 T	Vinyl acetate	1.807		6.9		0.00
26 T	Methyl Ethyl Ketone	0.477	0.474	0.6		0.00
27 T	cis-1,2-dichloroethene	1.518 1.369	1.581	-4.2		0.00
28 T	Hexane	1.369	1.447	-5.7		0.00
29 T	Ethyl acetate		1.999	0.1	99	0.00
30 T	Chloroform	4.087	4.259			0.00
31 T	Tetrahydrofuran	0.846	0.707		89	0.00
32 T	1,2-dichloroethane	2.842	2.945	-3.6	101	0.00
33 I	1,4-difluorobenzene	1.000	1.000	0.0	95	0.00
34 T	1,1,1-trichloroethane	1.388	1.385	0.2	103	0.00
35 T	Cyclohexane	0.214	0.210	1.9	94	0.00
36 T	Carbon tetrachloride	1.825	1.623	11.1	104	0.00
37 T	Benzene	0.905	0.939	-3.8	106	0.00
38 T	Methyl methacrylate	0.271	0.250	7.7	98	0.00
39 T	1,4-dioxane	0.147	0.140	4.8	98	0.00
40 T	2,2,4-trimethylpentane	1.159	1.211	-4.5	102	0.00
41 T	Heptane	0.346	0.380	-9.8	102	0.00
42 T	Trichloroethene	0.538	0.505	6.1	104	0.00
43 T	1,2-dichloropropane	0.337	0.347	-3.0	102	0.00
44 T	Bromodichloromethane	1.221	1.218	0.2	100	0.00
45 T	cis-1,3-dichloropropene	0.479	0.469	2.1	94	0.00
46 T	trans-1,3-dichloropropene	0.477	0.447	6.3		0.00
47 T	1,1,2-trichloroethane	0.490	0.494	-0.8	100	0.00
48 I	Chlorobenzene-d5	1.000	1.000	0.0	93	0.00
49 T	Toluene	0.722	0.740	-2.5	102	0.00

^{(#) =} Out of Range

Centek Laboratories, aluete Continuing Calibration Report

Data File : C:\HPCHEM\1\DATA\AJ112802.D

: 28 Nov 2012 9:59 am

Vial: 2 Operator: RJP Inst : MSD #1 Multiplr: 1.00

Misc : AN23_1UG MS Integration Params: RTEINT.P

: A1UG_1.0

Sample

Method : C:\HPCHEM\1\METHODS\AN23_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration

Last Update : Fri Dec 14 12:49:10 2012 Response via : Multiple Level Calibration

0.000 Min. Rel. Area: 50% Max. R.T. Dev 0.33min

Max. RRF Dev : 30% Max. Rel. Area: 150%

	Compound		AvgRF	CCRF	%Dev	Area%	Dev(min)
50 T	r Methyl Isol	butyl Ketone	0.594	0.745	-25.4	147	0.00
51 7	T Dibromochlo	oromethane	1.217	1.163	4.4	93	0.00
52 7	F Methyl Buty	yl Ketone	0.467	0.472	-1.1	103	0.00
53 7	Γ 1,2-dibrom	oethane	0.755	0.752	0.4	95	0.00
54 7	r Tetrachlor	pethylene	0.672	0.692	-3.0	102	0.00
55 7			1.099	1.079	1.8	94	0.00
56 I	F Ethylbenzer	ne	1.551	1.563	-0.8	97	0.00
57 I	r m&p-xylene		1.342	1.393	-3.8	93	0.00
58 T	r Styrene		0.793	0.821	-3.5	93	0.00
59 T	r Bromoform		1.194	0.991	17.0	80	0.00
60 T	r o-xylene		1.845	1.864	-1.0	92	0.00
61 5	S Bromofluoro	obenzene	0.589	0.603	-2.4	92	0.00
62 I	Γ 1,1,2,2-tet	rachloroethane	1.061	1.041	1.9	95	0.00
63 I	<pre>Chlorotol</pre>	Luene	1.267	1.434	-13.2	108	0.00
64 I	Γ 4-ethyltol	iene	1.455	1.464	-0.6	96	0.00
65 I	r 1,3,5-trime	ethylbenzene	1.972	2.041	-3.5	94	0.00
66 I	r 1,2,4-trime	ethylbenzene	1.426	1.384	2.9	93	0.00
67 I	r 1,3-dichlor	robenzene	1.040	1.085	-4.3	94	0.00
68 T		oride	0.999	0.939	6.0	85	0.00
69 I	[1,4-dichlor	robenzene	1.015	1.012	0.3	94	0.00
70 I	<pre>[1,2-dichlor</pre>	cobenzene	1.047	1.000	4.5	89	0.00
71 I	[1,2,4-trich	lorobenzene	0.582	0.517	11.2	91	0.00
72 T	" Naphthalene	a	1.099	1.008	8.3	98	0.00
73 T	Hexachloro	-1,3-butadiene	0.998	1.040	-4.2	99	0.00

(QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AJ112802.D Vial: 2 : 28 Nov 2012 9:59 am Operator: RJP : A1UG_1.0 : AN23_1UG Sample Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Nov 28 10:24:56 2012 Quant Results File: AN23 1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\AN23 1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration

Last Update : Tue Nov 27 16:12:35 2012 Response via : Initial Calibration

DataAcq Meth : 1UG_T015

Internal Standards	R.T.	QIon	Response	Conc	Units	Dev	(Min)
					- -		
 Bromochloromethane 		128			odgq 00		0.00
33) 1,4-difluorobenzene	11.98		101349	1.(00 ppb		0.00
48) Chlorobenzene-d5	16.35	117	90677	1.0	00 ppb		0.00
System Monitoring Compounds							
61) Bromofluorobenzene	17.84	95	54639	1.0	2 ppb		0.00
		- 130	Recove			.00%	
Spined imount	mange			-1			
Target Compounds						Qv	alue
Propylene	4.16	41	35426		7 ppb		83
3) Freon 12	4.21	85	245416	1.0)5 ppb		99
4) Chloromethane	4.40	50	67548)3 ppb		96
5) Freon 114	4.40	85	213576)4 ppb		93
6) Vinyl Chloride	4.59	62	58638	0.9	96 ppb		100
7) 1,3-butadiene	4.70	39	36409	0.9	3 ppb		95
8) Bromomethane	5.03	94	74339	1.0)6 ppb		99
9) Ethanol	5.40	94 45	14467	0.8	dqq 88		81
10) Acrolein	5.94	56	12188	0.9	1 ppb		90
11) Chloroethane	5.20	64 106	28284	1.	LO ppb.		95
12) Vinyl Bromide	5.53	106	76335	1.0	dqq 80		100
13) Freon 11	5.80	101	313103	1.6	2 ppb		95
14) Acetone	6.07	58	27958	1.	6 ppb		87
15) Isopropyl alcohol	6.18	45	73322	1.3	6 ppb	#	32
16) 1,1-dichloroethene	6.55	96	59858		99 ppb		94
17) Freon 113	6.74	101	158754	1.0	3 ppb	#	84
18) t-Butyl alcohol	6.92	59	119537	1.	4 ppb	#	75
19) Methylene chloride	6.99	84	51194	. 1.0	dqq 0(92
20) Allyl chloride	6.98	41	57889m	/ / 1.(7 ppb		
21) Carbon disulfide	7.15	76	171509		dqq 8		96
22) trans-1,2-dichloroethene	7.92	61	51012	0.9	0 ppb	#	76
23) methyl tert-butyl ether	8.04	73	89288	0.9	dqq 8		91
24) 1,1-dichloroethane	8.34	63	70851	0.9	99 ppb		97
25) Vinyl acetate	8.40	43	44741	0.9	3 ppb		97
26) Methyl Ethyl Ketone	8.94	72	12597	0.9	99 ppb	#	100
27) cis-1,2-dichloroethene	9.27	61	42015	1.0	4 ppb		95
28) Hexane	8.89	57	38467	1.0	6 ppb		90
29) Ethyl acetate	9.52	43	53142	1.0	00 ppb		96
30) Chloroform	9.88	83 42	113211)4 ppb		99
31) Tetrahydrofuran	10.19	42	18792	0.1	34 ppb		98
32) 1,2-dichloroethane	10.98	62	78296	1.0	4 ppb		97
34) 1,1,1-trichloroethane	10.69	97	140379	1.0	odqq 00		99
35) Cyclohexane	8.88	56	21296	0.9	dqq 8		91
36) Carbon tetrachloride	11.33	117	164497	0.8	39 ppb		94
37) Benzene	11.31	78	95194	1.0)4 ppb		95
38) Methyl methacrylate	12.87	41	25372	0.5	2 ppb	#	90
39) 1,4-dioxane	13.02	88	14208	0.5	95 ppb		86
40) 2,2,4-trimethylpentane	12.15	57	122774)5 ppb		96
41) Heptane	12.48	43	38557		LO ppb		97
42) Trichloroethene	12.59	130	51163		94 ppb		97
43) 1,2-dichloropropane	12.69	63	35164		3 ppb		100
44) Bromodichloromethane	13.01	83	123474		00 ppb		98
45) cis-1,3-dichloropropene	13.78	75	47553	0.9	dqq 8		98

Page 1

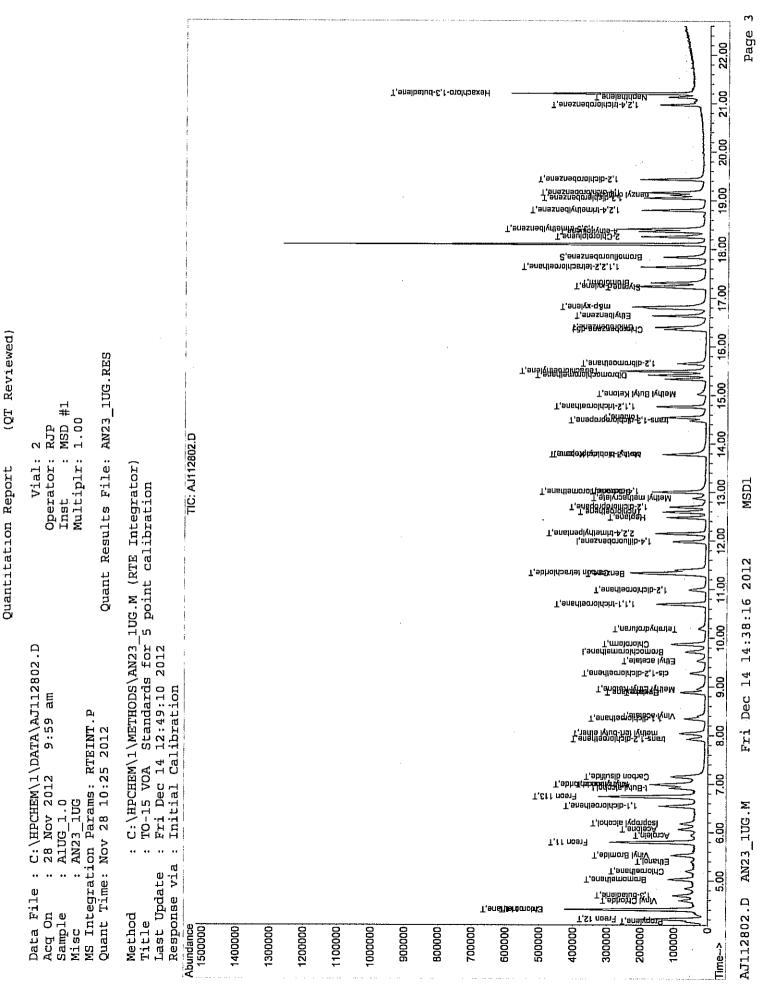
in and a second of the second

MSD1

Centek Laboratories, L@Gantitation Report (QT Reviewed)

MS Integration Params: RTEINT.P Quant Time: Nov 28 10:24:56 2012

Quant Results File: AN23_1UG.RES


Quant Method : C:\HPCHEM\1\METHODS\AN23_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Last Update : Tue Nov 27 16:12:35 2012

Response via : Initial Calibration

DataAcq Meth : 1UG T015

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
46)	trans-1,3-dichloropropene	14.48	- 75	45348	0.94 ppb	91
	1,1,2-trichloroethane	14.77	97	50066	1.01 ppb	98
49)	Toluene	14.55	92	67060	1.02 ppb	94
50)	Methyl Isobutyl Ketone	13.78	43	67550	1.25 ppb	69
51)	Dibromochloromethane	15.41	129	105414	0.96 ppb	95
52)	Methyl Butyl Ketone	15.03	43	42820m 🖊		
53)	1,2-dibromoethane	15.65	107	68229	1.00 ppb	96
54)	Tetrachloroethylene	15.50	164	62706	1.03 ppb	94
55)	Chlorobenzene	16.39	112	97799	0.98 ppb	99
56)	Ethylbenzene	16.63	91	141754	1.01 ppb	97
57)	m&p-xylene	16.81	91	252607	2.08 ppb	91
58)	Styrene	17.21	104	74462	1.03 ppb	86
59)	Bromoform	17.31	173	89826	0.83 ppb	96
60)	o-xylene	17.24	91	169043	1.01 ppb	95
62)	1,1,2,2-tetrachloroethane	17.63	83	94429	0.98 ppb	95
63)	2-Chlorotoluene	18.26	91	130056	1.13 ppb	97
64)	4-ethyltoluene	18.36	105	132743m	1.01 ppb	
	1,3,5-trimethylbenzene	18.41	105	185088m 🗸	1.03 ppb	
66)	1,2,4-trimethylbenzene	18.80	105	125485	0.97 ppb	94
67)	1,3-dichlorobenzene	19.05	146	98343	1.04 ppb	97
68)	benzyl chloride	19.11	91	85159	0.94 ppb	99
69)	1,4-dichlorobenzene	19.16	146	91810	1.00 ppb	99
	1,2-dichlorobenzene	19.43	146	90712	0.96 ppb	94
71)	1,2,4-trichlorobenzene	20.97	180	46857	0.89 ppb	# 1
	Naphthalene	21.13	128	91372	0.92 ppb	94
73)	Hexachloro-1,3-butadiene	21.20	225	94271	1.04 ppb	# 100

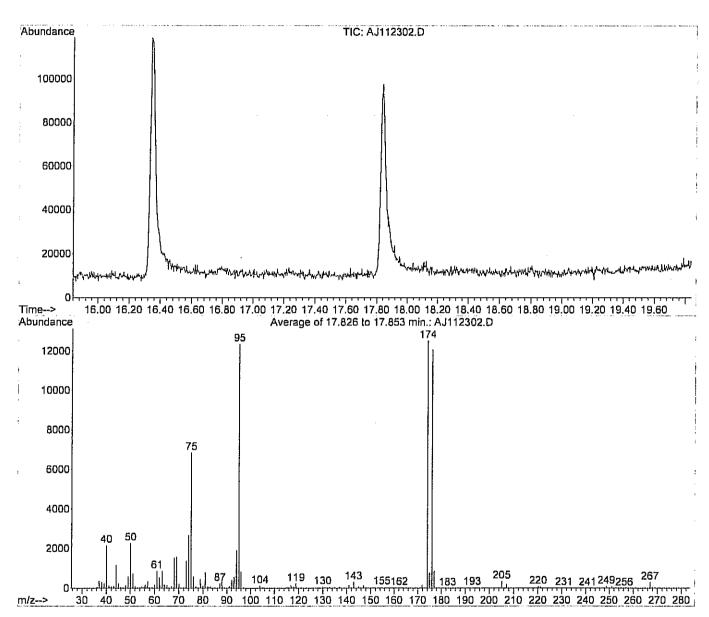
GC/MS VOLATILES-WHOLE AIR

METHOD TO-15

RAW DATA

BFB

Vial: 3


Data File : C:\HPCHEM\1\DATA\AJ112302.D

Acq On : 23 Nov 2012 10:23 am

Operator: RJP Sample : MSD #1 Inst : BFB1UG Misc : AN06 1UG Multiplr: 1.00

MS Integration Params: RTEINT.P

: C:\HPCHEM\1\METHODS\AN23_1UG.M (RTE Integrator) : TO-15 VOA Standards for 5 point calibration

Spectrum Information: Average of 17.826 to 17.853 min.

