Release Abatement Measure Status Report No. 2 Site Improvement Activities Former General Electric Facility 50 Fordham Road, Wilmington, MA RTN 3-0518

Prepared for:

Lockheed Martin Corporation/Wilmington Realty Trust

Prepared by:

AECOM

April 27, 2018

Prepared By: Nicole Callahan

Reviewed By: Scott Olson

Reviewed by Daniel W. Folan, PhD, PG, LSP

DOCUMENT CHANGE HISTORY								
Revision	Droporod		Change Description					
Number	Prepared By/Approved By	Release Date	Section	Narrative of Items Affected				
0	N. Callahan/ D. Folan/S. Olson	April 27, 2018						

TABLE OF CONTENTS

1	INTRODUCTION	1-′
1.1	CONTACT INFORMATION	1-2
1.2	2 DISPOSAL SITE AND RAM BACKGROUND	1-3
2	RAM STATUS	2-′
2.1	SOIL MANAGEMENT	2-
	2.1.1 Island and Light Pole Excavations – Stockpile 11	2-2
	2.1.2 Northern EPL Drainage Swale Excavation- Stockpile 12	2-2
2.2	2 AIR MONITORING	2-3
2.3	GROUNDWATER MANAGEMENT	2-3
3	REMEDIATION WASTE	3-′
4	FUTURE RAM ACTIVITIES	4-′
4.1	FUTURE RAM ACTIVITIES	4-
4.2	P FUTURE MCP SUBMITTALS	4-
5	LSP OPINION AND CERTIFICATION	5-′
6 RE	FERENCES	6-′
	LIST OF APPENDICES	
APPI	ENDIX A LABORATORY ANALYTICAL REPORTS	
APPI	ENDIX B WASTE DISPOSAL DOCUMENTATION	

LIST OF FIGURES

Figure 1-1	Site Location Map
Figure 1-2	Site Plan
Figure 2-1	Soil Excavation, Grading, and Reuse Areas
Figure 2-2	Soil Stockpile Generation Areas

LIST OF TABLES

Table 2-1 Stockpile Summary and Tracking Sheet

Table 2-2 Summary of Soil Analtyical Results – RAM Stockpile Sampling

Section 1 Introduction

Pursuant to the Massachusetts Contingency Plan (MCP) 310 CMR 40.0445, AECOM Technical Services, Inc. (AECOM), on behalf of Lockheed Martin Corporation (Lockheed Martin) and for Wilmington Realty Trust (WRT), has prepared the following Release Abatement Measure (RAM) Status Report No. 2 for the former General Electric Company (GE) Facility located at 50 Fordham Road, Wilmington, Massachusetts (site). This report is being submitted within six months of the submittal of the initial RAM Status Report (No. 1) for the site, which was submitted to the Massachusetts Department of Environmental Protection (MassDEP) on November 3, 2017. The RAM Plan was submitted to the MassDEP on July 3, 2017. Within this report, "property" pertains to the address (40-50 Fordham Road) of the former GE Facility, and "site" refers to the MCP disposal site, identified as 50 Fordham Road and release tracking number (RTN) 3-0518.

A Tier Classification Extension submittal was provided to MassDEP on July 7, 2017 prior to RAM activities beginning. In addition, no issues were identified by MassDEP as part of their screening level review of the RAM Plan.

In accordance with the MCP, 310 CMR 40.0445(2), this RAM Status Report contains the following:

- (a) the status of response operations;
- (b) any significant new site information or data;
- (c) details of and/or plans for the management of Remediation Waste, Remediation Wastewater and/or Remedial Additives:
- (d) any other information that MassDEP determines to be necessary to complete during its review and evaluation of a Status Report; and,

(e) a Licensed Site Professional (LSP) Opinion as to whether the RAM is being conducted in conformance with the RAM Plan and any conditions of approval established by

MassDEP.

The MassDEP Bureau of Waste Site Cleanup (BWSC) Transmittal Form BWSC-106 is being

submitted electronically to MassDEP concurrently with this status report via eDEP. Refer to the

July 3, 2017 RAM Plan and the November 3, 2017 RAM Status Report No. 1 completed by

AECOM (AECOM, 2017a & 2017b) for additional details regarding release history, proposed

RAM activities, and RAM activities completed during the first 120-days of implementation.

1.1 CONTACT INFORMATION

The following site-specific information is provided.

Person Conducting RAM

And Property Owner: Wilmington Realty Trust

Gary Stanieich 424 Broadway

Somerville, MA 02145

(603) 860-5508

Telephone: 978-905-2100

Person Completing RAM Submittals: Lockheed Martin Corporation

Paul E. Calligan

6801 Rockledge Drive

MP CCT 246

Bethesda, MD 20817 (240) 687-1813

LSP for the RAM: Daniel W. Folan, PhD, PG, LSP

LSP # 1736 AECOM

250 Apollo Drive

Chelmsford, MA 01824

(978) 905-2114

The RAM activities outlined herein and related to the property improvement and re-development activities were conducted by WRT, with AECOM observing and documenting the work for MCP submittals and completing the submittals on behalf of WRT and Lockheed Martin.

1.2 DISPOSAL SITE AND RAM BACKGROUND

The WRT property is designated as 50 Fordham Road in Wilmington, Massachusetts, as shown on **Figure 1-1**, Site Location Map, though it consists of buildings identified as 40 and 50 Fordham Road. The property consists of a 13-acre parcel east of Fordham Road and north of Concord Street, within a mixed commercial industrial area. The 13-acre parcel is located both in the towns of Wilmington and North Reading, in Middlesex County, Massachusetts.

The property is located in a mixed commercial, industrial area, and near residential areas. It is bounded by wooded wetland to the east and north, beyond which are residential properties. Fordham Road is located along the western property boundary with commercial/industrial parcels further west and north along Fordham Road. The former Converse, Inc. property and other commercial/industrial properties are located to the south along Concord Street.

The property contains a number of former industrial buildings, paved parking areas, and an active sewage and wastewater treatment plant for the facility. The buildings are identified as Building 1 and 1A, which are attached, and Building 2. A Treatment Shed that houses an inactive groundwater treatment system is still present. Building 3, the Oil House, the concrete ramp to the former Oil House, the Guard Shack, the former Pump House/Vault, the former Tank Farm, and the original Tank Farm area groundwater treatment building have been removed. The current site plan is included as **Figure 1-2.**

WRT, formerly the Barbo Realty Trust (BRT), is the current property owner and has owned the property at least since the property was developed in the late 1960s.

A RAM Plan was submitted to the MassDEP for WRT on behalf of Lockheed Martin on July 3, 2017 detailing the proposed redevelopment and construction work and associated monitoring activities to be completed at the site by WRT. The objective of the RAM is to ensure that potentially impacted soil, groundwater, or soil gas encountered during construction activities at the property are managed in accordance with the requirements set forth in the MCP as well as the

Notice of Activity and Use Limitation (AUL) for the property signed July 2015 and recorded on September 28, 2015 at the Middlesex North Registry of Deeds, the MCP 310 CMR 40.0000, and Policy #WSC-00-425. Based upon the MassDEP's WSC-00-425 policy, "construction activities at a disposal site meet the regulatory definition of a remedial action, to the extent that such activities involve the potential removal, disposal and relocation of released oil or hazardous material."

An initial RAM Status Report No. 1 was submitted to the MassDEP for WRT on behalf of Lockheed Martin on November 3, 2017, detailing RAM activities completed during the 120-day period following the submittal of the RAM Plan. WRT initiated excavation activities related to the redevelopment of the site under the RAM in July 2017. Prior to the submittal of the RAM Plan, limited site work was completed, including site preparation, demolition of various abovegrade and sub-grade structures, the removal of surface concrete and asphalt paving from areas throughout the site, and exploratory test pits adjacent to select excavation areas. After the submittal of the RAM Plan and Tier Classification Extension, subsurface excavation was completed in the following planned construction areas as detailed in the RAM Status Report No. 1: wastewater tight tank and associated trenching, drainage swale excavations, and utility, hydrant, and curbing excavations. During these excavations, AECOM personnel observed and field screened soils using a photoionization detector (PID) for the purposes of providing input relative to the segregation, management, and sampling of soils. Excavated soils were segregated into stockpiles and sampled for site constituents of concern (COCs). Analytical results were reviewed to determine if the soil could be re-used on-site or if it was necessary to transport the stockpiled soil off-site for either disposal or recycling at an appropriate facility. During the initial RAM activities discussed in the RAM Status Report No. 1, all soil was able to be re-used on-site with the exception of one stockpile (Stockpile 10). The transportation of this soil off-site for recycling was completed during this reporting period and is discussed in Section 2 below.

Section 2 RAM Status

WRT initiated excavation activities related to the redevelopment of the site under a RAM in July 2017. The majority of the first phase of site work was completed prior to and documented in the first RAM Status Report submitted in November 2017. Since then, limited excavation and site work under the RAM has been completed during the month of October 2017. This work included small excavations related to ongoing site redevelopment activities, including parking lot islands, light poles and drainage swales. The second and final phase of site work is anticipated to be completed in spring/summer of 2018. The three areas (light poles, islands, and northern drainage swale) where soil excavation, grading, staging, and re-use of soils with levels less than Method 1 S-1 risk standards occurred on-site in accordance with the RAM Plan to date are depicted on Figure 2-1. Information related to the limited excavation completed during this reporting period, including, field observations, amount and size of stockpiles generated, and laboratory analytical data and re-use options for the stockpiles generated are detailed in the soil management section below.

2.1 SOIL MANAGEMENT

During the minimal excavation activities completed during this reporting period (October 2017 through March 2018), AECOM personnel observed multiple excavations for the purposes of providing input relative to the segregation, management, and sampling of soils. All excavated soils were segregated into stockpiles based on discreet excavation area. After excavation of each area was complete, the generated soil stockpile was sampled for analysis of site COCs including: volatile organic compounds (VOCs), extractable petroleum hydrocarbons (EPH), volatile petroleum hydrocarbons (VPH), and total arsenic, chromium, copper, lead, zinc, and cyanide. Analytical results were reviewed to determine if the soil could be re-used on-site within the site boundaries (concentrations all below Method 1 S-1 Soil Standards) or if it is necessary to transport the stockpile off-site for either disposal or recycling at an appropriate facility (concentrations above Method 1 S-1 Soil Standards).

Stockpiled soil was staged in the parking area to the north of Building 1A (eastern parking lot area), as shown on **Figure 2-1**. Soil was stockpiled on 6 mil poly sheeting and covered with 6 mil poly sheeting at the end of each day. Soils that were excavated and temporarily stored in the stockpiles for screening are described below and presented in **Figure 2-2**. Currently, less than the 4,500 cubic yards noted in the RAM Plan have been managed under this RAM.

2.1.1 Island and Light Pole Excavations – Stockpile 11

Excavation for the removal and re-location of two light poles and the excavation of several small islands located in the eastern parking lot (EPL) were completed on October 9 and 10, 2017, respectively. Excavation related to the light pole re-location extended to a maximum depth of three feet below ground surface (ft bgs). Excavation for the small islands extended only to a depth of two inches bgs. No odors or stained soil were observed during these activities. The soils removed during excavation of these areas were placed into Stockpile 11, which totaled approximately 40 cubic yards. A composite soil sample was collected from multiple locations within the stockpile and submitted to Eurofins Spectrum Analytical, Inc. of Agawam, MA (Eurofins) for analysis of site COCs in accordance with the RAM Plan. Laboratory analytical results from Stockpile 11 did not identify concentrations of COCs above Method 1 S-1 Soil Standards. Based on the analytical results, it was determined that soil from Stockpile 11 could be re-used within the boundaries of the site. A minor amount of soil from the relocation of the two light poles was not stockpiled for re-use but was backfilled to its original location after site improvements.

Additional details related to the stockpiles are included on **Table 2-1**. Laboratory analytical results from the stockpile samples are summarized on **Table 2-2** and copies of the laboratory analytical report is included as **Appendix A**.

2.1.2 Northern EPL Drainage Swale Excavation- Stockpile 12

Excavation was completed from October 24 through October 31, 2017 in accordance with the approved storm water management plan to form the final drainage swale located in the northern portion of the EPL.

Excavation for the swale extended to a maximum depth of one foot bgs. No odors or staining were observed within the soils. Excavated soils were accumulated into Stockpile 12, which totaled approximately 10 cubic yards when complete. A composite soil sample was collected from multiple locations within the stockpile and submitted to Eurofins for analysis of site COCs in accordance with the RAM Plan. Laboratory analytical results from Stockpile 12 did not identify concentrations of COCs above Method 1 S-1 Soil Standards. Based on the analytical results, it was determined that soil from this stockpile could be re-used within the boundaries of the site. On-site re-use areas are shown on **Figure 2-1.**

Additional details related to the stockpiles are included on **Table 2-1**. Laboratory analytical results from the stockpile samples are summarized on **Table 2-2** and copies of the laboratory analytical report is included as **Appendix A**.

2.2 AIR MONITORING

Based on the limited nature (small areas and shallow depths) of the excavation activities completed during this reporting period, quantitative air monitoring was not completed.

AECOM did not observe excessive visible dust during excavation activities. Additionally, access to the work zones was limited, and passage of trespassers/workers through the work zones during excavation was observed to be minimal. Exposure to dust by potential receptors was further limited as site workers (other than construction workers) within the RAM area consisted mostly of people within cars driving through the exterior parking areas.

2.3 GROUNDWATER MANAGEMENT

Groundwater was not encountered during RAM activities completed during this reporting period. To date, the management of groundwater has not been necessary as part of this RAM.

Section 3 Remediation Waste

Impacted soil (concentrations of COCs above Method 1 S-1 Standards) was not identified during RAM activities completed to date, with the exception of approximately 20 cubic yards of soil (Stockpile 10). Results from this stockpile identified one EPH fraction at concentrations above Method 1 S-1, S-2, and S-3 Soil Standards. Stockpile 10 (20 cubic yards weighing approximately 40.5 tons) was transported off-site on December 19, 2017 under a MassDEP Bill of Lading to Aggregate Recycling Corp (ARC) of Eliot, ME for asphalt batching in accordance with 310 CRM 40.0030. Waste disposal documentation is included in **Appendix B.** All other stockpiles generated under the RAM to date (Stockpiles 1 through 9, 11 and 12) have been distributed to designated re-use areas on-site (**Figure 2-1**), as allowed based on laboratory analytical results below S-1 Soil Standards. The generation and management of Stockpiles 1 through 10 is described in RAM Status Report #1. Dewatering has not been required to facilitate excavation activities completed to date.

Section 4 Future RAM Activities

Additional activities related to the implementation of the RAM and the approximate timeline for these activities are discussed below.

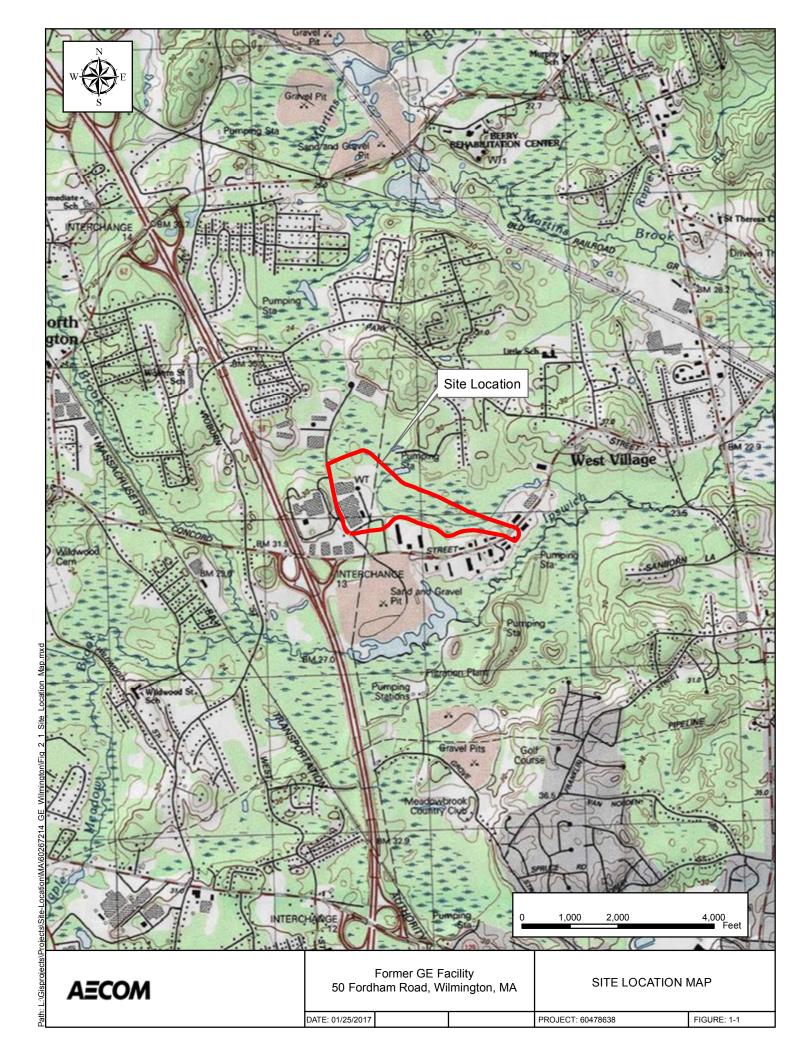
4.1 FUTURE RAM ACTIVITIES

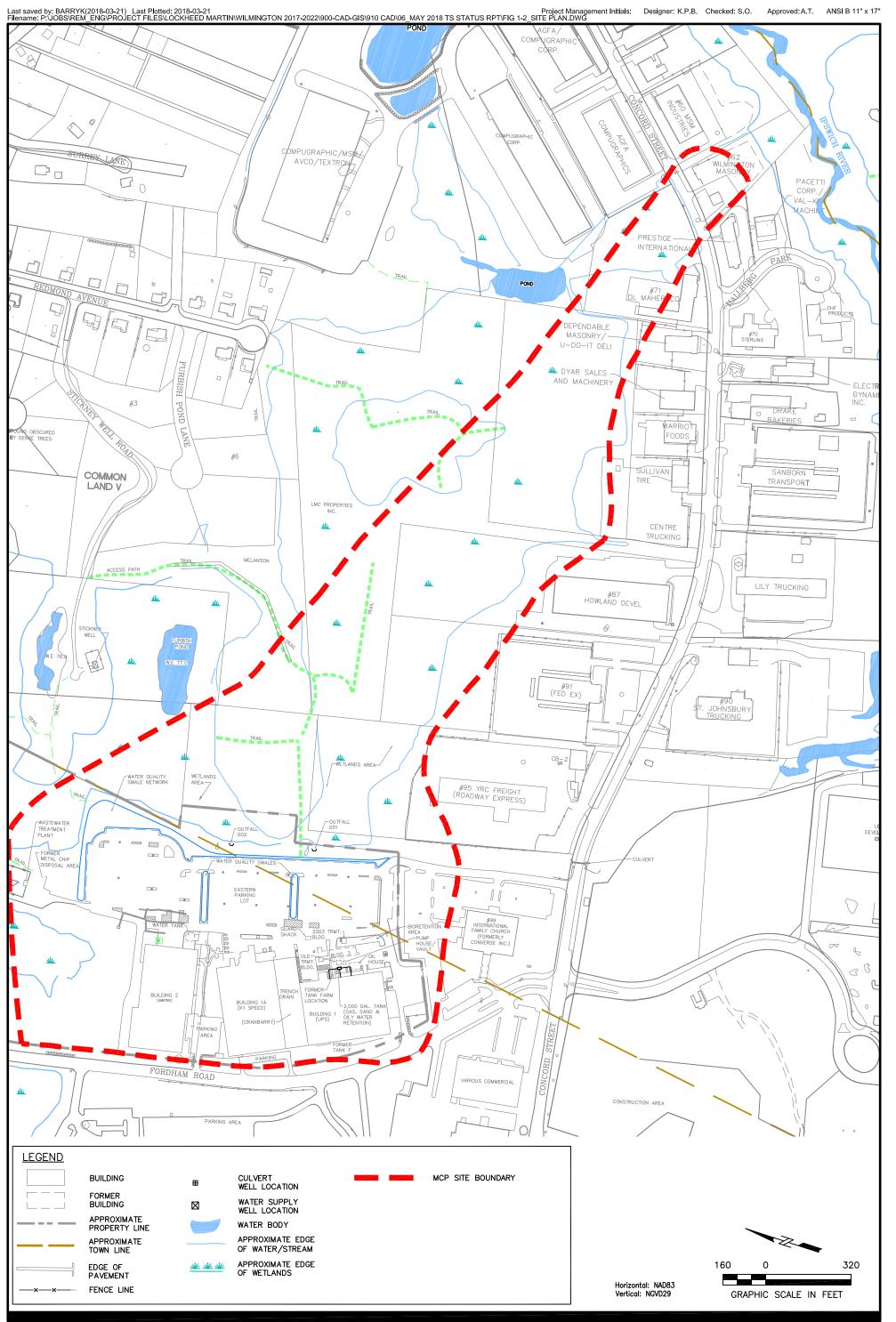
The initial phase of excavation and grading activities at the site is complete. Additional phases of work are scheduled to take place within the next six months. Any additional excavation work within the site boundaries will be conducted in accordance with the RAM Plan, submitted in July 2017. Additional activities associated with this RAM will be documented in a RAM Completion Report, or RAM Status Report, if not completed within six months of this report.

4.2 FUTURE MCP SUBMITTALS

In accordance with the MCP, specifically 310 CMR 40.0446, AECOM will submit a RAM Completion Report within 60 days following completion of the RAM. Otherwise, RAM Status Reports will be submitted in compliance with the MCP, every six months until a RAM Completion Report is submitted.

Section 5


LSP Opinion and Certification


The seal and signature of Daniel W. Folan, the LSP of this RAM Status Report No. 2, is included in the RAM Transmittal Form (BWSC 106) filed via eDEP. It is the opinion of the LSP-of-Record, Daniel W. Folan, that to the best of his knowledge, information and belief, the response actions that are the subject of this RAM (i) are being implemented in accordance with the applicable provision of M.G.L. c.21E and 310 CMR 40.000, (ii) are appropriate and reasonable to accomplish the purposes of such response actions as set forth in the applicable provisions of M.G.L. c. 21E and 310 CMR40.0000, and (iii) comply with the identified provisions of all orders, permits, and approvals identified in this submittal.

Section 6 References

- 1. AECOM, 2017a. Release Abatement Measure Plan, Former General Electric Facility, 50 Fordham Road, Wilmington, MA, RTN 3-0518. July 2017.
- 2. AECOM, 2017b. Release Abatement Measure Status Report No. 1, Former General Electric Facility, 50 Fordham Road, Wilmington, MA, RTN 3-0518. November 2017.
- 3. MassDEP, 2014. Massachusetts Contingency Plan, 310 CMR 40.0000, December 31, 2007, Amended April 25, 2014 and June 20, 2014.

FIGURES

2018-03-12

SOIL EXCAVATION, GRADING AND RE-USE AREAS

Date: 2018-03-27

AECOM

SOIL STOCKPILE GENERATION AREAS

Date: 2018-03-27

TABLES

Table 2-1 Summary of Soil Analytical Results - RAM Stockpile Sampling Former GE Facility, 50 Fordham Rd, Wilmington, MA

Stockpile ID	RAM Status Report	Soil Excavation Location	Stockpile Generation Date(s)	Approx. Volume (cy)	Stockpile Sample Date	Sample Results Received	Stockpile Sample ID	Sample Results	Soil End Use	Final Soil Location	Stockpile Discrete Sample Screening (ranges in ppm)
1	1	Swale near GZA-102 wells	7/6/17-7/10/17	240	7/10/2017	7/15/2017	SP1_071017-1	All < S1	Re-use on-site	Southern re-use area	5 samples: (0.0 - 0.2)
2	1	Drainage trench by loading dock	7/10/2017	12	7/10/2017	7/15/2017	SP2_071017-1	All < S1	Re-use on-site	Southern re-use area	5 samples: (0.2 - 2.3)
3	1	Southern area of swales east of EPL	7/11/17 - 7/18/17	200	7/18/2017	7/24/2017	SP3_071817-1	All < S1	Re-use on-site	Northern re-use area	5 samples: (0.0 - 0.1)
4	1	Tight tank soils 0-5 ft bgs	7/12/2017	20	7/12/2017	7/19/2017	SP4_071217-1	All < S1	Re-use on-site	Northern re-use area	5 samples: (0.0 - 0.1)
5	1	Tight tank soils 5-8.5 ft bgs	7/12/2017	20	7/12/2017	7/19/2017	SP5_071217-1	All < S1	Re-use on-site	Northern re-use area	5 samples: (13.2 - 335.8)
6	1	Southern middle area of swales east of EPL	7/18/17-7/26/17	200	7/26/2017	8/2/2017	SP6_072617-1	All < S1	Re-use on-site	Southern re-use area and lot east of Building 1	5 samples: (all 0.0)
7	1	Northern area of swales north of EPL	7/20/2017	120	7/20/2017	7/26/2017	SP7_072017-1	All < S1	Re-use on-site	Re-use area east of Bulding 1	5 samples: (0.0 - 0.2)
8	1	Northern area of swales north and east of EPL	7/21/17-7/31/17	240	7/31/2017	8/7/2017	SP8_073117-1	All < S1	Re-use on-site	Re-use area east of Bulding 1	6 samples: (all 0.0)
9	1	Northeastern area of swales northeastern corner of EPL; swale in center of EPL	7/31/17-8/3/17	150	8/3/2017	8/10/2017	SP9_080317-1	All < S1	Re-use on-site	Re-use area east of Bulding 1	5 samples: (0.0 - 0.1)
10	1 & 2	Curbing trench soils from 0-1.5 ft bgs	8/10/17-8/11/17	20	8/11/2017	8/15/2017	SP10_081117-1	EPH >S1	Off site recycling or disposal	Recycling at an offsite facility (ARC, Eliot, ME)	Not measured
11	2	Islands in EPL from 0-2 inches bgs and relocation of lightpoles in EPL from 0-3 ft bgs	10/9/17-10/11/17	40	10/11/2017	10/17/2017	SP11_101117-1	All < S1	Re-use on-site	Re-use in original excavation or area east of Bulding 1	Not measured
12	2	Northern swale in the EPL soils from 0-1 ft	10/24/17-10/31/17	10	11/1/2017	11/6/2017	SP12_110117-1	All < S1	Re-use on-site	Re-use area east of Bulding 1	5 samples: (all 0.0)

