Utility-Related Abatement Measure Completion Report

Former GE Facility (RTN 3-29952) Wilmington, Massachusetts

Submitted to:

Massachusetts Department of Environmental Protection

Bureau of Waste Site Cleanup 205B Lowell Street Wilmington, Massachusetts 01887

Prepared by:

Tetra Tech, Inc.

250 Andover Street, Suite 200 Wilmington, Massachusetts 01887

February 2012

TABLE OF CONTENTS

<u>Section</u>	<u>Pa</u>	<u>ge</u>
1.0 INT	RODUCTION	1
2.0 GE	NERAL DISPOSAL SITE INFORMATION	1
3.0 SIT	TE DESCRIPTION	1
4.0 SIT	TE HISTORY	4
5.0 UT	TLITY-RELATED ABAEMENT MEASURE DESCRIPTION	4
6.0 LSI	P OPINION	8
7.0 REI	FERENCES	9
	LIST OF FIGURES	
	Pag	je
Figure 1	Site Locus Map	2
Figure 2	Site Plan	3
Figure 3	URAM Field Screening Data Summary	6
	LIST OF APPENDICES	
Appendix A	A Photographic Log	
Appendix B	3 Air Monitoring Daily Sheets	
Appendix C	C Laboratory Analytical Data Package – Imported Fill Characterization	
Appendix D	D Laboratory Analytical Data Package – Waste Profile	
Appendix E	E Copy of Bill of Lading	

i

1.0 INTRODUCTION

In accordance with 310 Code of Massachusetts Regulations (CMR) 40.0466 of the Massachusetts Contingency Plan (MCP), Tetra Tech has prepared the following Utility-Related Abatement Measure (URAM) Completion Report for the excavation and off-site disposal of soil contaminated with oil and hazardous material from the Former General Electric (GE) Facility located at 50 Fordham Road in Wilmington, Massachusetts (Figure 1). This URAM completion report addresses the utility-related construction and related soil management activities due to the relocation of buried electrical utilities associated with a demolition project for a portion of the adjacent building. This URAM Completion Report is being electronically filed to the Massachusetts Department of Environmental Protection (MassDEP) under a separate cover.

2.0 GENERAL DISPOSAL SITE INFORMATION

Potentially Responsible Party: Lockheed Martin Corporation

6801 Rockledge Drive Bethesda, MD 20817 (Phone) 817-495-0251 (Fax) 817-762-4884

Site Owner: Wilmington Realty Trust

434 Broadway

Somerville, MA 02145

Disposal Site Address: Former General Electric Site

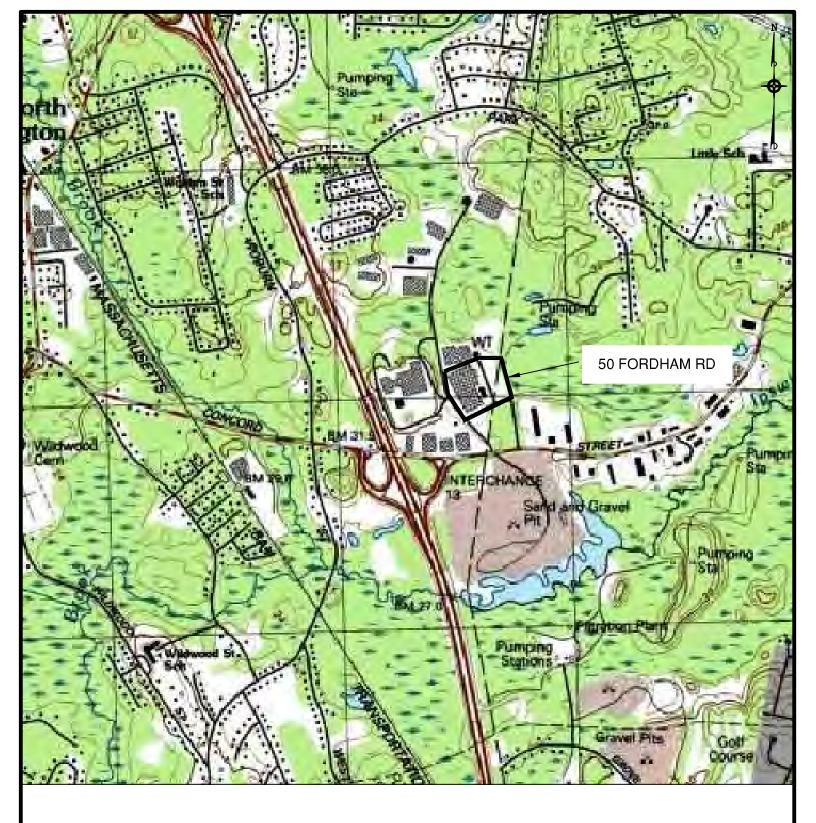
50 Fordham Road

Wilmington, MA 01887

Release Tracking Number(s): RTN 3-29952 (3-00518)

Geographic Location: Northing: 4714246

Easting: 324657


Licensed Site Professional (LSP): Stephen S Parker

(Phone) 978-474-8434

3.0 SITE DESCRIPTION

The site is a 13-acre parcel situated along Fordham Road in Wilmington, Massachusetts. Currently, the site contains wetlands, a sewage treatment plant and waste water treatment plant, paved parking areas, and a number of industrial buildings (see Figure 1).