Target Mass	Rel. to Mass	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
50	95	8	40	18.5	2287	PASS
75	95	30	66	55.5	6864	PASS
95	95	100	100	100.0	12368	PASS
96	95	5	9	6.7	825	PASS
173	174	0.00	2	0.3	34	PASS
174	95	50	120	-101.4	12536	PASS
175	174	4	9	6.2	782	PASS
176	174	95	101	96.5	12092	PASS
177	176	5	9	7.3	880	PASS

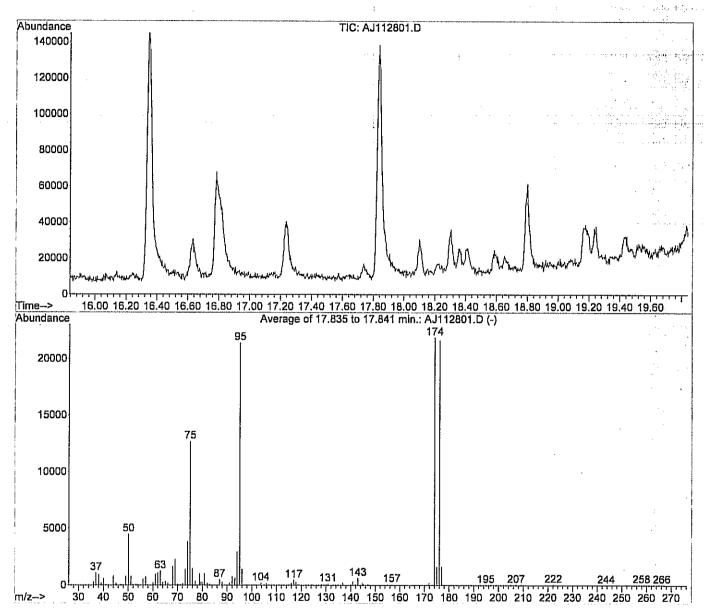
Vial: 1

: MSD #1

Operator: RJP

Multiplr: 1.00

Inst


Data File : C:\HPCHEM\1\DATA\AJ112801.D

Acq On : 28 Nov 2012 7:45 am

Sample : BFB1UG Misc : AN06 1UG

MS Integration Params: RTEINT.P

Method : C:\HPCHEM\1\METHODS\AN23 1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration

Spectrum Information: Average of 17.835 to 17.841 min.

	Target Mass	Rel. to	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
Ī	50	95	8	40	21.0	4508	PASS
	75	95	30	66	59.3	12717	PASS
	95	95	100	100	100.0	21434	PASS
	96	95	5	9	6.7	1437	PASS
	173	174	0.00	2	0.0	0	PASS
	174	95	50	120	102.2	21906	PASS
	175	174	4	9	7.4	1616	PASS
	176	174	95	101	98.8	21640	PASS
	177	176	5	9	7.6	1649	PASS

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15
RAW QC DATA

TestCode: 1ugM3_T015

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

H 2

Value above quantitation range Not Detected at the Reporting Limit

ш <u>Ş</u>

Results reported are not blank corrected
Analyte detected at or below quantitation limits
Spike Recovery outside accepted recovery limits

0.15

< 0.15

Bromomethane

Qualifiers:

(CENTEK LABORATORIES, LLC

ANALYTICAL QC SUMMARY REPORT

Date: 14-Dec-12

CLIENT: Arcadis - Newtown
Work Order: C1211047

Project: LMC Utica

Client ID: ZZZZZ Batch ID: R6410 TestNo: TO-15 Analyte Result PQL SPK value SI 1,1,2,2-Tetrachloroethane < 0.15 0.15 0.15 1.15 D.15 D.15	Sample ID AMB1UG-112812 SampType: MBLK	TestCode: 1ugM3_T015 Units: ppbV		Prep Date:		RunNo: 6410
Result PQL SPK value roethane < 0.15 0.15 chloroethane < 0.15 0.15 chlanee < 0.15 0.15 sthane < 0.15 0.15 robenzene < 0.15 0.15 robenzene < 0.15 0.15 renzene < 0.15 0.15 ropane < 0.15 0.15 ropane < 0.15 0.15 ropane < 0.15 0.15 renzene < 0.15		TestNo: TO-15		Analysis Date: 11/28/2012	11/28/2012	SeqNo: 75162
roethane	Result		%REC	LowLimit Hig	HighLimit RPD Ref Val	%RPD RPDLimit Qual
chloroethane		0.15				
orethane		0.15				
sthane		0.15				
withene < 0.15 robenzene < 0.15 wybenzene < 0.15 enzene < 0.15 withane < 0.15 oropane < 0.15 yybenzene < 0.15 e < 0.15 vipentane < 0.15 e < 0.15 c < 0.15 <tr< th=""><td></td><td>0.15</td><td></td><td></td><td></td><td></td></tr<>		0.15				
robenzene		0.15				
vylbenzene < 0.15 ethane < 0.15 vropane < 0.15 vropane < 0.15 vylbenzene < 0.15 enzene < 0.15 venzene < 0.15 e < 0.15 e < 0.15 de < 0.15		0.15				
ethane		0.15				
enzene < 0.15 sthane < 0.15 oropane < 0.15 ylbenzene < 0.15 enzene < 0.15 renzene < 0.15 ylpentane < 0.15 e < 0.15 e < 0.15 e < 0.15 de < 0.15		0.15				
withane < 0.15 ropane < 0.15 sylbenzene < 0.15 enzene < 0.15 renzene < 0.15 vipentane < 0.15 e < 0.15 e < 0.15 e < 0.15 de < 0.15		0.15				
vibenzene		0.15				
vybenzene		0.15				
enzene < 0.15 Jenzene < 0.15 Jenzene < 0.15 < 0.30 Jenzene < 0.15 < 0.15 < 0.15 de < 0.15		0.15				
Columbia	< 0.15	0.15				
Columbia		0.15				
 40.30 ylpentane 60.15 60.30 60.15 60.15 de 60.15 		0.15				
Vipentane < 0.15 e < 0.15 e < 0.30 e 0.15 e 0.15 de < 0.15	< 0.30	0.30				
e < 0.15 < 0.30 < 0.15 < 0.15 de < 0.15 de		0.15				
< 0.30 < 0.15 < 0.15 de < 0.15	< 0.15	0.15				
< 0.15 < 0.15 de < 0.15	< 0.30	0.30				
0.150.15	< 0.15	0.15				
< 0.15	< 0.15	0.15				
	< 0.15	0.15				
Bromodichloromethane < 0.15 0.15		0.15				
Bromoform < 0.15 0.15	< 0.15	0.15	•			

	*					
Sample ID AMB1UG-112812	SampType: MBLK	TestCode	TestCode: 1ugM3_T015 Units: ppbV	bbV	Prep Date:	RunNo: 6410
Client ID: ZZZZZ	Batch ID: R6410	TestNo	TestNo: TO-15		Analysis Date: 11/28/2012	SeqNo: 75162
Analyte	Result	PaL	SPK value SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Carbon disulfide	< 0.15	0.15			7.000	1404
Carbon tetrachloride	< 0.15	0.15				
Chlorobenzene	< 0.15	0.15				
Chloroethane	< 0.15	0.15				
Chloroform	< 0.15	0.15				
Chloromethane	< 0.15	0.15				
cis-1,2-Dichloroethene	< 0.15	0.15				
cis-1,3-Dichloropropene	< 0.15	0.15				
Cyclohexane	< 0.15	0.15				
Dibromochloromethane	< 0.15	0.15				
Ethyl acetate	< 0.25	0.25				
Ethylbenzene	< 0.15	0.15				
Freon 11	< 0.15	0.15				
Freon 113	< 0.15	0.15			,	
Freon 114	< 0.15	0.15				
Freon 12	< 0.15	0.15				
Heptane	< 0.15	0.15				
Hexachloro-1,3-butadiene	< 0.15	0.15				
Hexane	< 0.15	0.15				
Isopropyl alcohol	< 0.15	0.15				
m&p-Xylene	< 0.30	0.30				
Methyl Butyl Ketone	< 0.30	0.30				
Methyl Ethyl Ketone	< 0.30	0.30				
Methyl Isobutyl Ketone	< 0.30	0.30				
Methyl tert-butyl ether	< 0.15	0.15				
Methylene chloride	< 0.15	0.15				
o-Xylene	< 0.15	0.15				
Propylene	< 0.15	0.15				
Styrene	< 0.15	0.15				
Tetrachloroethylene	< 0.15	0.15				
Tetrahydrofuran	< 0.15	0.15			:	
Qualifiers: Results repor	Results reported are not blank corrected		E Value above quantitation range	ion range	H Holding times fo	Holding times for preparation or analysis exceeded
•	Analyte detected at or below quantitation limits	nits	ND Not Detected at the Reporting Limit	sporting Limit	R RPD outside acc	RPD outside accepted recovery limits
S Spike Recov	Spike Recovery outside accepted recovery limits	mits				Page 2 of 3

Arcadis - Newtown C1211047 LMC Utica

CLIENT: Work Order:

TestCode: 1ugM3_TO15

				ו
Sample ID AMB1UG-112812	12 SampType: MBLK	TestCode: 1ugM3_TO15 Units: ppbV	Prep Date:	RunNo: 6410
Client ID: ZZZZZ	Batch ID: R6410	TestNo: TO-15	Analysis Date: 11/28/2012	SeqNo: 75162
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Toluene	< 0.15	0.15	- Hardward Control of the Control of	
trans-1,2-Dichloroethene	< 0.15	0.15		
trans-1,3-Dichloropropene	< 0.15	0.15		
Trichloroethene	< 0.15	0.15		
Vinyl acetate	< 0.15	0.15		
Vinyi Bromide	< 0.15	0.15		
Vinyl chloride	< 0.15	0.15		
Qualifiers: Results	Results reported are not blank corrected	п	н	Holding times for preparation or analysis exceeded
s Soike R	Analyte defected at or below quantitation timits Spike Recovery outside accepted recovery limits		¥	KPD outside accepted recovery limits
				Prop 3 at 3

Arcadis - Newtown C1211047 LMC Utica

CLIENT: Work Order:

Project:

Centek Laboratories, Liggantitation Report (QT Reviewed)

MS Integration Params: RTEINT.P

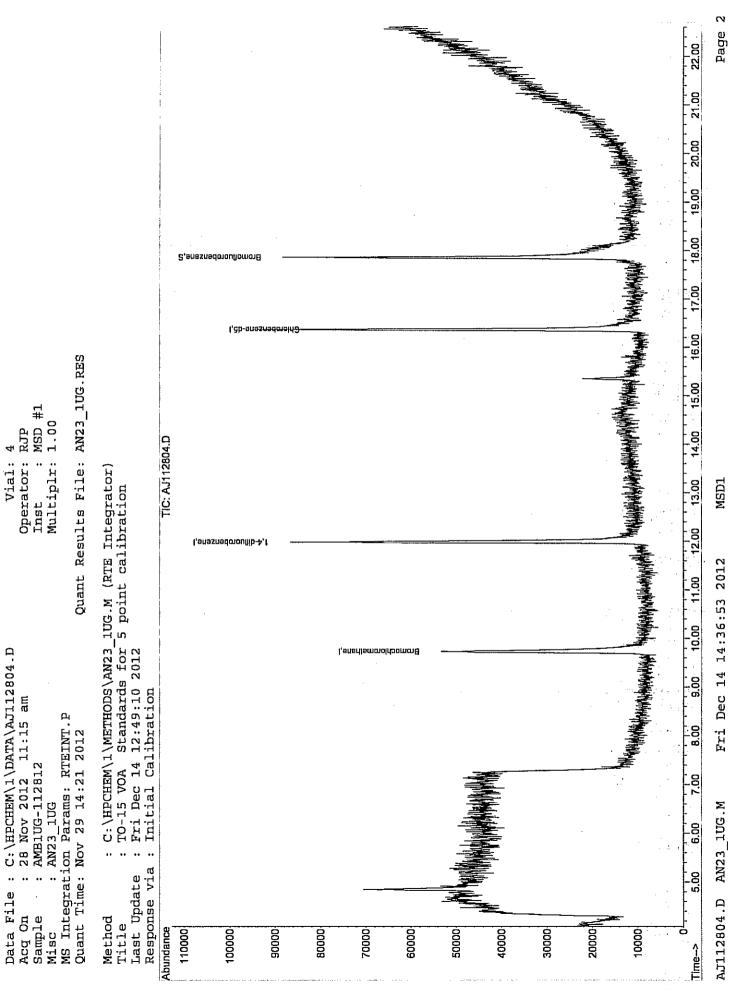
Quant Time: Nov 29 14:21:25 2012 Quant Results File: AN23 1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\AN23_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Last Update : Tue Nov 27 16:12:35 2012

Response via : Initial Calibration

DataAcq Meth : 1UG T015


Internal Standards	R.T. QIor	Response	Conc Units Dev(Min)
1) Bromochloromethane 33) 1,4-difluorobenzene 48) Chlorobenzene-d5	9.73 128 11.99 114 16.36 117	88115	1.00 ppb 0.00 1.00 ppb 0.00 1.00 ppb 0.00
System Monitoring Compounds 61) Bromofluorobenzene Spiked Amount 1.000	17.84 95 Range 70 - 13		0.85 ppb 0.00 ry = 85.00%

Target Compounds

Qvalue

(QT Reviewed)