Table 2-2 Summary of Soil Analytical Results - RAM Stockpile Sampling Former GE Facility, 50 Fordham Rd, Wilmington, MA

lor		•	1			004 0740474		000 074047 4	001 071017 1	005 074047 4			000 070447.4	000 00040	000 00017.1	1 0040 00447		0040 4404474
Client ID: Lab ID:	MassDEP RCS-1	MassDEP RCS-2	MA Method 1	MA Method 1	MA Method 1	SP1_071017-1 SC36812-03	SP2_071017-1 SC36812-02	SP3_071817-1 SC37123-02	SP4_071217-1 SC36934-02	SP5_071217-1 SC36934-03	SP6_072617-1 SC37220-02	SP7_072017-1 SC37220-02	SP8_073117-1 SC37605-02	SP8_073117-2 SC37605-03 (DUP)	SP9_080317-1 SC37797-02	SP10_081117-1 SC38055-02	SP11_101117-1 SC40242-01	SP12_110117-1 SC40987-02
Matrix:	Reportable Concentrations	Reportable Concentations	S-1 Soil & GW-1	S-2 Soil & GW-1	S-3 Soil & GW-1	Soil	Soil	Soil	Soil	Soil								
Sample Date: MADEP EPH 5/2004 R (mg/kg dry)	Concentrations	Concentations	011-1	011-1	OIII-1	10-Jul-17	10-Jul-17	18-Jul-17	12-Jul-17	12-Jul-17	26-Jul-17	20-Jul-17	20-Jul-17	20-Jul-17	3-Aug-17	11-Aug-17	11-Oct-17	1-Nov-17
C9-C18 Aliphatic Hydrocarbons	1000	3000	1000	3000	5000	< 10.4	< 10.4	<10.7	< 10.4	< 10.8	< 10.9	< 11.1	< 10.6	< 10.7	< 10.8	< 104	< 10.5	< 10.5
C19-C36 Aliphatic Hydrocarbons	3000	5000	3000	5000	5000	19.5	<10.4	<10.7	51.2	18	33.4	< 11.1	< 10.6	< 10.7	< 10.8	5,460	< 10.5	98
C11-C22 Aromatic Hydrocarbons	1000	3000	1000	1000	1000	16.9	<10.4	11.3	35.4	18.4	23.3	< 11.1	< 10.6	< 10.7	< 10.8	< 104	< 10.5	20.8
MADEP VPH 5/2004 Rev. 1.1 (mg/kg) C5-C8 Aliphatic Hydrocarbons	100	500	100	500	500	< 5.22	< 4.92	< 1.02	< 1.77	3.4	< 0.740	< 0.863	< 0.722	< 0.752	< 0.802	< 0.703	< 1.29	< 0.723
C9-C12 Aliphatic Hydrocarbons	1000	3000	1000	3000	5000	1.58	< 0.328	< 0.342	< 0.591	20	< 0.247	< 0.288	< 0.241	< 0.251	< 0.428	< 0.234	< 0.311	< 0.386
C9-C10 Aromatic Hydrocarbons	100	500	100	300	300	0.994	< 0.328	< 0.342	< 0.591	19	< 0.543	< 0.288	0.275	< 0.251	< 0.428	< 0.234	< 0.311	< 0.386
Total Metals SW846 6010C (mg/kg)	20	20	20	20	50	7.44	0.46	0.24	7.0	7.72	10.2	11.8	44.4	42.0	11.8	7.44	10.4	42.0
Arsenic Chromium	20 100	20 200	20 100	200	50 200	9.89	8.16 10.9	8.34 13	7.2 17.7	7.72 12.3	10.2 10.7	21.1	11.1 16.3	12.8 11.7	14.2	7.41 12.6	10.4 11.5	12.8 13.2
Copper	1000	10000	NE	NE	NE	6.09	6.25	7.16	11.9	10.9	9.27	8.52	7.6	8.21	7.3	7.47	8.37	< 13.7
Lead	200 1000	600 3000	200 1000	600 3000	600 5000	11.8 34.5	6.17 19.5	10.8 21.9	10.1 44.8	10.4 25.4	15 20.4	7.56 20.9	8.85 17.7	7.93 15	7.46 19.2	8.73 26.1	8.35 16.5	8.59 22.9
Total Cyanide SW9010C	1000	3000	1000	3000	3000	34.3	13.3	21.5	44.0	23.4	20.4	20.3	17.7	13	13.2	20.1	10.5	22.5
Cyanide	30	100	30	100	500	< 0.54	< 0.53	<0.54	<0.53	<0.46	<0.55	<0.56	<0.477	<0.412	< 0.369	< 0.437	< 0.281	< 0.281
VOC SW846 8260C (μg/kg)	NE	N.E	NE	NE.	NE	101	1.00	5.00	7.00				4.00		4.05	470	1 40.4	
1,1,2-Trichlorotrifluoroethane (Freon 113) Acetone	NE 6000	NE 50000	NE 6000	NE 6000	NE 6000	< 4.64 < 46.4	< 4.82 < 48.2	< 5.00 < 50.0	< 7.66 < 76.6	< 6.68 < 66.8	< 4.90 < 49.0	< 5.51 < 55.1	< 4.99 < 49.9	< 4.89 < 48.9	< 4.85 < 48.5	< 4.79 < 47.9	< 48.4 < 484	< 4.61 < 46.1
Benzene	2000	200000	2000	2000	2000	< 4.64	< 4.82	< 5.00	< 7.66	< 6.68	< 4.90	< 5.51	< 4.99	< 4.89	< 4.85	< 4.79	< 48.4	< 4.61
Bromobenzene	100000	1000000	NE	NE	NE	< 4.64	< 4.82	< 5.00	< 7.66	< 6.68	< 4.90	< 5.51	< 4.99	< 4.89	< 4.85	< 4.79	< 48.4	< 4.61
Bromochloromethane Bromodichloromethane	NE 100	NE 100	NE 100	NE 100	NE 100	< 4.64 < 4.64	< 4.82 < 4.82	< 5.00 < 5.00	< 7.66 < 7.66	< 6.68 < 6.68	< 4.90 < 4.90	< 5.51 < 5.51	< 4.99 < 4.99	< 4.89 < 4.89	< 4.85 < 4.85	< 4.79 < 4.79	< 48.4 < 48.4	< 4.61 < 4.61
Bromodicnioromethane Bromoform	100	100	100	100	100	< 4.64 < 4.64	< 4.82 < 4.82	< 5.00 < 5.00	< 7.66	< 6.68	< 4.90 < 4.90	< 5.51 < 5.51	< 4.99 < 4.99	< 4.89 < 4.89	< 4.85 < 4.85	< 4.79 < 4.79	< 48.4 < 48.4	< 4.61 < 4.61
Bromomethane	500	500	500	500	500	< 9.29	< 9.64	< 10.0	< 15.3	< 13.4	< 9.80	< 11.0	< 9.98	< 9.78	< 9.71	< 9.59	< 96.8	< 9.21
2-Butanone (MEK)	4000	50000	4000	4000	4000	< 9.29	< 9.64	< 10.0	< 15.3	< 13.4	< 9.80	< 11.0	< 9.98	< 9.78	< 9.71	< 9.59	< 96.8	< 9.21
n-Butylbenzene sec-Butylbenzene	NE NE	NE NE	NE NE	NE NE	NE NE	< 4.64 < 4.64	< 4.82 < 4.82	< 5.00 < 5.00	< 7.66 < 7.66	< 6.68 < 6.68	< 4.90 < 4.90	< 5.51 < 5.51	< 4.99 < 4.99	< 4.89 < 4.89	< 4.85 < 4.85	< 4.79 < 4.79	< 48.4 < 48.4	< 4.61 < 4.61
tert-Butylbenzene	100000	1000000	NE	NE	NE NE	< 4.64	< 4.82	< 5.00	< 7.66	< 6.68	< 4.90	< 5.51	< 4.99	< 4.89	< 4.85	< 4.79	< 48.4	< 4.61
Carbon disulfide	100000	1000000	NE	NE	NE	< 9.29	< 9.64	< 10.0	< 15.3	< 13.4	< 9.80	< 11.0	< 9.98	< 9.78	< 9.71	< 9.59	< 96.8	< 9.21
Carbon tetrachloride Chlorobenzene	5000 1000	5000 3000	10000 1000	10000 1000	10000 1000	< 4.64 < 4.64	< 4.82 < 4.82	< 5.00 < 5.00	< 7.66 < 7.66	< 6.68 < 6.68	< 4.90 < 4.90	< 5.51 < 5.51	< 4.99 < 4.99	< 4.89 < 4.89	< 4.85 < 4.85	< 4.79 < 4.79	< 48.4 < 48.4	< 4.61 < 4.61
Chloroethane	10000	1000000	NE	NE	NE	< 9.29	< 9.64	< 10.0	< 15.3	< 13.4	< 9.80	< 11.0	< 9.98	< 9.78	< 9.71	< 9.59	< 96.8	< 9.21
Chloroform	200	200	400	400	400	< 4.64	< 4.82	< 5.00	< 7.66	< 6.68	< 4.90	< 5.51	< 4.99	< 4.89	< 4.85	< 4.79	< 48.4	< 4.61
Chloromethane	100000	1000000	NE	NE	NE	< 9.29	< 9.64	< 10.0	< 15.3	< 13.4	< 9.80	< 11.0	< 9.98	< 9.78	< 9.71	< 9.59	< 96.8	< 9.21
2-Chlorotoluene 4-Chlorotoluene	100000 NE	1000000 NE	NE NE	NE NE	NE NE	< 4.64 < 4.64	< 4.82 < 4.82	< 5.00 < 5.00	< 7.66 < 7.66	< 6.68 < 6.68	< 4.90 < 4.90	< 5.51 < 5.51	< 4.99 < 4.99	< 4.89 < 4.89	< 4.85 < 4.85	< 4.79 < 4.79	< 48.4 < 48.4	< 4.61 < 4.61
1,2-Dibromo-3-chloropropane	10000	100000	NE	NE NE	NE	< 9.29	< 9.64	< 10.0	< 15.3	< 13.4	< 9.80	< 11.0	< 9.98	< 9.78	< 9.71	< 9.59	< 96.8	< 9.21
Dibromochloromethane	5	30	5	5	5	< 4.64	< 4.82	< 5.00	< 7.66	< 6.68	< 4.90	< 5.51	< 4.99	< 4.89	< 4.85	< 4.79	< 48.4	< 4.61
1,2-Dibromoethane (EDB) Dibromomethane	100 500000	100 5000000	100 NF	100 NE	100 NE	< 4.64 < 4.64	< 4.82 < 4.82	< 5.00 < 5.00	< 7.66 < 7.66	< 6.68 < 6.68	< 4.90 < 4.90	< 5.51 < 5.51	< 4.99 < 4.99	< 4.89 < 4.89	< 4.85 < 4.85	< 4.79 < 4.79	< 48.4 < 48.4	< 4.61 < 4.61
1,2-Dichlorobenzene	9000	100000	9000	9000	9000	< 4.64 < 4.64	< 4.82 < 4.82	< 5.00 < 5.00	< 7.66	< 6.68	< 4.90 < 4.90	< 5.51 < 5.51	< 4.99 < 4.99	< 4.89 < 4.89	< 4.85 < 4.85	< 4.79	< 48.4 < 48.4	< 4.61
1,3-Dichlorobenzene	3000	200000	3000	3000	3000	< 4.64	< 4.82	< 5.00	< 7.66	< 6.68	< 4.90	< 5.51	< 4.99	< 4.89	< 4.85	< 4.79	< 48.4	< 4.61
1,4-Dichlorobenzene	700	1000	700	700	700	< 4.64	< 4.82	< 5.00	< 7.66	< 6.68	< 4.90	< 5.51	< 4.99	< 4.89	< 4.85	< 4.79	< 48.4	< 4.61
Dichlorodifluoromethane (Freon12) 1,1-Dichloroethane	1000000 400	10000000 9000	NE 400	NE 400	NE 400	< 9.29 < 4.64	< 9.64 < 4.82	< 10.0 < 5.00	< 15.3 < 7.66	< 13.4 < 6.68	< 9.80 < 4.90	< 11.0 < 5.51	< 9.98 < 4.99	< 9.78 < 4.89	< 9.71 < 4.85	< 9.59 < 4.79	< 96.8 < 48.4	< 9.21 < 4.61
1,2-Dichloroethane	100	100	100	100	100	< 4.64	< 4.82	< 5.00	< 7.66	< 6.68	< 4.90	< 5.51	< 4.99	< 4.89	< 4.85	< 4.79	< 48.4	< 4.61
1,1-Dichloroethene	3000	40000	3000	3000	3000	< 4.64	< 4.82	< 5.00	< 7.66	< 6.68	< 4.90	< 5.51	< 4.99	< 4.89	< 4.85	< 4.79	< 48.4	< 4.61
cis-1,2-Dichloroethene trans-1,2-Dichloroethene	300 1000	400 1000	300 1000	300 1000	300 1000	< 4.64 < 4.64	< 4.82 < 4.82	< 5.00 < 5.00	< 7.66 < 7.66	< 6.68 < 6.68	< 4.90 < 4.90	< 5.51 < 5.51	< 4.99 < 4.99	< 4.89 < 4.89	< 4.85 < 4.85	< 4.79 < 4.79	< 48.4 < 48.4	< 4.61 < 4.61
1,2-Dichloropropane	100	1000	100	100	100	< 4.64	< 4.82	< 5.00	< 7.66	< 6.68	< 4.90	< 5.51	< 4.99	< 4.89	< 4.85	< 4.79	< 48.4	< 4.61
1,3-Dichloropropane	500000	5000000	NE	NE	NE	< 4.64	< 4.82	< 5.00	< 7.66	< 6.68	< 4.90	< 5.51	< 4.99	< 4.89	< 4.85	< 4.79	< 48.4	< 4.61
2,2-Dichloropropane	NE	NE	NE	NE	NE	< 4.64	< 4.82	< 5.00	< 7.66	< 6.68	< 4.90	< 5.51	< 4.99	< 4.89	< 4.85	< 4.79	< 48.4	< 4.61
1,1-Dichloropropene cis-1,3-Dichloropropene	NE 10	NE 100	NE NE	NE NE	NE NE	< 4.64 < 4.64	< 4.82 < 4.82	< 5.00 < 5.00	< 7.66 < 7.66	< 6.68 < 6.68	< 4.90 < 4.90	< 5.51 < 5.51	< 4.99 < 4.99	< 4.89 < 4.89	< 4.85 < 4.85	< 4.79 < 4.79	< 48.4 < 48.4	< 4.61 < 4.61
trans-1,3-Dichloropropene	10	100	NE	NE	NE	< 4.64	< 4.82	< 5.00	< 7.66	< 6.68	< 4.90	< 5.51	< 4.99	< 4.89	< 4.85	< 4.79	< 48.4	< 4.61
Ethylbenzene	40000	1000000	40000	40000	40000	< 4.64	< 4.82	< 5.00	< 7.66	< 6.68	< 4.90	< 5.51	< 4.99	< 4.89	< 4.85	< 4.79	< 48.4	< 4.61
Hexachlorobutadiene 2-Hexanone (MBK)	30000 100000	100000 1000000	30000 NE	100000 NE	100000 NE	< 4.64 < 9.29	< 4.82 < 9.64	< 5.00 < 10.0	< 7.66 < 15.3	< 6.68 < 13.4	< 4.90 < 9.80	< 5.51 < 11.0	< 4.99 < 9.98	< 4.89 < 9.78	< 4.85 < 9.71	< 4.79 < 9.59	< 48.4 < 96.8	< 4.61 < 9.21
Isopropylbenzene	1000000	10000000	NE	NE NE	NE	< 4.64	< 4.82	< 5.00	< 7.66	< 6.68	< 4.90	< 5.51	< 4.99	< 4.89	< 4.85	< 4.79	< 48.4	< 4.61
4-Isopropyltoluene	100000	1000000	NE	NE	NE	< 4.64	< 4.82	< 5.00	< 7.66	< 6.68	< 4.90	< 5.51	< 4.99	< 4.89	< 4.85	< 4.79	< 48.4	< 4.61
Methyl tert-butyl ether 4-Methyl-2-pentanone (MIBK)	100 400	100000 50000	100 400	100 400	100 400	< 4.64 < 9.29	< 4.82 < 9.64	< 5.00 < 10.0	< 7.66 < 15.3	< 6.68 < 13.4	< 4.90 < 9.80	< 5.51 < 11.0	< 4.99 < 9.98	< 4.89 < 9.78	< 4.85 < 9.71	< 4.79 < 9.59	< 48.4 < 96.8	< 4.61 < 9.21
Methylene chloride	100	4000	100	100	100	< 9.29	< 9.64	< 10.0	< 15.3	< 13.4	< 9.80 < 9.80	< 11.0	< 9.98 < 9.98	< 9.78	< 9.71	< 9.59	< 96.8	< 9.21
Naphthalene	4000	20000	4000	4000	4000	< 4.64	11.9	< 5.00	< 7.66	< 6.68	< 4.90	< 5.51	< 4.99	< 4.89	< 4.85	< 4.79	< 48.4	< 4.61
n-Propylbenzene	100000	1000000	NE 2000	NE 3000	NE	< 4.64	< 4.82	< 5.00	< 7.66	< 6.68	< 4.90	< 5.51	< 4.99	< 4.89	< 4.85	< 4.79	< 48.4	< 4.61
Styrene 1,1,1,2-Tetrachloroethane	3000 100	4000 100	3000 100	3000 100	3000 100	< 4.64 < 4.64	< 4.82 < 4.82	< 5.00 < 5.00	< 7.66 < 7.66	< 6.68 < 6.68	< 4.90 < 4.90	< 5.51 < 5.51	< 4.99 < 4.99	< 4.89 < 4.89	< 4.85 < 4.85	< 4.79 < 4.79	< 48.4 < 48.4	< 4.61 < 4.61
1,1,2,2-Tetrachloroethane	5	20	5	5	5	< 4.64	< 4.82	< 5.00	< 7.66	< 6.68	< 4.90	< 5.51	< 4.99	< 4.89	< 4.85	< 4.79	< 48.4	< 4.61
Tetrachloroethene	1000	10000	1000	1000	1000	< 4.64	< 4.82	< 5.00	< 7.66	< 6.68	< 4.90	< 5.51	< 4.99	< 4.89	< 4.85	< 4.79	< 48.4	< 4.61
Toluene 1,2,3-Trichlorobenzene	30000 NE	1000000 NE	30000 NE	30000 NE	30000 NE	< 4.64 < 4.64	< 4.82 < 4.82	< 5.00 < 5.00	< 7.66 < 7.66	< 6.68 < 6.68	< 4.90 < 4.90	< 5.51 < 5.51	< 4.99 < 4.99	< 4.89 < 4.89	< 4.85 < 4.85	< 4.79 < 4.79	< 48.4 < 48.4	< 4.61 < 4.61
1,2,4-Trichlorobenzene	2000	6000	2000	2000	2000	< 4.64	< 4.82	< 5.00	< 7.66	< 6.68	< 4.90	< 5.51	< 4.99	< 4.89	< 4.85	< 4.79	< 48.4	< 4.61
1,1,1-Trichloroethane	30000	600000	30000	30000	30000	< 4.64	< 4.82	< 5.00	< 7.66	< 6.68	< 4.90	< 5.51	< 4.99	< 4.89	< 4.85	< 4.79	< 48.4	< 4.61
1,1,2-Trichloroethane	100	2000	100	100	100	< 4.64	< 4.82	< 5.00	< 7.66	< 6.68	< 4.90	< 5.51	< 4.99	< 4.89	< 4.85	< 4.79	< 48.4	< 4.61
Trichloroethene Trichlorofluoromethane (Freon 11)	300 1000000	300 10000000	300 NE	300 NE	300 NE	< 4.64 < 4.64	< 4.82 < 4.82	< 5.00 < 5.00	< 7.66 < 7.66	< 6.68 < 6.68	< 4.90 < 4.90	< 5.51 < 5.51	< 4.99 < 4.99	< 4.89 < 4.89	< 4.85 < 4.85	< 4.79 < 4.79	< 48.4 < 48.4	< 4.61 < 4.61
1,2,3-Trichloropropane	100000	1000000	NE	NE	NE	< 4.64	< 4.82	< 5.00	< 7.66	< 6.68	< 4.90	< 5.51	< 4.99	< 4.89	< 4.85	< 4.79	< 48.4	< 4.61
1,2,4-Trimethylbenzene	1000000	10000000	NE	NE	NE	< 4.64	18.6	< 5.00	< 7.66	< 6.68	< 4.90	< 5.51	< 4.99	< 4.89	< 4.85	< 4.79	< 48.4	< 4.61
1,3,5-Trimethylbenzene Vinyl chloride	10000 700	100000 700	NE 900	NE 900	NE 900	< 4.64 < 4.64	5.02 < 4.82	< 5.00 < 5.00	< 7.66 < 7.66	< 6.68 < 6.68	< 4.90 < 4.90	< 5.51 < 5.51	< 4.99 < 4.99	< 4.89 < 4.89	< 4.85 < 4.85	< 4.79 < 4.79	< 48.4 < 48.4	< 4.61 < 4.61
m,p-Xylene	300000	300000				< 4.64	< 4.82 11.6	< 5.00 < 10.0	< 15.3	< 13.4	< 4.90 < 9.80	< 5.51 < 11.0	< 4.99 < 9.98	< 4.89 < 9.78	< 4.85 < 9.71	< 4.79 < 9.59	< 48.4 < 96.8	< 4.61 < 9.21
o-Xylene	500000	500000	400000	400000	400000	< 4.64	6.32	< 5.00	< 7.66	< 6.68	< 4.90	< 5.51	< 4.99	< 4.89	< 4.85	< 4.79	< 48.4	< 4.61
Tetrahydrofuran	500000	5000000	NE	NE NE	NE	< 9.29	< 9.64	< 10.0	< 15.3	< 13.4	< 9.80	< 11.0	< 9.98	< 9.78	< 9.71	< 9.59	< 96.8	< 9.21
Ethyl ether Tert-amyl methyl ether	100000 NE	1000000 NE	NE NE	NE NE	NE NE	< 4.64 < 4.64	< 4.82 < 4.82	< 5.00 < 5.00	< 7.66 < 7.66	< 6.68 < 6.68	< 4.90 < 4.90	< 5.51 < 5.51	< 4.99 < 4.99	< 4.89 < 4.89	< 4.85 < 4.85	< 4.79 < 4.79	< 48.4 < 48.4	< 4.61 < 4.61
Ethyl tert-butyl ether	NE NE	NE NE	NE NE	NE NE	NE NE	< 4.64	< 4.82	< 5.00	< 7.66	< 6.68	< 4.90	< 5.51	< 4.99	< 4.89	< 4.85	< 4.79	< 48.4	< 4.61
Di-isopropyl ether	100000	1000000	NE	NE	NE	< 4.64	< 4.82	< 5.00	< 7.66	< 6.68	< 4.90	< 5.51	< 4.99	< 4.89	< 4.85	< 4.79	< 48.4	< 4.61
1,4-Dioxane	200	6000	200	200	200	< 92.9	< 96.4	< 100	< 153	< 134	< 98.0	< 110	< 99.8	< 97.8	< 97.1	< 95.9	< 968	< 92.1
Notes:																		

APPENDIX A – LABORATORY ANALYTICAL REPORTS

V	Final Report
	Revised Report

Report Date: 17-Oct-17 17:45

Laboratory Report SC40242

AECOM Environment 250 Apollo Drive Chelmsford, MA 01824

Project: LMC-Wilmington- 40 Fordham Rd. - MA

Chelmsford, MA 01824 Project #: 60478638.5.01 Attn: Art Taddeo

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87936 Maine # MA138 New Hampshire # 2972/2538 New Jersey # MA011 New York # 11393 Pennsylvania # 68-04426/68-02924 Rhode Island # LAO00348 USDA # P330-15-00375 Vermont # VT-11393

Authorized by:

Dawn Wojcik Laboratory Director

Vaun & Woscik

Eurofins Spectrum Analytical holds primary certification in the State of Massachusetts for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of Massachusetts does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 30 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Eurofins Spectrum Analytical, Inc.

Eurofins Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Eurofins Spectrum Analytical, Inc. is currently accredited for the specific method or analyte indicated. Please refer to our Quality web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Eurofins Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey, Pennsylvania and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (PA-68-04426).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

Sample Summary

Work Order: SC40242

Project: LMC-Wilmington- 40 Fordham Rd. - MA

Project Number: 60478638.5.01

Laboratory ID	Client Sample ID	<u>Matrix</u>	Date Sampled	Date Received
SC40242-01	SP11_101117-1	Soil	11-Oct-17 10:30	11-Oct-17 18:31
SC40242-02	TB 101117-1	Methanol/Deionized Water	11-Oct-17 10:25	11-Oct-17 18:31

17-Oct-17 17:45 Page 2 of 30

The following outlines the condition of all VPH samples contained within this report upon laboratory receipt.

Matrices	Soil					
Containers	✓ Satisfactory					
Sample Preservative	Aqueous (acid preserved)	✓ N/A pH≤2 pH>2				
	Soil or	N/A Samples not received in Methanol	ml Methanol/g soil			
	Sediment	✓ Samples received in Methanol: ✓ covering soil/sediment not covering soil/sediment	✓ 1:1 +/-25% Other			
		Samples received in air-tight container				
Temperature	✓ Received on ice ✓ Received at 4 ± 2 °C					

Were all QA/QC procedures followed as required by the VPH method? Yes

Were any significant modifications made to the VPH method as specified in section 11.3? No

Were all performance/acceptance standards for required QA/QC procedures achieved? Yes

The following outlines the condition of all EPH samples contained within this report upon laboratory receipt.

Matrices	Soil			
Containers	✓ Satisfactory			
Aqueous Preservative	✓ N/A	pH <u>≤</u> 2	pH>2	pH adjusted to <2 in lab
Temperature	✓ Received on ice	✓	Received at 4 ± 2 °C	

Were all QA/QC procedures followed as required by the EPH method? Yes

Were any significant modifications made to the EPH method as specified in Section 11.3? No

Were all performance/acceptance standards for required QA/QC procedures achieved? Yes

I attest that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Authorized by:

Sawn & Woscik

Dawn E. Wojcik Laboratory Director

MassDEP Analytical Protocol Certification Form

Labo	aboratory Name: Eurofins Spectrum Analytical, Inc. Project #: 60478638.5.01								
Proje	Project Location: LMC-Wilmington- 40 Fordham Rd MA RTN:								
		tifications for the follo		SC40242-01 through SC40	0242-02				
Matr	ices: Methanol/I	Deionized Water							
CAM	Protocol								
/	260 VOC AM II A	7470/7471 Hg CAM III B	✓ MassDEP VPH CAM IV A	8081 Pesticides CAM V B	7196 Hex Cr CAM VI B	MassDEP APH CAM IX A			
	70 SVOC AM II B	7010 Metals CAM III C	✓ MassDEP EPH CAM IV B	8151 Herbicides CAM V C	8330 Explosives CAM VIII A	TO-15 VOC CAM IX B			
/	110 Metals AM III A	6020 Metals CAM III D	8082 PCB CAM V A	9012 Total ✓ Cyanide/PAC CAM VI A	9014 Total Cyanide/PAC CAM VI A	6860 Perchlorate CAM VIII B			
		Affirmative respons	es to questions A through	F are required for P resu					
A	Were all samples received in a condition consistent with those described on the Chain of Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?								
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?								
C	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?								
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data"? Yes No								
E	a. VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? ✓ Yes No b. APH and TO-15 Methods only: Was the complete analyte list reported for each method? Yes No								
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to questions A through E)? ✓ Yes No								
		Responses to que	estions G, H and I below	are required for P resump	tive Certainty'status	•			
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)? Yes ✓ No								
		t achieve Presumptive Ce a 310 CMR 40. 1056 (2)(k		sarily meet the data usability	y and representativeness				
Н	Were all QC performance standards specified in the CAM protocol(s) achieved? Yes ✓ No								
I	Were results reported for the complete analyte list specified in the selected CAM protocol(s)? Yes ✓ No								
All ne	gative responses ar	e addressed in a case nari	rative on the cover page of the	his report.		1			
				pon my personal inquiry of y knowledge and belief, acci		ing the			

Dawn E. Wojcik
Laboratory Director
Date: 10/17/2017

CASE NARRATIVE:

Data has been reported to the RDL. This report excludes estimated concentrations detected below the RDL and above the MDL (J-Flag).

All non-detects and all results below the reporting limit are reported as "<" (less than) the reporting limit in this report.

The samples were received 3.7 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of +/- 1.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group. If method or program required MS/MSD/Dup were not performed, sufficient sample was not provided to the laboratory.