The URAM was performed approximately 35 to 40 feet east of former Building 3, adjacent to the eastern parking lot, in approximately 60 linear feet of trench (See Figure 2).

BASE MAP FROM USGS QUADRANGLE SHEET: READING, MASSACHUSETTS, 1987

GRAPHIC SCALE
0 0.5 MILE 1 MIL

WWW.TETRATECH.COM

250 ANDOVER STREET SUITE 200 WILMINGTON MA, 01887 T: (978) 474-8400 | F: (978) 474-8499 SITE LOCUS MAP FORMER GE SITE 50 FORDHAM ROAD WILMINGTON, MASSACHUSETTS

DATE:	2/23/11
PROJECT NO.:	IC03346
DESIGNED BY:	S.VETERE
DRAWN BY:	M.ALROY
CHECKED BY:	S. PARKER
FIGURE NUMBER:	1

FILE:\03346\02A\ LOCKHEED_WILMINGTON_LOCUS.DWG COPYRIGHT TETRA TECH INC.

250 ANDOVER STREET SUITE 200 WILMINGTON, MA 01887 T: (978) 474-8400 | F: (978)-474-8499 SITE CONTROL PLAN FORMER GE SITE 50 FORDHAM ROAD WILMINGTON, MASSACHUSETTS

DATE:	01/05/12
PROJECT NO:	IC03346
PREPARED BY:	K. CALLAHAN
CHECKED BY:	S. NESBIT
FIGURE NUMBER	: 2
G:\GIS_arcv\PRO. \KPC\50Fordham	JECTS\CLEAN

4.0 SITE HISTORY

Prior to 1968, the property was used for gravel mining. From 1968 through 1970, the property was developed with the construction of three large buildings, one small building, a paved parking area, and a waste water treatment facility. GE Aerospace Instruments began to occupy the property buildings in 1970, and operated manufacturing and supported research and development departments until 1989. Portions of the site were subleased to Converse, Inc. (Converse) from 1973 to 1986, and to Hamilton Standard from 1983 to 1985. In August 1989, GE's operations were sold to Ametek, Inc. (TRC Environmental Corporation [TRC Environmental], 2001).

Based on historical topographic maps, the property was developed after 1965 and before 1979. Prior to 1965, the property appears to have been undeveloped land. No Sanborn Fire Insurance maps were available for this property (Environmental Data Resources [EDR], 2009).

5.0 UTILITY-RELATED ABAEMENT MEASURE DESCRIPTION

The URAM was conducted as part of a demolition project, a portion of which involved the relocation of electrical service to an existing on-site groundwater treatment building and parking lot light poles (see Figure 2).

A URAM Notification was provided to MassDEP April 29, 2011 to address the potential exposure of site workers to contaminated soils during the utility excavation. The contaminated soils are associated with the release of volatile organic compounds (VOCs) and petroleum hydrocarbons (Stoddard solvent) from historical site operations. The original release is currently being tracked under RTN 3-00518. Photographic documentation throughout the duration of the URAM is included in Appendix A.

The URAM notification was originally filed in recognition of the potential to encounter contaminated soils during subsurface work associated with the electrical service relocation. During trenching to the east of the former Building 3, soils impacted with petroleum constituents were encountered and stockpiled on site for characterization and off-site disposal.

Lockheed Martin has completed a Release Abatement Measure (RAM) under RTN 3-00518 to address soils contaminated with Stoddard solvent that were encountered beneath the slab of Building 3, which was demolished in early July 2011. A RAM plan for this soil removal project was prepared by Tetra Tech, Inc. (Tetra Tech) and submitted to MassDEP by TRC Environmental on June 22, 2011. A RAM plan addendum was submitted by TRC Environmental on August 17, 2011. A RAM Status Report was prepared by Tetra Tech and submitted to MassDEP by TRC Environmental on October 25, 2011. A RAM Completion Report is currently being prepared for RTN 3-00518, and will be submitted to MassDEP in accordance with 310 CMR 40.0445 of the MCP.

Air monitoring was performed daily during demolition and URAM related activities. Copies of the daily air monitoring sheets are located in Appendix B.