Quantitation Report

CENTEK LABORATORIES, LLC

ANALYTICAL QC SUMMARY REPORT

Date: 14-Dec-12

CLIENT: Arcadis - Newtown

Sample ID ALCS1UGG-112812 Sample ID ALCS1UGG-112812 Sample ID ALCS1UGG-112812 TeatCode* * * * * * * * * * * * * * * * * * *	Project: LMC Utica							restcode.			
22222 Batch ID: R6410 Tessukt: TO-16 To-10 SixAC Low-Linit High Linit Facility ID: R6410 SixAD PRDLINIT Inconclusione 0.9800 0.15 1 0.960 70 130 8APD RPDLINIT Inconclusione 0.9800 0.15 1 0 96.0 70 130 8APD RPDLINIT Inconclusione 0.9800 0.15 1 0 96.0 70 130 130 9APD PRDLINIT certherane 0.9800 0.15 1 0 96.0 70 130 130 9APD PRDLINIT certhorace 0.9800 0.15 1 0 96.0 70 130 130 PRDLINIT certhorace 0.9800 0.15 1 0 96.0 70 130 PRDLINIT certhorace 0.9800 0.15 1 0 96.0 70 130 PRDLINIT 130 PRDLINIT PRDLINIT		SampType: LCS	TestCoc	le: 1ugM3_TO15			Prep Date			RunNo: 6410	
Result POL SPK Natue S		Batch ID: R6410	Testh	lo: TO-15		•	Analysis Date			SeqNo: 75163	
trachloroethane 0.9600 0.15 1 0 96.0 70 130 trachloroethane 0.9600 0.15 1 0 96.0 70 130 conthane 0.9600 0.15 1 0 96.0 70 130 cothlene 1.060 0.15 1 0 96.0 70 130 cothlene 0.9400 0.15 1 0 96.0 70 130 cothlene 0.9500 0.15 1 0 95.0 70 130 cothlene 0.9500 0.15 1 0 95.0 70 130 cothlene 0.9500 0.15 1 0 95.0 70 130 cothlene 0.0500 0.15 1 0 96.0 70 130 cothlene 0.0500 0.15 1 0 96.0 70 130 cothlene 0.0500 0.15 1 <th< th=""><th>Analyte</th><th>Result</th><th>PoL</th><th></th><th>^{>}K Ref Val</th><th>%REC</th><th></th><th></th><th>Ref Val</th><th></th><th>Qual</th></th<>	Analyte	Result	PoL		^{>} K Ref Val	%REC			Ref Val		Qual
trachloroethane 0.9500 0.15 1 96.0 95.0 70 430 controllerane 0.9400 0.15 1 0 96.0 70 130 cothrane 0.9400 0.15 1 0 96.0 70 130 cothrane 1.060 0.15 1 0 81.0 70 130 othylbenzene 0.9500 0.15 1 0 81.0 70 130 othylbenzene 0.9500 0.15 1 0 95.0 70 130 othanzene 0.9500 0.15 1 0 95.0 70 130 othanzene 1.000 0.15 1 0 95.0 70 130 othanzene 1.010 0.15 1 0 94.0 70 130 othanzene 0.9400 0.15 1 0 94.0 70 130 othanzene 0.9400 0.15 1	1,1,1-Trichloroethane	0.9600	0.15	1	0	96.0	70	130			
1000 celtane 0.9600 0.15 1 1 0 96.0 94.0 130 1	1,1,2,2-Tetrachloroethane	0.9500	0.15	-	0	95.0	70	130			
octherie D.9400 0.15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1,1,2-Trichloroethane	0.9600	0.15	-	0	96.0	70	130			
octheme 1.060 0.15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1,1-Dichloroethane	0.9400	0.15	₩	0	94.0	70	130			
130 130	1,1-Dichloroethene	1.060	0.15	-	0	106	70	130			
obstitution 0.9500 0.15 1 0 95.0 70 130 obethane 0.9500 0.15 1 0 95.0 70 130 obenzene 1.000 0.15 1 0 91.0 70 130 obenzene 1.000 0.15 1 0 100 70 130 ethylbenzene 1.000 0.15 1 0 100 70 130 obenzene 0.3400 0.15 1 0 94.0 70 130 obenzene 0.9200 0.15 1 0 94.0 70 130 e 0.9200 0.36 1 0 92.0 70 130 e 0.9200 0.15 1 0 92.0 70 130 de 1.040 0.15 1 0 92.0 70 130 de 1.020 0.15 1 0 92.0 <	1,2,4-Trichlorobenzene	0.8100	0.15	-	0	81.0	70	130			
toethane 0.95600 0.15 1 0 95.0 70 130 cobenzene 0.3900 0.15 1 0 91.0 70 130 cothane 1.000 0.15 1 0 91.0 70 130 cothane 1.000 0.15 1 0 100 70 130 chylbenzene 1.030 0.15 1 0 103 70 130 chylbenzene 0.9400 0.15 1 0 94.0 70 130 obenzene 0.9400 0.15 1 0 94.0 70 130 de 0.9500 0.15 1 0 92.0 70 130 de 1.040 0.15 1 0 92.0 70 130 de 1.080 0.15 1 0 92.0 70 130 de 1.080 0.15 1 0 0	1,2,4-Trimethylbenzene	0.9500	0.15	-	0	95.0	70	130			
Obenizene 0.9100 0.15 1 0 91.0 70 130 Octifiane 1.000 0.15 1 0 100 70 130 Opropane 1.000 0.15 1 0 100 70 130 optropane 1.030 0.15 1 0 103 70 130 athylbenzene 1.030 0.15 1 0 101 70 130 and 1.010 0.15 1 0 94.0 70 130 obenzene 0.9400 0.15 1 0 94.0 70 130 obenzene 0.9400 0.15 1 0 94.0 70 130 driphorntane 0.9800 0.15 1 0 94.0 70 130 and 1.040 0.15 1 0 94.0 70 130 drownethane 0.9800 0.15 1 0 <th< td=""><td>1,2-Dibromoethane</td><td>0.9500</td><td>0.15</td><td>•</td><td>0</td><td>95.0</td><td>70</td><td>130</td><td></td><td></td><td></td></th<>	1,2-Dibromoethane	0.9500	0.15	•	0	95.0	70	130			
Oethanel 1,000 0.15 1 0 100	1,2-Dichlorobenzene	0.9100	0.15	-	0	91.0	70	130			
Optropane 1.000 0.15 1 0 100 70 130 ethylbenzene 1.030 0.15 1 0 103 70 130 ane 1.010 0.15 1 0 101 0 130 obenzene 0.9400 0.15 1 0 94.0 70 130 obenzene 0.9200 0.15 1 0 94.0 70 130 ethylbentane 0.9800 0.15 1 0 92.0 70 130 thylpentane 0.9800 0.15 1 0 92.0 70 130 detail 1.010 0.15 1 0 104 70 130 detail 1.020 0.15 1 0 102 70 130 detail 1.020 0.15 1 0 91.0 70 130 normal 1 0 1 0 10	1,2-Dichloroethane	1.000	0.15	-	0	100	70	130			
ethylbenzene 1.030 0.15 1 0 103 70 130 ane 1.010 0.15 1 0 101 70 130 obenzene 0.9400 0.15 1 0 94.0 70 130 obenzene 0.9400 0.15 1 0 94.0 70 130 obenzene 0.9500 0.15 1 0 97.0 70 130 ethylpentane 0.9800 0.15 1 0 92.0 70 130 ene 1.040 0.15 1 0 104 70 130 de 1.020 0.15 1 0 108 70 130 order 0.9600 0.15 1 0 96.0 70 130 name 0.9600 0.15 1 0 96.0 70 130 name 0.9600 0.15 1 0 96.0 <t< td=""><td>1,2-Dichloropropane</td><td>1.000</td><td>0.15</td><td>•</td><td>0</td><td>100</td><td>70</td><td>130</td><td></td><td></td><td></td></t<>	1,2-Dichloropropane	1.000	0.15	•	0	100	70	130			
sine 1.010 0.15 1 0 101 70 130 obenzene 0.9400 0.15 1 0 94.0 70 130 obenzene 0.9200 0.15 1 0 97.0 70 130 e 0.9200 0.30 1 0 92.0 70 130 thylpentane 0.9800 0.15 1 0 92.0 70 130 ene 1.040 0.15 1 0 104 70 130 see 1.020 0.15 1 0 90 70 130 promethane 0.9900 0.15 1 0 90 70 130 promethane 0.9900 0.15 1 0 90 70 130 nane 1.050 0.15 1 0 79 70 130 name 1.050 0.15 1 0 70 70	1,3,5-Trimethylbenzene	1.030	0.15	-	0	103	70	130			
Obenzene 0.9400 0.15 1 0 94.0 70 130 Obenzene 0.93700 0.15 1 0 97.0 70 130 e 0.9200 0.30 1 0 92.0 70 130 thylpentane 0.9800 0.15 1 0 98.0 70 130 snee 1.040 0.15 1 0 104 70 130 shee 1.080 0.15 1 0 10 70 130 order 1.080 0.15 1 0 10 70 130 order 1.080 0.15 1 0 10 70 130 order 0.9600 0.15 1 0 96.0 70 130 name 1.050 0.15 1 0 105 70 130 name 1.050 0.15 1 0 70 70	1,3-butadiene	1.010	0.15	-	0	101	70	130			
obenzene 0.9700 0.15 1 0 97.0 70 130 ethylpentane 0.9800 0.30 1 0 92.0 70 130 ethylpentane 0.9800 0.15 1 0 98.0 70 130 ene 1.040 0.15 1 0 111 70 130 de 1.080 0.15 1 0 108 70 130 ale 1.080 0.15 1 0 108 70 130 bride 0.9100 0.15 1 0 91.0 70 130 loromethane 0.9600 0.15 1 0 96.0 70 130 name 1.050 0.15 1 0 79.0 70 130 name National seported are not blank corrected Explicated at the Reporting Limit Rosults reported at or below quantitation limits ND Not Detected at the Reporting Limit R	1,3-Dichlorobenzene	0.9400	0.15	-	0	94.0	70	130			
thylpentane 0.9200 0.15 1 0 92.0 70 130 130 140 140 150 150 150 150 150 150 150 150 150 15	1,4-Dichlorobenzene	0.9700	0.15	-	0	97.0	70	130			
thylpentane 0.9800 0.15 1 0 0 98.0 70 130 Bue 1.040 0.15 1 0 0 104 104 104 104 104 104 104 104 1	1,4-Dioxane	0.9200	0.30	-	0	92.0	70	130			
1.040 0.15 1 0 104	2,2,4-trimethylpentane	0.9800	0.15	-	0	98.0	70	130			
1.110 0.30 1 0 111 70 130	4-ethyltoluene	1.040	0.15	-	0	104	70	130			
Junction 1.080 0.15 1 0 108 70 130 Junction 1.020 0.15 1 0 102 70 130 Independent and the standard are not blank corrected 0.15 1 0 96.0 70 130 Independent and or blank corrected 0.15 1 0 79.0 70 130 Independent and or blank corrected E Value above quantitation range H H R H	Acetone	1.110	0:30	-	0	111	02	130			
1.020 0.15 1 0 102 70 130 Dorder Diagrame Diagrams 0.9100 0.15 1 0 91.0 70 130 1 0.9600 0.15 1 0 96.0 70 130 1 0.7900 0.15 1 0 79.0 70 130 hane 1.050 0.15 1 0 105 70 130 Results reported are not blank corrected E Value above quantitation range H H A hadyte detected at or below quantitation limits ND Not Detected at the Reporting Limit R	Allyl chloride	1.080	0.15	-	0	108	70	130			
originate 0.9100 0.15 1 0 91.0 70 130 Incomethane 0.9600 0.15 1 0 96.0 70 130 Incomethane 0.7900 0.15 1 0 79.0 70 130 Incomethane 1.050 0.15 1 0 79.0 70 130 Incomethane Results reported are not blank corrected E Value above quantifation range H H Incomethane	Benzene	1.020	0.15	-	0	102	70	130			
Ioromethane 0.9600 0.15 1 0 96.0 70 130 name 0.7900 0.15 1 0 79.0 70 130 name 1.050 0.15 1 0 105 70 130 Results reported are not blank corrected E Value above quantitation range H H A nadyte detected at or below quantitation limits ND Not Detected at the Reporting Limit R	Benzyl chloride	0.9100	0.15	-	0	91.0	70	130			
name 0.7900 0.15 1 0 79.0 70 130 name 1.050 0.15 1 0 105 70 130 Results reported are not blank corrected E Value above quantitation range H H J Analyte detected at or below quantitation limits ND Not Detected at the Reporting Limit R	Bromodichloromethane	0.9600	0.15	-	0	96.0	70	130	٠		
hane 1.050 0.15 1 0 105 70 130 Results reported are not blank corrected E Value above quantitation range H H J Analyte detected at or below quantitation limits ND Not Detected at the Reporting Limit R	Bramoform	0.7900	0.15	-	0	79.0	20	130			
Results reported are not blank corrected E Value above quantitation range J Analyte detected at or below quantitation limits ND Not Detected at the Reporting Limit R	Bromomethane	1.050	0.15	- .	0	105	70	130			
ND Not Detected at the Reporting Limit R		ed are not blank corrected	***************************************		ve quantitation rang	25			times for	reparation or analysis excee	led
	J Analyte detec	ted at or below quantitation lin	ांत रां		ted at the Reporting	Limit	٠		side accep	ted recovery limits	

Project: LMC Utica							Test	TestCode: 1ug	lugM3_T015
Sample ID ALCS1UG-112812	SampType: LCS	TestCoo	TestCode: 1ugM3_T015 L	Units: ppbV		Prep Date			RunNo: 6410
Client ID: ZZZZZ	Batch ID: R6410	Testh	TestNo: TO-15			Analysis Date:	: 11/28/2012	.	SeqNo: 75163
Analyte	Result	PaL	SPK value SPK I	SPK Ref Val	%REC	LowLimit	HighLimit RP	RPD Ref Val	%RPD RPDLimit Qual
Carbon disulfide	0.7300	0.15	ļ	0	73.0	70	130		T-W-
Carbon tetrachloride	0.8700	0.15	-	0	87.0	70	130		
Chlorobenzene	0.9700	0.15	-	0	97.0	70	130		
Chloroethane	1.020	0.15	-	0	102	70	130		
Chloraform	1.000	0.15	-	0	100	70	130		
Chloromethane	1.060	0.15	-	0	106	70	130		
cis-1,2-Dichloroethene	1.040	0.15	-	0	104	70	130		
cis-1,3-Dichloropropene	0.9500	0.15	-	0	95.0	70	130		
Cyclohexane	0.9400	0.15	-	0	94.0	70	130		
Dibromochloromethane	0.9400	0.15	-	0	94.0	70	130		
Ethyl acetate	0.9800	0.25	-	0	98.0	70	130		
Ethylbenzene	0.9800	0.15	-	0	98.0	70	130		
Freon 11	1.030	0.15	-	0	103	20	130		
Frean 113	1.010	0.15	-	0	101	70	130.		
Freon 114	1.070	0.15	-	0	107	70	130		
Freon 12	1.050	0.15	-	0	105	7	130		
Heptane	0.9900	0.15	-	0	99.0	70	130		
Hexachloro-1,3-butadiene	0.9500	0.15		0	95.0	70	130		
Hexane	1.040	0.15		0	104	70	130		
Isopropyl alcohol	1.110	0.15	-	0	111	70	130		
m&p-Xylene	2.070	0.30	2	0	1 0	70	130		
Methyl Butyl Ketone	0.8500	0.30	-	0	85.0	70	130		
Methyl Ethyl Ketone	0.9400	0.30	-	0	94.0	2	130		
Methyl Isobutyl Ketone	0.9000	0.30	-	0	90.0	70	130		
Methyl tert-butyl ether	0.9700	0,15	-	0	97.0	20	130		
Methylene chloride	0.8700	0.15	•	0	87.0	70	130		
o-Xylene	0.9900	0.15	•	0	99.0	70	130		
Propylene	1.040	0.15		0	104	70	130		
Styrene	1.000	0.15	-	0	100	70	130		
Tetrachloroethylene	1.000	0.15	-	0	100	70	130		
Tetrahydrofuran	0.8300	0.15	-	0	83.0	. 70	130		
Qualifiers: Results report	Results reported are not blank corrected		E Value above q	Value above quantitation range	j.		H Holdi	ng times for pre	Holding times for preparation or analysis exceeded
	Analyte detected at or below quantitation limits	nits	ND Not Detected	Not Detected at the Reporting Limit	Limit		R RPD	RPD outside accepted recovery limits	recovery limits
S Spike Recover	Spike Recovery outside accepted recovery limits	mjts							Page 2 of 3

Arcadis - Newtown C1211047 LMC Utica

CLIENT: Work Order: TestCode: 1ugM3_T015

							:			
ALCS1UG-112812	! SampType: LCS	TestCo	TestCode: 1ugM3_T015	15 Units: ppbV		Prep Date:	.e.		RunNo: 6410	
22222	Batch ID: R6410	Testh	No: TO-15			Analysis Date:	te: 11/28/2012		SeqNo: 75163	
	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD I	RPD Ref Val	%RPD RPDLimit Qual	
	0.9800	0.15	-	0	98.0	02	130]
trans-1,2-Dichloroethene	0.8500	0.15		0	85.0	70	130			
trans-1,3-Dichloropropene	0.9200	0.15	-	0	92.0	70	130			
Trichloroethene	0.9100	0.15	-	0	91.0	70	130			
Vinyl acetate	0.9700	0.15	-	0	97.0	70	130			
Vinyi Bromide	1.060	0.15	_	0	106	70	130			
Vinyl chloride	1.010	0.15	-	0	101	20	130			
Results rep	Results reported are not blank corrected		4	Value above quantitation range	96		ŀ	times for p	Holding times for preparation or analysis exceeded	
	Analyte detected at or below quantitation limits	its	ND Not De	Not Detected at the Reporting Limit	Limit		R RPD out	side accept	RPD outside accepted recovery limits	
S Spike Reco	Spike Recovery outside accepted recovery limits	mits							Price 2 of 3	.62

Arcadis - Newtown C1211047 LMC Utica

CLIENT: Work Order:

Project:

Data File : C:\HPCHEM\1\DATA\AJ112803.D Vial: 3 : 28 Nov 2012 10:41 am Operator: RJP Sample : ALCS1UG-112812 Inst : MSD #1 Misc : AN23 1UG Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Nov 28 11:04:51 2012 Quant Results File: AN23 1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\AN23_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration
Last Update : Tue Nov 27 16:12:35 2012
Response via : Initial Calibration

DataAcq Meth : 1UG T015

Ducum	ed ween . 106_1015							
Inte	rnal Standards	R.T.	QIon	Response	Conc	Units	Dev	(Min)
	Bromochloromethane	9.72	128		1.0	dqq 0		0.00
33)	1,4-difluorobenzene	11.99	114	100153	1.0	00 ppb		0.00
48)	Chlorobenzene-d5	16.35	117			0 ppb		0.00
61)	em Monitoring Compounds Bromofluorobenzene iked Amount 1.000	17.84 Range 70				00 ppb = 100		0.00
Targe	et Compounds						Ove	alue
	Propylene	4.16	41	32775	7 (4 ppb	Qvc	88
	Freon 12	4.21	85	234865	1.0	5 ppb		99
	Chloromethane	4.41	50	66593	1.0	o ppb		99
	Freon 114	4.40	85					
	Vinyl Chloride	4.59				7 ppb		90
			62	58613	T. C	1 ppb		98
	1,3-butadiene	4.69	39 94	37684	T. C	1 ppb		100
	Bromomethane	5.03	94	70170		5 ppb		99
	Ethanol	5.39	45			3 ppb		88
	Acrolein	5.95	56	12394		7 ppb		84
	Chloroethane	5.20	64	25089	1.0	2 ppb		98
	Vinyl Bromide	5.53	106	71432		6 ppb		98
	Freon 11	5.80		301522		dqq Ei		95
•	Acetone	6.07	58 45	25517		.1 ppb		92
	Isopropyl alcohol	6.18	45	67167		.1 ppb		32
	1,1-dichloroethene	6.54		60669		6 ppb		98
	Freon 113	6.74	101	149502		1 ppb		83
	t-Butyl alcohol	6.92 7.00	59	103543	1.0	4 ppb	#	72
	Methylene chloride	7.00	84	42730 55343m	0.8	7 ppb		90
20)	Allyl chloride	6.98	41	33313	,	dqq 8		
21)	Carbon disulfide	7.16	76	121743m	0.7	3 ppb		
22)	trans-1,2-dichloroethene	7.92 8.04	61	46074	0.8	5 ppb	#	77
23)	methyl tert-butyl ether	8.04	73	84038		7 ppb		90
24)	1,1-dichloroethane	8.34	63	63722		4 ppb		99
25)	Vinyl acetate	8.40	43 72	44333	0.9	7 ppb		94
	Methyl Ethyl Ketone	8.95	72	11367		4 ppb		100
	cis-1,2-dichloroethene	9.28	61			4 ppb		99
	Hexane	8.88	57			4 ppb		88
	Ethyl acetate	9.53	43	49795		8 ppb		97
	Chloroform	9.87	83	49795 104059		0 ppb		100
	Tetrahydrofuran	10.19		17777	0.8	3 ppb	#	66
	1,2-dichloroethane	11.00	62	72360	1.0	0 ppb	,,	98
	1,1,1-trichloroethane	10.70	97	133782	0.9	6 ppb		99
	Cyclohexane	8.89	56	20199		4 ppb		88
	Carbon tetrachloride	11.34	117	159530		7 ppb		93
	Benzene	11.31	78	92850		2 ppb		96
	Methyl methacrylate	12.88	41	22774		4 ppb		95
	1,4-dioxane	13.05	88	13537m 🔏		2 ppb		
	2,2,4-trimethylpentane	12.14	57	113974		8 ppb		97
	Heptane	12.48	43	34393		9 ppb		94
	Trichloroethene	12.40	130	48968		1 ppb		98
	1,2-dichloropropane	12.70	63	33832		0 ppb		97
	Bromodichloromethane	13.01	83	117000	7.0	6 ppb		97
	cis-1,3-dichloropropene	13.77	75	45530		5 ppb		95
			, 					