MADEP has published a list of analytical methods (CAM) which provides a series of recommended protocols for the acquisition, analysis and reporting of analytical data in support of MCP decisions. "Presumptive Certainty" can be established only for those methods published by the MADEP in the MCP CAM. The compounds and/or elements reported were specifically requested by the client on the Chain of Custody and in some cases may not include the full analyte list as defined in the method. Regulatory limits may not be achieved if specific method and/or technique was not requested on the Chain of Custody.

According to WSC-CAM 5/2009 Rev.1, Table 11 A-1, recovery for some VOC analytes have been deemed potentially difficult. Although they may still be within the recommended recovery range, a range has been set based on historical control limits.

Some target analytes which are not listed as exceptions in the Summary of CAM Reporting Limits may exceed the recommended RL based on sample initial volume or weight provided, % moisture content, or responsiveness of a particular analyte to purge and trap instrumentation.

All VOC soils samples submitted and analyzed in methanol will have a minimum dilution factor of 50. This is the minimum amount of solvent allowed on the instrumentation without causing interference. Soils are run on a manual load instrument. 100ug of sample (MEOH) is spiked into 5ml DI water along with the surrogate and added directly onto the instrument. Additional dilution factors may be required to keep analyte concentration within instrument calibration range.

Method SW846 5035A is designed to use on samples containing low levels of VOCs, ranging from 0.5 to 200 ug/Kg. Target analytes that are less responsive to purge and trap may be present at concentrations over 200ug/Kg but may not be reportable in the methanol preserved vial (SW846 5030). This is the result of the inherent dilution factor required for the methanol preservation.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

MADEP EPH 5/2004 R

Calibration:

S707773-ICV1

Analyte percent recovery is outside individual acceptance criteria.

2-Methylnaphthalene (aliphatic fraction) (0%) Naphthalene (aliphatic fraction) (0%)

This affected the following samples:

1717419-BLK1

1717419-BS1

1717419-BS2

1717419-BSD1

S709112-CCV1

S709112-CCV2

S709112-CCV3

SW846 8260C

Calibration:

SW846 8260C

Calibration:

1710009

Analyte quantified by quadratic equation type calibration.

1,1,1,2-Tetrachloroethane

1,1,2,2-Tetrachloroethane

1,2,3-Trichlorobenzene

1,2,4-Trichlorobenzene

1,2-Dibromo-3-chloropropane

1,2-Dibromoethane (EDB)

2-Hexanone (MBK)

4-Methyl-2-pentanone (MIBK)

Bromochloromethane

Bromodichloromethane

Bromoform

Carbon disulfide

Carbon tetrachloride

cis-1,3-Dichloropropene

Dibromochloromethane

Naphthalene

Styrene

trans-1,3-Dichloropropene

Vinyl chloride

This affected the following samples:

S708827-ICV1

Laboratory Control Samples:

1717436 BS/BSD

1,1,2-Trichlorotrifluoroethane (Freon 113) percent recoveries (67/61) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

TB 101117-1

Bromomethane percent recoveries (158/158) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias:

TB 101117-1

1717540 BS/BSD

2,2-Dichloropropane percent recoveries (149/140) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias:

SP11_101117-1

Bromomethane percent recoveries (174/164) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias:

SP11 101117-1

Samples:

S709049-CCV1

Analyte percent difference is outside individual acceptance criteria (20), but within overall method allowances.

1,1,2-Trichlorotrifluoroethane (Freon 113) (-38.9%)

Dichlorodifluoromethane (Freon12) (-29.9%)

Hexachlorobutadiene (-22.4%)

Tetrachloroethene (-23.8%)

SW846 8260C

Samples:

S709049-CCV1

Analyte percent drift is outside individual acceptance criteria (20), but within overall method allowances.

Bromomethane (58.0%) Carbon tetrachloride (-24.9%)

This affected the following samples:

1717436-BLK1 1717436-BS1 1717436-BSD1 TB_101117-1

S709100-CCV1

Analyte percent difference is outside individual acceptance criteria (20), but within overall method allowances.

2,2-Dichloropropane (40.6%)

Analyte percent drift is outside individual acceptance criteria (20), but within overall method allowances.

Bromomethane (55.8%)

This affected the following samples:

1717540-BLK1 1717540-BS1 1717540-BSD1 SP11_101117-1

SC40242-01 SP11 101117-1

Reporting limits reflect SW846 5035A High Level extraction technique due to interference and/or QC issues using SW846 5035A Low Level extraction technique.

17-Oct-17 17:45 Page 7 of 30

Sample Acceptance Check Form

Client:	AECOM Environment - Chelmsford, MA
Project:	LMC-Wilmington- 40 Fordham Rd MA / 60478638.5.01
Work Order:	SC40242
Sample(s) received on:	10/11/2017

The following outlines the condition of samples for the attached Chain of Custody upon receipt.

	<u>Yes</u>	<u>No</u>	N/A
Were custody seals present?		\checkmark	
Were custody seals intact?			✓
Were samples received at a temperature of $\leq 6^{\circ}$ C?	\checkmark		
Were samples cooled on ice upon transfer to laboratory representative?	\checkmark		
Were sample containers received intact?	\checkmark		
Were samples properly labeled (labels affixed to sample containers and include sample ID, site location, and/or project number and the collection date)?	\checkmark		
Were samples accompanied by a Chain of Custody document?	\checkmark		
Does Chain of Custody document include proper, full, and complete documentation, which shall include sample ID, site location, and/or project number, date and time of collection, collector's name, preservation type, sample matrix and any special remarks concerning the sample?	\checkmark		
Did sample container labels agree with Chain of Custody document?	\checkmark		
Were samples received within method-specific holding times?		П	

Summary of Hits

Lab ID: SC40242-01

Client ID: SP11_101117-1

Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Arsenic	10.4		1.59	mg/kg	SW846 6010C
Chromium	11.5		1.06	mg/kg	SW846 6010C
Copper	8.37		1.06	mg/kg	SW846 6010C
Lead	8.35		1.59	mg/kg	SW846 6010C
Zinc	16.5		1.06	mg/kg	SW846 6010C

Please note that because there are no reporting limits associated with hazardous waste characterizations or micro analyses, this summary does not include hits from these analyses if included in this work order.

6.97

50

48.4

Ethylbenzene

< 48.4

D

μg/kg dry

100-41-4

Client Project # 60478638.5.01

Matrix Soil Collection Date/Time 11-Oct-17 10:30 Received 11-Oct-17

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	<u>C</u>
Volatile O	rganic Compounds												
olatile O	rganic Compounds by SW	<u>846 8260</u>	VOC8										
						<u>Init</u>	ial weight:	18.22 g					
7-68-3	Hexachlorobutadiene	< 48.4	D	μg/kg dry	48.4	24.3	50	SW846 8260C	16-Oct-17	16-Oct-17	MP	1717540	
91-78-6	2-Hexanone (MBK)	< 96.8	D	μg/kg dry	96.8	59.4	50	"	"	"	"	"	
8-82-8	Isopropylbenzene	< 48.4	D	μg/kg dry	48.4	9.54	50	"	"	"	"	"	
9-87-6	4-Isopropyltoluene	< 48.4	D	μg/kg dry	48.4	10.4	50	"	"	"	"	"	
634-04-4	Methyl tert-butyl ether	< 48.4	D	μg/kg dry	48.4	17.8	50	"	"	"	"	"	
08-10-1	4-Methyl-2-pentanone (MIBK)	< 96.8	D	μg/kg dry	96.8	24.9	50	"	"	"	"	"	
5-09-2	Methylene chloride	< 96.8	D	μg/kg dry	96.8	19.2	50	"	"	"	"	"	
1-20-3	Naphthalene	< 48.4	D	μg/kg dry	48.4	28.8	50	"	"	"	"	"	
03-65-1	n-Propylbenzene	< 48.4	D	μg/kg dry	48.4	7.84	50	"	"	"	"	"	
00-42-5	Styrene	< 48.4	D	μg/kg dry	48.4	9.73	50	n n	"	"	"	"	
30-20-6	1,1,1,2-Tetrachloroethane	< 48.4	D	μg/kg dry	48.4	41.1	50	"	"	"	"	"	
9-34-5	1,1,2,2-Tetrachloroethane	< 48.4	D	μg/kg dry	48.4	41.0	50	"	"	"	"	"	
27-18-4	Tetrachloroethene	< 48.4	D	μg/kg dry	48.4	16.6	50	"	"	"	"	"	
08-88-3	Toluene	< 48.4	D	μg/kg dry	48.4	15.7	50	"	"	II .	"	"	
7-61-6	1,2,3-Trichlorobenzene	< 48.4	D	μg/kg dry	48.4	17.0	50	"	"	"	"	"	
20-82-1	1,2,4-Trichlorobenzene	< 48.4	D	μg/kg dry	48.4	35.7	50	"	"	"	"	"	
1-55-6	1,1,1-Trichloroethane	< 48.4	D	μg/kg dry	48.4	16.1	50	"	"	"	"	"	
9-00-5	1,1,2-Trichloroethane	< 48.4	D	μg/kg dry	48.4	35.1	50	"	"		"		
9-01-6	Trichloroethene	< 48.4	D	μg/kg dry	48.4	13.2	50	"	"		"		
5-69-4	Trichlorofluoromethane (Freon 11)	< 48.4	D	μg/kg dry	48.4	26.1	50	"	"	"	"	"	
6-18-4	1,2,3-Trichloropropane	< 48.4	D	μg/kg dry	48.4	36.3	50	"	"	"	"	"	
5-63-6	1,2,4-Trimethylbenzene	< 48.4	D	μg/kg dry	48.4	11.8	50	"	"	"	"	"	
08-67-8	1,3,5-Trimethylbenzene	< 48.4	D	μg/kg dry	48.4	8.33	50	"	"	"	"	"	
5-01-4	Vinyl chloride	< 48.4	D	μg/kg dry	48.4	16.4	50	"	"	"	"	"	
79601-23-1	m,p-Xylene	< 96.8	D	μg/kg dry	96.8	8.71	50	"	"		"		
5-47-6	o-Xylene	< 48.4	D	μg/kg dry	48.4	13.6	50	n	u	"	"		
09-99-9	Tetrahydrofuran	< 96.8	D	μg/kg dry	96.8	76.3	50	n	u	"	"		
0-29-7	Ethyl ether	< 48.4	D	μg/kg dry	48.4	43.9	50	"	"	"	"		
94-05-8	Tert-amyl methyl ether	< 48.4	D	μg/kg dry	48.4	16.2	50	"	"	"	"		
37-92-3	Ethyl tert-butyl ether	< 48.4	D	μg/kg dry	48.4	26.1	50	"	"	"	"		
08-20-3	Di-isopropyl ether	< 48.4	D	μg/kg dry	48.4	9.00	50	"	"		"		
23-91-1	1,4-Dioxane	< 968	D	μg/kg dry	968	841	50	II .	u .	"	"	"	
Surrogate r	recoveries:												_
60-00-4	4-Bromofluorobenzene	98			70-13	0 %		"	u	"	"	"	
037-26-5	Toluene-d8	102		70-130 %			"	"		•			
7060-07-0	1,2-Dichloroethane-d4	105		70-130 %			"	"	"	"			
868-53-7	Dibromofluoromethane	97			70-13	0 %		"	"	"	"	"	
MADEP V	'PH Carbon Ranges												
	by method VPH - EPA 503	35A Soil				<u>Init</u>	ial weight:	<u>16.93 g</u>					
	C5-C8 Aliphatic Hydrocarbons	< 1.29	D	mg/kg dry 1.29 0.150 50				MADEP VPH 5/2004 Rev. 1.1	12-Oct-17	12-Oct-17	SD	1717194	
	C9-C12 Aliphatic Hydrocarbons	< 0.311	D	mg/kg dry	0.311	0.108	50	u	"	"	"	"	

Sample Identification SP11_101117-1			<u>Client Project #</u>			<u>Matrix</u> Soil	· · · · · · · · · · · · · · · · · · ·	ollection Date/Time		Received			
SC40242	-01			60478638.5.01			3011	11	1-Oct-17 10:30		11-Oct-17		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Volatile O	organic Compounds												
MADEP \	VPH Carbon Ranges												
						<u>Init</u>	ial weight:	<u>16.93 g</u>					
	C9-C10 Aromatic Hydrocarbons	< 0.311	D	mg/kg dry	0.311	0.0314	50	MADEP VPH 5/2004 Rev. 1.1	12-Oct-17	12-Oct-17	SD	1717194	<u> </u>
	Unadjusted C5-C8 Aliphatic Hydrocarbons	< 1.29	D	mg/kg dry	1.29	0.121	50	"	"	"	"	"	
	Unadjusted C9-C12 Aliphatic Hydrocarbons	< 0.311	D	mg/kg dry	0.311	0.137	50	"	"	"	"	"	
Surrogate	recoveries:												
615-59-8	2,5-Dibromotoluene (FID)	117			70-13	30 %		"	"	"	"	"	
615-59-8	2,5-Dibromotoluene (PID)	125			70-13	30 %		"	"	"	"	"	
Extractab	ole Petroleum Hydrocarbons												
MADEP E	EPH Carbon Ranges												
Prepared	by method SW846 3546												
	C9-C18 Aliphatic Hydrocarbons	< 10.5		mg/kg dry	10.5	2.14	1	MADEP EPH 5/2004 R	13-Oct-17	14-Oct-17	EDT	1717419)
	C19-C36 Aliphatic Hydrocarbons	< 10.5		mg/kg dry	10.5	2.83	1	"	"	"	"	"	
	C11-C22 Aromatic Hydrocarbons	< 10.5		mg/kg dry	10.5	4.41	1	"	"	"	"	"	
	Unadjusted C11-C22 Aromatic Hydrocarbons	< 10.5		mg/kg dry	10.5	4.41	1	"	"	"	"	"	
Surrogate	recoveries:												
3386-33-2	1-Chlorooctadecane	58			40-14	40 %		"	"	"	"	"	
84-15-1	Ortho-Terphenyl	97		40-140 %				"	ıı.	"	"		
321-60-8	2-Fluorobiphenyl	72			40-14	40 %		"	"		"	"	
	als by EPA 6000/7000 Series by method SW846 3051A												
7440-38-2	Arsenic	10.4		mg/kg dry	1.59	0.202	1	SW846 6010C	13-Oct-17	13-Oct-17	CAW	1717347	,
7440-47-3	Chromium	11.5		mg/kg dry	1.06	0.141	1	"	"	16-Oct-17	"	"	
7440-50-8	Copper	8.37		mg/kg dry	1.06	0.255	1	п	"	13-Oct-17	"	"	
7439-92-1	Lead	8.35		mg/kg dry	1.59	0.225	1	"	"	"	"		
7440-66-6	Zinc	16.5		mg/kg dry	1.06	0.822	1	"	"	"	"		
General C	Chemistry Parameters			- 0 ,									
	% Solids	92.6		%			1	SM2540 G (11)	12-Oct-17	12-Oct-17	MBR	1717352	!

Mod.

SW846 9012B

13-Oct-17 14-Oct-17 RLT 1717429

17-Oct-17 17:45 Page 12 of 30

mg/kg dry

0.281

0.237

Prepared by method SW846 9010B

Cyanide (total)

< 0.281

57-12-5

Client Project # 60478638.5.01

Matrix Methanol/Deionized Water Collection Date/Time 11-Oct-17 10:25 Received 11-Oct-17

SC40242-	-02						Water						
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
Volatile O	rganic Compounds by SW	846 8260											
99-87-6	4-Isopropyltoluene	< 50.0	D	μg/kg wet	50.0	10.8	50	SW846 8260C	13-Oct-17	14-Oct-17	MP	1717436	
1634-04-4	Methyl tert-butyl ether	< 50.0	D	μg/kg wet	50.0	18.4	50	"	"	"	"	"	
108-10-1	4-Methyl-2-pentanone (MIBK)	< 100	D	μg/kg wet	100	25.7	50	u .	"	u	"	"	
75-09-2	Methylene chloride	< 100	D	μg/kg wet	100	19.8	50	"	"	n n	"	"	
91-20-3	Naphthalene	< 50.0	D	μg/kg wet	50.0	29.8	50	"	"	"	"	"	
103-65-1	n-Propylbenzene	< 50.0	D	μg/kg wet	50.0	8.10	50	"	"	"	"	"	
100-42-5	Styrene	< 50.0	D	μg/kg wet	50.0	10.0	50	"	"	"	"	"	
630-20-6	1,1,1,2-Tetrachloroethane	< 50.0	D	μg/kg wet	50.0	42.5	50	"	"	"	"	"	
79-34-5	1,1,2,2-Tetrachloroethane	< 50.0	D	μg/kg wet	50.0	42.3	50	"	"	"	"	"	
127-18-4	Tetrachloroethene	< 50.0	D	μg/kg wet	50.0	17.1	50	"	"	"	"	"	
108-88-3	Toluene	< 50.0	D	μg/kg wet	50.0	16.2	50	"	"	"	"	"	
87-61-6	1,2,3-Trichlorobenzene	< 50.0	D	μg/kg wet	50.0	17.6	50	"	"	"	"	"	
120-82-1	1,2,4-Trichlorobenzene	< 50.0	D	μg/kg wet	50.0	36.8	50	"	"	"	"	"	
71-55-6	1,1,1-Trichloroethane	< 50.0	D	μg/kg wet	50.0	16.6	50	"	"	"	"	"	
79-00-5	1,1,2-Trichloroethane	< 50.0	D	μg/kg wet	50.0	36.2	50		"	"	"	"	
79-01-6	Trichloroethene	< 50.0	D	μg/kg wet	50.0	13.6	50	"	"	"	"	"	
75-69-4	Trichlorofluoromethane (Freon 11)	< 50.0	D	μg/kg wet	50.0	27.0	50	u	"	"	II	"	
96-18-4	1,2,3-Trichloropropane	< 50.0	D	μg/kg wet	50.0	37.5	50	"	"	"	"	"	
95-63-6	1,2,4-Trimethylbenzene	< 50.0	D	μg/kg wet	50.0	12.2	50		"	n n	"	"	
108-67-8	1,3,5-Trimethylbenzene	< 50.0	D	μg/kg wet	50.0	8.60	50	"	"	"	"	"	
75-01-4	Vinyl chloride	< 50.0	D	μg/kg wet	50.0	16.9	50	"	"	"	"	"	
179601-23-1	m,p-Xylene	< 100	D	μg/kg wet	100	9.00	50	"	"	"	"	"	
95-47-6	o-Xylene	< 50.0	D	μg/kg wet	50.0	14.0	50		"	n n	"	"	
109-99-9	Tetrahydrofuran	< 100	D	μg/kg wet	100	78.8	50		"	n n	"	"	
60-29-7	Ethyl ether	< 50.0	D	μg/kg wet	50.0	45.3	50	"	"	"	"	"	
994-05-8	Tert-amyl methyl ether	< 50.0	D	μg/kg wet	50.0	16.7	50		"	n n	"	"	
637-92-3	Ethyl tert-butyl ether	< 50.0	D	μg/kg wet	50.0	27.0	50		"	"	"	"	
108-20-3	Di-isopropyl ether	< 50.0	D	μg/kg wet	50.0	9.30	50	"	"	"	"	"	
123-91-1	1,4-Dioxane	< 1000	D	μg/kg wet	1000	868	50	"	"	"	"	"	
Surrogate i	recoveries:												
460-00-4	4-Bromofluorobenzene	99			70-13	0 %		u u	"	"	"	"	
2037-26-5	Toluene-d8	100			70-13	0 %		u u	"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	101			70-13	0 %		"	"		"	"	
1868-53-7	Dibromofluoromethane	93			70-13	0 %		n	"	"	"		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
MADEP VPH 5/2004 Rev. 1.1										
Batch 1717194 - VPH - EPA 5035A Soil										
Blank (1717194-BLK1)					Pre	epared: 11-	Oct-17 Ana	alyzed: 12-0	ct-17	
C5-C8 Aliphatic Hydrocarbons	< 1.25	D	mg/kg wet	1.25		•		,		
C9-C12 Aliphatic Hydrocarbons	< 0.300	D	mg/kg wet	0.300						
C9-C10 Aromatic Hydrocarbons	< 0.300	D	mg/kg wet	0.300						
Unadjusted C5-C8 Aliphatic Hydrocarbons	< 1.25	D	mg/kg wet	1.25						
Unadjusted C9-C12 Aliphatic	< 0.300	D	mg/kg wet	0.300						
Hydrocarbons										
Surrogate: 2,5-Dibromotoluene (FID)	56.5		μg/kg		50.0		113	70-130		
Surrogate: 2,5-Dibromotoluene (PID)	60.2		μg/kg		50.0		120	70-130		
LCS (1717194-BS1)					Pre	epared: 11-	Oct-17 Ana	alyzed: 12-O	ct-17	
C5-C8 Aliphatic Hydrocarbons	41.7	D	μg/kg		60.0		70	70-130		
C9-C12 Aliphatic Hydrocarbons	48.6	D	μg/kg		60.0		81	70-130		
C9-C10 Aromatic Hydrocarbons	21.7	D	μg/kg		20.0		108	70-130		
Unadjusted C5-C8 Aliphatic Hydrocarbons	187	D	μg/kg		200		94	70-130		
Unadjusted C9-C12 Aliphatic Hydrocarbons	70.2	D	μg/kg		80.0		88	70-130		
Surrogate: 2,5-Dibromotoluene (FID)	60.0		μg/kg		50.0		120	70-130		
Surrogate: 2,5-Dibromotoluene (PID)	62.9		μg/kg μg/kg		50.0		126	70-130		
	02.3		pg/kg						-1.47	
LCS Dup (1717194-BSD1)		Б				<u>epared: 11-</u>		alyzed: 12-O		05
C5-C8 Aliphatic Hydrocarbons	42.7	D	μg/kg 		60.0		71	70-130	2	25
C9-C12 Aliphatic Hydrocarbons	51.5	D	μg/kg "		60.0		86	70-130	6	25
C9-C10 Aromatic Hydrocarbons	22.0	D	μg/kg		20.0		110	70-130	2	25
Unadjusted C5-C8 Aliphatic Hydrocarbons	181	D	μg/kg		200		90	70-130	4	25
Unadjusted C9-C12 Aliphatic Hydrocarbons	73.6	D	μg/kg		80.0		92	70-130	5	25
Surrogate: 2,5-Dibromotoluene (FID)	62.4		μg/kg		50.0		125	70-130		
Surrogate: 2,5-Dibromotoluene (PID)	64.6		μg/kg		50.0		129	70-130		
W846 8260C										
satch 1717436 - SW846 5035A Soil (high level)										
Blank (1717436-BLK1)					Pre	enared & Ai	nalyzed: 13-	Oct-17		
1,1,2-Trichlorotrifluoroethane (Freon 113)	< 50.0	D	μg/kg wet	50.0	<u> </u>	sparea a 7 ti	naryzca. 10	000 17		
Acetone	< 500	D	μg/kg wet	500						
Benzene	< 50.0	D	μg/kg wet μg/kg wet	50.0						
Bromobenzene	< 50.0 < 50.0	D		50.0						
Bromochloromethane		D	μg/kg wet							
Bromodichloromethane	< 50.0		μg/kg wet	50.0						
	< 50.0	D	μg/kg wet	50.0						
Bromoform	< 50.0	D	μg/kg wet	50.0						
Bromomethane	< 100	D	μg/kg wet	100						
2-Butanone (MEK)	< 100	D	μg/kg wet	100						
n-Butylbenzene	< 50.0	D -	μg/kg wet	50.0						
sec-Butylbenzene	< 50.0	D	μg/kg wet	50.0						
tert-Butylbenzene	< 50.0	D	μg/kg wet	50.0						
Carbon disulfide	< 100	D	μg/kg wet	100						
Carbon tetrachloride	< 50.0	D	μg/kg wet	50.0						
Chlorobenzene	< 50.0	D	μg/kg wet	50.0						
Chloroethane	< 100	D	μg/kg wet	100						
Chloroform	< 50.0	D	μg/kg wet	50.0						
Chloromethane	< 100	D	μg/kg wet	100						
2-Chlorotoluene	< 50.0	D	μg/kg wet	50.0						
4-Chlorotoluene	< 50.0	D	μg/kg wet	50.0						

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
SW846 8260C										
Batch 1717436 - SW846 5035A Soil (high level)										
Blank (1717436-BLK1)					Pre	epared & A	nalyzed: 13-	Oct-17		
Dibromochloromethane	< 50.0	D	μg/kg wet	50.0			-	<u>.</u>		
1,2-Dibromoethane (EDB)	< 50.0	D	μg/kg wet	50.0						
Dibromomethane	< 50.0	D	μg/kg wet	50.0						
1,2-Dichlorobenzene	< 50.0	D	μg/kg wet	50.0						
1,3-Dichlorobenzene	< 50.0	D	μg/kg wet	50.0						
1,4-Dichlorobenzene	< 50.0	D	μg/kg wet	50.0						
Dichlorodifluoromethane (Freon12)	< 100	D	μg/kg wet	100						
1,1-Dichloroethane	< 50.0	D	μg/kg wet	50.0						
1,2-Dichloroethane	< 50.0	D	μg/kg wet	50.0						
1,1-Dichloroethene	< 50.0	D	μg/kg wet	50.0						
cis-1,2-Dichloroethene	< 50.0	D	μg/kg wet	50.0						
trans-1,2-Dichloroethene	< 50.0	D	μg/kg wet	50.0						
1,2-Dichloropropane	< 50.0	D	μg/kg wet	50.0						
1,3-Dichloropropane	< 50.0	D	μg/kg wet	50.0						
2,2-Dichloropropane	< 50.0	D	μg/kg wet	50.0						
1,1-Dichloropropene	< 50.0	D	μg/kg wet	50.0						
cis-1,3-Dichloropropene	< 50.0	D	μg/kg wet	50.0						
trans-1,3-Dichloropropene	< 50.0	D	μg/kg wet	50.0						
Ethylbenzene	< 50.0	D	μg/kg wet	50.0						
Hexachlorobutadiene	< 50.0	D	μg/kg wet	50.0						
2-Hexanone (MBK)	< 100	D	μg/kg wet	100						
Isopropylbenzene	< 50.0	D	μg/kg wet	50.0						
4-Isopropyltoluene	< 50.0	D	μg/kg wet	50.0						
Methyl tert-butyl ether	< 50.0	D	μg/kg wet	50.0						
4-Methyl-2-pentanone (MIBK)	< 100	D	μg/kg wet	100						
Methylene chloride	< 100	D	μg/kg wet μg/kg wet	100						
Naphthalene	< 50.0	D	μg/kg wet	50.0						
n-Propylbenzene	< 50.0	D	μg/kg wet μg/kg wet	50.0						
Styrene	< 50.0	D	μg/kg wet	50.0						
1,1,1,2-Tetrachloroethane	< 50.0	D	μg/kg wet μg/kg wet	50.0						
1,1,2,1-tetrachioroethane	< 50.0	D	μg/kg wet	50.0						
Tetrachloroethene	< 50.0	D	μg/kg wet μg/kg wet	50.0						
Toluene	< 50.0	D		50.0						
1,2,3-Trichlorobenzene	< 50.0	D	μg/kg wet	50.0						
1,2,4-Trichlorobenzene	< 50.0 < 50.0	D	μg/kg wet μg/kg wet	50.0						
1,1,1-Trichloroethane	< 50.0 < 50.0	D	μg/kg wet μg/kg wet	50.0						
1,1,2-Trichloroethane	< 50.0 < 50.0	D		50.0						
Trichloroethene	< 50.0 < 50.0	D	μg/kg wet μg/kg wet	50.0						
Trichlorofluoromethane (Freon 11)	< 50.0 < 50.0	D		50.0						
1,2,3-Trichloropropane	< 50.0 < 50.0	D	µg/kg wet	50.0						
1,2,4-Trimethylbenzene	< 50.0 < 50.0	D	µg/kg wet	50.0						
		D	µg/kg wet							
1,3,5-Trimethylbenzene Vinyl chloride	< 50.0 < 50.0	D	µg/kg wet	50.0 50.0						
•	< 50.0 < 100	D	µg/kg wet							
m,p-Xylene o-Xylene	< 100 < 50.0	D	µg/kg wet	100 50.0						
·		D	µg/kg wet							
Tetrahydrofuran	< 100		μg/kg wet	100						
Ethyl ether	< 50.0	D	μg/kg wet	50.0						
Tert-amyl methyl ether	< 50.0	D	μg/kg wet	50.0						
Ethyl tert-butyl ether	< 50.0	D	μg/kg wet	50.0						
Di-isopropyl ether	< 50.0	D	μg/kg wet	50.0						