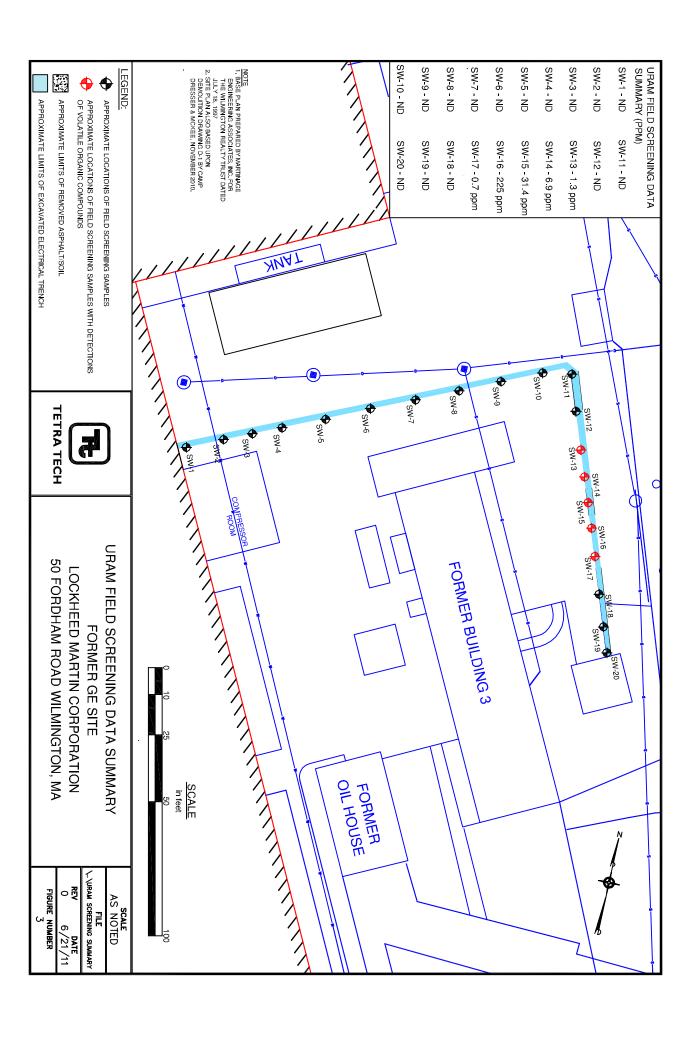
5.1 URAM Response Operations:

Subsurface work (i.e. trenching) for the electrical service relocation commenced on May 25, 2011. As outlined in the URAM Plan, soils removed from the electrical trench were field screened using a flame ionization detector (FID) to determine whether they had been impacted by the historical release of contaminants at the site. Figure 3 (on page 6) provides a summary of field screening results observed during trench excavation. No sidewall or bottom samples were collected from the trench, and the trench was backfilled with clean material originating from an off-site source as described in the previous section.

In total, approximately 150 cubic yards (yd³) of soil, boulders, and asphalt were removed from the electrical trench and staged on site, consistent with the requirements set forth in the URAM Plan.

Materials removed from the trench included the following:

- Approximately 20 yd³ of petroleum-impacted soils.
- Approximately 75 yd³ of non-impacted soils.
- Approximately 40 yd³ of boulders.
- Approximately 15 yd³ of asphalt.


The petroleum-impacted soils recovered from the trench are believed to be associated with the historical release of Stoddard solvent from the adjacent release area tracked under RTN 3-00518.

Asphalt recovered from the trenching area was transported to the Aggregate Industries in Chelmsford, Massachusetts for recycling.

The URAM Plan specified the reuse of trenching spoils as backfill material for the trench. However, because this material contained a large percentage of oversized material, it was determined not to be suitable for use above the electrical conduit.

Backfilling of the electrical trench was completed on June 27, 2011. Therefore, approximately 120 tons of processed gravel was imported from Heffron's Materials in Wilmington, Massachusetts to backfill the electrical trench. A sample of this material was collected for laboratory analysis to verify its suitability for on-site reuse. The analytical data report for the imported fill is provided as Appendix C of this report.

The trench area was paved to complete the final site restoration. One 1.5-inch lift of compacted binder course asphalt and one 1.5-inch lift of compacted of finish course asphalt were placed and compacted to complete the site restoration for URAM related activities.

5.2 Management of Remediation Waste and Remedial Wastewater: As specified in the URAM Plan, impacted soils were stockpiled on 6-mil polyethylene sheeting, covered with 6-mil polyethylene sheeting, and surrounded with hay bales to prevent erosion and sedimentation until disposal could be arranged. The impacted soils recovered from the utility trench were stockpiled on site adjacent to soils excavated as part of the ongoing RAM.

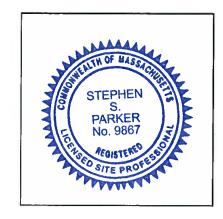
The remediation waste generated under the URAM was excavated on June 21, 2011. The URAM soils were profiled along with the adjacent RAM soils for transportation and disposal at the Waste Management Grows North and Tullytown Waste Management facilities in Pennsylvania. Due to the consolidation of the URAM and RAM soils for the purpose of facilitating their profiling and transportation, the URAM soils exceeded the 120-day limit for on-site storage of remediation waste per 310 CMR 40.0030. However, the stockpiled soils were carefully maintained and were covered and protected from erosion in the interim. Petroleum-impacted soils from the URAM were transported and disposed of under the same waste profile as contaminated soils generated as a result of the RAM conducted under RTN 3-00518. Waste profile laboratory analysis for this material is provided in Attachment D of this report.

Groundwater was not encountered during trenching operations and no surface water was impacted by contaminated materials generated as a result of the URAM; therefore, no remedial wastewater required management under the URAM.

5.3 Transportation and Disposal of Remediation Waste

Approximately 20 yd³ (27 tons) of contaminated soil (remediation waste) generated by the URAM was directly loaded into trucks for transport to the Grows North and Tullytown Waste Management facilities in Pennsylvania. Waste loading of remediation waste was performed on November 4, 2011. Shipping documentation was completed and accompanied each load. Bills of Lading, including signed attestation of shipment for the URAM, are included in Appendix E.

Transport vehicles equipped with sealed tailgates were used to transport the excavated soil. The top of the truck bed was covered and secured to prevent loss of material and rainfall infiltration. The wheels of all vehicles leaving the site were inspected to ensure control of contamination prior to leaving the work area. Following completion of the loading activities, the excavation and loading equipment were decontaminated.