MSD1

Centek Laboratories, LLQuantitation Report

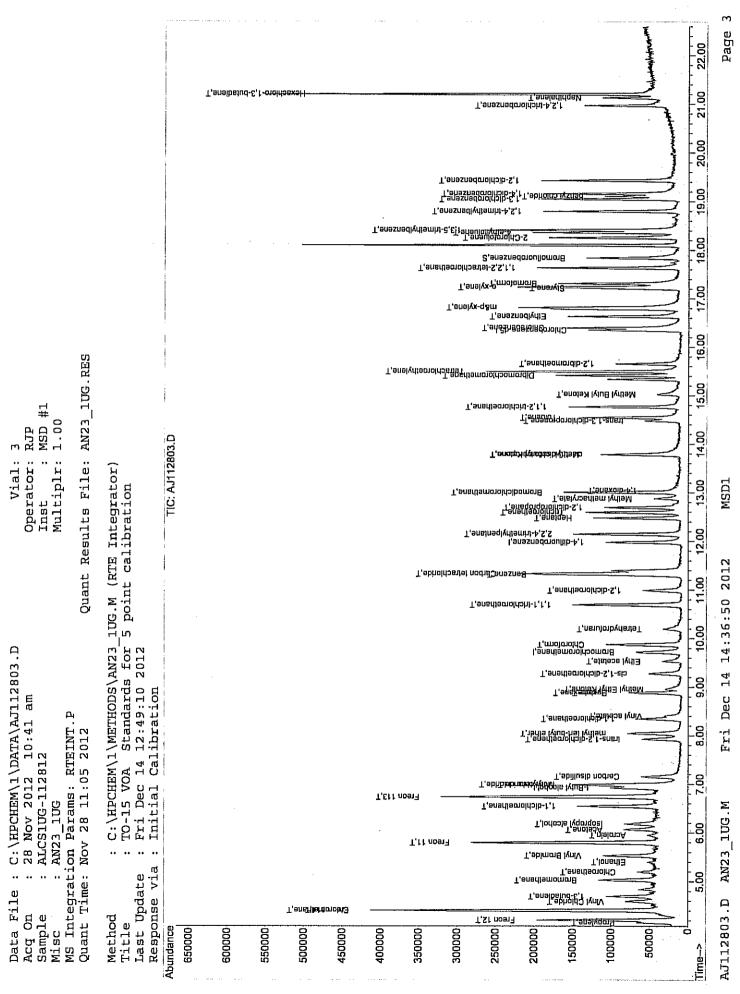
(QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AJ112803.D : 28 Nov 2012 10:41 am

Vial: 3 Operator: RJP : ALCS1UG-112812 Sample Inst : MSD #1 Misc : AN23 1UG Multiplr: 1.00

MS Integration Params: RTEINT.P Quant Time: Nov 28 11:04:51 2012

Quant Results File: AN23 1UG.RES


Quant Method : C:\HPCHEM\1\METHODS\AN23_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration
Last Update : Tue Nov 27 16:12:35 2012
Response via : Initial Calibration

DataAcq Meth : 1UG T015

	Compound	R.T.	QIon	Response	Conc Unit	Qv	alue
46)	trans-1,3-dichloropropene	14.48	75	43978	0.92 ppb		94
47)	1,1,2-trichloroethane	14.76	97	47359	0.96 ppb		96
49)	Toluene	14.54	92	63235	0.98 ppb		97
50)	Methyl Isobutyl Ketone	13.78	43	47577	0.90 ppb		76
51)		15.41	129	101772	0.94 ppb		97
52)	Methyl Butyl Ketone	15.02	43	35175	0.85 ppb	#	28
53)	1,2-dibromoethane	15.65	107	64197	0.95 ppb		98
54)	Tetrachloroethylene	15.49	164	60077	1.00 ppb		94
55)	Chlorobenzene	16.39	112	94665	0.97 ppb		98
56)	Ethylbenzene	16.63	91	135104	0.98 ppb		95
57)	m&p-xylene	16.81	91	247135	2.07 ppb		93
58)	-	17.21	104	70402	1.00 ppb		89
59)	Bromoform	17.31	173	84266	0.79 ppb		95
-	o-xylene	17.23	91	161874	0.99 ppb		96
62)		17.63	83	89648	0.95 ppb		97
63)		18.25	91	119288	1.06 ppb		99
64)		18.36	105	134417m	1.04 ppb		
65)		18.41		181062m 🕹	1.03 ppb		
	1,2,4-trimethylbenzene	18.79		120122	0.95 ppb		93
67)	1,3-dichlorobenzene	19.05	146	87009	0.94 ppb		99
	benzyl chloride	19.10	91	80724	0.91 ppb		95
	1,4-dichlorobenzene	19.16		87485	0.97 ppb		96
	1,2-dichlorobenzene	19.43	146	84657	0.91 ppb		97
	1,2,4-trichlorobenzene	20.97		42218	0.81 ppb	#	1
	Naphthalene	21.13		77982	0.80 ppb		96
73)	Hexachloro-1,3-butadiene	21.20	225	84457	0.95 ppb	#	100

(QT Reviewed)

Quantitation Report

Page 178 of 204

Centek Laboratories, LQCantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AJ112836.D Vial: 57 : 29 Nov 2012 6:03 am Operator: RJP : ALCS1UGD-112812 Sample Inst : MSD #1 : AN23_1UG Misc Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Nov 29 07:37:31 2012 Quant Results File: AN23 1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\AN23_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration
Last Update : Tue Nov 27 16:12:35 2012
Response via : Initial Calibration

DataAcq Meth : 1UG_T015

Internal Standards	R.T.	QIon	Response	Conc Uni	ts Dev	(Min)
1\ D					- <u>-</u>	
 Bromochloromethane 1,4-difluorobenzene 		128		1.00 p		-0.02
48) Chlorobenzene-d5		114		1.00 p		-0.01
40/ Chioropenzene-da	16.35	117	73497	1.00 p	ac	0.00
System Monitoring Compounds						
61) Bromofluorobenzene	17.84	95	42641	0.99 pj	ob	0.00
Spiked Amount 1.000	Range 70	- 130	Recover		99.00%	
_				-		
Target Compounds			,			ralue
2) Propylene	4.16		26196	0.96 pp		81
3) Freon 12	4.20	85	206040	1.06 pj		99
4) Chloromethane	4.40	50	64575	1.18 pp	op.	96
5) Freon 114	4.41	85	190733	1.12 pr		93
6) Vinyl Chloride	4.59	62	52768	1.04 pr		99
7) 1,3-butadiene	4.69	39	32615	1.01 pr		90
8) Bromomethane	5.03	94 45	63938	1.10 pp		97
9) Ethanol	5.39			0.86 pr		42
10) Acrolein	5.95	56		1.04 pp		75
11) Chloroethane	5.20	64	25573	1.20 pg		97
12) Vinyl Bromide	5.53	106	66763	1.14 pp		98
13) Freon 11	5.79	101	295669	1.16 pp		96
14) Acetone	6.08	58	20089	1.01 pp		94
15) Isopropyl alcohol	6.19	45	44355	0.85 pp)b #	32
16) 1,1-dichloroethene	6.55	96	55665	1.12 pp	ob	93
17) Freon 113	6.74	101	147843	1.15 pp	pb #	84
18) t-Butyl alcohol	6.95	59	50869m			
19) Methylene chloride	6.99	84	48636	1.14 pp		95
20) Allyl chloride	6.98	41	52451m	1.17 pg		
21) Carbon disulfide	7.14	76	161035	1.12 pp		96
22) trans-1,2-dichloroethene		61	43161	0.92 pp		72
23) methyl tert-butyl ether	8.05	73	70823	0.94 pr		44
24) 1,1-dichloroethane	8.34	63	61273	1.04 pr		95
25) Vinyl acetate	8.39	43	35065	0.88 pg		98
26) Methyl Ethyl Ketone	8.96	72	9796m	0.93 pg		
27) cis-1,2-dichloroethene	9.27	61	34833	1.04 pr		97
28) Hexane	8.87	57	27058	0.90 pr		73
29) Ethyl acetate	9.53	43		0.76 pr		94
30) Chloroform	9.87	83 42	93542	1.04 pg		97
31) Tetrahydrofuran	10.19			0.84 pr		97
32) 1,2-dichloroethane	10.98	62	65222	1.04 pg		99
34) 1,1,1-trichloroethane	10.68	97	125130	1.06 pg		99
35) Cyclohexane 36) Carbon tetrachloride	8.88	56	17756	0.97 pp		91
37) Benzene	11.33	117	152276	0.98 pp		91
	11.30	78 43	79254	1.03 pp		98
38) Methyl methacrylate 39) 1,4-dioxane	12.87	41	21269m	0.92 pp		
	13.15	88	5313m	0.42 pr		00
40) 2,2,4-trimethylpentane 41) Heptane	12.14 12.47	57 43	100973 F	1.02 pp		92
42) Trichloroethene	12.59	43 130		1.07 pp	ν ρ	98
43) 1,2-dichloropropane	12.69	130 63	43772	0.96 pp		99 97
44) Bromodichloromethane	13.00	83	27847 107626	0.97 pp 1.04 pp		97
45) cis-1,3-dichloropropene	13.77	75	36415	1.04 pt		99 95
		_ _	20473		, -	

MSD1

Centek Laboratories, LDCantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AJ112836.D Vial: 57 : 29 Nov 2012 6:03 am Operator: RJP Sample : ALCS1UGD-112812 Inst : MSD #1 Misc : AN23 1UG Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Nov 29 07:37:31 2012 Quant Results File: AN23 1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\AN23_1UG.M (RTE Integrator) : TO-15 VOA Standards for 5 point calibration

Last Update : Tue Nov 27 16:12:35 2012 Response via : Initial Calibration

DataAcq Meth : 1UG_T015

	Compound	R.T.	QIon	Response	Conc Unit	Qya	alue
46)	trans-1,3-dichloropropene	14.47	 75	39453	0.97 ppb		97
47)	1,1,2-trichloroethane	14.76	97	40647	0.97 ppb		95
49)	Toluene	14.54	92	56852	1.07 ppb		93 -
50)	Methyl Isobutyl Ketone	13.81	43	26186m h	0.60 ppb		
51)	Dibromochloromethane	15.41	129	88648m	0.99 ppb		
52)	Methyl Butyl Ketone	15.03	43	43732m			
53)	1,2-dibromoethane	15.65	107	56338	1.01 ppb		96
54)	Tetrachloroethylene	15.49	164	52764	1.07 ppb		99
55)	Chlorobenzene	16.39	112	85160	1.05 ppb		97
56)	Ethylbenzene	16.62	91	116765	1.02 ppb		99
57)	m&p-xylene	16.81	91	208587	2.11 ppb		92
58)	Styrene	17.21	104	62501	1.07 ppb		85
59)	Bromoform	17.31	173	74986	0.85 ppb		96
60)	o-xylene	17.24	91	135031	1.00 ppb		98
62)	1,1,2,2-tetrachloroethane	17.63	83	77522	0.99 ppb		94
63)	2-Chlorotoluene	18.25	91	99105 n	1.06 ppb		98
	4-ethyltoluene	18.36	105	94704m/	0.89 ppb		
65)	1,3,5-trimethylbenzene	18.41	105	141559m V	0.98 ppb		
66)	1,2,4-trimethylbenzene	18.79	105	102777	0.98 ppb		95
67)	1,3-dichlorobenzene	19.05	146	76114	1.00 ppb		98
68)	benzyl chloride	19.10	91	65355	0.89 ppb		98
69)	1,4-dichlorobenzene	19.16	146	71707	0.96 ppb		99
70)	1,2-dichlorobenzene	19.42	146	72658	0.94 ppb		92
71)	1,2,4-trichlorobenzene	20.96	180	30672	0.72 ppb	#	1
	Naphthalene	21.13	128	39788	0.49 ppb		95
73)	Hexachloro-1,3-butadiene	21.20	225	67197	0.92 ppb	#	100

(QT Reviewed)

Quantitation Report

Vial:

C:\HPCHEM\1\DATA\AJ112836.D

Data File

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15 INJECTION LOG

		Centek	Laborato	ries, LLC	Injection Log		Inst.ument#	1		
		Directory: (C:\HPCHEM	\1\DATA2\2012nov	nijoodon Log		Internal Standard Stock	(# <u>§3</u>	22	<u> </u>
							Standard Stock #_		323 324	33 34
Line	Vial	FileName	Multiplier	SampleName		Misc Info	LCS Stock # Method Ref: EPA			1900
276		Aj111911.d	1.	C1211036-002A		AN06_1U		19 Nov		
277	3	Aj111912.d	1.	C1211036-003A		AN06_1U		19 Nov		
278	4	Aj111913.d	1.	C1211036-005A		AN06_1U		19 Nov		
279 280	5 6	Aj111914.d	1.	C1211036-006A		AN06_1U		19 Nov		
	7	Aj111915.d Aj111916.d	1. 1.	C1211036-007A C1211036-008A		AN06_1U		19 Nov		
282	8	Aj111917.d	1.	C1211036-004A 10X		AN06_1U		19 Nov 19 Nov		
283	9	Aj111918.d	1.	C1211036-004A 40X		AN06_1U		19 Nov		
284		Aj111919.d	1.	C1211036-001A 10X		AN06_1U		19 Nov		
285	11	Aj111920.d	1.	C1211036-001A 40X		AN06_1U		19 Nov	2012	22:21
286 287	12 13	Aj111921.d Aj111922.d	1. 1.	C1211036-002A 10X C1211036-002A 40X		AN06_1U		19 Nov 19 Nov		
288	14	Aj111923.d	1.	C1211036-002A 40X		AN06_1U		19 NOV 20 Nov		
289		Aj111924.d	1.	C1211036-003A 40X		AN06_1U		20 Nov		
290		Aj111925.d	1.	C1211036-005A 10X		AN06_1U		20 Nov		
291		Aj111926.d	1.	C1211036-005A 40X		AN06_1U		20 Nov	2012	01:50
292		Aj111927.d	1.	C1211036-006A 10X		AN06_1U		20 Nov		
293	19	Aj111928.d	1.	C1211036-006A 40X		AN06_1U		20 Nov		
294 295	20 21	Aj111929.d Aj111930.d	1. 1.	C1211036-007A 10X C1211036-007A 40X		AN06_1U0		20 Nov 20 Nov		
296		Aj111931.d	1.	C1211036-008A 10X		AN06_1U		20 Nov	2012	04:44
297		Aj111932.d	1.	C1211036-008A 40X		AN06_1U0		20 Nov		
298		Aj111933.d	1.	ALCS1UGD-111912		AN06_1U0		20 Nov		
299 300		Aj111934.d Aj111935.d	1. 1.	No MS or GC data pres	cont	AN06_1U	ت	20 Nov	2012	06:30
		Aj112101.d	1.	BFB1UG	CIIL	AN06_1U0	3	21 Nov	2012	12-14
		Aj112102.d	1.	A1UG		AN06 1U0		21 Nov		
	2	Aj112103.d	1.	A1UG		AN06_1U0		21 Nov		
304		Aj112301.d	1.	BFB1UG		AN06_1U0		23 Nov		
305 306		Aj112302.d Aj112303.d	1. 1.	BFB1UG A1UG		ANO6_1U		23 Nov		
		Aj112303.u Aj112304.d	1.	A1UG_2.0		AN06_1U0		23 Nov 23 Nov		
		Aj112305.d	1.	A1UG_1.5		AN06_1U0		23 Nov		
		Aj112306.d	1.	A1UG_1.25		AN06_1U0		23 Nov		
		Aj112307.d	1.	A1UG_1.0		AN06_1U0	3	23 Nov		
		Aj112308.d	1.	A1UG_0.75		AN06_1U0		23 Nov		
		Aj112309.d	1.	A1UG_0.50		AN06_1U0		23 Nov		
313 314		Aj112310.d Aj112311.d	1. 1.	A1UG_0.30 A1UG_0.15		AN06_1U0		23 Nov 23 Nov		
		Aj112311.u Aj112312.d	1.	A1UG_0.15		AN06_1U0		23 Nov		
		Aj112313.d	1.	A1UG		AN06 1U0		23 Nov		
		Aj112314.d	1.	A1UG_0.10		AN06_1U0		23 Nov		
318	12	Aj112315.d	1.	A1UG_0.04		AN06_1U0		23 Nov		
319		Aj112316.d	1.	No MS or GC data pres		A 1 100 - 41 11	_	20	0010	07 1F
		Aj112801.d	1.	BFB1UG		AN06_1U0		28 Nov		
		Aj112802.d Aj112803.d	1. 1.	A1UG_1.0 ALCS1UG-112812		AN23_1U0 AN23_1U0		28 Nov 28 Nov		
323		Aj112803.d Aj112804.d	1.	AMB1UG-112812		AN23_1U0		28 Nov		
		Aj112805.d	1.	WAC112812A		AN23_1U0		28 Nov		
325	2	Aj112806.d	1.	WAC112812B		AN23_1U0		28 Nov		
		Aj112807.d	1.	WAC112812C N		AN23_1U0		28 Nov		
327 328		Aj112808.d Aj112809.d	1. 1.	WAC112812D N WAC112812E		AN23_1U0 AN23_1U0		28 Nov 28 Nov		
		Aj112809.d Aj112810.d	1. 1.	WAC112812F		AN23_1U0		28 Nov		
		Aj112811.d	1.	WAC112812G		AN23_1U0		28 Nov		
		,				-				