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
W846 8260C										
atch 1717436 - SW846 5035A Soil (high level)										
Blank (1717436-BLK1)					Pre	epared & Ai	nalyzed: 13-	Oct-17		
1,4-Dioxane	< 1000	D	μg/kg wet	1000						
Surrogate: 4-Bromofluorobenzene	47.7		μg/kg		50.0		95	70-130		
Surrogate: Toluene-d8	50.5		μg/kg		50.0		101	70-130		
Surrogate: 1,2-Dichloroethane-d4	53.8		μg/kg		50.0		108	70-130		
Surrogate: Dibromofluoromethane	52.1		μg/kg		50.0		104	70-130		
LCS (1717436-BS1)			100		Pre	epared & A	nalyzed: 13-	Oct-17		
1,1,2-Trichlorotrifluoroethane (Freon 113)	13.3	QC2, D	μg/kg		20.0	•	67	70-130		
Acetone	25.6	D	μg/kg		20.0		128	70-130		
Benzene	21.4	D	μg/kg		20.0		107	70-130		
Bromobenzene	21.8	D	μg/kg		20.0		109	70-130		
Bromochloromethane	21.6	D	μg/kg		20.0		108	70-130		
Bromodichloromethane	21.6	D	μg/kg		20.0		108	70-130		
Bromoform	21.9	D	μg/kg		20.0		110	70-130		
Bromomethane	31.5	D	μg/kg		20.0		158	70-130		
2-Butanone (MEK)	19.5	D	μg/kg		20.0		98	70-130		
n-Butylbenzene	17.1	D	μg/kg		20.0		86	70-130		
sec-Butylbenzene	18.0	D	μg/kg		20.0		90	70-130		
tert-Butylbenzene	18.6	D	μg/kg		20.0		93	70-130		
Carbon disulfide	17.8	D	μg/kg		20.0		89	70-130		
Carbon tetrachloride	15.9	D	μg/kg		20.0		79	70-130		
Chlorobenzene	21.5	D	μg/kg		20.0		107	70-130		
Chloroethane	23.5	D	μg/kg		20.0		118	70-130		
Chloroform	22.2	D	μg/kg		20.0		111	70-130		
Chloromethane	18.3	D	μg/kg		20.0		92	70-130		
2-Chlorotoluene	21.6	D	μg/kg		20.0		108	70-130		
4-Chlorotoluene	21.5	D	μg/kg		20.0		108	70-130		
1,2-Dibromo-3-chloropropane	20.8	D	μg/kg		20.0		104	70-130		
Dibromochloromethane	21.6	D	μg/kg		20.0		108	70-130		
1,2-Dibromoethane (EDB)	21.2	D	μg/kg		20.0		106	70-130		
Dibromomethane	23.1	D	μg/kg		20.0		115	70-130		
1,2-Dichlorobenzene	21.6	D	μg/kg		20.0		108	70-130		
1,3-Dichlorobenzene	21.7	D	μg/kg		20.0		108	70-130		
1,4-Dichlorobenzene	20.9	D	μg/kg		20.0		105	70-130		
Dichlorodifluoromethane (Freon12)	14.7	D	μg/kg		20.0		73	70-130		
1,1-Dichloroethane	21.8	D	μg/kg		20.0		109	70-130		
1,2-Dichloroethane	23.2	D	μg/kg		20.0		116	70-130		
1,1-Dichloroethene	17.7	D	μg/kg		20.0		89	70-130		
cis-1,2-Dichloroethene	22.2	D	μg/kg		20.0		111	70-130		
trans-1,2-Dichloroethene	19.3	D	μg/kg		20.0		97	70-130		
1,2-Dichloropropane	22.3	D	μg/kg		20.0		112	70-130		
1,3-Dichloropropane	22.9	D	μg/kg 		20.0		114	70-130		
2,2-Dichloropropane	18.7	D	μg/kg		20.0		94	70-130		
1,1-Dichloropropene	16.5	D	μg/kg		20.0		82	70-130		
cis-1,3-Dichloropropene	19.7	D	μg/kg		20.0		98	70-130		
trans-1,3-Dichloropropene	20.0	D	μg/kg		20.0		100	70-130		
Ethylbenzene	20.4	D	μg/kg		20.0		102	70-130		
Hexachlorobutadiene	16.6	D D	μg/kg		20.0		83	70-130		
2-Hexanone (MBK)	19.7		μg/kg		20.0		98	70-130 70-130		
Isopropylbenzene 4-Isopropyltoluene	19.2 18.4	D D	μg/kg μg/kg		20.0 20.0		96 92	70-130 70-130		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
SW846 8260C										
Batch 1717436 - SW846 5035A Soil (high level)										
LCS (1717436-BS1)					Pre	epared & A	nalyzed: 13-	Oct-17		
Methyl tert-butyl ether	21.6	D	μg/kg		20.0		108	70-130		
4-Methyl-2-pentanone (MIBK)	20.5	D	μg/kg		20.0		103	70-130		
Methylene chloride	21.5	D	μg/kg		20.0		108	70-130		
Naphthalene	19.7	D	μg/kg		20.0		98	70-130		
n-Propylbenzene	18.9	D	μg/kg		20.0		95	70-130		
Styrene	20.2	D	μg/kg		20.0		101	70-130		
1,1,1,2-Tetrachloroethane	21.4	D	μg/kg		20.0		107	70-130		
1,1,2,2-Tetrachloroethane	22.6	D	μg/kg		20.0		113	70-130		
Tetrachloroethene	16.5	D	μg/kg		20.0		83	70-130		
Toluene	20.5	D	μg/kg		20.0		103	70-130		
1,2,3-Trichlorobenzene	20.3	D	μg/kg		20.0		101	70-130		
1,2,4-Trichlorobenzene	18.6	D	μg/kg		20.0		93	70-130		
1,1,1-Trichloroethane	18.3	D	μg/kg		20.0		92	70-130		
1,1,2-Trichloroethane	23.4	D	μg/kg		20.0		117	70-130		
Trichloroethene	19.6	D	μg/kg		20.0		98	70-130		
Trichlorofluoromethane (Freon 11)	17.0	D	μg/kg		20.0		85	70-130		
1,2,3-Trichloropropane	23.6	D	μg/kg		20.0		118	70-130		
1,2,4-Trimethylbenzene	21.1	D	μg/kg		20.0		105	70-130		
1,3,5-Trimethylbenzene	20.2	D	μg/kg		20.0		101	70-130		
Vinyl chloride	22.1	D	μg/kg		20.0		111	70-130		
m,p-Xylene	20.8	D	μg/kg		20.0		104	70-130		
o-Xylene	22.4	D	μg/kg		20.0		112	70-130		
Tetrahydrofuran	21.2	D	μg/kg		20.0		106	70-130		
Ethyl ether	25.5	D	μg/kg		20.0		128	70-130		
Tert-amyl methyl ether	24.3	D	μg/kg		20.0		121	70-130		
Ethyl tert-butyl ether	22.1	D	μg/kg		20.0		111	70-130		
Di-isopropyl ether	21.7	D	μg/kg		20.0		109	70-130		
1,4-Dioxane	179	D	μg/kg		200		89	70-130		
Surrogate: 4-Bromofluorobenzene	50.7		μg/kg		50.0		101	70-130		
Surrogate: Toluene-d8	49.9		μg/kg μg/kg		50.0		100	70-130 70-130		
Surrogate: 1,2-Dichloroethane-d4	50.3		μg/kg μg/kg		50.0		101	70-130 70-130		
Surrogate: 1,2-Dictriordetrialite-u4 Surrogate: Dibromofluoromethane	51.6		μg/kg μg/kg		50.0		101	70-130 70-130		
	37.0		ружу			d 0 A				
LCS Dup (1717436-BSD1) 1,1,2-Trichlorotrifluoroethane (Freon 113)	12.2	QC2, D	ua/ka		20.0	epareu & A	nalyzed: 13- 61	70-130	9	30
Acetone	22.9	Q02, D	μg/kg μg/kg		20.0		115	70-130	11	30
Benzene	20.5	D	μg/kg μg/kg		20.0		102	70-130	4	30
Bromobenzene		D								30
Bromochloromethane	20.6	D	µg/kg		20.0 20.0		103 104	70-130 70-130	6 3	30
Bromodichloromethane	20.8	D	μg/kg		20.0					30
Bromoform Bromoform	21.0	D	µg/kg		20.0		105 107	70-130 70-130	3 2	30
	21.4	D	μg/kg							
Bromomethane 2 Butanone (MEK)	31.6	D	μg/kg		20.0		158	70-130 70-130	0.3	30
2-Butanone (MEK)	20.0	D	μg/kg		20.0		100	70-130	2	30
n-Butylbenzene	16.7	D	μg/kg		20.0		83 84	70-130 70-130	3	30
sec-Butylbenzene	16.8		μg/kg		20.0		84	70-130	7	30
tert-Butylbenzene	17.3	D	μg/kg		20.0		87	70-130	7	30
Carbon disulfide	16.0	D	μg/kg		20.0		80 75	70-130	11	30
Carbon tetrachloride	15.0	D	μg/kg		20.0		75 400	70-130	6	30
Chlorobenzene	20.4	D	μg/kg "		20.0		102	70-130	5	30
Chloroethane	22.0	D	μg/kg		20.0		110	70-130	7	30
Chloroform	21.5	D	μg/kg		20.0		108	70-130	3	30

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
SW846 8260C										
Batch 1717436 - SW846 5035A Soil (high level)										
LCS Dup (1717436-BSD1)					Pre	epared & Ar	nalyzed: 13-	Oct-17		
Chloromethane	17.0	D	μg/kg		20.0		85	70-130	8	30
2-Chlorotoluene	20.2	D	μg/kg		20.0		101	70-130	7	30
4-Chlorotoluene	20.3	D	μg/kg		20.0		102	70-130	6	30
1,2-Dibromo-3-chloropropane	21.3	D	μg/kg		20.0		106	70-130	2	30
Dibromochloromethane	21.1	D	μg/kg		20.0		105	70-130	2	30
1,2-Dibromoethane (EDB)	20.8	D	μg/kg		20.0		104	70-130	2	30
Dibromomethane	23.1	D	μg/kg		20.0		115	70-130	0.04	30
1,2-Dichlorobenzene	21.1	D	μg/kg		20.0		105	70-130	3	30
1,3-Dichlorobenzene	20.2	D	μg/kg		20.0		101	70-130	7	30
1,4-Dichlorobenzene	20.4	D	μg/kg		20.0		102	70-130	2	30
Dichlorodifluoromethane (Freon12)	14.0	D	μg/kg		20.0		70	70-130	5	30
1,1-Dichloroethane	20.9	D	μg/kg		20.0		105	70-130	4	30
1,2-Dichloroethane	22.6	D	μg/kg		20.0		113	70-130	3	30
1,1-Dichloroethene	16.9	D	μg/kg		20.0		84	70-130	5	30
cis-1,2-Dichloroethene	21.0	D	μg/kg		20.0		105	70-130	6	30
trans-1,2-Dichloroethene	18.5	D	μg/kg		20.0		92	70-130	5	30
1,2-Dichloropropane	21.6	D	μg/kg		20.0		108	70-130	3	30
1,3-Dichloropropane	22.5	D	μg/kg		20.0		112	70-130	2	30
2,2-Dichloropropane	17.4	D	μg/kg		20.0		87	70-130	7	30
1,1-Dichloropropene	16.1	D	μg/kg		20.0		81	70-130	2	30
cis-1,3-Dichloropropene	19.4	D	μg/kg μg/kg		20.0		97	70-130	1	30
trans-1,3-Dichloropropene	20.0	D	μg/kg		20.0		100	70-130	0.1	30
Ethylbenzene	19.3	D	μg/kg μg/kg		20.0		97	70-130	5	30
Hexachlorobutadiene	15.5	D	μg/kg μg/kg		20.0		78	70-130	7	30
2-Hexanone (MBK)	20.0	D	μg/kg μg/kg		20.0		100	70-130	2	30
Isopropylbenzene	18.0	D	μg/kg μg/kg		20.0		90	70-130	7	30
	17.8	D			20.0		90 89	70-130	3	30
4-Isopropyltoluene Methyl tert-butyl ether		D	μg/kg		20.0		108	70-130 70-130	0	30
•	21.6	D	μg/kg							
4-Methyl-2-pentanone (MIBK)	20.6	D	μg/kg		20.0		103	70-130	0.2	30
Methylene chloride	18.6		μg/kg		20.0		93	70-130	14	30
Naphthalene	19.3	D	μg/kg		20.0		96	70-130	2	30
n-Propylbenzene	17.6	D	μg/kg "		20.0		88	70-130	7	30
Styrene	19.1	D	μg/kg "		20.0		96	70-130	5	30
1,1,1,2-Tetrachloroethane	20.4	D	μg/kg 		20.0		102	70-130	5	30
1,1,2,2-Tetrachloroethane	21.8	D	μg/kg 		20.0		109	70-130	4	30
Tetrachloroethene	15.2	D	μg/kg		20.0		76	70-130	8	30
Toluene	19.3	D	μg/kg 		20.0		97	70-130	6	30
1,2,3-Trichlorobenzene	19.4	D	μg/kg 		20.0		97	70-130	4	30
1,2,4-Trichlorobenzene	18.1	D -	μg/kg		20.0		91	70-130	3	30
1,1,1-Trichloroethane	17.3	D	μg/kg		20.0		87	70-130	6	30
1,1,2-Trichloroethane	22.8	D	μg/kg		20.0		114	70-130	3	30
Trichloroethene	18.6	D	μg/kg		20.0		93	70-130	5	30
Trichlorofluoromethane (Freon 11)	16.1	D -	μg/kg		20.0		81	70-130	5	30
1,2,3-Trichloropropane	23.0	D	μg/kg		20.0		115	70-130	2	30
1,2,4-Trimethylbenzene	19.7	D	μg/kg		20.0		99	70-130	7	30
1,3,5-Trimethylbenzene	18.8	D	μg/kg		20.0		94	70-130	8	30
Vinyl chloride	19.6	D	μg/kg		20.0		98	70-130	12	30
m,p-Xylene	19.3	D	μg/kg		20.0		96	70-130	7	30
o-Xylene	21.0	D	μg/kg		20.0		105	70-130	7	30
Tetrahydrofuran	21.4	D	μg/kg		20.0		107	70-130	0.7	30

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
SW846 8260C										
Batch 1717436 - SW846 5035A Soil (high level)										
LCS Dup (1717436-BSD1)					Pre	enared & Ai	nalyzed: 13-	-Oct-17		
Ethyl ether	23.7	D	μg/kg		20.0		118	70-130	7	30
Tert-amyl methyl ether	23.5	D	μg/kg		20.0		117	70-130	3	30
Ethyl tert-butyl ether	22.1	D	μg/kg		20.0		110	70-130	0.2	30
Di-isopropyl ether	21.3	D	μg/kg μg/kg		20.0		107	70-130	2	30
1,4-Dioxane	177	D	μg/kg μg/kg		200		88	70-130	1	30
·									· ·	
Surrogate: 4-Bromofluorobenzene	50.0 49.7		μg/kg		50.0 50.0		100 99	70-130 70-130		
Surrogate: Toluene-d8			μg/kg							
Surrogate: 1,2-Dichloroethane-d4	51.1 51.7		μg/kg		50.0		102 103	70-130 70-130		
Surrogate: Dibromofluoromethane	51.7		μg/kg		50.0		103	70-130		
Batch 1717540 - SW846 5035A Soil (high level)										
Blank (1717540-BLK1)					Pre	epared & A	nalyzed: 16-	-Oct-17		
1,1,2-Trichlorotrifluoroethane (Freon 113)	< 50.0	D	μg/kg wet	50.0						
Acetone	< 500	D -	μg/kg wet	500						
Benzene	< 50.0	D -	μg/kg wet	50.0						
Bromobenzene	< 50.0	D -	μg/kg wet	50.0						
Bromochloromethane	< 50.0	D	μg/kg wet	50.0						
Bromodichloromethane	< 50.0	D	μg/kg wet	50.0						
Bromoform	< 50.0	D	μg/kg wet	50.0						
Bromomethane	< 100	D	μg/kg wet	100						
2-Butanone (MEK)	< 100	D	μg/kg wet	100						
n-Butylbenzene	< 50.0	D	μg/kg wet	50.0						
sec-Butylbenzene	< 50.0	D	μg/kg wet	50.0						
tert-Butylbenzene	< 50.0	D	μg/kg wet	50.0						
Carbon disulfide	< 100	D	μg/kg wet	100						
Carbon tetrachloride	< 50.0	D	μg/kg wet	50.0						
Chlorobenzene	< 50.0	D	μg/kg wet	50.0						
Chloroethane	< 100	D	μg/kg wet	100						
Chloroform	< 50.0	D	μg/kg wet	50.0						
Chloromethane	< 100	D	μg/kg wet	100						
2-Chlorotoluene	< 50.0	D	μg/kg wet	50.0						
4-Chlorotoluene	< 50.0	D	μg/kg wet	50.0						
1,2-Dibromo-3-chloropropane	< 100	D	μg/kg wet	100						
Dibromochloromethane	< 50.0	D	μg/kg wet	50.0						
1,2-Dibromoethane (EDB)	< 50.0	D	μg/kg wet	50.0						
Dibromomethane	< 50.0	D	μg/kg wet	50.0						
1,2-Dichlorobenzene	< 50.0	D	μg/kg wet	50.0						
1,3-Dichlorobenzene	< 50.0	D	μg/kg wet	50.0						
1,4-Dichlorobenzene	< 50.0	D	μg/kg wet	50.0						
Dichlorodifluoromethane (Freon12)	< 100	D	μg/kg wet	100						
1,1-Dichloroethane	< 50.0	D	μg/kg wet	50.0						
1,2-Dichloroethane	< 50.0	D	μg/kg wet	50.0						
1,1-Dichloroethene	< 50.0	D	μg/kg wet	50.0						
cis-1,2-Dichloroethene	< 50.0	D	μg/kg wet	50.0						
trans-1,2-Dichloroethene	< 50.0	D	μg/kg wet	50.0						
1,2-Dichloropropane	< 50.0	D	μg/kg wet	50.0						
1,3-Dichloropropane	< 50.0	D	μg/kg wet	50.0						
2,2-Dichloropropane	< 50.0	D	μg/kg wet	50.0						
1,1-Dichloropropene	< 50.0	D	μg/kg wet	50.0						
cis-1,3-Dichloropropene	< 50.0	D	μg/kg wet	50.0						
trans-1,3-Dichloropropene	< 50.0	D	μg/kg wet	50.0						

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
SW846 8260C										
Batch 1717540 - SW846 5035A Soil (high level)										
Blank (1717540-BLK1)					Pro	epared & A	nalyzed: 16-	Oct-17		
Ethylbenzene	< 50.0	D	μg/kg wet	50.0						
Hexachlorobutadiene	< 50.0	D	μg/kg wet	50.0						
2-Hexanone (MBK)	< 100	D	μg/kg wet	100						
Isopropylbenzene	< 50.0	D	μg/kg wet	50.0						
4-Isopropyltoluene	< 50.0	D	μg/kg wet	50.0						
Methyl tert-butyl ether	< 50.0	D	μg/kg wet	50.0						
4-Methyl-2-pentanone (MIBK)	< 100	D	μg/kg wet	100						
Methylene chloride	< 100	D	μg/kg wet	100						
Naphthalene	< 50.0	D	μg/kg wet	50.0						
n-Propylbenzene	< 50.0	D	μg/kg wet	50.0						
Styrene	< 50.0	D	μg/kg wet	50.0						
1,1,1,2-Tetrachloroethane	< 50.0	D	μg/kg wet	50.0						
1,1,2,2-Tetrachloroethane	< 50.0	D	μg/kg wet	50.0						
Tetrachloroethene	< 50.0	D	μg/kg wet	50.0						
Toluene	< 50.0	D	μg/kg wet	50.0						
1,2,3-Trichlorobenzene	< 50.0	D	μg/kg wet	50.0						
1,2,4-Trichlorobenzene	< 50.0	D	μg/kg wet	50.0						
1,1,1-Trichloroethane	< 50.0	D	μg/kg wet	50.0						
1,1,2-Trichloroethane	< 50.0	D	μg/kg wet	50.0						
Trichloroethene	< 50.0	D	μg/kg wet	50.0						
Trichlorofluoromethane (Freon 11)	< 50.0	D	μg/kg wet	50.0						
1,2,3-Trichloropropane	< 50.0	D	μg/kg wet	50.0						
1,2,4-Trimethylbenzene	< 50.0	D	μg/kg wet	50.0						
1,3,5-Trimethylbenzene	< 50.0	D	μg/kg wet	50.0						
Vinyl chloride	< 50.0	D	μg/kg wet	50.0						
m,p-Xylene	< 100	D	μg/kg wet	100						
o-Xylene	< 50.0	D	μg/kg wet	50.0						
Tetrahydrofuran	< 100	D	μg/kg wet	100						
Ethyl ether	< 50.0	D	μg/kg wet	50.0						
Tert-amyl methyl ether	< 50.0	D	μg/kg wet	50.0						
Ethyl tert-butyl ether	< 50.0	D	μg/kg wet	50.0						
Di-isopropyl ether	< 50.0	D	μg/kg wet	50.0						
1,4-Dioxane	< 1000	D	μg/kg wet	1000						
Surrogate: 4-Bromofluorobenzene	49.0				50.0		98	70-130		
			μg/kg							
Surrogate: 1.2 Diablaranthana d4	48.8		μg/kg		50.0		98	70-130 70-130		
Surrogate: 1,2-Dichloroethane-d4	50.4		μg/kg		50.0		101	70-130 70-130		
Surrogate: Dibromofluoromethane	50.7		μg/kg		50.0		101			
LCS (1717540-BS1)		-				epared & Ai	nalyzed: 16-			
1,1,2-Trichlorotrifluoroethane (Freon 113)	22.9	D	μg/kg		20.0		114	70-130		
Acetone	21.8	D	μg/kg		20.0		109	70-130		
Benzene	23.3	D	μg/kg		20.0		117	70-130		
Bromobenzene	23.1	D	μg/kg "		20.0		115	70-130		
Bromochloromethane	22.6	D	μg/kg		20.0		113	70-130		
Bromodichloromethane	22.6	D	μg/kg "		20.0		113	70-130		
Bromoform	23.3	D	μg/kg		20.0		116	70-130		
Bromomethane	34.8	QC2, D	μg/kg		20.0		174	70-130		
2-Butanone (MEK)	21.4	D	μg/kg		20.0		107	70-130		
n-Butylbenzene	23.3	D	μg/kg		20.0		116	70-130		
sec-Butylbenzene	23.5	D	μg/kg		20.0		117	70-130		
tert-Butylbenzene	23.4	D	μg/kg		20.0		117	70-130		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
SW846 8260C										
Batch 1717540 - SW846 5035A Soil (high level)										
LCS (1717540-BS1)					Pre	epared & Ar	nalyzed: 16-	Oct-17		
Carbon disulfide	23.3	D	μg/kg		20.0		116	70-130		
Carbon tetrachloride	22.7	D	μg/kg		20.0		113	70-130		
Chlorobenzene	22.9	D	μg/kg		20.0		114	70-130		
Chloroethane	24.5	D	μg/kg		20.0		122	70-130		
Chloroform	23.4	D	μg/kg		20.0		117	70-130		
Chloromethane	17.9	D	μg/kg		20.0		89	70-130		
2-Chlorotoluene	23.4	D	μg/kg		20.0		117	70-130		
4-Chlorotoluene	22.9	D	μg/kg		20.0		114	70-130		
1,2-Dibromo-3-chloropropane	22.5	D	μg/kg		20.0		113	70-130		
Dibromochloromethane	22.6	D	μg/kg		20.0		113	70-130		
1,2-Dibromoethane (EDB)	21.9	D	μg/kg		20.0		110	70-130		
Dibromomethane	23.8	D	μg/kg		20.0		119	70-130		
1,2-Dichlorobenzene	23.0	D	μg/kg μg/kg		20.0		115	70-130		
1,3-Dichlorobenzene	23.0	D	μg/kg μg/kg		20.0		112	70-130		
1,4-Dichlorobenzene	22.4	D	μg/kg μg/kg		20.0		113	70-130 70-130		
Dichlorodifluoromethane (Freon12)	21.4	D			20.0		107	70-130		
1,1-Dichloroethane		D	μg/kg		20.0		117	70-130 70-130		
,	23.4	D	μg/kg							
1,2-Dichloroethane	22.9		μg/kg		20.0		114	70-130		
1,1-Dichloroethene	22.6	D	μg/kg		20.0		113	70-130		
cis-1,2-Dichloroethene	23.8	D	μg/kg		20.0		119	70-130		
trans-1,2-Dichloroethene	23.2	D	μg/kg "		20.0		116	70-130		
1,2-Dichloropropane	23.1	D	μg/kg 		20.0		116	70-130		
1,3-Dichloropropane	22.8	D	μg/kg		20.0		114	70-130		
2,2-Dichloropropane	29.8	QC2, D	μg/kg		20.0		149	70-130		
1,1-Dichloropropene	23.6	D	μg/kg 		20.0		118	70-130		
cis-1,3-Dichloropropene	22.3	D	μg/kg		20.0		112	70-130		
trans-1,3-Dichloropropene	22.5	D	μg/kg		20.0		113	70-130		
Ethylbenzene	23.7	D	μg/kg		20.0		119	70-130		
Hexachlorobutadiene	22.8	D	μg/kg		20.0		114	70-130		
2-Hexanone (MBK)	21.0	D	μg/kg		20.0		105	70-130		
Isopropylbenzene	23.2	D	μg/kg		20.0		116	70-130		
4-Isopropyltoluene	24.2	D	μg/kg		20.0		121	70-130		
Methyl tert-butyl ether	23.2	D	μg/kg		20.0		116	70-130		
4-Methyl-2-pentanone (MIBK)	21.3	D	μg/kg		20.0		106	70-130		
Methylene chloride	21.6	D	μg/kg		20.0		108	70-130		
Naphthalene	21.7	D	μg/kg		20.0		108	70-130		
n-Propylbenzene	23.4	D	μg/kg		20.0		117	70-130		
Styrene	21.8	D	μg/kg		20.0		109	70-130		
1,1,1,2-Tetrachloroethane	22.6	D	μg/kg		20.0		113	70-130		
1,1,2,2-Tetrachloroethane	22.0	D	μg/kg		20.0		110	70-130		
Tetrachloroethene	22.1	D	μg/kg		20.0		111	70-130		
Toluene	22.8	D	μg/kg		20.0		114	70-130		
1,2,3-Trichlorobenzene	22.0	D	μg/kg		20.0		110	70-130		
1,2,4-Trichlorobenzene	21.2	D	μg/kg		20.0		106	70-130		
1,1,1-Trichloroethane	24.0	D	μg/kg		20.0		120	70-130		
1,1,2-Trichloroethane	23.4	D	μg/kg		20.0		117	70-130		
Trichloroethene	23.4	D	μg/kg		20.0		117	70-130		
Trichlorofluoromethane (Freon 11)	24.5	D	μg/kg		20.0		122	70-130		
1,2,3-Trichloropropane	23.4	D	μg/kg		20.0		117	70-130		
1,2,4-Trimethylbenzene	23.1	D	μg/kg		20.0		116	70-130		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
SW846 8260C										
Batch 1717540 - SW846 5035A Soil (high level)										
LCS (1717540-BS1)					Pre	epared & Ar	nalyzed: 16	-Oct-17		
1,3,5-Trimethylbenzene	23.3	D	μg/kg		20.0		116	70-130		
Vinyl chloride	24.7	D	μg/kg		20.0		124	70-130		
m,p-Xylene	23.8	D	μg/kg		20.0		119	70-130		
o-Xylene	23.9	D	μg/kg		20.0		120	70-130		
Tetrahydrofuran	22.8	D	μg/kg		20.0		114	70-130		
Ethyl ether	24.3	D	μg/kg		20.0		122	70-130		
Tert-amyl methyl ether	22.6	D	μg/kg		20.0		113	70-130		
Ethyl tert-butyl ether	23.8	D	μg/kg		20.0		119	70-130		
Di-isopropyl ether	22.8	D	μg/kg		20.0		114	70-130		
1,4-Dioxane	179	D	μg/kg		200		89	70-130		
Surrogate: 4-Bromofluorobenzene	50.0		μg/kg		50.0		100	70-130		
Surrogate: Toluene-d8	49.6		μg/kg		50.0		99	70-130		
Surrogate: 1,2-Dichloroethane-d4	49.7		μg/kg		50.0		99	70-130		
Surrogate: Dibromofluoromethane	51.5		μg/kg		50.0		103	70-130		
LCS Dup (1717540-BSD1)	00		P3/113			enared & Ar	nalyzed: 16			
1,1,2-Trichlorotrifluoroethane (Freon 113)	19.6	D	μg/kg		20.0	cparca a 7 ti	98	70-130	15	30
Acetone	20.6	D	μg/kg μg/kg		20.0		103	70-130	6	30
Benzene	22.5	D	μg/kg		20.0		112	70-130	4	30
Bromobenzene	21.6	D	μg/kg		20.0		108	70-130	7	30
Bromochloromethane	21.7	D	μg/kg		20.0		108	70-130	4	30
Bromodichloromethane	21.8	D	μg/kg μg/kg		20.0		109	70-130	4	30
Bromoform	22.9	D	μg/kg		20.0		114	70-130	2	30
Bromomethane	32.9	QC2, D	μg/kg		20.0		164	70-130	5	30
2-Butanone (MEK)	20.9	D	μg/kg		20.0		104	70-130	2	30
n-Butylbenzene	22.2	D	μg/kg μg/kg		20.0		111	70-130	5	30
sec-Butylbenzene	22.0	D	μg/kg		20.0		110	70-130	7	30
tert-Butylbenzene	22.1	D	μg/kg μg/kg		20.0		111	70-130	6	30
Carbon disulfide	18.1	D	μg/kg		20.0		91	70-130	25	30
Carbon tetrachloride	21.5	D	μg/kg μg/kg		20.0		107	70-130	5	30
Chlorobenzene	21.8	D	μg/kg μg/kg		20.0		107	70-130	5	30
Chloroethane	22.9	D	μg/kg		20.0		114	70-130	7	30
Chloroform	22.8	D	μg/kg μg/kg		20.0		114	70-130	3	30
Chloromethane	16.8	D	μg/kg μg/kg		20.0		84	70-130	6	30
2-Chlorotoluene	22.2	D	μg/kg μg/kg		20.0		111	70-130	5	30
4-Chlorotoluene	21.7	D	μg/kg μg/kg		20.0		109	70-130	5	30
1,2-Dibromo-3-chloropropane	21.7	D	μg/kg μg/kg		20.0		109	70-130	3	30
Dibromochloromethane	21.8	D	μg/kg μg/kg		20.0		109	70-130	3	30
1,2-Dibromoethane (EDB)	21.7	D	μg/kg μg/kg		20.0		109	70-130	1	30
Dibromomethane	23.1	D	μg/kg μg/kg		20.0		115	70-130	3	30
1,2-Dichlorobenzene	22.2	D	μg/kg μg/kg		20.0		111	70-130	4	30
1,3-Dichlorobenzene	21.3	D	μg/kg μg/kg		20.0		106	70-130	5	30
1,4-Dichlorobenzene		D			20.0		107	70-130	6	30
Dichlorodifluoromethane (Freon12)	21.3 20.5	D	µg/kg		20.0		107	70-130 70-130	4	30
1,1-Dichloroethane	20.5	D	µg/kg ua/ka		20.0		112	70-130 70-130	4 5	30
		D	µg/kg		20.0		112	70-130 70-130	2	30
1,2-Dichloroethane	22.4	D	µg/kg							
1,1-Dichloroethene	21.1		μg/kg		20.0		105	70-130 70-130	7	30
cis-1,2-Dichloroethene	22.8	D	μg/kg		20.0		114	70-130	4	30
trans-1,2-Dichloroethene	22.4	D	μg/kg		20.0		112	70-130 70-130	4	30
1,2-Dichloropropane	22.4	D	μg/kg 		20.0		112	70-130	3	30
1,3-Dichloropropane	22.1	D	μg/kg		20.0		110	70-130	3	30