6.0 LSP OPINION

It is the opinion of the LSP that this work has been conducted in accordance with the MCP, the approved RAM Plan, and RAM Plan Addendum, and this report has been prepared in accordance with 310 CMR 40.0466 with the exceptions/modifications as described herein.

Stephen S. Parker

Date:

LSP

7.0 REFERENCES

CDM, 2010. Phase I Initial Site Investigation Report and Completion Statement, Former GE Facility. January.

Environmental Data Resources (EDR), 2009. The EDR Historical Topographic Map Report. December.

Tetra Tech Inc. (Tetra Tech), 2011. Utility-related Abatement Measure Notification, Former General Electric Property, RTN # 3-29952, 50 Fordham Road, Wilmington, Massachusetts. March

Tetra Tech Inc. (Tetra Tech), 2011. Utility-related Abatement Measure Status Report, Former General Electric Property, RTN # 3-29952, 50 Fordham Road , Wilmington, Massachusetts. August

TRC Environmental Corporation (TRC Environmental), 2001. Comprehensive Review of Groundwater Data, Former GE Facility, RTN #3-0518, Wilmington, Massachusetts. September.

TRC Environmental Corporation (TRC Environmental), 2010. Vapor Intrusion Investigation 2010, Former GE Facility, Wilmington, Massachusetts. July.

TRC Environmental Corporation (TRC Environmental), 2011a. Release Abatement Measure (RAM) Plan. June.

TRC Environmental Corporation (TRC Environmental), 2011b. Release Abatement Measure (RAM) Plan Addendum. August.

TRC Environmental Corporation (TRC Environmental), 2011c. Remedy Operation Status Report – Winter 2011, Former GE Facility, RTN #3-0518, Wilmington, Massachusetts. March.

APPENDIX A

Photographic Log

Photographic Documentation LMC Wilmington URAM Completion Report 50 Fordham Rd Wilmington, Massachusetts Project No. 112IC03346

Photo: 1

Description:

View of area of impacted soils within the electrical relocation trench excavation.

Orientation:

Facing North

Photo: 2

Description:

View of electrical relocation trench backfilling.

Orientation:

Facing West

Photographic Documentation LMC Wilmington Completion Report 50 Fordham Rd Wilmington, Massachusetts Project No. 112IC03346

Photo: 5

Description:

View of electrical relocation trench backfilling and impacted soil stockpiles staged on and covered by 6 ml.

polyethylene sheeting.

Orientation:

Facing East

Photo: 6

Description:

View of electrical relocation trench backfilling.

Orientation:

Facing West

Photographic Documentation LMC Wilmington Completion Report 50 Fordham Rd Wilmington, Massachusetts Project No. 112IC03346

Photo: 7
Description:

View of electrical relocation trench asphalt installation.

Orientation:

Facing West

Photo: 8

Description:

View of electrical relocation trench asphalt installation.

Orientation:

Facing West

Photographic Documentation LMC Wilmington Completion Report 50 Fordham Rd Wilmington, Massachusetts Project No. 112IC03346

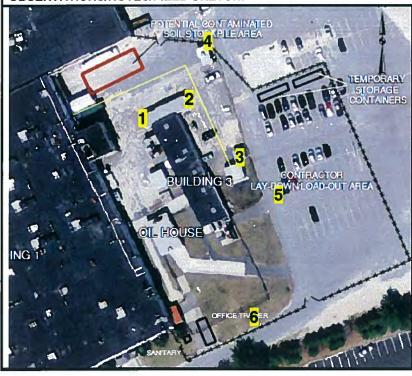
Photo: 27

Description:

View of site upon completion of site restoration including loaming and seeding and asphalt installation.

Orientation:

Facing South


APPENDIX B

Air Monitoring Daily Sheets

Project Site Name:	LMC V	Vilmingto	n			ate: 5	125	Ш								
Project No.:	112IC	03346			R	ecorded	BK).	Alro	1							
Weather:	Cle	ace "	10'5						1							
Subcontractor:				NPE	P&TAT	75			_							
Personnel:	1	INTOR	Son	45	Goog	ge, E	Eddi	l								
		ents/Action Levels/Units Flame Ionization Detector														
PRD 1000) Particu	late Moi	nitor													
-	0.5 mg/	m³					1.25 p	pm (5	min. s	ustained	l)					
Field Screening	1		2		3	3		4		5	6					
Sample Station	d Octeering					F	Р	F	Р	F	P	F				
Time]			
Time	ව.ගාරි	0.0	<u> </u>													
13:00	<u>ව</u> .ගාද	0.0	pa.0	0.0												
13:00	9.య్	ð · O	ઇ.જ. <u>જ</u>	0.0	₽.∞\¢	0.0										
13:00	200.6	ð · O	p/ce.0	0.0		0.0										
13:00	€0.00	0.0	મુલ્હ. ૭	0.0		0.0										
13:00	Sco.6	0.0	p. 894	0.0		0-0										
13:00	9.005	0.0	Pes. 0	0.0		0.0										
13:00	9.005	8.0	p/cg. 0	0.0		0.0										

OBSERVATIONS/NOTES/FIELD SKETCH:

NO DETOCTION OBSERVED

AROVE SITE SPECIFIC

SCREENING LOVELS

- EHRS Screens began

upon commencement

of trenching

LMC Wilmington Health and Safety Field Screening Log

Project Site Name:	LMC V	Vilmingt	on			ate:	5/2	6/11									
Project No.:	112IC	03346			F	Recorded	By: N	1.A	hou								
Weather:	60	5/8	06	•		-											
Subcontractor:	1	•	105	INTE	AZ8110	16											
Personnel:			Nik				Ed	die	Goo	rec							
Field Screening Inst	ruments	/Action	Levels/l	Jnits '			,										
PRD 100			nitor			Flame Ionization Detector											
	0.5 mg/	m³				1.25 ppm (5 min. sustained)											
Field Screening	1 2			3		4		<mark>5</mark>		3							
Sample Station	P	F	P	F	Р	F	Р	F	Р	F	Р	F					
Time																	
0800	0.004	0.0															
9100			80.00	0.0													
10:00					2002	٥.٥											
11/00							9-302	0.0									
12:00									0.002	ð.ð							
12											0.002	9.0					
13:00																	
14.00	0.005	0.0															

OBSERVATIONS/NOTES/FIELD SKETCH:

NO DETECTIONS OBSERVED ABOVE SITE SPECIFIC SCLEGNING LEVELS

Project Site Name:	LMC	Wilm	ington	1			Da	te:	6/20	1110								
Project No.:	112	C0334	46				Red		і Ву:		Ahr	54						
Weather:	Cus	202	50%	180	S							1						
Subcontractor:		Cart		•									_					
Personnel:	5	. Sc	viol	1 5	7.C	be	n D	. Gr	~~	e ll	. G	, Ri	12m	an				
Field Screening Instr	umen	ts/Act	tion Le	evels/l	<u>Jnits</u>	_												
PRD 1000 Partic		Monite	or	4	Jeron		rcury			yzer						Detec		
0.5 mg	/m°					0).05 m			_		1.2	25 pp	_	min. s	sustai		
Field Screening Sample Station	P	1	F	Р	2	F	<u></u>	3	-	_		4 5			_	-	6	_
Time	-	J		Р	J	<u> </u>	Р	J	F	Р	J	F	Р	J	F	Р	J	F
0800	ව.කුදු	0.0	٥.٥												Γ			
9900				0.005	9.0	o.6												
10.00							0 - 704	0.0	0.0									
11:00										∂.co. <i>6</i>	0.0	0.0						
12:00													0-00	٥.٥	0.0			
13:20																0.004	0.0	0.0
14:00) कर्की	9	0.0															
15:00				०.००४	8.0	0.0												
OBSERVATIONS/NOT	12	-	100	-	-5			i										
	3	SOL S	4 E	AMINAT LE ARIEA	. 3		A L	=MPOR	ARY				iona 16 s					
	EMPORA STORAK ONTAIN	JERS	S	? e C	HIM	à le	vels	>										
ING 12	OI-I	Hous		KE TR	5	-	CTOR D-OUT AS		1									

Project Site Name:	LMC	: Wiln	ningtor	n			Da	te:	62	1.1					-			
Project No.:	_	C033		•			Red	cordec		-	Aha							
Weather:	+			Sok	180	•				1113	- Inc	4						
Subcontractor:			NTA		1 90													
Personnel:		Nik	<u>کر</u> (2	<u>v43</u>	D. G	3000	mel	.S.	Sev	noli								
Field Screening Inst																		
PRD 1000 Partic		Monit	or		Jeror		rcury '			yzer			Flame	loniz	ation	Detec	tor	
0.5 mg	į/m³					0	.05 m	g/m³				1.25 ppm (5 min					ined)	
Field Screening		1		_	2			3			4			5			6	
Sample Station	Р	J	F	Р	J	F	Р	J	F	P	J	F	Р	J	F	Р	J	F
Time																		
<i>⊙</i> 8∞	9.03	9.0	0.0															
ອງ∞				40.e	0.0	00												
10:00							0 02	0-0	0.0									
11:00										න. උතුරි	0.0	0.0						
12:00													الازون	D. 0	0.0			
13 - 90																0.009	0.0	0.0
14:00	0,005	0.0	6·0															
t5:∞				5.03	ರಿತಿ	ය. ය												
OBSERVATIONS/NO		- 10		CH: TAKINA LE ARE	(E2) A	9	7			N 0	D.	हाह इ. ८.			9.50			