		Centel	k Laboratoi	ries, LLC	lmination I on				_
	[Directory:		1\1\DATA2\2012nov	Injection Log		arstrument ii	1	
							Internal Standard St Standard Stock :		
Line	Vial	FileName	Multiplier	SampleName		Misc Info		Injected 5334 PA TO-15 / Jan. 1999	ļ
331	8	Aj112812.d		WAC112812H		AN23_1UG		28 Nov 2012 16:04	
332	9	Aj112813.d		WAC112812I		AN23_1UG		28 Nov 2012 16:39	
333	10	Aj112814.d	1.	WAC112812J		AN23_1UG		28 Nov 2012 17:15	
334	11	Aj112815.d	1.	WAC112812K		AN23_1UG		28 Nov 2012 17:50	
335	12	Aj112816.d	1.	WAC112812L		AN23_1UG		28 Nov 2012 18:24	
336 337	10 11	Aj112817.d Aj112818.d	1. 1.	C1211047-001A C1211047-002A		AN23_1UG		28 Nov 2012 18:58	
338		Aj112819.d	1.	C1211047-002A		AN23_1UG AN23_1UG		28 Nov 2012 19:33 28 Nov 2012 20:09	
339	41	Aj112820.d	1.	C1211047-005A		AN23_1UG		28 Nov 2012 20:46	
340	42	Aj112821.d	1.	C1211051-001A		AN23_1UG		28 Nov 2012 21:22	
341	43	Aj112822.d	1.	C1211051-002A		AN23_1UG		28 Nov 2012 21:58	
342 343	44 45	Aj112823.d	1.	C1211051-003A		AN23_1UG		28 Nov 2012 22:33	
344		Aj112824.d Aj112825.d	1. 1.	C1211051-004A C1211045-001A 10X		AN23_1UG AN23_1UG		28 Nov 2012 23:09	
345		Aj112826.d	1.	C1211045-001A 10X		AN23_1UG		28 Nov 2012 23:42 29 Nov 2012 00:17	
346		Aj112827.d	1.	C1211045-003A 10X		AN23_1UG		29 Nov 2012 00:17	
347	49	Aj112828.d	1.	C1211047-001A 10X		AN23_1UG		29 Nov 2012 01:27	
348		Aj112829.d	1.	C1211047-001A 40X		AN23_1UG		29 Nov 2012 02:01	
349	51	Aj112830.d	1.	C1211047-002A 10X		AN23_1UG		29 Nov 2012 02:35	
350	52	Aj112831.d	1,	C1211047		AN23_1UG	-002A 40X	29 Nov 2012 03:10	
351 352		Aj112832.d Aj112833.d	1. 1.	C1211047-003A 10X		AN23_1UG	0034 404	29 Nov 2012 03:45	
353		Aj112833.d Aj112834.d	1.	C1211047 C1211047-004A 10X		AN23_1UG AN23_1UG	-003A 40X	29 Nov 2012 04:20 29 Nov 2012 04:55	
354		Aj112835.d	1.	C1211047		AN23_1UG	-004A 40X	29 Nov 2012 05:28	
355	57	Aj112836.d	1.	ALCS1UGD-112812		AN23_1UG		29 Nov 2012 06:03	
356		Aj112837.d	1.	C1211051-001A 10X		AN23_1UG		29 Nov 2012 06:39	
357	59	Aj112838.d	1.	C1211051-001A 40X	_ 1	AN23_1UG		29 Nov 2012 07:14	
358 359	2	Aj112839.d Aj112901.d	1. 1.	No MS or GC data pres		AN23_1UG		29 Nov 2012 09:31	
360		Aj112902.d	1.	A1UG_1.0		AN23_1UG		29 Nov 2012 10:07	
361	4	Aj112903.d	1.	ALCS1UG-112912		AN23_1UG		29 Nov 2012 10:51	
362		Aj112904.d	1.	AMB1UG-112912		AN23_1UG		29 Nov 2012 12:59	
363 364		Aj112905.d Aj112906.d	1. 1.	C1211051-002A 5X C1211051-003A 5X		AN23_1UG AN23_1UG		29 Nov 2012 13:57 29 Nov 2012 14:31	
365		Aj112907.d	1.	C1211051-003A 5X		AN23_1UG		29 Nov 2012 14:31	
		Aj112908.d	1.	C1211045-001A		AN23_1UG		29 Nov 2012 15:41	
367	5	Aj112909.d	1.	C1211045-001A 40X		AN23_1UG		29 Nov 2012 16:16	
		Aj112910.d	1.	C1211045-002A		AN23_1UG		29 Nov 2012 16:50	
		Aj112911.d	1.	C1211045-002A 40X		AN23_1UG		29 Nov 2012 17:24	
		Aj112912.d Aj112913.d	1.	C1211045-003A		AN23_1UG		29 Nov 2012 18:00	
		Aj112913.u Aj112914.d	1. 1.	C1211045-003A 40X C1211057-001A		AN23_1UG AN23_1UG		29 Nov 2012 18:33 29 Nov 2012 19:08	
373		Aj112915.d	i.	C1211057-002A		AN23_1UG		29 Nov 2012 19:42	
374		Aj112916.d	1.	C1211057-003A		AN23_1UG		29 Nov 2012 20:16	
		Aj112917.d	1.	C1211057-001A 10X		AN23_1UG		29 Nov 2012 20:50	
		Aj112918.d	1.	C1211057-001A 40X		AN23_1UG		29 Nov 2012 21:23	
377 378		Aj112919.d Aj112920.d	1. 1.	C1211057-002A 10X C1211057-002A 40X		AN23_1UG		29 Nov 2012 21:57	
378 379		Aj112920.d Aj112921.d	1. 1.	C1211057-002A 40X		AN23_1UG AN23_1UG		29 Nov 2012 22:30 29 Nov 2012 23:04	
380		Aj112922.d	1.	C1211057		AN23_1UG		29 Nov 2012 23:37	
381	19	Aj112923.d	1.	ALCS1UGD-112912		AN23_1UG		30 Nov 2012 00:11	
382	2	Aj112924.d	1.	C1211051-003A 5X		AN23_1UG		30 Nov 2012 09:13	
383		Aj112925.d	1.	No MS or GC data pres	ent				

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15
STANDARDS LOG

Centek Laboratories, LLC

GC/MS Calibration Standards Logbook

ρ					-	1	<u> </u>						}			Ī			· 		
Chkd by																					
Prep by	2	_							>	Q3				>	A	<i>Z</i> 3	\				\geqslant
Final conc/ppbV	र्वा २५	<u></u>	\	Nog UI	50 nob	11 J	l og l		>	A.	5000b	- >	Scol	→	50 nab	50,00			\rightarrow	100001	50,00
finial vol	30 ps/A		⇒	S ps/b			450 27			LINDE 6AC	,	\rightarrow	45 osri	>	30 ps 1#		, _		->	50 0516	HSC SH
Initial vol	1.5 Ost6		>	1.0.1	0.39s/s	25.0	0.9 0516		\rightarrow	1800/216	1.Sps16,	>	0.9 0516	- →	1,50516	1,5 05/6,			^	1.0 1	10 pm 0.22ps/4
Stock conc	سمما		\rightarrow	38,2%	10 por		U,	-	\rightarrow	l som	loom		4000S	- ->	loum) pom			^	38.2%	mch ol
Stock#	8345/ 8346	8192/192	h38L	5488	9968 9	Sing	2968	8963	4963	AB-7810	21.58	9458/ 5458	8473	89714	1961	9288	2778	345/5758	7384	2888	2868
Description	57	227	41951	FURM	FORMER	FIUS/KOILS	Juga ISA	€)ZitS	(∦) \$>7	rnıX	J75	1.05	\Im_{λ}	(B)577	APP STA	42	_	202	4 PCH	FORM	FDEMSB
Des	1015	7015				~	Tors		<i></i>	7015	5101	7015	TOISI	\	1. [72107					→
Date exp	3/26/12								Ŷ	3/22/13/7015	3/26/12 7015	1		→	3/32/12 TOS		1				>
Date Prep	3/19/12								\rightarrow	3/22/2	3/22/12	_		\rightarrow	યજી	3/26/12 4/2/12	1				>
# ptS	8963	4968	59/98	9958	2963	89168	८७५८	8970	1168	8972	8413	45	8475	७८५४	264	8678	8979	59,80	1868	2868	8483

Centek Laboratories, LLC

GC/MS Calibration Standards Logbook

Chkd by																					
Prep by	73	3	1/3	_								>	7	C'Al	7	3					
Final conc/ppbV	Look	(A)	10			>	10 com	50000	50 mh	000	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	>	MATHESON TRI-GAS	1,00/1	-	Sissab			>	londa	50,00
finial vol	45 DSIA	12 NO. 17	K		_	>	1800	ξ 	30 ps/A	さんして	-,-	>	MATHES	6-7-5	->	30 ps.1A	,			50 0514	45/5111
Initial vol	୦.୧୯	1800,ps16	1.5 Osle			\rightarrow	1.0 ur 50 2614	0.230st 45x1A	1,50s/4 300s/A	0.9	- ~	>	lo L	9 30	. 7	1.5 05/6			>	1.0 UL	1.25,24 HECSIA
Stock conc Initial vol	50007		10,010			\Rightarrow	38.2%	1000	mero	5000 0 0 0000	-	\Rightarrow	olo VARICES	-	· }	اسمما	<u>-</u> -		/	38.5%	
Stock#	9040	IS 198-889	न०५८	88972	8345	7384	8845	9053	S198/ 1617/	वन्तर	9050	9051		A3.15	49,0073	9060	1906	2778	138H	Sbss	9906
Description	1015/44 405	NEW 7815 IS	TOIS IS	J STD	165	4 PCH	rocm	FORMS	SILOX/SOUF GIRT	701514G1 IS	STD	S211 V	FINED GASES	7015 IS	TO15 STD	7015 TS	573	LCS	4PCH	FURM	1/ FURMS
Date exp	5/14/12		5/21/12	-								→	डीगा3	ड्याद्याड	-	5/28/12	-				>
Date Prep	517112	9048 51812 518/13	5/14/12									\Rightarrow	5/11/1S	5/22/12		2/122/15					7
Std #	9047	9048	4049	9050	9051	9052	9053	4054	9055	9056	9057	9058	9059	5000	1905	2996	9063	4004	3005	9906	4067

Page#_

Page 187 of 204

Centek Laboratories, LLC

GC/MS Calibration Standards Logbook

<u>_</u> ≥		<u> </u>										<u> </u>	<u> </u>	<u> </u>					}		
Chkd by																:					
Prep by	(3			>	A									>	J.	বল					À
Final conc/ppbV	50 pab	1 O.S.	_	>	So par			->	mod ol	50 pp	5000h	1001	_	>	ן התניכו	40005	11		→	10 ppm	50 orb
finial vol	#15c105	Hisc' Sh		\rightarrow	30 (3s1A			→	PR9 03	45psut	30 ps.1	45 ps/		7		30 p31A			\rightarrow	50 ps14	
Initial vol	150 Col	1 Sty 200 900	-	\rightarrow	15 ps16	-		\uparrow	1.04		1.50slg 300sil	0.9 Osts		<u>^</u>	549	1.5 ps16	_		\	1.0 ul	0.23psts
Stock conc Initial vol	ויימס	50 00h		⇒	1 ppm	 - -		\Rightarrow	38.20 1.046			500ph	- - -	_ <u>></u>	LINDE	MO01				38.5%	10 pom
Stock#	6194	2906	4063	£906	9060	1506	8972	738H	8895	9606	5198	9072	9073	400	1968895	9060	9085	7178	138h	5688	2006
Description	SILOX SULF	144 IS	577	221	7.5	577	227	HOCH	Form	Forms	SILUX/SULF	ST 19h,	STZ	LCS	STD	7.5	STV	227	4PcH	Form	Folgers
Desc	7015	7015 W		\rightarrow	7015					·	s /	7015 /4	-	\	TOIS	7015				_	\Rightarrow
Date exp	2/28/12			→	5/18/2	_								-	616/13	6/13/12					⇒
Date Prep	Shasha			\Rightarrow	5/28/12									→	6/6/12	6/6/12					>
Std #	9008	9069	9070	1607	2012	903	9074	2015	9169	9077	9078	9079	9080	1986	9082	9083	4084	9085	9266	4087	9806

38

Page 188 of 204

Centek Laboratories, LLC

쏫
0
g
0
O
ഗ
Q
∺
ŏ
⊏
$\boldsymbol{\omega}$
ば
U
⊏
.≌
눆
Ë
유
$\overline{\pi}$
Ö
ഗ
⋝
S/MS
Õ
ŏ

	1	1				1		1	. "1		1	1	1	- 1			1	1			
Chkd by																					
Prep by	(L)	_		-	\ <u>\</u> 3									\Rightarrow	23	-					>
Final conc/ppbV	50.00b	(1, 1)		→	50 osb			\rightarrow	lo Dom	50,00b	50 ph	100h	-	>	Sopph	-		→	المرين 10	5000b	<u>,</u>
finial vol	SbpsiA	45,3stA		\	30 ps1A	- /		\rightarrow	500516	45 BIR	30051A	45 DSIA	~-	- >	30 05/A			\uparrow	50 ps16,	45 cont	30 part
Initial vol	4.S. 1814	6.9,2516	, i.e.,	1	1.50s14	, ,	- 	\uparrow	1.0 WL	0,23 ps14	1.5 DS16 30051A	0.9 0516			150sks				38,200 1,0 UL 50 ps16,	0.2325/4	1.5 ps/ 30/21A
Stock conc Initial vol	MOO	7		\rightarrow	ا مم	 -		\rightarrow	38.2%	1000m 0,30s14 45 Alt	widd 1	40005	-	\rightarrow	lopm			→	38,2%	10 ppm 10,23,506 45 col	
Stock #	S1918 Ab19	9315	9316	9317	9253	9082	SC12	1384	5188	01329	Sialy	9325	9326	9327	9253	2808	8972	7384	5188	Fean50 9339	519/6/19
Description	, ²	Tois lug Is	J STY	کما ک	TOIS IS	JT 5T	527	H2d-h	FORM	FEM50 0:329	SILLIX SULT GIPLE	TOIS 146 IS	573	J 465	IS	(T) STD	1,52	4-RH	Farm	FORMSO	Sheidswit Goldfus
Date exp	11/21/12 7	1		ラ	11 28/12 -							7		→	12/5/12/1015	-					→
Date Prep	21/41/17			ネ	11/21/12									->	71/82/11						→
Std #	9321	4322	9323	4256	5256	97.815	4327	9250	9258	9330	9331	4337	6333	4334	9335	9250	9337	85212	9339	લ34	9341

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15

CANISTER CLEANING LOG

QC Canister Cleaning Logbook

Centek Laboratories, LLC Instrument: Entech 3100

(ds)	_																								
r (psig st	† 	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Leak Test 24hr (psig str/stp)	+ 30	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Detection Limits	12 (1)+Sm/m/																								
	JAC110312A					WAK_110312 53					MRZ-110312 C					WAZI 10ALAD		,			WAZINBIZE				
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \																								
Numberof Cycles Date	30															ب									
QC Can Number	<u> </u>					\\\\					592					1194	•		:		300				
Ganister Number	5917	363	701	360	353	221	333	5ht	347	115	783	165	\£\(\gamma\)	901	365	835	58 %	563	181	17617	774	89h	b\$\n	364	300

(psig str/stp)

ر 0

Centek Laboratories, LLC Instrument: Entech 3100

	+	+	+	+	+	+	+	+	+	+	_+		_+		+			+								İ
eak Test 24	30	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Detection Limits	110 m 3 + 1 25						Ĉ.																			
©G:Batch Number □Detection □mits Leak lest 24hif	7 CIEON - TIN					MAZ110312 6					H CISOIL SAM					1, CISON SAIL	٦.									
Date	11.03.19	Ī]
mber Numberof Gycles	S			_																						
Oc. Can N	50					117					11/5	7				विष्	7									
Constanting	りして	000	295	C. (2)	200	77	72317	2000	CVn	201	1160	777	500 501	200		200	726	CIT 1	Chi	12 042	2					

Cleaned by:

Page 192 of 204

Centek Laboratories, Lecantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA2\2012NOV\AJ110310.D : 3 Nov 2012 : WAC110312D Acq On 7:10 pm Sample

Vial: 7 Operator: RJP Inst : MSD #1 Multiplr: 1.00

: A002_1UG MS Integration Params: RTEINT.P

Quant Time: Nov 05 11:49:37 2012 Quant Results File: A002 1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A002_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration
Last Update : Mon Oct 29 11:57:16 2012
Response via : Initial Calibration

DataAcq Meth : 1UG T015

Misc

Internal Standards	R.T. QIC	on Response	Conc Units Dev(Min)
1) Bromochloromethane 33) 1,4-difluorobenzene 48) Chlorobenzene-d5	9.79 12 12.04 11 16.40 11	67005	1.00 ppb 0.00 1.00 ppb 0.00 1.00 ppb 0.00
System Monitoring Compounds 61) Bromofluorobenzene Spiked Amount 1.000	17.88 9 Range 70 - 1	95 26834m 130 Recover	0.83 ppb 0.00 TY = 83.00%