maluta(a)	D a14	E1	I In:4-	*DDI	Spike	Source	0/DEC	%REC	מממ	RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limi
W846 8260C										
Batch 1717540 - SW846 5035A Soil (high level)										
LCS Dup (1717540-BSD1)					Pre	epared & Ar	nalyzed: 16-	Oct-17		
2,2-Dichloropropane	28.1	QC2, D	μg/kg		20.0		140	70-130	6	30
1,1-Dichloropropene	22.4	D	μg/kg		20.0		112	70-130	5	30
cis-1,3-Dichloropropene	21.9	D	μg/kg		20.0		109	70-130	2	30
trans-1,3-Dichloropropene	22.2	D	μg/kg		20.0		111	70-130	1	30
Ethylbenzene	22.6	D	μg/kg		20.0		113	70-130	5	30
Hexachlorobutadiene	21.7	D	μg/kg		20.0		109	70-130	5	30
2-Hexanone (MBK)	20.4	D	μg/kg		20.0		102	70-130	3	30
Isopropylbenzene	22.1	D	μg/kg		20.0		110	70-130	5	30
4-Isopropyltoluene	22.7	D	μg/kg		20.0		114	70-130	6	30
Methyl tert-butyl ether	23.2	D	μg/kg		20.0		116	70-130	0.2	30
4-Methyl-2-pentanone (MIBK)	20.9	D	μg/kg		20.0		104	70-130	2	30
Methylene chloride	17.6	D	μg/kg		20.0		88	70-130	20	30
Naphthalene	19.7	D	μg/kg		20.0		98	70-130	10	30
n-Propylbenzene	22.1	D	μg/kg		20.0		110	70-130	6	30
Styrene	20.7	D	μg/kg		20.0		103	70-130	5	30
1,1,2-Tetrachloroethane	22.1	D	μg/kg		20.0		110	70-130	2	30
1,1,2,2-Tetrachloroethane	21.6	D	μg/kg		20.0		108	70-130	2	30
Tetrachloroethene	20.7	D	μg/kg		20.0		104	70-130	7	30
Toluene	21.6	D	μg/kg		20.0		108	70-130	5	30
1,2,3-Trichlorobenzene	20.2	D	μg/kg		20.0		101	70-130	9	30
1,2,4-Trichlorobenzene	19.6	D	μg/kg		20.0		98	70-130	8	30
1,1,1-Trichloroethane	22.9	D	μg/kg		20.0		114	70-130	5	30
1,1,2-Trichloroethane	22.8	D	μg/kg		20.0		114	70-130	3	30
Trichloroethene	22.3	D	μg/kg		20.0		112	70-130	5	30
Trichlorofluoromethane (Freon 11)	23.3	D	μg/kg		20.0		116	70-130	5	30
1,2,3-Trichloropropane	23.1	D	μg/kg		20.0		116	70-130	1	30
1,2,4-Trimethylbenzene	21.8	D	μg/kg		20.0		109	70-130	6	30
1,3,5-Trimethylbenzene	21.9	D	μg/kg		20.0		109	70-130	6	30
Vinyl chloride	25.1	D	μg/kg		20.0		126	70-130	2	30
m,p-Xylene	22.8	D	μg/kg		20.0		114	70-130	5	30
o-Xylene	22.9	D	μg/kg		20.0		115	70-130	4	30
Tetrahydrofuran	22.1	D	μg/kg		20.0		110	70-130	3	30
Ethyl ether	23.9	D	μg/kg		20.0		120	70-130	2	30
Tert-amyl methyl ether	22.4	D	μg/kg		20.0		112	70-130	1	30
Ethyl tert-butyl ether	23.8	D	μg/kg		20.0		119	70-130	0.08	30
Di-isopropyl ether	22.2	D	μg/kg		20.0		111	70-130	3	30
1,4-Dioxane	178	D	μg/kg		200		89	70-130	0.5	30
Surrogate: 4-Bromofluorobenzene	49.7		μg/kg		50.0		99	70-130		
Surrogate: Toluene-d8	49.4		μg/kg		50.0		99	70-130		
Surrogate: 1,2-Dichloroethane-d4	49.7		μg/kg		50.0		99	70-130		
Surrogate: Dibromofluoromethane	51.9		μg/kg		50.0		104	70-130		

Extractable Petroleum Hydrocarbons - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPI Lim
MADEP EPH 5/2004 R										
Batch 1717419 - SW846 3546										
Blank (1717419-BLK1)					Pre	enared: 13-	Oct-17 Ana	alyzed: 14-0	ct-17	
C9-C18 Aliphatic Hydrocarbons	< 9.98		mg/kg wet	9.98	<u>- 110</u>	parca. 10	000 17 7410	aryzou. 11 o	<u> </u>	
C19-C36 Aliphatic Hydrocarbons	< 9.98		mg/kg wet	9.98						
C11-C22 Aromatic Hydrocarbons	< 9.98		mg/kg wet	9.98						
Unadjusted C11-C22 Aromatic Hydrocarbons	< 9.98		mg/kg wet	9.98						
Total Petroleum Hydrocarbons	< 29.9		mg/kg wet	29.9						
Unadjusted Total Petroleum Hydrocarbons	< 29.9		mg/kg wet	29.9						
Naphthalene (aliphatic fraction)	0.00		mg/kg wet							
2-Methylnaphthalene (aliphatic fraction)	0.00		mg/kg wet							
Surrogate: 1-Chlorooctadecane	2.21		mg/kg wet		3.33		67	40-140		
Surrogate: Ortho-Terphenyl	1.84		mg/kg wet		3.33		55	40-140		
Surrogate: 2-Fluorobiphenyl	1.36		mg/kg wet		2.66		51	40-140		
LCS (1717419-BS1)			0 0			enared: 13-	Oct-17 Ana	alvzed: 14-O	ct-17	
C9-C18 Aliphatic Hydrocarbons	19.9		mg/kg wet	9.93	19.9	, pa. oao	100	40-140	<u> </u>	
C19-C36 Aliphatic Hydrocarbons	24.4		mg/kg wet	9.93	26.5		92	40-140		
Unadjusted C11-C22 Aromatic Hydrocarbons	32.8		mg/kg wet	9.93	45.0		73	40-140		
Naphthalene (aliphatic fraction)	0.00		mg/kg wet		2.65			0-200		
2-Methylnaphthalene (aliphatic fraction)	0.00		mg/kg wet		2.65			0-200		
Surrogate: 1-Chlorooctadecane	1.97		mg/kg wet		3.31		60	40-140		
Surrogate: Ortho-Terphenyl	2.48		mg/kg wet		3.31		75	40-140		
Surrogate: 2-Fluorobiphenyl	1.83		mg/kg wet		2.65		69	40-140		
LCS (1717419-BS2)					Pre	epared: 13-	Oct-17 Ana	alyzed: 14-O	ct-17	
C9-C18 Aliphatic Hydrocarbons	19.6		mg/kg wet	10.0	20.0		98	40-140		
C19-C36 Aliphatic Hydrocarbons	23.4		mg/kg wet	10.0	26.7		88	40-140		
Unadjusted C11-C22 Aromatic Hydrocarbons	41.0		mg/kg wet	10.0	45.3		90	40-140		
Naphthalene (aliphatic fraction)	0.00		mg/kg wet		2.67			0-200		
2-Methylnaphthalene (aliphatic fraction)	0.00		mg/kg wet		2.67			0-200		
Surrogate: 1-Chlorooctadecane	2.02		mg/kg wet		3.33		61	40-140		
Surrogate: Ortho-Terphenyl	3.02		mg/kg wet		3.33		91	40-140		
Surrogate: 2-Fluorobiphenyl	1.98		mg/kg wet		2.67		74	40-140		
LCS Dup (1717419-BSD1)					Pre	epared: 13-	Oct-17 Ana	alyzed: 14-O	ct-17	
C9-C18 Aliphatic Hydrocarbons	15.9		mg/kg wet	9.88	19.8		81	40-140	22	25
C19-C36 Aliphatic Hydrocarbons	22.1		mg/kg wet	9.88	26.3		84	40-140	10	25
Unadjusted C11-C22 Aromatic Hydrocarbons	38.4		mg/kg wet	9.88	44.8		86	40-140	16	25
Naphthalene (aliphatic fraction)	0.00		mg/kg wet		2.63			0-200		200
2-Methylnaphthalene (aliphatic fraction)	0.00		mg/kg wet		2.63			0-200		200
Surrogate: 1-Chlorooctadecane	1.68		mg/kg wet		3.29		51	40-140		
Surrogate: Ortho-Terphenyl	2.71		mg/kg wet		3.29		82	40-140		
Surrogate: 2-Fluorobiphenyl	2.09		mg/kg wet		2.63		79	40-140		

Total Metals by EPA 6000/7000 Series Methods - Quality Control

	_					-				
Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Analyte(s)	Result	Tiag	Omis	KDL	Level	Resuit	/0KEC	Lillits	KI D	LIIIII
SW846 6010C										
Batch 1717347 - SW846 3051A										
Blank (1717347-BLK1)					Pre	epared: 13-	Oct-17 An	alyzed: 16-O	ct-17	
Chromium	< 0.987		mg/kg wet	0.987						
Arsenic	< 1.48		mg/kg wet	1.48						
Copper	< 0.987		mg/kg wet	0.987						
Zinc	< 0.987		mg/kg wet	0.987						
Lead	< 1.48		mg/kg wet	1.48						
Reference (1717347-SRM1)					Pre	epared & Ai	nalyzed: 13	-Oct-17		
Arsenic	14.5		mg/kg wet	1.50	15.0		97	70.3-130. 1		
Copper	78.0		mg/kg wet	1.00	77.6		100	81.7-117. 6		
Lead	65.8		mg/kg wet	1.50	70.5		93	82-117.3		
Zinc	105		mg/kg wet	1.00	113		93	83-117		
Chromium	49.7		mg/kg wet	1.00	51.7		96	80.1-119. 6		
Reference (1717347-SRM2)					Pre	epared & A	nalyzed: 13	-Oct-17		
Arsenic	13.5		mg/kg wet	1.50	14.9		91	70.3-130. 1		
Copper	73.8		mg/kg wet	1.00	77.0		96	81.7-117. 6		
Lead	63.0		mg/kg wet	1.50	69.9		90	82-117.3		
Chromium	47.6		mg/kg wet	1.00	51.3		93	80.1-119. 6		
Zinc	104		mg/kg wet	1.00	112		93	83-117		

General Chemistry Parameters - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
SW846 9012B										
Batch 1717429 - General Preparation										
Blank (1717429-BLK1)					Pre	epared: 13-	Oct-17 An	alyzed: 14-O	ct-17	
Cyanide (total)	< 0.500		mg/kg wet	0.500						
LCS (1717429-BS1)					Pre	epared: 13-	Oct-17 An	alyzed: 14-O	ct-17	
Cyanide (total)	24.8		mg/kg wet	0.500	25.0		99	90-110		
<u>Duplicate (1717429-DUP1)</u>			Source: SC4	<u> 10242-01</u>	Pre	epared: 13-	Oct-17 An	alyzed: 14-O	ct-17	
Cyanide (total)	< 0.317		mg/kg dry	0.317		BRL				35
Matrix Spike (1717429-MS1)			Source: SC4	<u> 10242-01</u>	Pre	epared: 13-	Oct-17 An	alyzed: 14-O	ct-17	
Cyanide (total)	14.3		mg/kg dry	0.301	15.1	BRL	95	90-110		
Matrix Spike Dup (1717429-MSD1)			Source: SC4	40242-01	Pre	epared: 13-	Oct-17 An	alyzed: 14-O	ct-17	
Cyanide (total)	16.0		mg/kg dry	0.326	16.3	BRL	98	90-110	11	35
Reference (1717429-SRM1)					Pre	epared: 13-	Oct-17 An	alyzed: 14-O	ct-17	
Cyanide (total)	76.8		mg/kg wet	1.13	65.2		118	39.4-183		

Extractable Petroleum Hydrocarbons - CCV Evaluation Report

nalyte(s)	Average RF	CCRF	% D	Limit	
naryte(s)	КГ	CCKF	/0 D	LIIIIt	
atch S709112					
Calibration Check (S709112-CCV1)					
C9-C18 Aliphatic Hydrocarbons	301660.5	191658.6	-13.2	25	
C19-C36 Aliphatic Hydrocarbons	376153.2	207478.9	-2.5	25	
Naphthalene (aliphatic fraction)	271837.9				
2-Methylnaphthalene (aliphatic fraction)	271519.6				
Calibration Check (S709112-CCV2)					
C9-C18 Aliphatic Hydrocarbons	301660.5	208915.1	-5.0	25	
C19-C36 Aliphatic Hydrocarbons	376153.2	204403.7	-4.2	25	
Unadjusted C11-C22 Aromatic Hydrocarbons	218532.8	194608.1	5.0	25	
Naphthalene (aliphatic fraction)	271837.9	233315.4	-14.2		
2-Methylnaphthalene (aliphatic fraction)	271519.6	17758.84	-93.5		
Calibration Check (S709112-CCV3)					
C9-C18 Aliphatic Hydrocarbons	301660.5	262964.3	20.8	25	
C19-C36 Aliphatic Hydrocarbons	376153.2	219795.9	4.3	25	
Naphthalene (aliphatic fraction)	271837.9				
2-Methylnaphthalene (aliphatic fraction)	271519.6				

17-Oct-17 17:45 Page 28 of 30

The following list indicates the date and time low-level VOC soil/sediment samples were placed in the freezer at the lab: SC40242-01 SP11_101117-1 10/11/2017 6:31 PM

This laboratory report is not valid without an authorized signature on the cover page.

Notes and Definitions

D Data reported from a dilution

QC2 Analyte out of acceptance range in QC spike but no reportable concentration present in sample.

VOC8 Reporting limits reflect SW846 5035A High Level extraction technique due to interference and/or QC issues using SW846

5035A Low Level extraction technique.

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification:</u> The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

17-Oct-17 17:45 Page 30 of 30

eurofins

Spectrum Analytical

CHAIN OF CUSTODY RECORD

☐ Standard TAT - 7 to 10 business days

Y Rush TAT - Date Needed: 3->>y

Special Handling:

	≤=NaOH 6=Ascorbic Acid	FEEGIN Elitored 1=No. S20 2=HCl 3=H.S0. 4=HNO. 5=NaOH 6=Ascorbic Acid
low (cell	P.O No.: Quote #:	Project Mgr: Hart Touday
Sampler(s):		Telephone #: 978-905-2100
Location: 40 Ferencem Rd Wilmington State: MA		
Sire Name:		Chelmstone my O1824
3		150 Apollo ar.
Project No: 604 7 86 38.5.0)	Invoice To:	Report To: AK Com
All TATs subject to laboratory approval Min. 24-hr notification needed for rushes Samples disposed after 30 days unless otherwise instructed.	Page of	Spectrum Analytical

Check if chlorinated	Canada Cama.	Sommer of the second	IR ID#								
1 1 1 1 1 1 1 1 1 1	int: Custody Seals: Present	Condition upon receipt:	Scorrected S					0			1
List Preservative Code bilow: 1180, 9 = Delicated Water 10 + 130, 0 118 100 128 128 130 140			Corecction Factor	- - - - - - - - - - - - - - - - - - -	3	0-		1	1 (W)	H Charles	1
1 1 1 1 1 1 1 1 1 1	Anthur, Taddes accom, an	E-mail to:	い Charged Charged	157/0	174	0/11		7	ti	The state of the s	
Itst Preservative Code below: Analysis Containers Containers Containers	nicole callations gecom con	☐ EDD format:	Temp °C	Time:	e:	Dat		by:	Received	shed by:	, Relinqu
List Preservative Code below: attSQ, 9=Deionized Water 10=H2DQ, 11= 1(42 12= 12 14 11 14 11 14 14 14 14 14 14 14 14 14		7							/		
Analysis The Graph Defonized Water 10-HyPO, 11= 162 12= 12= 12= 12= 12= 13= 14= 14= 14= 14= 14= 14= 14= 14= 14= 14											
HSQ, 9-Deionized Water 10=HyPQ, 11= 1(Q 12=											
Itst Preservative Code below: ter GW=Groundwater SW=Surface Water WW=Waste Water SPII{O-1 III} 1025 G SO 2 List Preservative Code below: Analysis CG-Grab CG-Grab CG-Grab CG-Grab CG-Grab CG-Compsite Time: Type Matrix Analysis Analysis Matrix Analysis Matrix Analysis Check if chilorinated Check if c										19	
AHSO, 9-Deionized Water 10=H ₂ PO ₄ III 1QQ 12= HSO, 9-Deionized Water 10=H ₂ PO ₄ III 1QQ 12= HSO, 9-Deionized Water SW-Surface Water WW-Waste Water WW										1	
Also 9 Deionized Water 10 H3PO 11 162 12 12 13 14 11 11 13 14 11 14 11 14 14					1						
The continent Air SG-Soil Gas X2= SAPI					ste						
The containers water 10-H ₃ PO ₄ 11= 10 12 12= 14 11 11 11 11 11 11 11 11 11 11 11 11							-11				
Analysis Ter GW=Groundwater 10=H ₃ PO ₄ I1= 162 I2= I3 SL=Sludge A=Indoor/Ambient Air SG=Soil Gas X2= X2= C=Compsite C=Compsite Time: Type Matrix # of Clear Glass # of Plastic Check if chlorinated			X					1025	1071-17	B-10117	122
Inking Water GW=Groundwater SW=Surface Water WW=Waste Water SO=Soil Gas SO=Soil SL=Sludge A=Indoor/Ambient Air SG=Soil Gas Type Matrix # of Clear Glass # of Plastic Check if chlorinated Check if chlorinated Check if chlorinated List Preservative Code below: Typ T II II II Analysis Analysis Check if chlorinated Check if chlorinated Check if chlorinated			-	4	-		0	1030	10-11-17	PII_10117-1	
Inking Water GW=Groundwater SW=Surface Water WW=Waste Water SO=Soil SL=Sludge A=Indoor/Ambient Air SG=Soil Gas SO=Grab C=Grab List Preservative Code below: T9 T II I	C State-specific reporting standards:	EP Cr,	110	-				Time:	Date:	Sample ID:	Lab ID:
There I - Na252O ₃ 2-FICT 3-F125O ₄ 4-FINO ₃ 5-NaO11 or Associate Analysis OH 8=NaHSO ₄ 9=Deionized Water 10=H ₃ PO ₄ 11= 100 12= The solution of the s	ck if c	H Cu, f	UT						C=Compsite	Grab	G=
Thiered 1-Na2SAO3 2-FICT 3-FI2SO4 4-FINO3 3-NaO11 or Associate Active H 8=NaHSO4 9=Deionized Water 10=H3PO4 11= 162 12= 79 74 11 11 11 11 11 11 11 11 11 11 11 11 11	1	YEN PEN A				Vials			X3=	X2=	X1=
SO ₄ 9=Deionized Water 10=H ₃ PO ₄ 11= 10 12= List Preservative Code below: GW=Groundwater SW=Surface Water WW=Waste Water Containers Containers List Preservative Code below: 79 7 10 1 10 10 11 10 10	No. 65 organizacija progeno	yes Zn,	63	an lei				l Gas			0=0il S0=Soil
II = 100 12 List Preservative Code below: $79 7 11 11 11 11 11 11 11 11 11 11 11 11 1$	MA DEP MCP CAM Report?	Analysis		ntainers	Cor			W=Waste Wate			DW =Drinking Water
11= 16 12= List Preservative Code below:	a	\vdash		2							
		st Preservative Cod	Li	1		2010	12=		11	O_4 9=Deionized Water 10= H_3PO_2	7=CH3OH 8=NaHS

Batch Summary

1717194	<u>\$707773</u>
<u>Volatile Organic Compounds</u>	Extractable Petroleum Hydrocarbons
1717194-BLK1	S707773-CAL1
1717194-BS1	S707773-CAL2
1717194-BSD1	S707773-CAL3
SC40242-01 (SP11_101117-1)	S707773-CAL4
	S707773-CAL5
<u>1717347</u>	S707773-CAL6
Total Metals by EPA 6000/7000 Series Methods	S707773-CAL7
1717347-BLK1	S707773-CAL8
1717347-SRM1	S707773-CAL9
1717347-SRM2	S707773-CALA
SC40242-01 (SP11 101117-1)	S707773-CALB
· - /	S707773-CALC
<u>1717352</u>	S707773-ICV1
General Chemistry Parameters	S707773-LCV1
SC40242-01 (SP11 101117-1)	
50.102.12 01 (61.11_101117 1)	<u>\$708827</u>
1717419	Volatile Organic Compounds
Extractable Petroleum Hydrocarbons	S708827-CAL1
1717419-BLK1	S708827-CAL2
1717419-BS1	S708827-CAL3
1717419-BS2	S708827-CAL4
1717419-BSD1	S708827-CAL5
SC40242-01 (SP11 101117-1)	S708827-CAL6
3C40242-01 (SI II_101117-1)	S708827-CAL7
1717429	S708827-CAL8
General Chemistry Parameters	S708827-CAL9
·	S708827-ICV1
1717429-BLK1	S708827-LCV1
1717429-BS1	S708827-LCV2
1717429-DUP1	S708827-TUN1
1717429-MS1	
1717429-MSD1	<u>\$708847</u>
1717429-SRM1	Volatile Organic Compounds
SC40242-01 (SP11_101117-1)	S708847-CAL1
<u>1717436</u>	S708847-CAL2
	S708847-CAL3
Volatile Organic Compounds	S708847-CAL4
1717436-BLK1	S708847-CAL5
1717436-BS1	S708847-CAL6
1717436-BSD1	S708847-CAL7
SC40242-02 (TB_101117-1)	S708847-ICV1
1717540	S708847-LCV1
	G=0000
Volatile Organic Compounds	<u>\$708990</u>
1717540-BLK1	<u>Volatile Organic Compounds</u>
1717540-BS1	S708990-CCV1
1717540-BSD1	S708990-CCV2
SC40242-01 (SP11_101117-1)	

S709049

Volatile Organic Compounds

S709049-CCV1

S709049-TUN1

S709100

Volatile Organic Compounds

S709100-CCV1

S709100-TUN1

S709112

Extractable Petroleum Hydrocarbons

S709112-CCV1

S709112-CCV2

S709112-CCV3

	Final Report
V	Revised Report

Report Date: 06-Nov-17 11:47

Laboratory Report SC40987

AECOM Environment 250 Apollo Drive Chelmsford, MA 01824

Attn: Art Taddeo

Project: LMC-Wilmington- 40 Fordham Rd. - MA

Project #: 60478638.5.01

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87936 Maine # MA138 New Hampshire # 2972/2538 New Jersey # MA011 New York # 11393 Pennsylvania # 68-04426/68-02924 Rhode Island # LAO00348 USDA # P330-15-00375 Vermont # VT-11393

Authorized by:

Dawn Wojcik Laboratory Director

Vauon & Woscik

Eurofins Spectrum Analytical holds primary certification in the State of Massachusetts for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of Massachusetts does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 26 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Eurofins Spectrum Analytical, Inc.