Screening levers

						50 50 50												
Project Site Name:	LMC	Wilm	ington				Date: 6 22											
Project No.:	1121	C0334	46			-	Re	corded	Ву:	M.	3/rz	4						
Weather:	0	raw	Dy l	PAIN	J (اعم	70s											
Subcontractor:		- ·	PICA											-	_			
Personnel:				, 2,	Dan	e G	Ni	k C						_				
Field Screening Instr	ument	ts/Act	ion Le	evels/l	Jnits													
PRD 1000 Partic		Monit	or		Jeron			Vapor	Anal	yzer			Flame	loniz	ation	Detec	tor	
0.5 mg	/m³					0	.05 m	g/m³			1.25 ppm (5 min. sustained)							
Field Screening		1			2		4	3			4			5			6	
Sample Station	Р	J	F	Р	J	F	Р	J	F	Р	J	F	Р	J	F	Р	J	F
Time																		
2800	ට ගාටු	0.0	0.0															
0900				მ.05	00	0.0												
10:00							0.04	0.0	0.0									
11:00										5.00	0 0	0.0						
12:00														0.0	8.0			
													, , , ,	<u> </u>				
									_	Н		 						
		-									_							
OBSERVATIONS/NOT	ES/FI	ELD S	SKET	CH:														
A COLUMN TO SERVICE AND A COLU	Fo	IENTA	LCONT	AMINAT LE AREA	EĐ	,		1		Tre	<i>~</i> -	12	0					
	1	SOLS	4	E ARE	-A	8		4						N Ir				
	X	1	1	C	, a					AF	TER	Ma	sh,	No	AD	PIT	MON	mh
		1		1	-		A II	MPOR/	ARY	Pe	GA6	Info	< -	PICE	3N			
		2	18	-		108		ONTAN	ERS				- 1					
	1				30	ISS .	1			NS	De	T21	tion.	45 6	n206	40 UN	_T D	
		2		3		2023		1						5 S				
411/2		DLUI I	DING		G	NTRAC	TOR -OUT A	1								• •		
		BUILI		م) سرو	Y-TSW	NLOAD	-OUT A	EA \			Sci	थ्स्ध	MITE	06	tel	2		
\$	3		0		-51	0		1										
16 1 1 1 1/2 / 1/2 /	OIL	HOUS	E	1					1									
ING 1"	M	0		1					1									
				1	-				-									
. 9		1	s				-											
- 3	7	M	100	-	1	1			Noce									
		N. C.	1	CE TRA	Market Market		-											
	1	Rack	112	1	200			ALC: NO	177									ı

Project Site Name:	LMC	Wilm	ington				Date: 6 23 11													
Project No.:	1121	IC033	46				Red	corded	В́у:	m.	AH	131								
Weather:	C	Levi	שש	120	IN	605		_												
Subcontractor:						STA		_		_							_			
Personnel:								<u> </u>	Sk	Ther		Ge	2596	· ·						
Field Screening Instr	umen	ts/Ac	tion Le	evels/	Jnits	1				1	4		- 0							
PRD 1000 Partic						ne Mer	curv '	Vapor	Anal	vzer	Flame Ionization Detector									
0.5 mg				1		0.	05 m	g/m³	7 11 141	,	十			m (5 ı						
Field Screening		1			2			3			4		T PP	5		- aota	6			
Sample Station	Р	Ĵ	F	Р	J	F	Р	J	F	Р	J	F	Р	IJ	F	Р	J	F		
Time																				
							Ü													
****											-									
												+								
									-			1								
OBSERVATIONS/NOT	ΓES/FI	IELD :	SKETO	CH:																
ING 1	1 1 1 1 1	2	E	3	1010	and a land a lan	1	EMIPORIO DI ORIAN ONITAIN	ERS	De M Dw	S D Pr Wr	JEHU THE BRIM TO FOCK	11/11/2 14 P 14 P 14 P	Mer Mer Mor I	pan voc	1 H 1 V F 2 G G 3 H B	95 POR S	J.		

									_									
Project Site Name:	LMC	Wilm	ington	l		Date: 62411												
Project No.:	1121	C0334	46				Re	corded	Ву:	M.	Hr	7						
Weather:		الملا	DU	PAI	7 G	D'\												
Subcontractor:			MPA				810	TA										
Personnel:		Sa	٤٨٨٥	<u> </u>	sik (\ 7	mre	F G	Go	orge	. 5	teve						
Field Screening Instru	umen	ts/Act	ion Le	vels/	Units			1			1							
PRD 1000 Particu					Jeron	ne Me	rcurv	Vapor	Anal	vzer	Т		Flame	loniz	ation	Detec	tor	
0.5 mg/			- -			0	.05 m	g/m³			十			m (5				
Field Screening	1 2							3			4			5			6	
Sample Station	PJFPJF					Р	J	F	Р	J F P J F P J F								
Time																		
OBSERVATIONS/NOT	ES/FI	ELD S	SKETO	CH:														
ING T	1117	2		3	1810	B A A A A A A A A A A A A A A A A A A A	TOR AS	EMPORA ETORAC ONTA N	URI HERS	Si Si	TE SACE	to l	RAIR	n k	p E	ed ed	S	

LMC Wilmington Health and Safety Field Screening Log

Project No.: Weather: Subcontractor: Personnel:	-				F	Recorded	BV:										
Subcontractor:	-	LOWD	. 11.4		Recorded By: M.Akoy												
	-	. crowd you Bo's															
Personnel:	19	Aug		1													
	E	heory	c														
Field Screening Instru				nits													
PRD 1000 F			nitor				Flar	ne Ioni	zation D	etector							
0.	.5 mg/	m ³				1.25 ppm (5 min. sustained)											
Field Screening		1	2			3		4		5	6						
Sample Station	Р	F	Р	F	Р	F	Р	F	Р	F	Р	F					
Time									-								
53∞	116-0	·															
0900			ව.නා								\Box						
1000					ರಿಖ												
11:00							0.03		0.567								
12:00											8.017	-					
	0012																
1400			80.0														
1500					110.8												

OBSERVATIONS/NOTES/FIELD SKETCH:

NO DETECTIONS OBSERVED
GREATER THAN SITE
SPECIFIC ACTION LEVELS

APPENDIX C

Laboratory Analytical Data Package -	 Imported Fill Characterization
--------------------------------------	--

195 Commerce Way Suite E Portsmouth, New Hampshire 03801 603-436-5111 Fax 603-430-2151 800-929-9906 www.analyticslab.com

September 1, 2011

Mr. Scott Nesbitt Tetra Tech NUS, Inc. 661 Andersen Drive, Foster Plaza 7 Pittsburgh PA 15220

RE: Analytical Results Case Narrative

LMC Wilmington Project No:1121C03346

Analytics # 70798

Dear Mr. Nesbit:

Enclosed please find the analytical results for samples submitted for the above-mentioned project. The attached Cover Page lists the sample IDs, Lab tracking numbers and collection dates for the samples included in this deliverable.

Samples were analyzed for Volatile Organic Compounds (VOCs) using EPA Method 8260B, Semi-Volatile Organic Compounds (SVOCs) using EPA Method 8270D, Volatile Petroleum Hydrocarbons (VPH) using MADEP VPH Method Rev 1.1, May 2004, Extractable Petroleum Hydrocarbons (EPH) using MADEP EPH Method Rev 1.1, Polychlorinated Biphenyls (PCBs) by EPA Method 8082 and MCP Metals. The metals analysis were subcontracted to Test America-Westfield MA.

Unless otherwise noted in the Non-conformance Summary listed below, all of the quality control (QC) criteria including initial calibration, calibration verification, surrogate recovery, holding time and method accuracy/precision for these analyses were within acceptable limits.

This Level II package has been assembled in the following:

Case Narrative/Non-Conformance Summary

Sample Log Sheet - Cover Page

MCP Cover Pages

VOC Form I Data Sheet for Samples and Blanks

VOC Form 3 MS/MSD (LCS) Recoveries

SVOC Form I Data Sheet for Samples and Blanks

SVOC Form 3 MS/MSD (LCS) Recoveries

VPH Form I Data Sheet for Samples and Blanks

VPH Form 3 MS/MSD (LCS) Recoveries

EPH Form I Data Sheet for Samples and Blanks

EPH Form 3 MS/MSD (LCS) Recoveries

PCB Form I Data Sheet for Samples and Blanks

PCB Form 3 MS/MSD (LCS) Recoveries

Subcontracted Reports and Narratives

Chain of Custody (COC) Forms

Sample Receipt Checklist

QC NON CONFORMANCE SUMMARY

Sample Receipt:

The EPH sample was not collected in an amber container. The sample was delivered to laboratory in a cooler and protected from light. Upon receipt at the laboratory the sample containers were wrapped in aluminum foil to protect from light while being stored at the laboratory. The client was contacted and instructed the laboratory to proceed with analysis.

Volatile Organic Compounds (VOCs) by EPA 8260B:

This narrative is specific to target analytes reported on the Form 1 data pages. Non-target (NT) analyte deviations were not addressed. The following analytes were not "J" flagged in this report: Methylene chloride, Diethyl ether and Acetone.

Due to method limitations the quantitation limits for Dibromochloromethane, Dichloromethane, 1,3-Dichloropropene, Methyl ethyl ketone, Methyl isobutyl ketone, 1,1,2,2-Tetrachloroethane and 1,4-Dioxane may not meet regulatory standards for high level preserved solid samples.

Methyl ethyl ketone did not meet minimum Rf requirement of 0.1 in the initial calibration (V808231C) and in the continuing calibration standard (file#C79912SC). The initial calibration verification standard was in control for all analytes except Dichlorodifluoromethane that high high recovery (131%). Results were reported without qualification.

The laboratory control samples (LS082611C/LS082611C2) had some analytes with recoveries above the laboratory acceptance but within MCP acceptance criteria (70-130%) (see form3). These analytes were not detected in any samples associated with this QC and results were reported without qualification.

Semi-Volatile Organic Compounds (SVOCs) by EPA 8270D:

This narrative is specific to target analytes reported on the Form 1 data pages. Non-target (NT) analyte deviations were not addressed.

Nitrobenzene (0.17) did not meet minimum Rf requirement of 0.2 in the initial calibration (ABN083011). The initial calibration verification standard was in control for all analytes. Results were reported without qualification.

Volatile Petroleum Hydrocarbons (VPH):

No QC deviations.

Extractable Petroleum Hydrocarbons (EPH)

The continuing calibration standards (file# N15432SC & N15438SC) had %D greater 20% for up to four analytes. This is within the method allowed exceptions and results were reported without qualification.

PCBs by EPA Method 8082:

No QC deviations.

If you have any questions or I can be of further assistance, please do not hesitate to contact me.

Sincerely,

ANALYTICS Environmental Laboratory, LLC

Stephen L. Knollmeyer Laboratory Director

195 Commerce Way Suite E Portsmouth, New Hampshire 03801 603-436-5111 Fax 603-430-2151 800-929-9906 www.analyticslab.com

Mr. Scott Nesbit Terta Tech NUS, Inc. 661 Andersen Drive, Foster Plaza 7 Pittsburgh PA 15220

Report Number: 70798

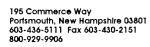
Revision: Rev. 0

Re: LMC Wilmington (Project No: 1121C03346)

Enclosed are the results of the analyses on your sample(s). Samples were received on 25 August 2011 and analyzed for the tests listed. Samples were received in acceptable condition, with the exceptions noted below or on the chain of custody. These results pertain to samples as received by the laboratory and for the analytical tests requested on the chain of custody. The results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report. Please see individual reports for specific methodologies and references.