Target Compounds

Ovalue

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed AJ110310.D AN23 1UG.M Thu Dec 20 09:22:47 2012

(OT Reviewed)

Quantitation Report

Quant Results File: A002 1UG.RES

Multiplr:

Operator: Vial:

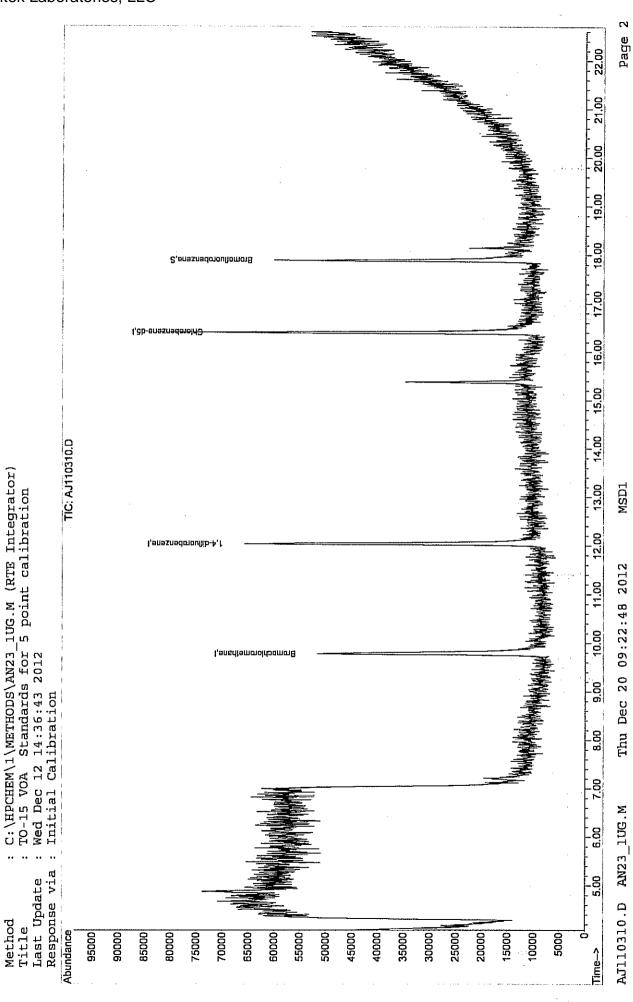
C:\HPCHEM\1\DATA2\2012NOV\AJ110310.D

7:10 pm

3 Nov 2012 WAC110312D A002 1UG

Data File

Sample


Misc

MS Integration Params: RTEINT.P

5 11:51 2012

Quant Time: Nov

Method

Page 194 of 204

Centek Laboratories, Legantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA2\2012NOV\AJ110311.D : 3 Nov 2012 7:46 pm

Vial: 8 Operator: RJP Inst : MSD #1 Multiplr: 1.00

Sample : WAC110312E Misc : A002_1UG

MS Integration Params: RTEINT.P

Quant Results File: A002 1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A002_1UG.M (RTE Integrator)

Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Oct 29 11:57:16 2012

Response via : Initial Calibration DataAcq Meth : 1UG_T015

Quant Time: Nov 05 11:49:38 2012

Internal Standards	R.T.	QIon	Response	Conc Units I	Dev(Min)
1) Bromochloromethane 33) 1,4-difluorobenzene 48) Chlorobenzene-d5	9.78 12.04 16.39	128 114 117	19554 72138 62075	1.00 ppb 1.00 ppb 1.00 ppb	0.00 0.00 0.00
System Monitoring Compounds 61) Bromofluorobenzene Spiked Amount 1.000	17.88 Range 70	95 - 130	29031m Recover	0.80 ppb y = 80.0	0.00

Target Compounds

Ovalue

Page 196 of 204

Centek Laboratories, Lecantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA2\2012NOV\AJ110312.D Vial: 9 : 3 Nov 2012 8:22 pm Operator: RJP Sample : WAC110312F Inst : MSD #1

Misc : A002_1UG MS Integration Params: RTEINT.P

Quant Time: Nov 05 11:49:39 2012 Quant Results File: A002 1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\AO02_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration

Last Update : Mon Oct 29 11:57:16 2012

Response via : Initial Calibration

DataAcq Meth : 1UG T015

Internal Standards		R.T.	QIon	Response	Conc Units	Dev(Min)
1) Bromochlorometh 33) 1,4-difluorober 48) Chlorobenzene-d	zene	9.79 12.04 16.39		22002 69746 59227	1.00 ppb 1.00 ppb 1.00 ppb	0.00
System Monitoring Co 61) Bromofluorobenz Spiked Amount	ene	17.88 Range 70	95 - 130	27690m Recovery	0.80 ppb y = 80	
Target Compounds						Ovalue

Target Compounds

Qvalue

Multiplr: 1.00

(QT Reviewed)

Quantitation Report

Page 198 of 204

Centek Laboratories, Lecantitation Report (QT Reviewed)

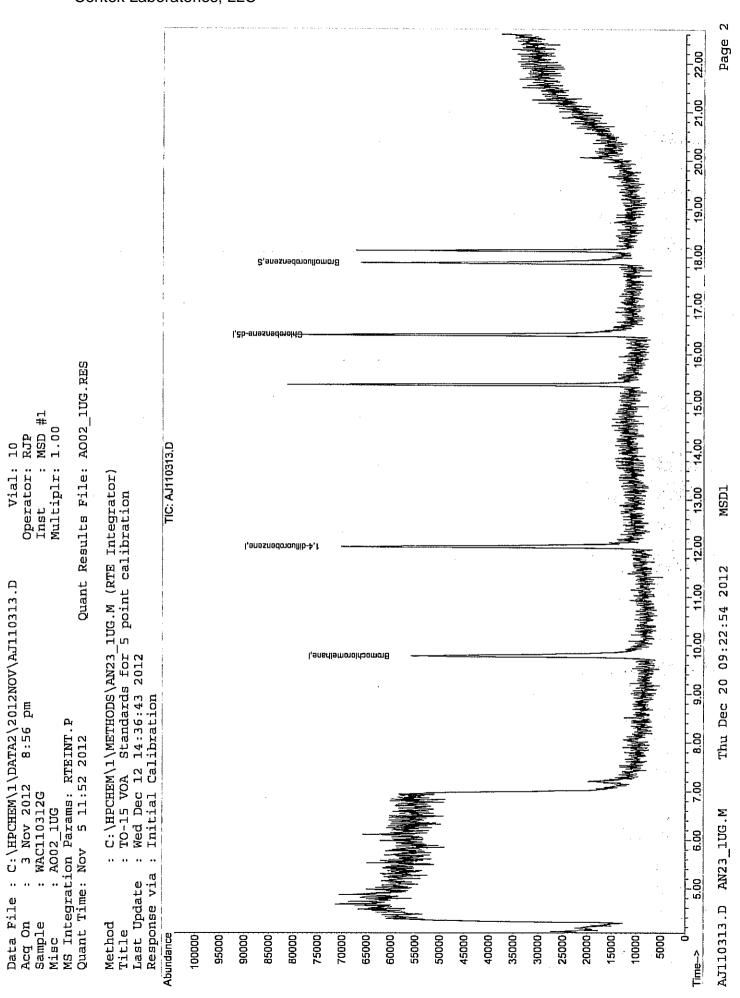
Data File : C:\HPCHEM\1\DATA2\2012NOV\AJ110313.D Vial: 10 Acq On : 3 Nov 2012 8:56 pm Sample : WAC110312G

Operator: RJP Inst : MSD #1 Multiplr: 1.00

Misc : A002_1UG MS Integration Params: RTEINT.P

Quant Time: Nov 05 11:49:40 2012 Quant Results File: A002 1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A002_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration
Last Update : Mon Oct 29 11:57:16 2012
Response via : Initial Calibration
DataAcq Meth : 1UG_T015


Internal Standards	R.T. QI	Ion Response	Conc Units De	ev(Min)
1) Bromochloromethane 33) 1,4-difluorobenzene 48) Chlorobenzene-d5	12.04 1	128 21557 114 68377 117 58880	1.00 ppb 1.00 ppb 1.00 ppb	0.00
System Monitoring Compounds 61) Bromofluorobenzene Spiked Amount 1.000	17.88 Range 70 -	95 27884m 130 Recover	0.81 ppb ry = 81.00	0.00

Target Compounds

Qvalue

(QT Reviewed)

Quantitation Report

Page 200 of 204

Centek Laboratories, Lecantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA2\2012NOV\AJ110314.D

: 3 Nov 2012 Acq On 9:31 pm : WAC110312H Sample

Vial: 11 Operator: RJP Inst : MSD #1 Multiplr: 1.00

Misc : AOO2 1UG MS Integration Params: RTEINT.P

Quant Time: Nov 05 11:49:41 2012 Quant Results File: A002 1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A002_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Mon Oct 29 11:57:16 2012
Response via : Initial Calibration
DataAcq Meth : 1UG_T015

Internal Standards	R.T. QIon	Response	Conc Units Dev	(Min)
1) Bromochloromethane 33) 1,4-difluorobenzene 48) Chlorobenzene-d5	9.78 128 12.04 114 16.39 117	20417 67573 55598	1.00 ppb 1.00 ppb 1.00 ppb	0.00
System Monitoring Compounds 61) Bromofluorobenzene Spiked Amount 1.000	17.87 95 Range 70 - 130	25973m Recover	0.80 ppb	0.00

Target Compounds

Qvalue

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed AJ110314.D AN23_1UG.M Thu Dec 20 09:22:56 2012 MSD1

(QT Reviewed)

Quantitation Report

Vial: Operator:

C:\HPCHEM\1\DATA2\2012NOV\AJ110314.D

Data File

9:31 pm

: WAC110312H

Sample

Centek Laboratories, L@@antitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA2\2012NOV\AJ110315.D

Vial: 12

: 3 Nov 2012 10:06 pm Operator: RJP Sample : WAC110312I Inst : MSD #1 Misc : AO02 1UG Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Nov 05 11:49:42 2012 Quant Results File: A002 1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A002_1UG.M (RTE Integrator) : TO-15 VOA Standards for 5 point calibration Title

Last Update : Mon Oct 29 11:57:16 2012

Response via : Initial Calibration

DataAcq Meth : 1UG T015

Internal Standards	R.T. Q	lon Re	sponse Co	nc Units	Dev(Min)
1) Bromochloromethane 33) 1,4-difluorobenzene 48) Chlorobenzene-d5	12.04	114	68840	1.00 ppb 1.00 ppb 1.00 ppb	0.00 0.00 0.00
System Monitoring Compounds 61) Bromofluorobenzene Spiked Amount 1.000	17.88 Range 70 -		28174m Recovery	0.79 ppb = 79.	

Target Compounds

Qvalue

(QT Reviewed)

Quantitation Report

MSD #1

Operator:

Inst

Vial:

C:\HPCHEM\1\DATA2\2012NOV\AJ110315.D

10:06 pm

3 Nov 2012 WAC110312I

Data File Acq On Sample

Appendix D

Lockheed Martin Corporation

Data Usability Summary Report

UTICA, NEW YORK

Volatile Analyses

SDG #C1211047

Analyses Performed By: Centek Laboratories, LLC

Report: #18183R Review Level: Tier III

Project: NJ001032.0001.00005

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) # C1211047 for samples collected in association with the Lockheed Martin West Lot, Utica, New York Site. The review was conducted as a Tier III evaluation and included review of data package completeness. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

			Sample	Parent		,	Analysis	3	
Sample ID	Lab ID	Matrix	Collection Date	Sample	voc	svoc	РСВ	MET	MISC
C1211047-001A	SG-IND-1(ARC)	Air	11/20/2012		Х				
C1211047-002A	SG-IND-2(ARC)	Air	11/20/2012		Χ				
C1211047-003A	SG-IND-3(ARC)	Air	11/20/2012		Х				
C1211047-004A	AMB-112012	Air	11/20/2012		Х				

ANALYTICAL DATA PACKAGE DOCUMENTATION GENERAL INFORMATION

	Reported		Performance Acceptable		Not
Items Reviewed	No	Yes	No	Yes	Required
Sample receipt condition		Х		Χ	
Requested analyses and sample results		Х		Х	
Collection Technique (grab, composite, etc.)		Х		Х	
Methods of analysis		Х		Х	
Reporting limits		Х		Χ	
Sample collection date		Х		Χ	
Laboratory sample received date		Х		Χ	
Sample preservation verification (as applicable)		Х		Х	
Sample preparation/extraction/analysis dates		Х		Х	
Fully executed Chain-of-Custody (COC) form completed		Х		Х	
Narrative summary of QA or sample problems provided		Х		Х	
Data Package Completeness and Compliance		X		X	

QA - Quality Assurance

INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) Method TO-15. Data were reviewed in accordance with USEPA National Functional Guidelines of October 1999, USEPA Region II SOP HW-31- Validating Air Samples Volatile Organic Analysis of Ambient Air In Canister by Method TO-15 of October 2006, New York State DEC Analytical Method ASP 2005 TO-15 (QA/QC Criteria R9 TO-15), NYSDEC Modifications to R9 TO-15 QA/QC Criteria February 2008 and NYSDEC Proposed Change to the ASP Regarding Canister Vacuum June 26, 2009.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
 - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
 - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
 - UB Compound considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and

provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
Method TO-15	Air	30 days storage from collection to analysis	Ambient temperature

All samples were analyzed within the specified holding time criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were not detected above the RL in the associated blanks; therefore detected sample results were not associated with blank contamination.

3. Mass Spectrometer Tuning

Mass spectrometer performance and column resolution was acceptable.

4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (30%) and an RRF value greater than control limit (0.05).

4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (30%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits.

5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. VOC analysis requires that all surrogates associated with the analysis exhibit recoveries within the laboratory-established acceptance limits.

All surrogate recoveries were within control limits.

6. Internal Standard Performance

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria requires the internal standard compounds associated with the VOC exhibit area counts that are not greater than 40% or less than 40% of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

7. Laboratory Control Sample /Laboratory Control Sample Duplicate (LCS/LCSD) Analysis

The LCS/LCSD analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS/LCSD analysis must exhibit a percent recovery within the established acceptance limits of 70% to 130%. The relative percent difference (RPD) between the LCS/LCSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Sample locations associated with LCS/LCSD analysis exhibited recoveries within control limits.

8. Laboratory Duplicate Analysis

The laboratory duplicate relative percent difference (RPD) criterion is applied when parent and duplicate sample concentrations are greater than or equal to 5 times the RL. A control limit of 20% for air matrices is applied when the criteria above is true. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of three times the RL is applied for air matrices.

Laboratory duplicates were not performed as part of this SDG.

9. Field Duplicate Analysis

Field duplicate analysis is used to assess the precision and accuracy of the field sampling procedures and analytical method. A control limit of 100% for air matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of three times the RL is applied for air matrices.

A field duplicate was not collected in association with this SDG.

10. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

Sample results associated with compound that exhibited a concentration greater than the linear range of the instrument calibration are summarized in the following table.

Sample ID	Compound	Original Analysis	Diluted Analysis ug/m3	Reported Analysis ug/m3
	2,2,4-trimethylpentane		17 D	17 D
	Acetone		29 D	29 D
	Benzene		21 D	21 D
SG-IND-1(ARC)	Cyclohexane		160 D	160 D
3G-IND-T(ARC)	Heptane		24 D	24 D
	Hexane		130 D	130 D
	m&p Xylene		18 D	18 D
	Toluene		57 D	57 D
SG-IND-2(ARC)	Acetone		28 D	28 D
	Acetone		23 D	23 D
SG-IND-3(ARC)	Freon 12		110 D	110 D
	Tetrachloroethylene		15 D	15 D
	2,2,4-trimethylpentane		8.1 D	8.1 D
	Acetone		19 D	19 D
	Benzene		9.1 D	9.1 D
AMB-112012	Cyclohexane		30 D	30 D
	Heptane		9.6 D	9.6 D
	Hexane		30 D	30 D
	Isopropyl Alcohol		28 D	28 D
	m&p Xylene		15 D	15 D
	Toluene		26 D	26 D
	Trichloroethene		14 D	14 D

Note: In the instance where both the original analysis and the diluted analysis sample results exhibited a concentration greater than and/or less than the calibration linear range of the instrument; the sample result exhibiting the greatest concentration will be reported as the final result.

Sample results associated with compounds exhibiting concentrations greater than the linear range are qualified as documented in the table below when reported as the final reported sample result.