Eurofins Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Eurofins Spectrum Analytical, Inc. is currently accredited for the specific method or analyte indicated. Please refer to our Quality'web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Eurofins Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey, Pennsylvania and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (PA-68-04426).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

Sample Summary

Work Order: SC40987

Project: LMC-Wilmington- 40 Fordham Rd. - MA

Project Number: 60478638.5.01

 Laboratory ID
 Client Sample ID
 Matrix
 Date Sampled
 Date Received

 SC40987-01
 TB-110117
 Methanol/Deionized Water
 01-Nov-17 10:00
 01-Nov-17 15:56

 SC40987-02
 SP12_110117-1
 Soil
 01-Nov-17 10:15
 01-Nov-17 15:56

The following outlines the condition of all VPH samples contained within this report upon laboratory receipt.

Matrices	Soil				
Containers	✓ Satisfactory				
Sample Preservative	Aqueous (acid preserved)	✓ N/A	pH <u><</u> 2	pH>2	
	Soil or	N/A	ml Methanol/g soil		
	Sediment	✓ Samples re	eceived in Methanol:	 ✓ covering soil/sediment not covering soil/sediment 	✓ 1:1 +/-25% Other
		Samples re	eceived in air-tight conta	niner	
Temperature	Received on ic	ce ✓ F	Received at 4 ± 2 °C		

Were all QA/QC procedures followed as required by the VPH method? Yes

Were any significant modifications made to the VPH method as specified in section 11.3? No

Were all performance/acceptance standards for required QA/QC procedures achieved? Yes

The following outlines the condition of all EPH samples contained within this report upon laboratory receipt.

Matrices	Soil				
Containers	✓ Satisfactory				
Aqueous Preservative	✓ N/A	pH <u>≤</u> 2	pH>2	pH adjusted to <2 in lab	
Temperature	Received on ice	✓	Received at 4 ± 2 °C		

Were all QA/QC procedures followed as required by the EPH method? Yes

Were any significant modifications made to the EPH method as specified in Section 11.3? No

Were all performance/acceptance standards for required QA/QC procedures achieved? Yes

I attest that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Authorized by:

Sawn & Woscik

Dawn E. Wojcik Laboratory Director

MassDEP Analytical Protocol Certification Form

Labo	ratory Name: Eur	rofins Spectrum Analytic	eal, Inc.	Project #: 604786	38.5.01			
Proje	ct Location: LM0	C-Wilmington- 40 Fordh	am Rd MA	RTN:				
		rtifications for the follow		SC40987-01 through SC40	0987-02			
Matri	ices: Methanol/I	Deionized Water						
CAM	Protocol							
/	260 VOC AM II A	7470/7471 Hg CAM III B	✓ MassDEP VPH CAM IV A	8081 Pesticides CAM V B	7196 Hex Cr CAM VI B	MassDEP APH CAM IX A		
	270 SVOC AM II B	7010 Metals CAM III C	✓ MassDEP EPH CAM IV B	8151 Herbicides CAM V C	8330 Explosives CAM VIII A	TO-15 VOC CAM IX B		
/	010 Metals AM III A	6020 Metals CAM III D	8082 PCB CAM V A	9012 Total ✓ Cyanide/PAC CAM VI A	9014 Total Cyanide/PAC CAM VI A	6860 Perchlorate CAM VIII B		
Affirmative responses to questions A through F are required for Presumptive Certainty'status								
A	A Were all samples received in a condition consistent with those described on the Chain of Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?							
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM ✓ Yes No.							
C Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances? ✓ Yes								
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data"? ✓ Yes							
E				ed without significant modeported for each method?	lification(s)?	✓ Yes No Yes No		
F				non-conformances identifi o questions A through E)?	ed and	✓ Yes No		
		Responses to que	stions G, H and I below	are required for P resump	tive Certainty'status			
G	Were the reporting	ng limits at or below all C	CAM reporting limits spe	ecified in the selected CAN	In protocol(s)?	Yes ✓ No		
		tt achieve P resumptive Cer 1 310 CMR 40. 1056 (2)(k)	•	sarily meet the data usability	and representativeness			
Н	Were all QC perf	formance standards speci	fied in the CAM protoco	l(s) achieved?		Yes ✓ No		
I	Were results repo	orted for the complete an	alyte list specified in the	selected CAM protocol(s)	?	Yes ✓ No		
All ne	gative responses ar	e addressed in a case narra	tive on the cover page of th	nis report.		<u>'</u>		
	•	• •		pon my personal inquiry of t		ing the		

Dawn E. Wojcik
Laboratory Director
Date: 11/6/2017

CASE NARRATIVE:

Data has been reported to the RDL. This report excludes estimated concentrations detected below the RDL and above the MDL (J-Flag).

All non-detects and all results below the reporting limit are reported as "<" (less than) the reporting limit in this report.

The samples were received 3.5 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of +/- 1.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group. If method or program required MS/MSD/Dup were not performed, sufficient sample was not provided to the laboratory.

MADEP has published a list of analytical methods (CAM) which provides a series of recommended protocols for the acquisition, analysis and reporting of analytical data in support of MCP decisions. "Presumptive Certainty" can be established only for those methods published by the MADEP in the MCP CAM. The compounds and/or elements reported were specifically requested by the client on the Chain of Custody and in some cases may not include the full analyte list as defined in the method. Regulatory limits may not be achieved if specific method and/or technique was not requested on the Chain of Custody.

According to WSC-CAM 5/2009 Rev.1, Table 11 A-1, recovery for some VOC analytes have been deemed potentially difficult. Although they may still be within the recommended recovery range, a range has been set based on historical control limits.

Some target analytes which are not listed as exceptions in the Summary of CAM Reporting Limits may exceed the recommended RL based on sample initial volume or weight provided, % moisture content, or responsiveness of a particular analyte to purge and trap instrumentation.

All VOC soils samples submitted and analyzed in methanol will have a minimum dilution factor of 50. This is the minimum amount of solvent allowed on the instrumentation without causing interference. Soils are run on a manual load instrument. 100ug of sample (MEOH) is spiked into 5ml DI water along with the surrogate and added directly onto the instrument. Additional dilution factors may be required to keep analyte concentration within instrument calibration range.

Method SW846 5035A is designed to use on samples containing low levels of VOCs, ranging from 0.5 to 200 ug/Kg. Target analytes that are less responsive to purge and trap may be present at concentrations over 200ug/Kg but may not be reportable in the methanol preserved vial (SW846 5030). This is the result of the inherent dilution factor required for the methanol preservation.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

SW846 6010C

Duplicates:

1718549-DUP1 Source: SC40987-02

Analyses are not controlled on RPD values from sample concentrations that are less than 5 times the reporting level. The batch is accepted based upon the difference between the sample and duplicate is less than or equal to the reporting limit.

Copper

SW846 8260C

Calibration:

1710003

Analyte quantified by quadratic equation type calibration.

1,4-Dioxane

2-Hexanone (MBK)

Naphthalene

This laboratory report is not valid without an authorized signature on the cover page.

SW846 8260C

Calibration:

1710003

This affected the following samples:

1718543-BLK1 1718543-BS1 1718543-BSD1 S708708-ICV1 S709711-CCV1 SP12_110117-1 TB-110117

Laboratory Control Samples:

1718543 BS/BSD

1,4-Dioxane percent recoveries (65/68) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

```
SP12_110117-1
TB-110117
```

Acetone percent recoveries (172/126) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias:

```
SP12_110117-1
TB-110117
```

Carbon disulfide percent recoveries (97/52) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

```
SP12_110117-1
TB-110117
```

Naphthalene percent recoveries (91/69) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

```
SP12_110117-1
TB-110117
```

n-Butylbenzene percent recoveries (134/118) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias:

```
SP12_110117-1
TB-110117
```

Trichlorofluoromethane (Freon 11) percent recoveries (139/119) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias:

```
SP12_110117-1
TB-110117
```

1718543 BSD

Acetone RPD 31% (30%) is outside individual acceptance criteria.

Bromomethane RPD 33% (30%) is outside individual acceptance criteria.

Carbon disulfide RPD 60% (30%) is outside individual acceptance criteria.

Samples:

S709711-CCV1

SW846 8260C

Samples:

S709711-CCV1

Analyte percent difference is outside individual acceptance criteria (20), but within overall method allowances.

```
1,2,3-Trichlorobenzene (21.3%)
1,2-Dibromo-3-chloropropane (-20.2%)
4-Isopropyltoluene (25.2%)
Bromoform (-25.4%)
Bromomethane (22.7%)
Chloroethane (23.1%)
n-Butylbenzene (34.4%)
Tert-amyl methyl ether (29.8%)
Trichlorofluoromethane (Freon 11) (39.1%)
```

Analyte percent drift is outside individual acceptance criteria (20), but within overall method allowances.

```
1,4-Dioxane (-35.2%)
Acetone (72.2%)
```

This affected the following samples:

1718543-BLK1 1718543-BS1 1718543-BSD1 SP12_110117-1 TB-110117

06-Nov-17 11:47 Page 7 of 26

Sample Acceptance Check Form

Client:	AECOM Environment - Chelmsford, MA
Project:	LMC-Wilmington- 40 Fordham Rd MA / 60478638.5.01
Work Order:	SC40987
Sample(s) received on:	11/1/2017

The following outlines the condition of samples for the attached Chain of Custody upon receipt.

	Yes	No	N/A
Were custody seals present?		\checkmark	
Were custody seals intact?			✓
Were samples received at a temperature of $\leq 6^{\circ}$ C?	\checkmark		
Were samples refrigerated upon transfer to laboratory representative?	\checkmark		
Were sample containers received intact?	\checkmark		
Were samples properly labeled (labels affixed to sample containers and include sample ID, site location, and/or project number and the collection date)?	\checkmark		
Were samples accompanied by a Chain of Custody document?	\checkmark		
Does Chain of Custody document include proper, full, and complete documentation, which shall include sample ID, site location, and/or project number, date and time of collection, collector's name, preservation type, sample matrix and any special remarks concerning the sample?	V		
Did sample container labels agree with Chain of Custody document?	\checkmark		
Were samples received within method-specific holding times?	✓		

Summary of Hits

Lab ID: SC40987-02

Client ID: SP12_110117-1

Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
C11-C22 Aromatic Hydrocarbons	20.8		10.5	mg/kg	MADEP EPH 5/2004 R
C19-C36 Aliphatic Hydrocarbons	98.2		10.5	mg/kg	MADEP EPH 5/2004 R
Unadjusted C11-C22 Aromatic Hydrocarbons	22.0		10.5	mg/kg	MADEP EPH 5/2004 R
Arsenic	12.8		1.58	mg/kg	SW846 6010C
Chromium	13.2		1.05	mg/kg	SW846 6010C
Lead	8.59		1.58	mg/kg	SW846 6010C
Zinc	22.9		1.05	mg/kg	SW846 6010C

Please note that because there are no reporting limits associated with hazardous waste characterizations or micro analyses, this summary does not include hits from these analyses if included in this work order.

Sample Id TB-11011 SC40987-				<u>Client Pr</u> 6047863	-	Me	<u>Matrix</u> thanol/Deio Water		ection Date -Nov-17 10			ceived Nov-17	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
Volatile O	rganic Compounds by SW	<u>846 8260</u>											
Prepared	by method SW846 5035A	Soil (low level)											
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 5.00		μg/kg wet	5.00	2.54	1	SW846 8260C	02-Nov-17	02-Nov-17	MP	1718543	i
67-64-1	Acetone	< 50.0		μg/kg wet	50.0	20.0	1	"	"	"	"	"	
71-43-2	Benzene	< 5.00		μg/kg wet	5.00	1.32	1	"	"	"	"	"	
108-86-1	Bromobenzene	< 5.00		μg/kg wet	5.00	1.34	1	"	"	"	"	"	
74-97-5	Bromochloromethane	< 5.00		μg/kg wet	5.00	2.52	1	"	u	"	"	"	
75-27-4	Bromodichloromethane	< 5.00		μg/kg wet	5.00	3.34	1	"	u	"	"	"	
75-25-2	Bromoform	< 5.00		μg/kg wet	5.00	4.77	1	"	"	"	"	"	
74-83-9	Bromomethane	< 10.0		μg/kg wet	10.0	4.52	1	"	"	"	"	"	
78-93-3	2-Butanone (MEK)	< 10.0		μg/kg wet	10.0	8.94	1	"	"	"	"		
104-51-8	n-Butylbenzene	< 5.00		μg/kg wet	5.00	1.43	1	"	u	"	"	"	
135-98-8	sec-Butylbenzene	< 5.00		μg/kg wet	5.00	0.91	1	"	"	"			
98-06-6	tert-Butylbenzene	< 5.00		μg/kg wet	5.00	1.12	1	"	"	"		"	
75-15-0	Carbon disulfide	< 10.0		μg/kg wet	10.0	3.20	1	"	"				
56-23-5	Carbon tetrachloride	< 5.00		μg/kg wet	5.00	4.09	1	"	"	"			
108-90-7	Chlorobenzene	< 5.00		μg/kg wet	5.00	1.56	1	"				"	
75-00-3	Chloroethane	< 10.0		μg/kg wet	10.0	2.78	1	"					
67-66-3	Chloroform	< 5.00		μg/kg wet	5.00	2.68	1	"	u	"		"	
74-87-3	Chloromethane	< 10.0		μg/kg wet	10.0	2.06	1	"	"	"			
95-49-8	2-Chlorotoluene	< 5.00			5.00	1.24	1	"					
106-43-4				μg/kg wet				"					
	4-Chlorotoluene	< 5.00		μg/kg wet	5.00	1.18	1	,,			"	"	
96-12-8	1,2-Dibromo-3-chloroprop ane	< 10.0		μg/kg wet	10.0	7.22	1						
124-48-1	Dibromochloromethane	< 5.00		μg/kg wet	5.00	3.39	1	"	"	"	"	"	
106-93-4	1,2-Dibromoethane (EDB)	< 5.00		μg/kg wet	5.00	3.36	1	"	"	"	"	"	
74-95-3	Dibromomethane	< 5.00		μg/kg wet	5.00	2.60	1	"	u	"	"	"	
95-50-1	1,2-Dichlorobenzene	< 5.00		μg/kg wet	5.00	1.30	1	"	"	"	"	"	
541-73-1	1,3-Dichlorobenzene	< 5.00		μg/kg wet	5.00	1.08	1	"	"	"	"	"	
106-46-7	1,4-Dichlorobenzene	< 5.00		μg/kg wet	5.00	1.48	1	"	"	"	"	"	
75-71-8	Dichlorodifluoromethane (Freon12)	< 10.0		μg/kg wet	10.0	1.90	1	"	п	"	"	"	
75-34-3	1,1-Dichloroethane	< 5.00		μg/kg wet	5.00	1.31	1	"	u u	"	"		
107-06-2	1,2-Dichloroethane	< 5.00		μg/kg wet	5.00	1.79	1	"	"	"			
75-35-4	1,1-Dichloroethene	< 5.00		μg/kg wet	5.00	2.62	1	"	"				
156-59-2	cis-1,2-Dichloroethene	< 5.00		μg/kg wet	5.00	1.86	1	"	u	"	"		
156-60-5	trans-1,2-Dichloroethene	< 5.00		μg/kg wet	5.00	2.65	1						
78-87-5	1,2-Dichloropropane	< 5.00		μg/kg wet μg/kg wet	5.00	2.62	1	"			"	"	
142-28-9	1,3-Dichloropropane	< 5.00			5.00	2.59	1				"	"	
594-20-7	2,2-Dichloropropane	< 5.00		μg/kg wet μg/kg wet	5.00	2.36	1			"		"	
563-58-6								"			,,	"	
	1,1-Dichloropropene	< 5.00		μg/kg wet	5.00	1.61	1	"			"	"	
10061-01-5	cis-1,3-Dichloropropene	< 5.00		μg/kg wet	5.00	3.02	1				"		
10061-02-6	trans-1,3-Dichloropropene	< 5.00		μg/kg wet	5.00	2.62	1						
100-41-4	Ethylbenzene	< 5.00		μg/kg wet	5.00	0.72	1						
87-68-3	Hexachlorobutadiene	< 5.00		μg/kg wet	5.00	2.51	1						
591-78-6	2-Hexanone (MBK)	< 10.0		μg/kg wet	10.0	6.14	1	"	"	"	"	"	
98-82-8	Isopropylbenzene	< 5.00		μg/kg wet	5.00	0.98	1	"	"	"	"	"	

Client Project # 60478638.5.01

Matrix Methanol/Deionized Water Collection Date/Time 01-Nov-17 10:00 Received 01-Nov-17

SC40987-	-01						Water						
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
Volatile O	rganic Compounds by SW	846 8260											
99-87-6	4-Isopropyltoluene	< 5.00		μg/kg wet	5.00	1.08	1	SW846 8260C	02-Nov-17	02-Nov-17	MP	1718543	
1634-04-4	Methyl tert-butyl ether	< 5.00		μg/kg wet	5.00	1.84	1	"	"	"	"	"	
108-10-1	4-Methyl-2-pentanone (MIBK)	< 10.0		μg/kg wet	10.0	2.57	1	"	"	"	"	"	
75-09-2	Methylene chloride	< 10.0		μg/kg wet	10.0	1.98	1		"	"	"	"	
91-20-3	Naphthalene	< 5.00		μg/kg wet	5.00	2.98	1	"	"	"	"	"	
103-65-1	n-Propylbenzene	< 5.00		μg/kg wet	5.00	0.81	1	"	"	"	"	"	
100-42-5	Styrene	< 5.00		μg/kg wet	5.00	1.00	1	"	"	"	"	"	
630-20-6	1,1,1,2-Tetrachloroethane	< 5.00		μg/kg wet	5.00	4.25	1	"	"	"	"	"	
79-34-5	1,1,2,2-Tetrachloroethane	< 5.00		μg/kg wet	5.00	4.23	1	"	"	"	"	"	
127-18-4	Tetrachloroethene	< 5.00		μg/kg wet	5.00	1.71	1	"	"	"	"	"	
108-88-3	Toluene	< 5.00		μg/kg wet	5.00	1.62	1	"	"	"	"	"	
87-61-6	1,2,3-Trichlorobenzene	< 5.00		μg/kg wet	5.00	1.76	1	"	"	"	"	"	
120-82-1	1,2,4-Trichlorobenzene	< 5.00		μg/kg wet	5.00	3.68	1	"	"	"	"	"	
71-55-6	1,1,1-Trichloroethane	< 5.00		μg/kg wet	5.00	1.66	1	"	"	"	"	"	
79-00-5	1,1,2-Trichloroethane	< 5.00		μg/kg wet	5.00	3.62	1	"	"	"	"	"	
79-01-6	Trichloroethene	< 5.00		μg/kg wet	5.00	1.36	1	"	"	"	"	"	
75-69-4	Trichlorofluoromethane (Freon 11)	< 5.00		μg/kg wet	5.00	2.70	1	"	"	"	"	"	
96-18-4	1,2,3-Trichloropropane	< 5.00		μg/kg wet	5.00	3.75	1	"	"	"	"	"	
95-63-6	1,2,4-Trimethylbenzene	< 5.00		μg/kg wet	5.00	1.22	1	"	"	"	"	"	
108-67-8	1,3,5-Trimethylbenzene	< 5.00		μg/kg wet	5.00	0.86	1	"	"	"	"	"	
75-01-4	Vinyl chloride	< 5.00		μg/kg wet	5.00	1.69	1	"	"	"	"	"	
179601-23-1	1 m,p-Xylene	< 10.0		μg/kg wet	10.0	0.90	1	"	"	"	"	"	
95-47-6	o-Xylene	< 5.00		μg/kg wet	5.00	1.40	1	"	"	"	"	"	
109-99-9	Tetrahydrofuran	< 10.0		μg/kg wet	10.0	7.88	1	"	"	"	"	"	
60-29-7	Ethyl ether	< 5.00		μg/kg wet	5.00	4.53	1	"	"	"	"	"	
994-05-8	Tert-amyl methyl ether	< 5.00		μg/kg wet	5.00	1.67	1	"	"	"	"	"	
637-92-3	Ethyl tert-butyl ether	< 5.00		μg/kg wet	5.00	2.70	1		"	"	"	"	
108-20-3	Di-isopropyl ether	< 5.00		μg/kg wet	5.00	0.93	1		"	"	"	"	
123-91-1	1,4-Dioxane	< 100		μg/kg wet	100	86.8	1	п	п	"	"	"	
Surrogate	recoveries:												
460-00-4	4-Bromofluorobenzene	89			70-13	0 %		m .	"	"	"	"	
2037-26-5	Toluene-d8	101			70-13	0 %		m .	"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	127			70-13	0 %		"	"	"	"	"	
1868-53-7	Dibromofluoromethane	108			70-13	0 %		"	"	"	"	"	

0.66

1

4.61

μg/kg dry

Ethylbenzene

< 4.61

100-41-4

0.140

0.100

50

50

0.723

0.386

MADEP VPH

5/2004 Rev. 1.1

02-Nov-17 02-Nov-17

C5-C8 Aliphatic

C9-C12 Aliphatic

Hydrocarbons

Hydrocarbons

< 0.723

< 0.386

D

D

mg/kg dry

mg/kg dry

1718546

SD

Sample Id SP12_110 SC40987				Client Po 6047863	-		<u>Matrix</u> Soil		ection Date -Nov-17 10			ceived Nov-17	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Volatile O	rganic Compounds												
MADEP \	/PH Carbon Ranges												
						· · · · · · · · · · · · · · · · · · ·	ial weight:						
	C9-C10 Aromatic Hydrocarbons	< 0.386	D	mg/kg dry	0.386	0.0293	50	MADEP VPH 5/2004 Rev. 1.1	02-Nov-17	02-Nov-17	SD	1718546	
	Unadjusted C5-C8 Aliphatic Hydrocarbons	< 0.723	D	mg/kg dry	0.723	0.112	50	"	"	"	"	"	
	Unadjusted C9-C12 Aliphatic Hydrocarbons	< 0.386	D	mg/kg dry	0.386	0.128	50	"	"	"	"	"	
Surrogate	recoveries:												
615-59-8	2,5-Dibromotoluene (FID)	91			70-13	30 %		"	"	"	"	"	
615-59-8	2,5-Dibromotoluene (PID)	89			70-13	30 %		"		u u	"	"	
Extractab	le Petroleum Hydrocarbons												
	EPH Carbon Ranges by method SW846 3546												
	C9-C18 Aliphatic Hydrocarbons	< 10.5		mg/kg dry	10.5	2.15	1	MADEP EPH 5/2004 R	02-Nov-17	04-Nov-17	EDT	1718533	
	C19-C36 Aliphatic Hydrocarbons	98.2		mg/kg dry	10.5	2.85	1	"	"	"	"	"	
	C11-C22 Aromatic Hydrocarbons	20.8		mg/kg dry	10.5	4.43	1	n .	"	"	"	"	
	Unadjusted C11-C22 Aromatic Hydrocarbons	22.0		mg/kg dry	10.5	4.43	1	"	"	"	"	"	
Surrogate	recoveries:												
3386-33-2	1-Chlorooctadecane	52			40-14	40 %		"	"	"	"	"	
84-15-1	Ortho-Terphenyl	47			40-14	40 %		"	"	"	"	"	
321-60-8	2-Fluorobiphenyl	50			40-14	40 %		"	"	"	"	"	
	als by EPA 6000/7000 Series by method SW846 3051A	Methods											
7440-38-2	Arsenic	12.8		mg/kg dry	1.58	0.200	1	SW846 6010C	02-Nov-17	02-Nov-17	TBC	1718549	J
7440-47-3	Chromium	13.2		mg/kg dry	1.05	0.140	1	"	"	"	"	"	
7440-50-8	Copper	< 13.7		mg/kg dry	13.7	0.253	1	"	"	"	"	"	
7439-92-1	Lead	8.59		mg/kg dry	1.58	0.223	1	"	"	"	"	"	
7440-66-6	Zinc	22.9		mg/kg dry	1.05	0.816	1	"	"	03-Nov-17	"	"	
General C	Chemistry Parameters												
	% Solids	94.5		%			1	SM2540 G (11)	02-Nov-17	02-Nov-17	MBR	1718557	

Mod.