Reported Sample Results	Qualification
Diluted sample result within calibration range	D
Diluted sample result less than the calibration range	DJ
Diluted sample result greater than the calibration range	EDJ
Original sample result greater than the calibration range	EJ

11. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR VOCs

VOCs: TO-15	Reported			mance otable	Not	
	No	Yes	No	Yes	Required	
GAS CHROMATOGRAPHY/MASS SPECTROME	TRY (GC/I	MS)				
Tier II Validation						
Canister return pressure/vacuum (>1"Hg)		X		X		
Holding times		Х		Х		
Reporting limits (units)		X		X		
Blanks						
A. Method blanks		Х		Х		
B. Equipment blanks					Х	
C. Trip blanks					Х	
Laboratory Control Sample (LCS)		Х		Х		
Laboratory Control Sample Duplicate(LCSD)		Х		Х		
LCS/LCSD Precision (RPD)		Х		Х		
Field Duplicate (RPD)					Х	
Surrogate Spike Recoveries		Х		Х		
Dilution Factor		Х		Х		
Moisture Content					Х	
Tier III Validation		•				
System performance and column resolution		Х		Х		
Initial calibration %RSDs		Х		Х		
Continuing calibration RRFs		Х		Х		
Continuing calibration %Ds		Х		Х		
Instrument tune and performance check		Х		Х		
Ion abundance criteria for each instrument used		Х		Х		
Internal standard		Х		Х		
Compound identification and quantitation						
A. Reconstructed ion chromatograms		Х		Х		
B.Quantitation Reports		Х		Х		
C.RT of sample compounds within the established RT windows		Х		Х		
D.Transcription/calculation errors present		Х		Х		
E.Reporting limits adjusted to reflect sample dilutions		Х		Х		

VOCs: TO-15	Reported No Yes		Perfori Accep		Not Required
			No	Yes	
GAS CHROMATOGRAPHY/MASS SPECTROME	TRY (GC/N	1S)			

Relative standard deviation

%RSD %R RPD %D Percent recovery
Relative percent difference
Percent difference

SAMPLE COMPLIANCE REPORT

Sample						Co	mplianc	y ¹		Noncompliance
Delivery Group (SDG)	Sampling Date	Protocol	Sample ID	Matrix	voc	svoc	РСВ	MET	MISC	
C1211047-001A	11/20/2012	TO-15	SG-IND- 1(ARC)	Air	Yes					Dilutions
C1211047-002A	11/20/2012	TO-15	SG-IND- 2(ARC)	Air	Yes	1		-		Dilutions
C1211047-003A	11/20/2012	TO-15	SG-IND- 3(ARC)	Air	Yes	1		-		Dilutions
C1211047-004A	11/20/2012	TO-15	AMB- 112012	Air	Yes			-		Dilutions

¹ Samples which are compliant with no added validation qualifiers are listed as "yes". Samples which are non-compliant or which have added qualifiers are listed as "no". A "no" designation does not necessarily indicate that the data have been rejected or are otherwise unusable.

VALIDATION PERFORMED BY: Mary Ann Doyle

SIGNATURE:

DATE: _ January 15, 2013

PEER REVIEW BY: Dennis Capria

DATE: January 16, 2013

CHAIN OF CUSTODY/ CORRECTED SAMPLE ANALYSIS DATA SHEETS

Arcadis - Newtown

C1211047

LMC Utica

C1211047-001A

Centek Laboratories, LLC

CLIENT:

Project:

Lab ID:

Lab Order:

Date: 14-Dec-12

Client Sample ID: SG-IND-1 (ARC)

Tag Number: 458,342 Collection Date: 11/20/2012

Matrix:

C1211047-001A			****	ILI IX.	
Analyses	Result	**Limit Qu	al Units	DF	Date Analyzed
IUG/M3 BY METHOD TO15		TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.83	0.83	ug/m3	1	11/28/2012 6:58:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	ug/m3	1	11/28/2012 6:58:00 PM
1,1,2-Trichloroethane	< 0.83	0.83	ug/m3	1	11/28/2012 6:58:00 PM
1,1-Dichloroethane	< 0.62	0.62	ug/m3	11	11/28/2012 6:58:00 PM
1,1-Dichloroethene	< 0.60	0.60	ug/m3	1	11/28/2012 6:58:00 PM
1,2,4-Trichlorobenzene	< 1.1	1.1	ug/m3	1	11/28/2012 6:58:00 PM
1,2,4-Trimethylbenzene	12	0.75	ug/m3	1	11/28/2012 6:58:00 PM
1,2-Dibromoethane	< 1.2	1.2	ug/m3	1	11/28/2012 6:58:00 PM
1,2-Dichlorobenzene	< 0.92	0.92	ug/m3	1	11/28/2012 6:58:00 PM
1,2-Dichloroethane	< 0.62	0.62	ug/m3	1	11/28/2012 6:58:00 PM
1,2-Dichloropropane	< 0.70	0.70	ug/m3	1	11/28/2012 6:58:00 PM
1,3,5-Trimethylbenzene	3.1	0.75	ug/m3	1	11/28/2012 6:58:00 PM
1,3-butadiene	< 0.34	0.34	ug/m3	1	11/28/2012 6:58:00 PM
1,3-Dichlorobenzene	< 0.92	0.92	ug/m3	1	11/28/2012 6:58:00 PM
1,4-Dichlorobenzene	< 0.92	0.92	ug/m3	1	11/28/2012 6:58:00 PM
1,4-Dioxane	< 1.1	1.1	ug/m3	1	11/28/2012 6:58:00 PM
2,2,4-trimethylpentane	17 L	7.1	ug/m3	10	11/29/2012 1:27:00 AM
4-ethyltoluene	4.1	0.75	ug/m3	1	11/28/2012 6:58:00 PM
Acetone	29 [ug/m3	10	11/29/2012 1:27:00 AM
Allyl chloride	< 0.48	0.48	ug/m3	1	11/28/2012 6:58:00 PM
Benzene	21 /	3 4.9	ug/m3	10	11/29/2012 1:27:00 AM
Benzyl chloride	< 0.88	0.88	ug/m3	1	11/28/2012 6:58:00 PM
Bromodichloromethane	< 1.0	1.0	ug/m3	1	11/28/2012 6:58:00 PM
Bromoform	< 1.6	1.6	ug/m3	1	11/28/2012 6:58:00 PM
Bromomethane	< 0.59	0.59	ug/m3	1	11/28/2012 6:58:00 PM
Carbon disulfide	0,70	0.47	ug/m3	1	11/28/2012 6:58:00 PM
Carbon tetrachloride	< 0.96	0.96	ug/m3	1	11/28/2012 6:58:00 PM
Chlorobenzene	< 0.70	0.70	ug/m3	1	11/28/2012 6:58:00 PM
Chloroethane	< 0.40	0.40	ug/m3	1	11/28/2012 6:58:00 PM
Chloroform	< 0.74	0.74	ug/m3	1	11/28/2012 6:58:00 PM
Chloromethane	< 0.31	0.31	ug/m3	1	11/28/2012 6:58:00 PM
cis-1,2-Dichloroethene	< 0.60	0.60	ug/m3	1	11/28/2012 6:58:00 PM
cis-1,3-Dichloropropene	< 0.69	0.69	ug/m3	1	11/28/2012 6:58:00 PM
Cyclohexane	160		ug/m3	40	11/29/2012 2:01:00 AM
Dibromochloromethane	< 1.3	1.3	ug/m3	1	11/28/2012 6:58:00 PM
Ethyl acetate	< 0.92	0.92	ug/m3	1	11/28/2012 6:58:00 PM
Ethylbenzene	9.4	0.66	ug/m3	1	11/28/2012 6:58:00 PM
Freon 11	1.1	0.86	ug/m3	1	11/28/2012 6:58:00 PM
Freon 113	0.93	1.2 J	ug/m3	1	11/28/2012 6:58:00 PM
Freon 114	< 1.1	1.1	ug/m3	1	11/28/2012 6:58:00 PM

Qualifiers:

- ** Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- . Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 1 of 8

Date: 14-Dec-12

CLIENT:

Arcadis - Newtown

Lab Order:

C1211047

Project:

LMC Utica

Lab ID:

C1211047-001A

Client Sample ID: SG-IND-1 (ARC)

Tag Number: 458,342

Collection Date: 11/20/2012

Matrix:

Analyses	Result	**Limit Qu	al Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-15			Analyst: RJP
Freon 12	2.0	0.75	ug/m3	1	11/28/2012 6:58:00 PM
Heptane	24 D	6.2	ug/m3	10	11/29/2012 1:27:00 AM
Hexachloro-1,3-butadiene	< 1.6	1.6	ug/m3	1	11/28/2012 6:58:00 PM
Hexane	130 💍	21	ug/m3	40	11/29/2012 2:01:00 AM
Isopropyl alcohol	< 0.37	0.37	ug/m3	1	11/28/2012 6:58:00 PM
m&p-Xylene	18 🗅	13	ug/m3	10	11/29/2012 1:27:00 AM
Methyl Butyl Ketone	< 1.2	1.2	ug/m3	1	11/28/2012 6:58:00 PM
Methyl Ethyl Ketone	< 0.90	0.90	ug/m3	1	11/28/2012 6:58:00 PM
Methyl Isobutyl Ketone	< 1.2	1.2	ug/m3	1	11/28/2012 6:58:00 PM
Methyl tert-butyl ether	< 0.55	0.55	ug/m3	1	11/28/2012 6:58:00 PM
Methylene chloride	< 0.53	0.53	ug/m3	1	11/28/2012 6:58:00 PM
o-Xylene	11	0.66	ug/m3	1	11/28/2012 6:58:00 PM
Propylene	< 0.26	0.26	ug/m3	1	11/28/2012 6:58:00 PM
Styrene	< 0.65	0.65	ug/m3	1	11/28/2012 6:58:00 PM
Tetrachloroethylene	3.8	1.0	ug/m3	1	11/28/2012 6:58:00 PM
Tetrahydrofuran	< 0.45	0.45	ug/m3	4	11/28/2012 6:58:00 PM
Toluene	57 D	5.7	ug/m3	10	11/29/2012 1:27:00 AM
trans-1,2-Dichloroethene	< 0.60	0.60	ug/m3	1	11/28/2012 6:58:00 PM
trans-1,3-Dichloropropene	< 0.69	0.69	ug/m3	1	11/28/2012 6:58:00 PM
Trichloroethene	2.5	0.82	ug/m3	4	11/28/2012 6:58:00 PM
Vinyl acetate	< 0.54	0.54	ug/m3	1	11/28/2012 6:58:00 PM
Vinyl Bromide	< 0.67	0.67	ug/m3	4	11/28/2012 6:58:00 PM
Vinyl chloride	< 0.39	0.39	ug/m3	1	11/28/2012 6:58:00 PM

Qualifiers:

- Reporting Limit
- В Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
 - Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Value above quantitation range
- Analyte detected at or below quantitation limits
- Not Detected at the Reporting Limit

Page 2 of 8

Arcadis - Newtown

CLIENT: Lab Order;

C1211047

Project:

LMC Utica

Lab ID:

C1211047-002A

Date: 14-Dec-12

Client Sample ID: SG-IND-2 (ARC)

Tag Number: 553,153

Collection Date: 11/20/2012

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	. DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO	-15		mr so	Analyst: RJP
1,1,1-Trichloroethane	< 0.83	0.83		ug/m3	- 1	11/28/2012 7:33:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0		ug/m3	11	11/28/2012 7:33:00 PM
1,1,2-Trichloroethane	< 0.83	0.83		ug/m3	111	11/28/2012 7:33:00 PM
1,1-Dichtoroethane	< 0.62	0.62		ug/m3	13	11/28/2012 7:33:00 PM
1,1-Dichloroethene	< 0.60	0.60		ug/m3	11	11/28/2012 7:33:00 PM
1,2,4-Trichlorobenzene	< 1.1	1.1		ug/m3	11	11/28/2012 7:33:00 PM
1,2,4-Trimethylbenzene	2.0	0.75		ug/m3	1	11/28/2012 7:33:00 PM
1,2-Dibromoethane	< 1,2	1.2		ug/m3	1	11/28/2012 7:33:00 PM
1,2-Dichlorobenzene	< 0.92	0.92		ug/m3	1	11/28/2012 7:33:00 PM
1,2-Dichloroethane	< 0.62	0.62		ug/m3	1	11/28/2012 7:33:00 PM
1,2-Dichloropropane	< 0.70	0.70		ug/m3	1	11/28/2012 7:33:00 PM
1,3,5-Trimethylbenzene	0.50	0.75	J	ug/m3	1	11/28/2012 7:33:00 PM
1,3-butadiene	< 0.34	0.34		ug/m3	1	11/28/2012 7:33:00 PM
1,3-Dichlorobenzene	< 0.92	0.92		ug/m3	1	11/28/2012 7:33:00 PM
1,4-Dichlorobenzene	< 0.92	0.92		ug/m3	1	11/28/2012 7:33:00 PM
1,4-Dioxane	< 1.1	1.1		ug/m3	1	11/28/2012 7:33:00 PM
2,2,4-trimethylpentane	0.57	0.71	J	ug/m3	1	11/28/2012 7:33:00 PM
4-ethyltoluene	0.65	0.75	J	ug/m3	1	11/28/2012 7:33:00 PM
Acetone		7.2	7	ug/m3	10	11/29/2012 2:35:00 AM
Allyl chloride	< 0.48	0.48		ug/m3	1	11/28/2012 7:33:00 PM
Benzene	1.3	0.49		ug/m3	1	11/28/2012 7:33:00 PM
Benzyl chloride	< 0.88	0.88		ug/m3	1	11/28/2012 7:33:00 PM
Bromodichloromethane	< 1.0	1.0		ug/m3		11/28/2012 7:33:00 PM
Bromoform	< 1.6	1.6		ug/m3	1	11/28/2012 7:33:00 PM
Bromomethane	< 0.59	0.59		ug/m3	4	11/28/2012 7:33:00 PM
Carbon disulfide	1.8	0.47		ug/m3	4	11/28/2012 7:33:00 PM
Carbon tetrachloride	< 0.96	0.96		ug/m3		11/28/2012 7:33:00 PM
Chlorobenzene	< 0.70	0.70		ug/m3	1	11/28/2012 7:33:00 PM
Chloroethane	< 0.40	0.40		ug/m3	1	11/28/2012 7:33:00 PM
Chloroform	1.3	0.74		ug/m3	1	11/28/2012 7:33:00 PM
Chloromethane	< 0.31	0.31		ug/m3	1	11/28/2012 7:33:00 PM
cis-1,2-Dichloroethene	< 0.60	0.60		ug/m3	1	11/28/2012 7:33:00 PM
cis-1,3-Dichloropropene	< 0.69	0.69		ug/m3	1	
Cyclohexane	2.6	0.52		ug/m3	1	11/28/2012 7:33:00 PM
Dibromochloromethane	< 1.3	1.3		ug/m3	1	11/28/2012 7:33:00 PM 11/28/2012 7:33:00 PM
Ethyl acetate	< 0.92	0.92		ug/m3	1	
Ethylbenzene	1.1	0.66		ug/m3	1	11/28/2012 7:33:00 PM
Freon 11	1.1	0.86		ug/m3	1	11/28/2012 7:33:00 PM
Freon 113	1.1	1.2	J	ug/m3		11/28/2012 7:33:00 PM
Freon 114	< 1.1	1.1	J	ug/m3	1	11/28/2012 7:33:00 PM 11/28/2012 7:33:00 PM

Qualifiers:

- ** Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 3 of 8

CLIENT:

Arcadis - Newtown

Lab Order:

C1211047

Project:

LMC Utica

Lab ID:

C1211047-002A

Date: 14-Dec-12

Client Sample ID: SG-IND-2 (ARC)

Tag Number: 553,153

Collection Date: 11/20/2012

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		то	-15			Analyst: RJP
Freon 12	2.4	0.75		ug/m3	1	11/28/2012 7:33:00 PM
Heptane	1.3	0.62		ug/m3	4	11/28/2012 7:33:00 PM
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	4	11/28/2012 7:33:00 PM
Hexane	2.7	0.54		ug/m3	1	11/28/2012 7:33:00 PM
isopropyi alcohol	< 0.37	0.37		ug/m3	1	11/28/2012 7:33:00 PM
m&p-Xylene	3.7	1.3		ug/m3	1	11/28/2012 7:33:00 PM
Methyl Butyl Ketone	< 1.2	1,2		ug/m3	1	11/28/2012 7:33:00 PM
Methyl Ethyl Ketone	< 0.90	0.90		ug/m3	1	11/28/2012 7:33:00 PM
Methyl Isobutyl Ketone	< 1.2	1.2		ug/m3	1	11/28/2012 7:33:00 PM
Methyl tert-butyl ether	< 0.55	0.55		ug/m3	1	11/28/2012 7:33:00 PM
Methylene chloride	< 0.53	0.53		ug/m3	1	11/28/2012 7:33:00 PM
o-Xylene	1.1	0.66		ug/m3	1	11/28/2012 7:33:00 PM
Propylene	< 0.26	0.26		ug/m3	-1	11/28/2012 7:33:00 PM
Styrene	< 0.65	0.65		ug/m3	1	11/28/2012 7:33:00 PM
Tetrachloroethylene	3.9	1.0		ug/m3	1	11/28/2012 7:33:00 PM
Tetrahydrofuran	< 0.45	0.45		ug/m3	1	11/28/2012 7:33:00 PM
Toluene	6.8	0.57		ug/m3	1	11/28/2012 7:33:00 PM
trans-1,2-Dichloroethene	< 0.60	0,60		ug/m3	1	11/28/2012 7:33:00 PM
trans-1,3-Dichloropropene	< 0.69	0.69		ug/m3	1	11/28/2012 7:33:00 PM
Trichloroethene	0.66	0.82	J	ug/m3	i	11/28/2012 7:33:00 PM
Vinyl acetate	< 0.54	0.54		ug/m3	1	11/28/2012 7:33:00 PM
Vinyl Bromide	< 0.67	0.67		ug/m3	1	11/28/2012 7:33:00 PM
Vinyl chloride	< 0.39	0.39		ug/m3	1	11/28/2012 7:33:00 PM