06-Nov-17 11:47 Page 14 of 26

mg/kg dry

0.281

0.237

Prepared by method SW846 9010B

Cyanide (total)

< 0.281

57-12-5

analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
MADEP VPH 5/2004 Rev. 1.1										
Batch 1718546 - VPH - EPA 5035A Soil										
Blank (1718546-BLK1)					Pre	epared & Ai	nalyzed: 02-	-Nov-17		
C5-C8 Aliphatic Hydrocarbons	< 0.750	D	mg/kg wet	0.750						
C9-C12 Aliphatic Hydrocarbons	< 0.400	D	mg/kg wet	0.400						
C9-C10 Aromatic Hydrocarbons	< 0.400	D	mg/kg wet	0.400						
Unadjusted C5-C8 Aliphatic Hydrocarbons	< 0.750	D	mg/kg wet	0.750						
Unadjusted C9-C12 Aliphatic Hydrocarbons	< 0.400	D	mg/kg wet	0.400						
Surrogate: 2,5-Dibromotoluene (FID)	44.2		μg/kg		50.0		88	70-130		
Surrogate: 2,5-Dibromotoluene (PID)	44.4		μg/kg		50.0		89	70-130		
LCS (1718546-BS1)					Pre	epared & Ai	nalyzed: 02	-Nov-17		
C5-C8 Aliphatic Hydrocarbons	51.6	D	μg/kg		60.0		86	70-130		
C9-C12 Aliphatic Hydrocarbons	52.0	D	μg/kg		60.0		87	70-130		
C9-C10 Aromatic Hydrocarbons	19.0	D	μg/kg		20.0		95	70-130		
Unadjusted C5-C8 Aliphatic Hydrocarbons	197	D	μg/kg		200		98	70-130		
Unadjusted C9-C12 Aliphatic Hydrocarbons	71.0	D	μg/kg		80.0		89	70-130		
Surrogate: 2.5-Dibromotoluene (FID)	45.5		μg/kg		50.0		91	70-130		
Surrogate: 2,5-Dibromotoluene (PID)	45.7		μg/kg μg/kg		50.0		91 91	70-130 70-130		
• • • • • • • • • • • • • • • • • • • •	40.1		рулку							
LCS Dup (1718546-BSD1)		Б				epared & Al	nalyzed: 02		0.7	0.5
C5-C8 Aliphatic Hydrocarbons	52.0	D	μg/kg		60.0		87	70-130	0.7	25
C9-C12 Aliphatic Hydrocarbons	52.3	D	μg/kg		60.0		87	70-130	0.4	25
C9-C10 Aromatic Hydrocarbons	20.2	D	μg/kg		20.0		101	70-130	6	25
Unadjusted C5-C8 Aliphatic Hydrocarbons	199	D	μg/kg		200		100	70-130	1	25
Unadjusted C9-C12 Aliphatic Hydrocarbons	72.4	D	μg/kg		80.0		91	70-130	2	25
Surrogate: 2,5-Dibromotoluene (FID)	45.6		μg/kg		50.0		91	70-130		
Surrogate: 2,5-Dibromotoluene (PID)	46.3		μg/kg		50.0		93	70-130		
SW846 8260C										
Batch 1718543 - SW846 5035A Soil (low level)										
Blank (1718543-BLK1)					Pre	epared & Ai	nalyzed: 02-	-Nov-17		
1,1,2-Trichlorotrifluoroethane (Freon 113)	< 5.00		μg/kg wet	5.00		•				
Acetone	< 50.0		μg/kg wet	50.0						
Benzene	< 5.00		μg/kg wet	5.00						
				5.00						
Bromobenzene										
	< 5.00 < 5.00		μg/kg wet	5.00						
Bromobenzene	< 5.00		μg/kg wet μg/kg wet	5.00 5.00						
Bromobenzene Bromochloromethane Bromodichloromethane	< 5.00 < 5.00 < 5.00		μg/kg wet μg/kg wet μg/kg wet	5.00 5.00 5.00						
Bromobenzene Bromochloromethane Bromodichloromethane Bromoform	< 5.00 < 5.00 < 5.00 < 5.00		µg/kg wet µg/kg wet µg/kg wet µg/kg wet	5.00 5.00 5.00 5.00						
Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane	< 5.00 < 5.00 < 5.00 < 5.00 < 10.0		μg/kg wet μg/kg wet μg/kg wet μg/kg wet μg/kg wet μg/kg wet	5.00 5.00 5.00 5.00 10.0						
Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK)	< 5.00 < 5.00 < 5.00 < 5.00 < 10.0 < 10.0		μg/kg wet μg/kg wet μg/kg wet μg/kg wet μg/kg wet μg/kg wet	5.00 5.00 5.00 5.00 10.0						
Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene	< 5.00 < 5.00 < 5.00 < 5.00 < 10.0 < 10.0 < 5.00		μg/kg wet	5.00 5.00 5.00 5.00 10.0 10.0 5.00						
Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene	< 5.00 < 5.00 < 5.00 < 5.00 < 10.0 < 10.0 < 5.00 < 5.00		μg/kg wet	5.00 5.00 5.00 5.00 10.0 10.0 5.00 5.00						
Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene tert-Butylbenzene	< 5.00 < 5.00 < 5.00 < 5.00 < 10.0 < 10.0 < 5.00 < 5.00 < 5.00		µg/kg wet µg/kg wet µg/kg wet µg/kg wet µg/kg wet µg/kg wet µg/kg wet µg/kg wet µg/kg wet	5.00 5.00 5.00 5.00 10.0 10.0 5.00 5.00						
Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide	< 5.00 < 5.00 < 5.00 < 5.00 < 10.0 < 10.0 < 5.00 < 5.00 < 5.00 < 10.0		µg/kg wet	5.00 5.00 5.00 5.00 10.0 10.0 5.00 5.00						
Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide Carbon tetrachloride	< 5.00 < 5.00 < 5.00 < 10.0 < 10.0 < 5.00 < 5.00 < 5.00 < 10.0 < 5.00		µg/kg wet	5.00 5.00 5.00 5.00 10.0 10.0 5.00 5.00						
Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide Carbon tetrachloride Chlorobenzene	< 5.00 < 5.00 < 5.00 < 10.0 < 10.0 < 5.00 < 5.00 < 5.00 < 5.00 < 5.00 < 5.00 < 5.00		μg/kg wet	5.00 5.00 5.00 10.0 10.0 5.00 5.00 5.00						
Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane	< 5.00 < 5.00 < 5.00 < 10.0 < 10.0 < 5.00 < 5.00 < 5.00 < 5.00 < 5.00 < 5.00 < 10.0 < 5.00		µg/kg wet	5.00 5.00 5.00 10.0 10.0 5.00 5.00 5.00						
Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform	< 5.00 < 5.00 < 5.00 < 10.0 < 10.0 < 5.00 < 5.00 < 5.00 < 5.00 < 5.00 < 5.00 < 5.00 < 5.00 < 5.00		µg/kg wet	5.00 5.00 5.00 10.0 10.0 5.00 5.00 5.00						
Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane	< 5.00 < 5.00 < 5.00 < 10.0 < 10.0 < 5.00 < 5.00 < 5.00 < 5.00 < 10.0 < 5.00 < 10.0 < 5.00 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0		µg/kg wet µg/kg wet	5.00 5.00 5.00 10.0 10.0 5.00 5.00 5.00						
Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform	< 5.00 < 5.00 < 5.00 < 10.0 < 10.0 < 5.00 < 5.00 < 5.00 < 5.00 < 5.00 < 5.00 < 5.00 < 5.00 < 5.00		µg/kg wet	5.00 5.00 5.00 10.0 10.0 5.00 5.00 5.00						

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
SW846 8260C										
Batch 1718543 - SW846 5035A Soil (low level)										
Blank (1718543-BLK1)					Pre	epared & A	nalyzed: 02-	-Nov-17		
Dibromochloromethane	< 5.00		μg/kg wet	5.00						
1,2-Dibromoethane (EDB)	< 5.00		μg/kg wet	5.00						
Dibromomethane	< 5.00		μg/kg wet	5.00						
1,2-Dichlorobenzene	< 5.00		μg/kg wet	5.00						
1,3-Dichlorobenzene	< 5.00		μg/kg wet	5.00						
1,4-Dichlorobenzene	< 5.00		μg/kg wet	5.00						
Dichlorodifluoromethane (Freon12)	< 10.0		μg/kg wet	10.0						
1,1-Dichloroethane	< 5.00		μg/kg wet	5.00						
1,2-Dichloroethane	< 5.00		μg/kg wet	5.00						
1,1-Dichloroethene	< 5.00		μg/kg wet	5.00						
cis-1,2-Dichloroethene	< 5.00		μg/kg wet	5.00						
trans-1,2-Dichloroethene	< 5.00		μg/kg wet μg/kg wet	5.00						
1,2-Dichloropropane	< 5.00		μg/kg wet μg/kg wet	5.00						
1,3-Dichloropropane	< 5.00		μg/kg wet μg/kg wet	5.00						
2,2-Dichloropropane	< 5.00		μg/kg wet μg/kg wet	5.00						
1,1-Dichloropropene	< 5.00		μg/kg wet μg/kg wet	5.00						
cis-1,3-Dichloropropene	< 5.00		μg/kg wet μg/kg wet	5.00						
• •	< 5.00			5.00						
trans-1,3-Dichloropropene Ethylbenzene	< 5.00		µg/kg wet	5.00						
Hexachlorobutadiene	< 5.00		μg/kg wet	5.00						
	< 10.0		μg/kg wet	10.0						
2-Hexanone (MBK)	< 5.00		μg/kg wet							
Isopropyltelyana	< 5.00 < 5.00		μg/kg wet	5.00						
4-Isopropyltoluene			μg/kg wet	5.00						
Methyl Capatagas (MIDIC)	< 5.00		μg/kg wet	5.00						
4-Methyl-2-pentanone (MIBK)	< 10.0		μg/kg wet	10.0						
Methylene chloride	< 10.0		μg/kg wet	10.0						
Naphthalene	< 5.00		μg/kg wet	5.00						
n-Propylbenzene	< 5.00		μg/kg wet	5.00						
Styrene	< 5.00		μg/kg wet	5.00						
1,1,1,2-Tetrachloroethane	< 5.00		μg/kg wet	5.00						
1,1,2,2-Tetrachloroethane	< 5.00		μg/kg wet	5.00						
Tetrachloroethene	< 5.00		μg/kg wet	5.00						
Toluene	< 5.00		μg/kg wet	5.00						
1,2,3-Trichlorobenzene	< 5.00		μg/kg wet	5.00						
1,2,4-Trichlorobenzene	< 5.00		μg/kg wet	5.00						
1,1,1-Trichloroethane	< 5.00		μg/kg wet	5.00						
1,1,2-Trichloroethane	< 5.00		μg/kg wet	5.00						
Trichloroethene	< 5.00		μg/kg wet	5.00						
Trichlorofluoromethane (Freon 11)	< 5.00		μg/kg wet	5.00						
1,2,3-Trichloropropane	< 5.00		μg/kg wet	5.00						
1,2,4-Trimethylbenzene	< 5.00		μg/kg wet	5.00						
1,3,5-Trimethylbenzene	< 5.00		μg/kg wet	5.00						
Vinyl chloride	< 5.00		μg/kg wet	5.00						
m,p-Xylene	< 10.0		μg/kg wet	10.0						
o-Xylene	< 5.00		μg/kg wet	5.00						
Tetrahydrofuran	< 10.0		μg/kg wet	10.0						
Ethyl ether	< 5.00		μg/kg wet	5.00						
Tert-amyl methyl ether	< 5.00		μg/kg wet	5.00						
Ethyl tert-butyl ether	< 5.00		μg/kg wet	5.00						
Di-isopropyl ether	< 5.00		μg/kg wet	5.00						

analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
SW846 8260C										
atch 1718543 - SW846 5035A Soil (low level)										
Blank (1718543-BLK1)					Pre	epared & Ar	nalyzed: 02-	Nov-17		
1,4-Dioxane	< 100		μg/kg wet	100						
Surrogate: 4-Bromofluorobenzene	45.2		μg/kg		50.0		90	70-130		
Surrogate: Toluene-d8	50.4		μg/kg		50.0		101	70-130		
Surrogate: 1,2-Dichloroethane-d4	64.3		μg/kg		50.0		129	70-130		
Surrogate: Dibromofluoromethane	52.5		μg/kg		50.0		105	70-130		
LCS (1718543-BS1)			13 3			enared & Ar	nalyzed: 02-			
1,1,2-Trichlorotrifluoroethane (Freon 113)	23.3		μg/kg		20.0	<u> </u>	116	70-130		
Acetone	34.4	QM9	μg/kg		20.0		172	70-130		
Benzene	21.2		μg/kg		20.0		106	70-130		
Bromobenzene	19.4		μg/kg		20.0		97	70-130		
Bromochloromethane	20.1		μg/kg		20.0		101	70-130		
Bromodichloromethane	20.8		μg/kg		20.0		104	70-130		
Bromoform	14.9		μg/kg μg/kg		20.0		75	70-130		
Bromomethane	24.6		μg/kg μg/kg		20.0		123	70-130		
2-Butanone (MEK)	20.4		μg/kg μg/kg		20.0		102	70-130		
n-Butylbenzene	26.9	QM9	μg/kg μg/kg		20.0		134	70-130		
sec-Butylbenzene	23.0		μg/kg μg/kg		20.0		115	70-130		
tert-Butylbenzene	21.8		μg/kg μg/kg		20.0		109	70-130		
Carbon disulfide	19.4		μg/kg μg/kg		20.0		97	70-130		
Carbon tetrachloride	21.9		μg/kg μg/kg		20.0		110	70-130		
Chlorobenzene	20.1		μg/kg μg/kg		20.0		101	70-130		
Chloroethane	24.6		μg/kg μg/kg		20.0		123	70-130		
Chloroform	21.7		μg/kg μg/kg		20.0		109	70-130		
Chloromethane	19.7		μg/kg μg/kg		20.0		99	70-130		
2-Chlorotoluene	22.3		μg/kg μg/kg		20.0		111	70-130		
4-Chlorotoluene	23.0		μg/kg μg/kg		20.0		115	70-130		
1,2-Dibromo-3-chloropropane	16.0		μg/kg μg/kg		20.0		80	70-130		
Dibromochloromethane	18.5		μg/kg μg/kg		20.0		92	70-130		
1,2-Dibromoethane (EDB)	19.2		μg/kg μg/kg		20.0		92 96	70-130		
Dibromomethane					20.0		105	70-130		
	21.0		μg/kg							
1,2-Dichlorobenzene 1,3-Dichlorobenzene	21.7		µg/kg		20.0		109	70-130		
	21.3		μg/kg		20.0		106	70-130		
1,4-Dichlorobenzene	22.4		μg/kg		20.0		112	70-130		
Dichlorodifluoromethane (Freon12)	18.7 21.5		μg/kg		20.0 20.0		94 108	70-130 70-130		
1,1-Dichloroethane			μg/kg							
1,2-Dichloroethane	22.9		μg/kg		20.0		115	70-130		
1,1-Dichloroethene cis-1,2-Dichloroethene	22.2		μg/kg		20.0 20.0		111 104	70-130 70-130		
	20.9		μg/kg							
trans-1,2-Dichloroethene	20.3		μg/kg		20.0		101	70-130		
1,2-Dichloropropane	20.4		μg/kg		20.0		102	70-130		
1,3-Dichloropropane	20.7		μg/kg		20.0		103	70-130		
2,2-Dichloropropane	19.0		μg/kg		20.0		95	70-130		
1,1-Dichloropropene	21.8		μg/kg		20.0		109	70-130		
cis-1,3-Dichloropropene	18.2		μg/kg		20.0		91	70-130		
trans-1,3-Dichloropropene	17.2		μg/kg		20.0		86	70-130		
Ethylbenzene	21.5		μg/kg "		20.0		108	70-130		
Hexachlorobutadiene	23.6		μg/kg "		20.0		118	70-130		
2-Hexanone (MBK)	18.8		μg/kg "		20.0		94	70-130		
Isopropylbenzene	22.3		μg/kg		20.0		112	70-130		
4-Isopropyltoluene	25.0		μg/kg		20.0		125	70-130		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
SW846 8260C										
Batch 1718543 - SW846 5035A Soil (low level)										
LCS (1718543-BS1)					Pre	epared & A	nalyzed: 02-	Nov-17		
Methyl tert-butyl ether	16.1		μg/kg		20.0		80	70-130		
4-Methyl-2-pentanone (MIBK)	16.1		μg/kg		20.0		80	70-130		
Methylene chloride	20.0		μg/kg		20.0		100	70-130		
Naphthalene	18.3		μg/kg		20.0		91	70-130		
n-Propylbenzene	23.2		μg/kg		20.0		116	70-130		
Styrene	18.9		μg/kg		20.0		95	70-130		
1,1,1,2-Tetrachloroethane	19.3		μg/kg		20.0		97	70-130		
1,1,2,2-Tetrachloroethane	18.7		μg/kg		20.0		93	70-130		
Tetrachloroethene	22.2		μg/kg		20.0		111	70-130		
Toluene	21.3		μg/kg		20.0		107	70-130		
1,2,3-Trichlorobenzene	24.2		μg/kg		20.0		121	70-130		
1,2,4-Trichlorobenzene	23.3		μg/kg		20.0		117	70-130		
1,1,1-Trichloroethane	21.0		μg/kg		20.0		105	70-130		
1,1,2-Trichloroethane	19.5		μg/kg		20.0		97	70-130		
Trichloroethene	22.0		μg/kg		20.0		110	70-130		
Trichlorofluoromethane (Freon 11)	27.8	QM9	μg/kg		20.0		139	70-130		
1,2,3-Trichloropropane	19.0		μg/kg		20.0		95	70-130		
1,2,4-Trimethylbenzene	22.7		μg/kg		20.0		114	70-130		
1,3,5-Trimethylbenzene	22.3		μg/kg		20.0		112	70-130		
Vinyl chloride	24.0		μg/kg		20.0		120	70-130		
m,p-Xylene	20.0		μg/kg		20.0		100	70-130		
o-Xylene	20.3		μg/kg		20.0		102	70-130		
Tetrahydrofuran	17.7		μg/kg		20.0		88	70-130		
Ethyl ether	21.4		μg/kg		20.0		107	70-130		
Tert-amyl methyl ether	26.0		μg/kg		20.0		130	70-130		
Ethyl tert-butyl ether	17.5		μg/kg		20.0		88	70-130		
Di-isopropyl ether	20.7		μg/kg		20.0		103	70-130		
1,4-Dioxane	130		μg/kg		200		65	70-130		
•										
Surrogate: 4-Bromofluorobenzene	48.6		μg/kg		50.0		97 102	70-130 70-130		
Surrogate: Toluene-d8	51.0		μg/kg		50.0		102	70-130		
Surrogate: 1,2-Dichloroethane-d4	55.5		μg/kg		50.0		111	70-130		
Surrogate: Dibromofluoromethane	51.7		μg/kg		50.0		103	70-130		
LCS Dup (1718543-BSD1)						epared & A	nalyzed: 02-		4.5	
1,1,2-Trichlorotrifluoroethane (Freon 113)	21.1	05-	μg/kg "		20.0		105	70-130	10	30
Acetone	25.1	QR5	μg/kg		20.0		126	70-130	31	30
Benzene	19.5		μg/kg "		20.0		97	70-130	9	30
Bromobenzene	18.3		μg/kg "		20.0		91	70-130	6	30
Bromochloromethane	18.1		μg/kg "		20.0		90	70-130	11	30
Bromodichloromethane	20.6		μg/kg "		20.0		103	70-130	0.9	30
Bromoform	14.2		μg/kg		20.0		71	70-130	5	30
Bromomethane	17.5	QR2	μg/kg		20.0		88	70-130	33	30
2-Butanone (MEK)	22.6		μg/kg		20.0		113	70-130	10	30
n-Butylbenzene	23.5		μg/kg		20.0		118	70-130	13	30
sec-Butylbenzene	20.7		μg/kg		20.0		104	70-130	10	30
tert-Butylbenzene	19.5		μg/kg		20.0		98	70-130	11	30
Carbon disulfide	10.5	QM9, QR5	μg/kg		20.0		52	70-130	60	30
Carbon tetrachloride	20.4		μg/kg		20.0		102	70-130	7	30
Chlorobenzene	19.4		μg/kg		20.0		97	70-130	3	30
Chloroethane	19.4		μg/kg		20.0		97	70-130	24	30

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
SW846 8260C										
Batch 1718543 - SW846 5035A Soil (low level)										
LCS Dup (1718543-BSD1)					Pre	epared & Ar	nalyzed: 02-	-Nov-17		
Chloroform	21.1		μg/kg		20.0		105	70-130	3	30
Chloromethane	21.4		μg/kg		20.0		107	70-130	8	30
2-Chlorotoluene	20.4		μg/kg		20.0		102	70-130	9	30
4-Chlorotoluene	20.6		μg/kg		20.0		103	70-130	11	30
1,2-Dibromo-3-chloropropane	15.4		μg/kg		20.0		77	70-130	4	30
Dibromochloromethane	18.3		μg/kg		20.0		91	70-130	1	30
1,2-Dibromoethane (EDB)	18.6		μg/kg		20.0		93	70-130	3	30
Dibromomethane	20.0		μg/kg		20.0		100	70-130	5	30
1,2-Dichlorobenzene	19.5		μg/kg		20.0		97	70-130	11	30
1,3-Dichlorobenzene	19.3		μg/kg		20.0		97	70-130	10	30
1,4-Dichlorobenzene	19.7		μg/kg μg/kg		20.0		99	70-130	13	30
Dichlorodifluoromethane (Freon12)	19.7				20.0		98	70-130	5	30
1,1-Dichloroethane			μg/kg		20.0		102	70-130	6	30
	20.3		μg/kg		20.0					30
1,2-Dichloroethane	21.8		μg/kg				109	70-130	5	
1,1-Dichloroethene	17.9		μg/kg		20.0		89	70-130	21	30
cis-1,2-Dichloroethene	19.4		μg/kg		20.0		97	70-130	7	30
trans-1,2-Dichloroethene	17.2		μg/kg		20.0		86	70-130	16	30
1,2-Dichloropropane	20.1		μg/kg		20.0		100	70-130	2	30
1,3-Dichloropropane	19.7		μg/kg		20.0		99	70-130	5	30
2,2-Dichloropropane	17.7		μg/kg		20.0		89	70-130	7	30
1,1-Dichloropropene	19.4		μg/kg		20.0		97	70-130	12	30
cis-1,3-Dichloropropene	17.3		μg/kg		20.0		87	70-130	5	30
trans-1,3-Dichloropropene	16.2		μg/kg		20.0		81	70-130	5	30
Ethylbenzene	19.8		μg/kg		20.0		99	70-130	8	30
Hexachlorobutadiene	22.9		μg/kg		20.0		115	70-130	3	30
2-Hexanone (MBK)	14.2		μg/kg		20.0		71	70-130	28	30
Isopropylbenzene	20.1		μg/kg		20.0		101	70-130	10	30
4-Isopropyltoluene	22.2		μg/kg		20.0		111	70-130	12	30
Methyl tert-butyl ether	15.3		μg/kg		20.0		76	70-130	5	30
4-Methyl-2-pentanone (MIBK)	15.6		μg/kg		20.0		78	70-130	3	30
Methylene chloride	18.6		μg/kg		20.0		93	70-130	7	30
Naphthalene	13.7	QM9	μg/kg		20.0		69	70-130	28	30
n-Propylbenzene	20.6		μg/kg		20.0		103	70-130	12	30
Styrene	16.6		μg/kg		20.0		83	70-130	13	30
1,1,1,2-Tetrachloroethane	18.7		μg/kg		20.0		93	70-130	3	30
1,1,2,2-Tetrachloroethane	18.5		μg/kg		20.0		92	70-130	1	30
Tetrachloroethene	20.1		μg/kg		20.0		100	70-130	10	30
Toluene	20.5				20.0		103	70-130	4	30
			µg/kg							
1,2,3-Trichlorobenzene	20.4		μg/kg		20.0		102	70-130	17	30
1,2,4-Trichlorobenzene	20.4		μg/kg		20.0		102	70-130	13	30
1,1,1-Trichloroethane	20.0		μg/kg 		20.0		100	70-130	5	30
1,1,2-Trichloroethane	19.9		μg/kg		20.0		99	70-130	2	30
Trichloroethene	20.4		μg/kg 		20.0		102	70-130	7	30
Trichlorofluoromethane (Freon 11)	23.9		μg/kg		20.0		119	70-130	15	30
1,2,3-Trichloropropane	18.8		μg/kg		20.0		94	70-130	1	30
1,2,4-Trimethylbenzene	19.7		μg/kg		20.0		99	70-130	14	30
1,3,5-Trimethylbenzene	19.8		μg/kg		20.0		99	70-130	12	30
Vinyl chloride	19.5		μg/kg		20.0		97	70-130	21	30
m,p-Xylene	18.3		μg/kg		20.0		91	70-130	9	30
o-Xylene	19.1		μg/kg		20.0		95	70-130	6	30

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
SW846 8260C										
Batch 1718543 - SW846 5035A Soil (low level)										
LCS Dup (1718543-BSD1)					Pre	epared & Ar	nalyzed: 02-	-Nov-17		
Tetrahydrofuran	16.3		μg/kg		20.0		82	70-130	8	30
Ethyl ether	19.0		μg/kg		20.0		95	70-130	12	30
Tert-amyl methyl ether	25.8		μg/kg		20.0		129	70-130	8.0	30
Ethyl tert-butyl ether	16.6		μg/kg		20.0		83	70-130	5	30
Di-isopropyl ether	20.0		μg/kg		20.0		100	70-130	3	30
1,4-Dioxane	135		μg/kg		200		68	70-130	4	30
Surrogate: 4-Bromofluorobenzene	49.2		μg/kg		50.0		98	70-130		
Surrogate: Toluene-d8	51.4		μg/kg		50.0		103	70-130		
Surrogate: 1,2-Dichloroethane-d4	55.0		μg/kg		50.0		110	70-130		
Surrogate: Dibromofluoromethane	52.0		μg/kg		50.0		104	70-130		

Extractable Petroleum Hydrocarbons - Quality Control

.nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPI Lim
1ADEP EPH 5/2004 R										
eatch 1718533 - SW846 3546										
Blank (1718533-BLK1)					Pre	enared: 02-l	Nov-17 An	alyzed: 03-N	lov-17	
C9-C18 Aliphatic Hydrocarbons	< 9.94		mg/kg wet	9.94	110	spared. 02-	NOV-17 AII	aiyzed. 00-iv	10V-17	
C19-C36 Aliphatic Hydrocarbons	< 9.94		mg/kg wet	9.94						
C11-C22 Aromatic Hydrocarbons	< 9.94		mg/kg wet	9.94						
Unadjusted C11-C22 Aromatic Hydrocarbons	< 9.94		mg/kg wet	9.94						
Total Petroleum Hydrocarbons	< 29.8		mg/kg wet	29.8						
Unadjusted Total Petroleum Hydrocarbons	< 29.8		mg/kg wet	29.8						
Naphthalene (aliphatic fraction)	0.00		mg/kg wet	20.0						
2-Methylnaphthalene (aliphatic fraction)	0.00		mg/kg wet							
					201			40.440		
Surrogate: 1-Chlorooctadecane	1.72		mg/kg wet		3.31		52	40-140		
Surrogate: Ortho-Terphenyl	1.65		mg/kg wet		3.31		50	40-140		
Surrogate: 2-Fluorobiphenyl	1.58		mg/kg wet		2.65		60	40-140		
LCS (1718533-BS1)					Pre	epared: 02-	Nov-17 An	alyzed: 03-N	lov-17	
C9-C18 Aliphatic Hydrocarbons	19.8		mg/kg wet	9.92	39.7		50	40-140		
C19-C36 Aliphatic Hydrocarbons	26.2		mg/kg wet	9.92	52.9		49	40-140		
Unadjusted C11-C22 Aromatic Hydrocarbons	33.4		mg/kg wet	9.92	45.0		74	40-140		
Naphthalene (aliphatic fraction)	0.00		mg/kg wet		2.65			0-200		
2-Methylnaphthalene (aliphatic fraction)	0.00		mg/kg wet		2.65			0-200		
Surrogate: 1-Chlorooctadecane	2.18		mg/kg wet		3.31		66	40-140		
Surrogate: Ortho-Terphenyl	2.46		mg/kg wet		3.31		75	40-140		
Surrogate: 2-Fluorobiphenyl	2.38		mg/kg wet		2.65		90	40-140		
LCS (1718533-BS2)					Pre	enared: 02-l	Nov-17 An	alyzed: 03-N	lov-17	
C9-C18 Aliphatic Hydrocarbons	21.1		mg/kg wet	10.0	40.0		53	40-140		
C19-C36 Aliphatic Hydrocarbons	28.4		mg/kg wet	10.0	53.3		53	40-140		
Unadjusted C11-C22 Aromatic Hydrocarbons	28.9		mg/kg wet	10.0	45.3		64	40-140		
Naphthalene (aliphatic fraction)	0.00		mg/kg wet		2.67			0-200		
2-Methylnaphthalene (aliphatic fraction)	0.00		mg/kg wet		2.67			0-200		
Surrogate: 1-Chlorooctadecane	2.65		mg/kg wet		3.33		79	40-140		
Surrogate: Ortho-Terphenyl	1.98		mg/kg wet		3.33		59	40-140		
Surrogate: 2-Fluorobiphenyl	1.95		mg/kg wet		2.67		73	40-140		
LCS Dup (1718533-BSD1)					Pre	epared: 02-	Nov-17 An	alyzed: 03-N	lov-17	
C9-C18 Aliphatic Hydrocarbons	19.5		mg/kg wet	9.98	39.9		49	40-140	2	25
C19-C36 Aliphatic Hydrocarbons	25.6		mg/kg wet	9.98	53.2		48	40-140	2	25
Unadjusted C11-C22 Aromatic Hydrocarbons	34.0		mg/kg wet	9.98	45.2		75	40-140	2	25
Naphthalene (aliphatic fraction)	0.00		mg/kg wet		2.66			0-200		200
2-Methylnaphthalene (aliphatic fraction)	0.00		mg/kg wet		2.66			0-200		200
Surrogate: 1-Chlorooctadecane	2.17		mg/kg wet		3.33		65	40-140		
Surrogate: Ortho-Terphenyl	2.52		mg/kg wet		3.33		76	40-140		
Surrogate: 2-Fluorobiphenyl	2.42		mg/kg wet		2.66		91	40-140		