Qualifiers:	
-------------	--

- Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 4 of 8

CLIENT: Arca

Arcadis - Newtown

Lab Order:

C1211047

Project:

LMC Utica

Lab ID:

C1211047-003A

Date: 14-Dec-12

Client Sample ID: SG-IND-3 (ARC)

Tag Number: 285,281

Collection Date: 11/20/2012

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15	A (III) 221) 231	TC	-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.83	0.83		ug/m3	1	11/28/2012 8:09:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0		ug/m3	1	11/28/2012 8:09:00 PM
1,1,2-Trichloroethane	< 0.83	0.83		ug/m3	1	11/28/2012 8:09:00 PM
1,1-Dichloroethane	< 0.62	0.62		ug/m3	1	11/28/2012 8:09:00 PM
1,1-Dichloroethene	< 0.60	0.60		ug/m3	1	11/28/2012 8:09:00 PM
1,2,4-Trichlorobenzene	< 1.1	1.1		ug/m3	1	11/28/2012 8:09:00 PM
1,2,4-Trimethylbenzene	2.2	0.75		ug/m3	1	11/28/2012 8:09:00 PM
1,2-Dibromoethane	< 1.2	1.2		ug/m3	1	11/28/2012 8:09:00 PM
1,2-Dichlorobenzene	< 0,92	0.92		ug/m3	1	11/28/2012 8:09:00 PM
1,2-Dichloroethane	< 0.62	0.62		ug/m3	1	11/28/2012 8:09:00 PM
1,2-Dichloropropane	< 0.70	0.70		ug/m3	1	11/28/2012 8:09:00 PM
1,3,5-Trimethylbenzene	0.50	0.75	J	ug/m3	4	11/28/2012 8:09:00 PM
1,3-butadiene	< 0.34	0.34		ug/m3	1	11/28/2012 8:09:00 PM
1,3-Dichlorobenzene	< 0.92	0.92		ug/m3	1	11/28/2012 8:09:00 PM
1,4-Dichlorobenzene	< 0.92	0.92		ug/m3	. 1	11/28/2012 8:09:00 PM
1,4-Dioxane	< 1.1	1.1		ug/m3	1	11/28/2012 8:09:00 PM
2,2,4-trimethylpentane	< 0.71	0.71		ug/m3	1	11/28/2012 8:09:00 PM
4-ethyltoluene	0.60	0.75	J	ug/m3	4	11/28/2012 8:09:00 PM
Acetone	23 D	7.2		ug/m3	10	11/29/2012 3:45:00 AM
Allyl chloride	< 0.48	0.48		ug/m3	10	11/28/2012 8:09:00 PM
Benzene	0,65	0.49		ug/m3	1	11/28/2012 8:09:00 PM
Benzyl chloride	< 0.88	0.88		ug/m3	1	11/28/2012 8:09:00 PM
Bromodichloromethane	< 1.0	1.0		ug/m3	1	11/28/2012 8:09:00 PM
Bromoform	< 1.6	1.6		ug/m3	1	11/28/2012 8:09:00 PM
Bromomethane	< 0.59	0.59		ug/m3	1	11/28/2012 8:09:00 PM
Carbon disulfide	< 0.47	0.47		ug/m3	1	11/28/2012 8:09:00 PM
Carbon tetrachloride	< 0.96	0.96		ug/m3	1	11/28/2012 8:09:00 PM
Chlorobenzene	< 0.70	0.70		ug/m3	1	11/28/2012 8:09:00 PM
Chloroethane	< 0.40	0.40		ug/m3	1	11/28/2012 8:09:00 PM
Chloroform	< 0.74	0.74		ug/m3	1	11/28/2012 8:09:00 PM
Chloromethane	< 0.31	0.31		ug/m3	9	11/28/2012 8:09:00 PM
cis-1,2-Dichloroethene	< 0.60	0.60		ug/m3	1	11/28/2012 8:09:00 PM
cis-1,3-Dichloropropene	< 0.69	0.69		ug/m3	1	11/28/2012 8:09:00 PM
Cyclohexane	< 0.52	0.52		ug/m3	1	11/28/2012 8:09:00 PM
Dibromochloromethane	< 1.3	1.3		ug/m3	i	11/28/2012 8:09:00 PM
Ethyl acetate	< 0.92	0.92		ug/m3	1	11/28/2012 8:09:00 PM
Ethylbenzene	1.1	0.66		ug/m3	1	11/28/2012 8:09:00 PM
Freon 11	0.91	0.86		ug/m3	1	11/28/2012 8:09:00 PM
Freon 113	< 1.2	1.2		ug/m3	i	11/28/2012 8:09:00 PM
Freon 114	< 1.1	1.1		ug/m3	4	11/28/2012 8:09:00 PM

Qualifiers:

- ** Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 5 of 8

CLIENT: Arcadis - Newtown

Lab Order: C

C1211047 LMC Utica

Project: Lab ID:

C1211047-003A

Date: 14-Dec-12

Client Sample ID: SG-IND-3 (ARC)

Tag Number: 285,281 Collection Date: 11/20/2012

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
IUG/M3 BY METHOD TO15		TC)-15			Analyst: RJP
Freon 12	110	7.5		ug/m3	10	11/29/2012 3:45:00 AM
Heptane	< 0.62	0.62		ug/m3	1	11/28/2012 8:09:00 PM
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	11/28/2012 8:09:00 PM
Hexane	2.2	0.54		ug/m3	1	11/28/2012 B:09:00 PM
Isopropyl alcohol	< 0.37	0.37		ug/m3	1	11/28/2012 8:09:00 PM
m&p-Xylene	4.3	1.3		ug/m3	-1	11/28/2012 8:09:00 PM
Methyl Butyl Ketone	< 1.2	1.2		ug/m3	1	11/28/2012 8:09:00 PM
Methyl Ethyl Ketone	< 0.90	0.90		ug/m3	1	11/28/2012 8:09:00 PM
Methyl Isobutyl Ketone	< 1.2	1.2		ug/m3	1	11/28/2012 8:09:00 PM
Methyl tert-butyl ether	< 0.55	0.55		ug/m3	1	11/28/2012 8:09:00 PM
Methylene chloride	< 0.53	0.53		ug/m3	1	11/28/2012 8:09:00 PM
o-Xylene	1,3	0.66		ug/m3	1	11/28/2012 8:09:00 PM
Propylene	< 0.26	0.26		ug/m3	1	11/28/2012 8:09:00 PM
Styrene	< 0.65	0.65		ug/m3	1	11/28/2012 8:09:00 PM
Tetrachloroethylene	15 🖺	10		ug/m3	10	11/29/2012 3:45:00 AM
Tetrahydrofuran	< 0.45	0.45		ug/m3	1	11/28/2012 8:09:00 PM
Toluene	6.7	0.57		ug/m3	1	11/28/2012 8:09:00 PM
trans-1,2-Dichloroethene	< 0.60	0.60		ug/m3	1	11/28/2012 8:09:00 PM
trans-1,3-Dichloropropene	< 0.69	0.69		ug/m3	1	11/28/2012 8:09:00 PM
Trichloroethene	< 0.82	0.82		ug/m3	1	11/28/2012 8:09:00 PM
Vinyl acetate	< 0.54	0.54		ug/m3	1	11/28/2012 8:09:00 PM
Vinyl Bromide	< 0.67	0.67		ug/m3	1	11/28/2012 8:09:00 PM
Vinyl chloride	< 0.39	0.39		ug/m3	1	11/28/2012 8:09:00 PM
NOTES:						A silenes of the second of the

Sample has large interfering compound in begging of run. Used 10x dilution for Freon 12.

- ** Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
 - S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 6 of 8

CLIENT: Arcadis - Newtown

Lab Order:

C1211047

Project: LMC Utica

Lab ID:

C1211047-004A

Date: 14-Dec-12

Client Sample ID: AMB-112012

Tag Number: 322,263

Collection Date: 11/20/2012

Matrix: AIR

Analyses	Result	**Limit	Qual U	Jnits	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TC)-15		70-00-0-0	Analyst: RJP
1,1,1-Trichloroethane	< 0.83	0.83	u	g/m3	1	11/28/2012 8:46:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	u	g/m3	1	11/28/2012 8:46:00 PM
1,1,2-Trichloroethane	< 0.83	0.83	Ų	g/m3	1	11/28/2012 8:46:00 PM
1,1-Dichloroethane	< 0.62	0.62	u	g/m3	1	11/28/2012 8:46:00 PM
1,1-Dichloroethene	< 0.60	0.60	u	g/m3	1	11/28/2012 8:46:00 PM
1,2,4-Trichlorobenzene	< 1.1	1.1	u	g/m3	1	11/28/2012 8:46:00 PM
1,2,4-Trimethylbenzene	7.5	0.75	u	g/m3	1	11/28/2012 8:46:00 PM
1,2-Dibromoethane	< 1.2	1.2	u	g/m3	1	11/28/2012 8:46:00 PM
1,2-Dichlorobenzene	< 0.92	0.92	u	g/m3	1	11/28/2012 8:46:00 PM
1,2-Dichloroethane	< 0.62	0.62	u	g/m3	1	11/28/2012 8:46:00 PM
1,2-Dichloropropane	< 0.70	0.70	u	g/m3	1	11/28/2012 8:46:00 PM
1,3,5-Trimethylbenzene	2.6	0.75	u	g/m3	1	11/28/2012 8:46:00 PM
1,3-butadiene	< 0.34	0.34		g/m3	1	11/28/2012 8:46:00 PM
1,3-Dichlorobenzene	< 0.92	0.92		g/m3	1	11/28/2012 8:46:00 PM
1,4-Dichlorobenzene	< 0.92	0.92		g/m3	1	11/28/2012 8:46:00 PM
1,4-Dioxane	< 1.1	1.1	u	g/m3	1	11/28/2012 8:46:00 PM
2,2,4-trimethylpentane	8.1	7.1	u	g/m3	10	11/29/2012 4:55:00 AM
4-ethyltoluene	2.7	0.75		g/m3	1	11/28/2012 8:46:00 PM
Acetone	19 4	0 7.2		g/m3	10	11/29/2012 4:55:00 AM
Allyl chloride	< 0.48	0.48		g/m3	1	11/28/2012 8:46:00 PM
Benzene	9.1	4.9		g/m3	10	11/29/2012 4:55:00 AM
Benzyl chloride	< 0.88	0.88		g/m3	1	11/28/2012 8:46:00 PM
Bromodichloromethane	< 1.0	1.0		g/m3	4	11/28/2012 8:46:00 PM
Bromoform	< 1.6	1.6		g/m3	1	11/28/2012 8:46:00 PM
Bromomethane	< 0.59	0.59		g/m3	1	11/28/2012 8:46:00 PM
Carbon disulfide	< 0.47	0.47		g/m3	(1)	11/28/2012 8:46:00 PM
Carbon tetrachloride	< 0.96	0.96	-	g/m3	1	11/28/2012 8:46:00 PM
Chlorobenzene	< 0.70	0.70		g/m3	1	11/28/2012 8:46:00 PM
Chloroethane	< 0.40	0.40		g/m3	1	11/28/2012 8:46:00 PM
Chloroform	< 0.74	0.74		g/m3	1	11/28/2012 8:46:00 PM
Chloromethane	< 0.31	0.31		g/m3	1	11/28/2012 8:46:00 PM
cis-1,2-Dichloroethene	< 0.60	0.60	-	g/m3	1	11/28/2012 8:46:00 PM
cis-1,3-Dichloropropene	< 0.69	0.69		g/m3	1	11/28/2012 8:46:00 PM
Cyclohexane	30 T			g/m3	10	11/29/2012 4:55:00 AM
Dibromochloromethene	< 1.3	1.3		g/m3	1	11/28/2012 8:46:00 PM
Ethyl acetate	< 0.92	0,92		g/m3	i	11/28/2012 8:46:00 PM
Ethylbenzene	5.2	0.66		g/m3	1	11/28/2012 8:46:00 PM
Freon 11	1.4	0.86	107	g/m3	1	11/28/2012 8:46:00 PM
Freon 113	< 1.2	1,2		g/m3	1	11/28/2012 8:46:00 PM
Freon 114	< 1.1	1.1		g/m3	1	11/28/2012 8:46:00 PM

Qualifiers:

- ** Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 7 of 8

Date: 14-Dec-12

CLIENT:

Arcadis - Newtown

Lab Order:

C1211047

Project:

LMC Utica

Lab ID:

C1211047-004A

Client Sample ID: AMB-112012

Tag Number: 322,263

Collection Date: 11/20/2012

Matrix: AIR

Analyses	Result	**Limit	Qual Units	DF	Date Analyzed
IUG/M3 BY METHOD TO15		TO-	15		Analyst: RJP
Freon 12	2,6	0.75	ug/m3	1	11/28/2012 8:46:00 PM
Heptane	9.6 D	6.2	ug/m3	10	11/29/2012 4:55:00 AM
Hexachloro-1,3-butadiene	< 1.6	1.6	ug/m3	1	11/28/2012 8:46:00 PM
Hexane	30 ⊳	5.4	ug/m3	10	11/29/2012 4:55:00 AM
Isopropyl alcohol	28 D	3.7	ug/m3	10	11/29/2012 4:55:00 AM
m&p-Xylene	15 b		ug/m3	10	11/29/2012 4:55:00 AM
Methyl Butyl Ketone	< 1.2	1.2	ug/m3	1	11/28/2012 8:46:00 PM
Methyl Ethyl Ketone	< 0.90	0.90	ug/m3	4.1	11/28/2012 8:46:00 PM
Methyl Isobutyl Ketone	< 1.2	1.2	ug/m3	1	11/28/2012 8:46:00 PM
Methyl tert-butyl ether	< 0.55	0.55	ug/m3	1	11/28/2012 8:46:00 PM
Methylene chloride	< 0.53	0.53	ug/m3	1	11/28/2012 8:46:00 PM
o-Xylene	6.6	0.66	ug/m3	1	11/28/2012 8:46:00 PM
Propylene	< 0.26	0.26	ug/m3		11/28/2012 8:46:00 PM
Styrene	< 0.65	0.65	ug/m3	4	11/28/2012 8:46:00 PM
Tetrachloroethylene	< 1.0	1.0	ug/m3	4	11/28/2012 8:46:00 PM
Tetrahydrofuran	< 0.45	0.45	ug/m3	1	11/28/2012 8:46:00 PM
Toluene	26 D	5.7	ug/m3	10	11/29/2012 4:55:00 AM
trans-1,2-Dichloroethene	< 0.60	0.60	ug/m3	1	11/28/2012 8:46:00 PM
trans-1,3-Dichloropropene	< 0.69	0.69	ug/m3	1	11/28/2012 8:46:00 PM
Trichloroethene	14 D	8.2	ug/m3	10	11/29/2012 4:55:00 AM
Vinyl acetate	< 0.54	0.54	ug/m3	1	11/28/2012 8:46:00 PM
Vinyl Bromide	< 0.67	0.67	ug/m3		11/28/2012 8:46:00 PM
Vinyl chloride	< 0.39	0.39	ug/m3	1	11/28/2012 8:46:00 PM

Qualifiers:

- * Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- . Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 8 of 8

インタープラ	21/12 Work Order # C/c	Received at Lab by: San Saala Sola	70		pala	Sans		Received at Lab by:
Pickup/Dropoff	For AB USE ON	Zibelii (2 (8)			1 1		Relinquished by:
Ť.	Courier; CIRCLE	Date/Time	Signature //		X TO	Curied S		Sampled by:
								ain of Custody
		= =						
								200
								Jan Park
1		51-a	763	322	710	4		HM15- 112012
N		5r-01	78/	582	545		477	14
27-10%		51-01	153	\$53	1340		(4元)	50-100-5(An
24 5/11 5 DO		9 T S	342	85h	1432	11/20/12	(1702)	11-0NZ-15
Vacuum	Comments	Analysis Request	Regulator	Canister	Sampled	Date		-
	e.	1874 Phone:	7-645-	Phone: 26		200%	L	Same Day
		Hiddis-45, Con Email:		Lillan, 1 Bonsteel @		150%		Next Day by Noon
			1, PA	ハウンセンス		100%] [Next Day by 5pm
	Address: City, State, Zip	74:LE COO	150 45	City, State, Zip		50%		3 Business Days
3	Invoice to:	1	TT NONS	Address: 17:		25%	<u> </u>	Business Days
	Company: Check Here If Same: S		Arcadis		Date:	Surcharge %	X of S	Turnaround Time: 5 Business Days
0	1ug/M3 +TCE .25	Other: Q-	III & IAQ		Labs.com		Chark	
Level	1ug/M3	2		Vanne lateral	13206	Syracuse, NY 13206 315-431-9730		
L lavel		Project: Indiam			ark Drive	143 Midler Park Drive	i R	Contak Laboratones
Report Level	The passacratic Pilling	0 1111						