Total Metals by EPA 6000/7000 Series Methods - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
SW846 6010C										
Batch 1718549 - SW846 3051A										
Blank (1718549-BLK1)					Pre	epared & A	nalyzed: 02	-Nov-17		
Chromium	< 0.984		mg/kg wet	0.984						
Copper	< 12.8		mg/kg wet	12.8						
Lead	< 1.48		mg/kg wet	1.48						
Zinc	< 0.984		mg/kg wet	0.984						
Arsenic	< 1.48		mg/kg wet	1.48						
Duplicate (1718549-DUP1)			Source: SC4	40987-02	Pre	pared: 02-	Nov-17 Ar	nalyzed: 03-N	ov-17	
Zinc	19.5		mg/kg dry	1.06		22.9			16	20
Arsenic	14.3		mg/kg dry	1.59		12.8			12	20
Chromium	16.0		mg/kg dry	1.06		13.2			19	20
Copper	8.60	J,QR8	mg/kg dry	13.8		13.5			45	20
Lead	8.72		mg/kg dry	1.59		8.59			2	20
Matrix Spike (1718549-MS1)			Source: SC4		Pre		nalyzed: 02	-Nov-17	_	
Copper	151		mg/kg dry	13.6	131	13.5	105	75-125		
Lead	143		mg/kg dry	1.57	131	8.59	103	75-125		
Zinc	155		mg/kg dry	1.05	131	22.9	101	75-125		
Chromium	155		mg/kg dry	1.05	131	13.2	108	75-125 75-125		
Arsenic	152		mg/kg dry	1.57	131	12.8	106	75-125		
Matrix Spike Dup (1718549-MSD1)	.02		Source: SC4				nalyzed: 02			
Arsenic	155		mg/kg dry	1.56	130	12.8	110	75-125	2	20
Chromium	159		mg/kg dry	1.04	130	13.2	112	75-125 75-125	2	20
Copper	155		mg/kg dry	13.5	130	13.5	109	75-125 75-125	3	20
Lead	143		mg/kg dry	1.56	130	8.59	109	75-125 75-125	0.01	20
Zinc	143			1.04	130	22.9	103	75-125 75-125	2	20
	150		mg/kg dry						2	20
Post Spike (1718549-PS1)	440		Source: SC4				nalyzed: 02			
Arsenic	143		mg/kg dry	1.58	132	12.8	99	80-120		
Zinc	155		mg/kg dry	1.05	132	22.9	100	80-120		
Lead	131		mg/kg dry	1.58	132	8.59	93	80-120		
Chromium	149		mg/kg dry	1.05	132	13.2	103	80-120		
Copper	130		mg/kg dry	13.7	132	13.5	89	80-120		
Reference (1718549-SRM1)						epared & A	nalyzed: 02			
Arsenic	55.2		mg/kg wet	1.50	50.4		110	80.9-120		
Chromium	59.6		mg/kg wet	1.00	53.9		111	77.5-121. 5		
Copper	92.6		mg/kg wet	13.0	83.6		111	80.7-118.		
Lead	47.5		mg/kg wet	1.50	44.5		107	7 81.2-118.		
Zinc	80.9		mg/kg wet	1.00	73.0		111	8 82.1-117.		
								9		
Reference (1718549-SRM2)						epared & A	nalyzed: 02	<u>-Nov-17</u>		
Lead	47.5		mg/kg wet	1.50	44.3		107	81.2-118. 8		
Arsenic	54.4		mg/kg wet	1.50	50.1		109	80.9-120		
Copper	92.0		mg/kg wet	13.0	83.1		111	80.7-118.		
								7		
Zinc	76.4		mg/kg wet	1.00	72.6		105	82.1-117. 9		

General Chemistry Parameters - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
SW846 9012B										
Batch 1718456 - General Preparation										
Blank (1718456-BLK1)					Pre	epared & A	nalyzed: 03-	-Nov-17		
Cyanide (total)	< 0.500		mg/kg wet	0.500						
LCS (1718456-BS1)					Pre	epared & A	nalyzed: 03	-Nov-17		
Cyanide (total)	26.0		mg/kg wet	0.500	25.0		104	90-110		
<u>Duplicate (1718456-DUP1)</u>			Source: SC4	40987-02	Pre	epared & A	nalyzed: 03	-Nov-17		
Cyanide (total)	< 0.301		mg/kg dry	0.301		BRL				35
Matrix Spike (1718456-MS1)			Source: SC4	40987-02	Pre	epared & A	nalyzed: 03-	-Nov-17		
Cyanide (total)	15.4		mg/kg dry	0.291	14.6	BRL	106	90-110		
Matrix Spike Dup (1718456-MSD1)			Source: SC4	40987-02	Pre	epared & A	nalyzed: 03-	-Nov-17		
Cyanide (total)	14.4		mg/kg dry	0.281	14.0	BRL	102	90-110	7	35
Reference (1718456-SRM1)				Prepared & Analyze						
Cyanide (total)	67.1		mg/kg wet	1.36	65.2		103	39.4-183		

Extractable Petroleum Hydrocarbons - CCV Evaluation Report

Analyte(s)	Average RF	CCRF	% D	Limit	
rialyte(s)	KI	ССКІ	70 D	Limit	
Batch S709765					
Calibration Check (S709765-CCV1)					
C9-C18 Aliphatic Hydrocarbons	219592.2	160218.5	-22.0	25	
C19-C36 Aliphatic Hydrocarbons	250542.9	175187.7	-22.9	25	
Unadjusted C11-C22 Aromatic Hydrocarbons	284390.2	208417.6	-7.8	25	
Naphthalene (aliphatic fraction)	281680.5				
2-Methylnaphthalene (aliphatic fraction)	280281.2				
Calibration Check (S709765-CCV2)					
C9-C18 Aliphatic Hydrocarbons	219592.2	175118.8	-13.5	25	
C19-C36 Aliphatic Hydrocarbons	250542.9	259881.8	24.8	25	
Unadjusted C11-C22 Aromatic Hydrocarbons	284390.2	209781.3	-7.1	25	
Naphthalene (aliphatic fraction)	281680.5				
2-Methylnaphthalene (aliphatic fraction)	280281.2				

The following list indicates the date and time low-level VOC soil/sediment samples were placed in the freezer at the lab: SC40987-02 SP12_110117-1 11/1/2017 3:56 PM

06-Nov-17 11:47 Page 25 of 26

Notes and Definitions

QR2

D Data reported from a dilution

QM9 The spike recovery for this QC sample is outside the established control limits. The sample results for the QC batch were accepted based on LCS/LCSD or SRM recoveries within the control limits.

The RPD result exceeded the QC control limits; however, both percent recoveries were acceptable. Sample results for the

QC batch were accepted based on percent recoveries and completeness of QC data.

QR5 RPD out of acceptance range.

QR8 Analyses are not controlled on RPD values from sample concentrations that are less than 5 times the reporting level. The batch is accepted based upon the difference between the sample and duplicate is less than or equal to the reporting limit.

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

J Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification:</u> The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

06-Nov-17 11:47 Page 26 of 26

eurofins

Spect

CHAIN OF CITATION BECORD

Special Handling:

1845 X 10987

trum Analytical			
Page of (CHAIN OF CUSTODY RECORD		
All TATs subject to laboratory approval Min. 24-hr notification needed for rushes Samples disposed after 30 days unless otherwise in	Rush TAT - Date Needed: 48 hr.	☐ Standard TAT - 7 to 10 business days	орестантанчинд.

			557	A	, Relinquished by:								1- C2 SP12-110117-1	10987-01 TB-10117	Lab ID: Sample ID:	G= Grab	X1= X2=	O=Oil SO=Soil SL=Sludge A=Indoor/Ambient Air	DW =Drinking Water GW=Groundwater SW=Surface Water		F=Field Filtered 1=Na ₂ S2O ₃ 2=HCl 3=H ₂ SO ₄ 7=CH3OH 8=NaHSO ₄ 9=Deionized Water 10=H ₃ PO ₄		Telephone #: 978 - 905-700	4 1	ائر	Report To: AK COM	
Naste Water Naste Water Project No. Location. 40 For Sine Name: Location. 40 For Sampler(s): P.O. No.: Other flastic Type Matrix Matrix			Oc.	A A	Received b			/					1-1-1-1	1-1-17	Date:	C=Compsite	X3=_				Ξ				nt.		
# of VOA Vials Project No. Containers				A Commence	y:	1												Gas	=Waste Water		1	P.O No.:				Invoice To:	
# of VOA Vials Project No. Containers				7						ellag.			-	N N	-						scorbic A				1.5		ď
# of Amber Glass # of Clear Glass # of Clear Glass # of Plastic List Preservative Code belov Sampler(s): Analysis Condition upon receipt: Ambient			101	-	Date		13.						+-	2	-		Vials				cid		6				
Site Name: # of Plastic List Preservative Code belov List Preservative Code belov Conception Feature Code			3	F							1		2		# of	Ambe	r Glas	SS	Cc			0					1
Project No: Coff Site Name: LMC Face Sampler(s): Location: 46 Face Sampler(s): Analysis X Analysis Condition upon receipt: Ambient Iced			222	377	Time:										-				ontainers			uote #:	8				
Project No: Coff Site Name: LMC Face Sampler(s): Location: 46 Face Sampler(s): Analysis X Analysis Condition upon receipt: Ambient Iced	IR ID	Corre	Corec	C A Table	н								*	-	110	W.				7							
Project No: Coff Site Name: LMC Face Sampler(s): Location: 46 Face Sampler(s): Analysis X Analysis Condition upon receipt: Ambient Iced	- : *	<u>い</u>	O Factor		emp °C					Line			X		VP.	H-0	2rbo	~		-							
For the low from the below				*						- 102			X		EP	H - 1	arb	mes		E	List Pre						
For the low from the below	mbient	tion upo		E-mail t	EDD fo	1.0		M.	41	- 11			X		As	, Cu	Cr	,	Anal	=	servativ		Location	Site Na		Project	
Torn Creb Fordh an Rd Wilmington State: MA Fordh an Rd Wilmington State: MA Tom Creb OA/QC Reporting Notes: * additional charges may appply MA. DEP MCP CAM Report? Ness may appply Standard No QC Standard No QC Standard No QC Stap A* NO Reduced* No QC State-specific reporting standards: State-specific reporting standards: Thur. Taddeo Q Qe Com. Com. Oni. Her base in Que Com. Com. Refrigerated DI VOA Frozen Soil Jar Frozen	☐ Icec	m receip			rmat:					j)			X		Pb	Zr,	Cya	nite	lysis	5	ve Code		is is	me: L			
A A Wilmington State: MA A Wilmington State: MA A A DEF MCP CAM Report? Wes 1 CT DPH RCP Report? Ves 1 CT DPH RCP Re			00, Herb	rithur. Trad																	below:				M	604 7863	Samples
OA/QC Reporting Notes: * additional charges may appply MA DEP MCP CAM Report? Standard No QC DQA* ASP A* ASP A* NJ Reduced* NJ Full* Ther II* Other: State-specific reporting standards: State-specific reporting standards: DI VOA Frozen Soil Jar Froze			Orbina	deo@ae											Che	ck if c	hlori					Great T	M W.	Sw/wil	1 0	10.2,8	disposed after
C Reporting Notes: onal charges may appply P CAM Report? Yes 1 Report? Yes 1 Report? Yes 1 When the standards: cuffic reporting standards: Intact Broken Broken Soil Jar Froze	DI VOA F	Present	at Con	Com con											Other: State-spe	Ther II	ASP A	Stand	MA DEP MC	adato	QA/Q		MIN	3			r 30 days ur
State: MA State: MS ges may appply pont? No QC No QC Standards: Ing standards: ct Broken	rozen	☐ Inta	1. Om	5											cific repor	* 10000	*	ard DOA*	P CAM Re	Ottar Ottar	C Repo		1 35				nless othe
tes: ppppty yes	☐ Soil											13			ting standa	Tier IV*	ASP B*	No QC	port?	Ses may a	rting No		State:				rwise inst
Z. Z. Printerson and a contract of the contrac	Jar Frozei	Broken													ırds:					Gradda	tes:		X				ructed.

Batch Summary

S709711-CCV1 S709711-TUN1

1718456 S708708-CAL3 S708708-CAL4 General Chemistry Parameters S708708-CAL5 1718456-BLK1 S708708-CAL6 1718456-BS1 S708708-CAL7 1718456-DUP1 S708708-CAL8 1718456-MS1 S708708-CAL9 1718456-MSD1 S708708-ICV1 1718456-SRM1 S708708-LCV1 SC40987-02 (SP12 110117-1) S708708-TUN1 1718533 S709111 Extractable Petroleum Hydrocarbons Volatile Organic Compounds 1718533-BLK1 S709111-CAL1 1718533-BS1 S709111-CAL2 1718533-BS2 S709111-CAL3 1718533-BSD1 S709111-CAL4 SC40987-02 (SP12 110117-1) S709111-CAL5 S709111-CAL6 1718543 S709111-CAL7 **Volatile Organic Compounds** S709111-ICV1 1718543-BLK1 S709111-LCV1 1718543-BS1 1718543-BSD1 S709454 SC40987-01 (TB-110117) Extractable Petroleum Hydrocarbons SC40987-02 (SP12_110117-1) S709454-CAL1 S709454-CAL2 1718546 S709454-CAL3 Volatile Organic Compounds S709454-CAL4 1718546-BLK1 S709454-CAL5 1718546-BS1 S709454-CAL6 1718546-BSD1 S709454-CAL7 SC40987-02 (SP12 110117-1) S709454-CAL8 S709454-CAL9 1718549 S709454-CALA Total Metals by EPA 6000/7000 Series Methods S709454-CALB 1718549-BLK1 S709454-CALC 1718549-DUP1 S709454-ICV1 1718549-MS1 S709454-LCV1 1718549-MSD1 1718549-PS1 S709685 1718549-SRM1 Volatile Organic Compounds 1718549-SRM2 S709685-CCV1 SC40987-02 (SP12_110117-1) S709685-CCV2 1718557 S709711 General Chemistry Parameters Volatile Organic Compounds

SC40987-02 (SP12 110117-1)

S708708

Volatile Organic Compounds

S708708-CAL1 S708708-CAL2

S709765

Extractable Petroleum Hydrocarbons S709765-CCV1

S709765-CCV2

APPENDIX B – WASTE DISPOSAL DOCUMENTATION	

Massachusetts Department of Environmental Protection *Bureau of Waste Site Cleanup*

BWSC 112

Releas	se Tra	acking Number
3	-	518

BILL OF LADING (pursuant to 310 CMR 40.0030)

A. LOCATION OF SITE OR DISPOSAL SITE WHERE REMEDIATION WASTE WAS GENERATED:
1. Release Name/Location Aid: GENERAL ELECTRIC CO FMR

2. Street Address: 50 FORDHAM RD
3. City/Town: 4. Zip Code: 018870000
5. Check here if the disposal site that is the source of the release is Tier Classified. Check the current Tier Classification Category. a. Tier I b. Tier ID c. Tier II
B. THIS FORM IS BEING USED TO: (check one: B1-B4):
1. Submit a Bill of Lading (BOL) to transport Remediation Waste to Temporary Storage or a Receiving Facility. Response Actions associated with this BOL (check all that apply):
a. Immediate Response Action (IRA)
b. Release Abatement Measure (RAM) Tf. Limited Removal Action (LRA): (must be
c. Downgradient Property Status (DPS) retained pursuant to 310 CMR 40.0034(6); can't be submitted via eDEP)
d. Utility Release Abatement Measure (URAM)
 2. Submit an Attestation of Completion of Shipment to Temporary Storage (Sections C, F and J are not required): 3. Submit an Attestation of Completion of Shipment to a Receiving Facility (Sections C, F and J are not required): 4. Certify that Remediation Waste Was Not Shipped, and the Bill of Lading is Void. (Sections C, D, E, and F are not required)
5. Date Bill of Lading submitted to the Department: 12/8/2017 b. eDEP Transaction ID: 976825
6. Period of Generation Associated with this Bill of Lading $\frac{8/10/2017}{(mm/dd/yyyy)} \text{ to } \frac{8/11/2017}{(mm/dd/yyyy)}$
(All sections of this transmittal form must be filled out unless otherwise noted above) The Bill of Lading is not considered complete until the Attestation of Completion of Shipment is received by the Department.
C. DESCRIPTION OF WASTE AND WASTE SOURCE:
1. Contaminated Media/Debris (check all that apply):
a. Soil b. Groundwater c. Surface Water d. Sediment e. Vegetation or Organic Debris
f. Demolition/Construction Waste g. Inorganic Absorbent Materials h. Other:
2. Uncontainerized Waste (check all that apply):

Revised: 9/3/2013 Page 1 of 5

a. Inorganic Absorbent Materials b. Other:

${\bf Massachusetts\ Department\ of\ Environmental\ Protection} \\ {\it Bureau\ of\ Waste\ Site\ Cleanup}$

BWSC 112

Release Tracking Number

-	518	

BILL OF LADING (pursuant to 310 CMR 40.0030)

C. DESCRIPTION OF WASTE AND WASTE SOURCE (cont.):

3. Containerized Waste (check all that apply):	
a. Tank Bottoms/Sludges	ns d. Engineered Impoundments
e. Other:	
4. Estimated Quantity: Tons	Cu. Yds. Gallons
5. Contaminant Source (check one):	
a. Transportation Accident b. Underground Storage Tar	k C. Brownfields Redevelopment
d. Other:	
6. Type of Contaminant (check all that apply):	
a. Gasoline b. Diesel Fuel c. #2 Fuel Oil d. #	4 Fuel Oil e. #6 Fuel Oil f. Jet Fuel
☐ g. Waste Oil ☐ h. Kerosene ☐ i. Chlorinated Solvents ☐ j. U	Urban Fill k. Other:
7. Constituents of Concern (check all that apply):	
a. As b. Cd c. Cr d. Pb	e. Hg
h. PCBs i. VOCs j. SVOCs k. Other:	
8. If applicable, check the box for the Reportable Concentration Category of	f the site:
a. RCS-1 b. RCS-2 c. RCGW-1 d. R	CGW-2
9. Remediation Waste Characterization Documentation (check at least one)	
a. Site History Information b. Sampling Analytical Method	ls and Procedures C. Laboratory Data
d. Field Screening Data e. Characterization Documentati	on previously submitted to the Department
i. Date submitted: ii. Type of Documentation:	
(mm/dd/yyyy)	
D. TRANSPORTER OR COMMON CARRIER INFORMATION:	
1. Transporter/Common Carrier Name: RHINO CONSTRUCTION COM	PANY
2. Contact First Name: JAMIE	3. Last Name: HRYNIEWICH
4. Street: 171 NEWTON ROAD	5. Title: MANAGER
6. City/Town: ACTON	7. State: MA 8. Zip Code: 017200000
9. Telephone: 9782630268 10. Ext:	11. Email: rhinoconstructionco@gmail.com

Revised: 9/3/2013 Page 2 of 5

Massachusetts Department of Environmental Protection *Bureau of Waste Site Cleanup*

BWSC 112

Release Tracking Number

-	518

BILL OF LADING (pursuant to 310 CMR 40.0030)

E. RECEIVING FACILITY/TEMPORARY STORAGE LOCATION:

1. Operator/Facility Name: AG	GREGATE RECYCLING CORP (ARC)					
2. Contact First Name: JOHN	3. Last Na	me: DOH	ERTY			
4. Street: 434 DOW HIGHWAY	_	5. Title:				
6. City/Town: ELIOT		7. State:	ME	8. Zip Code:	039030000	
9. Telephone: 2074395584	10. Ext:	11. Email:	info@aggre	egaterecycling.co	om	
12. Type of facility: (check one)		_				
a. Temporary Storage	i. Period of Temporary Storage			to		
ii. Reason for Temporary Stor	rage:	(mı	m/dd/yyyy)		(mm/dd/yyyy)	
▼ b. Asphalt Batch/Hot Mix	☐ c. Landfill/Disposal	d. Landfill	Structural Fill	□ e. I	Landfill/Daily Cove	r
☐ f. Asphalt Batch/Cold Mix	g. Thermal Processing h. I	ncinerator	i. Other:			
13. Division of Hazardous Waste	Class A Permit Number: NOT APPL	ICABLE				
14. Division of Solid Waste Perm	it Number: S-021818-WK-B-N					
15. EPA Identification Number:						
LSP SIGNATURE AND STA	MP:					
to the best of my knowledge, infector (are) the subject of this submittal 40.0000, and such facility is pern	ole provisions of 309 CMR 4.02(2) and (3) formation and belief, the assessment action for acceptance at the facility identified in intention was the having ties may result, including, but not limited attention accepted.	on(s) undert in this subm ng the chara	aken to chara ittal comply v cteristics desc	cterize the Ren vith applicable cribed in this su	nediation Waste wherevisions of 310 Cubmittal.	cich is
1. LSP #:						
2. First Name:	3. Last	Name:				
4. Telephone:	5. Ext:	6. Email:				
7. Signature:		_	9. LSP Stam	p:		
8. Date:						1
(mm/dd/yyy	vy)					

Revised: 9/3/2013 Page 3 of 5

G. PERSON SUBMITTING BILL OF LADING:

Massachusetts Department of Environmental Protection *Bureau of Waste Site Cleanup*

BWSC 112

Release	Tra	acking Number
3	-	518

BILL OF LADING (pursuant to 310 CMR 40.0030)

1. Check al	l that apply:	a. change in con	ntact name	b. change	e of address	c.	change in the person undertaking respons	se
2. Name of	Organization:	WILMINGTON REALT	TY TRUST					
3. Contact	First Name:	GARY		4. Last Name	: STANIE	ICH		_
5. Street:	424 BROADWA	Y AVENUE			6. Title:			
7. City/Tow	vn: SOMERVIL	LE			8. State:	MA	9. Zip Code: 021450000	_
10. Telepho	one: 6038605	508	11. Ext:		12. Email:		_	
H. RELAT	IONSHIP TO	SITE OF PERSON	SUBMITTI	NG BILL OF	LADING:	Γ	Check here to change relationship	
☑ 1. RP or	PRP	a. Owner	□ b. Ope	erator	□ c. Gen	erator	d. Transporter	
e. O	ther RP or PRP	Specify	:					_
2. Fiduc	iary, Secured L	ender or Municipality	with Exempt S	Status (as define	ed by M.G.L	c. 21E,	s. 2)	
☐ 3. Age	ncy or Public U	tility on a Right of Wa	y (as defined l	oy M.G.L. c. 21	E, s. 5(j))			
4. Any	Other Person	Undertaking Respons	e Actions:	Specify Re	lationship:			
I. REQUIR	ED ATTACH	MENT AND SUBM	ITTALS:					
		-	_		•		pject to any order(s), permit(s) and/or ng the applicable provisions thereof.	
	ck here if any 1 C.eDEP@state.1	=	tion provided	on this form is	incorrect, e	g. Relea	se Address/Location Aid. Send correction	s to
☐ 3. Che	ck here to certi	fy that the LSP Opinio	on containing t	the material fac	ts, data, and	l other int	formation is attached.	
J. CERTIF	TICATION O	F PERSON SUBMIT	TING BILL	OF LADING	:			
that, in thi attest am/is	based on my ins submittal is, tation on behalts aware that the	equiry of those individe to the best of my known f of the entity legally	ed in this sub- luals immedian wledge and be responsible falties, includi	mittal, including tely responsible dief, true, accu for this submit	ng any and a e for obtaining tate and cortail. I/the pe	all documing the in mplete, ar er	erjury (i) that I have personally examined an ents accompanying this transmittal form, formation, the material information contained (iii) that I am fully authorized to make notity on whose behalf this submittal is mes and imprisonment, for willfully submittal	(ii) ned this ade
2. By:					3. Title:			
4. For:	WILMINGTON F	REALTY TRUST			5. Date:			
	(Nam	e of person or entity re	ecorded in Sec	tion G)	-		(mm/dd/yyyy)	

Revised: 9/3/2013 Page 4 of 5

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup

Release	Tracking	Nun

BWSC 112

Release Tr	acking Number
3 -	518

BILL OF LADING (pursuant to 310 CMR 40.0030)

6. Check here if the addres	s of the person providing certificati	on is different from address	s recorded in Section G.
7. Street:			
8. City/Town:		9. State:	10. Zip Code:
11. Telephone:	12. Ext:	13. Email:	
ate Stamp (MassDEP USE ONI	.Y):		
Received by DEP on 1/9/2	018 9:41:41 AM		
Received by DEP on 1/9/2	018 9:41:41 AM		
Received by DEP on 1/9/2	2018 9:41:41 AM		
Received by DEP on 1/9/2	2018 9:41:41 AM		
Received by DEP on 1/9/2	2018 9:41:41 AM		

Revised: 9/3/2013 Page 5 of 5

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup

BWSC 112A

- · · · · · · · · · · · · · · · · · · ·			
BILL OF LADING (pursuant to 3	10 CM	R 40.0030)	
SUMMARY OF SHIPMENT SHEET	1	OF 1	

Release Tracking Number					
3	_	518			
,	*				

A. SUMMARY OF SHIPMENT (To be filled out by the receiving facility upon receipt of Remediation Waste):

1. Date of Shipment: (mm/dd/yyyy)	2. Date of Receipt: (mm/dd/yyyy)	3. Number of Loads Shipped:	4. Daily Volume Shipped: ☐ yds3
12/19/2017	12/19/2017	1	40.5
5. Totals Recorded on this Summary of Shipment Sheet:		1	40.5

Revised: 9/3/2013 Page 1 of 1

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup

A. ACKNOWLEDGEMENT OF RECEIPT OF REMEDIATION WASTE AT RECEIVING FACILITY OR TEMPORARY STORAGE:

BWSC 112B

Release Tracking Number

BILL OF LADING (pursuant to 310 CMR 40.0030) SUMMARY SHEET SIGNATURE PAGE

and am fa that, based this submin attestation aware that	miliar with the information contained in this submit d on my inquiry of those individuals immediately re ittal is, to the best of my knowledge and belief, true,	tal, including any and a esponsible for obtaining accurate and complete submittal. I/the person	or entity on whose behalf this submittal is made am/is
2. By:	ERICKA STEVENS	3. Title:	OFFICE MANAGER
4. For:	AGGREGATE RECYCLING	5. Date:	1/2/2018
			(mm/dd/yyyy)
6. Date of Final Shipment associated with this Bill of lading:		12/19/2017 (mm/dd/y	уууу)
1. I, GARY and am fa that, base this subm attestation aware tha	amiliar with the information contained in this submit and on my inquiry of those individuals immediately re- uittal is, to the best of my knowledge and belief, true.	ttal, including any and a esponsible for obtaining , accurate and complete submittal. I/the person	n or entity on whose behalf this submittal is made am/is
2. By:	GARY STANIEICH	3. Title:	
4. For:	WILMINGTON REALTY TRUST	5. Date:	1/9/2018
	(Name of person or entity recorded in Sect	ion G)	(mm/dd/yyyy)
6. Che	eck here if the address of the person providing certifi	cation is different from	n address recorded in BWSC112 Section G.
3. City/Tov	wn:	9. State:	10. Zip Code:
l 1. Teleph	one: 12. Ext:		

Revised: 9/3/2013 Page 1 of 1

14. Check here if attaching optional supporting documentation such as copies of Load Information Summary Sheets