<u>Lab Number</u>	Sample Date	Station Location	<u>Analysis</u>	Comments
70798-1	08/25/11	LMC-SO-PROCESSED	EPA 8082 (PCBs only)
	08/25/11	LMC-SO-PROCESSED	EPA 8260 Volatile Org	ganics
	08/25/11	LMC-SO-PROCESSED	EPA 8270 Acid/Base N	Neutrals
	08/25/11	LMC-SO-PROCESSED	MADEP EPH	
	08/25/11	LMC-SO-PROCESSED	MCP Metals plus Merc	eury
	08/25/11	LMC-SO-PROCESSED	Volatile Petroleum Hy	drocarbons

Sample Receipt Exceptions: None


Analytics Environmental Laboratory is certified by the states of New Hampshire, Maine, Massachusetts, Connecticut, Rhode Island, Virginia, Maryland, and North Carolina, and is accredited by the Department of Defense (DOD) ELAP program. A list of actual certified parameters is available upon request.

If you have any questions on these results, please do not hesitate to contact us.

Authorized signature
Stephen L. Knollmeyer Lab. Director

Date

This report shall not be reproduced, except in full, without the written consent of Analytics Environmental Laboratory, LLC.

		<u>MassD</u>	DEP Analytical P	Protocol Cert	ification	n Form		<u></u>
Labo	oratory Name:	Analytics Environm	nental Laboratory, L	LC	Project #	#: 70798		
Proje	ect Location:	LMC Wilmington	on			RTN:		
This	Form provid	les certifications for	r the following data	a set. Laborato	ry Samp	le ID Number(s):		
7079	9 8-1							
Matr	rices: Gro	undwater/Surface W	/ater ⊠Soil/Sedi	ment Drink	ing Wate	r 🗌 Air 🔲 Othe	<u>:</u> r	
CA	M Protocol	(check all that ap	ply below):					,
	O VOC M II A 🛛	7470/7471 Hg CAM III B	MassDEP VPH CAM IV A ⊠	8081 Pesticides CAM V B		196 Hex Cr CAM VI B	MassDEI CAM IX	
	SVOC M II B 🛛	7010 Metals CAM III C	MassDEP EPH CAM IV B ⊠	8151 Herbicide CAM V C		330 Explosives CAM VIII A	TO-15 V CAM IX	
	O Metals M III A 🔲	6020 Metals CAM III D	8082 PCB CAM V A	9014 Total Cyanide/PAC CAM VI A		860 Perchlorate AM VIII B		
Affir	mative Respon	nses to Questions A	through F are requ	uired for "Presi	umptive (Certainty" status		
A	Custody, prop	ples received in a co perly preserved (incl iin method holding t	luding temperature)				□Yes	⊠No
В	protocol(s) fol						⊠Yes	□No
С		ired corrective action of the corrective action of the corrective action of the correction of the corr					⊠Yes	□No
D	"Quality Assu Analytical Da		Control Guidelines for	or the Acquisition	on and Re	eporting of	⊠Yes	□No
E	modification(s	, and APH Methods s)? (Refer to individ O-15 Methods only	dual method(s) for a	list of significar	nt modifie	cations).	⊠Yes □Yes	□No □No
F	Were all appli	icable CAM protoco	ol QC and performan	nce standard nor	n-conforn	nances identified	***************************************	□No
Resp	onses to Ques	tions G, H and I be	low are required fo	r "Presumptive	Certaint	y" status		
G	Were the repo protocol(s)?	orting limits at or bel	low all CAM reports	ing limits specif	ied in the	selected CAM	⊠Yes	□No ¹
		ata that achieve "P. requirements descr				essarily meet the data- -07-350.	a usability	and
H		C performance stand					□Yes	⊠No ¹
I	Were results r	reported for the com	plete analyte list spe	ecified in the sel	lected CA	AM protocol(s)?	⊠Yes	□No ¹
¹ A.	ll negative res _l	ponses must be addr	ressed in an attache	d laboratory nai	rrative.			
respo	onsible for obto		tion, the material co			on my personal inqui al report is, to the be		e
Signa	ature:	= KM		Position:	Laborate	ory Director		
Print	ted Name: Ste	ephen L. Knollmeye	<u>r</u>	Date:	Septemb	er 01, 2011		

Surrogate Compound Limits

	Matrix: Units:	Aqueous % Recovery	Solid % Recovery	Method
Volatile Organic Compounds - D	rinkina Wat	۵۳		
1,4-Difluorobenzene	inking wat	70-130		EPA 524.2
Bromofluorobenzene		70-130		EPA 324.2
1,2-Dichlorobenzene-d4		70-130		
1,2 Diemorocenzene ut		70-130		
Volatile Organic Compounds				
1,2-Dichloroethane-d4		70-120	70-120	EPA 624/8260B
Toluene-d8		85-120	85-120	
Bromofluorobenzene		75-120	75-120	
Semi-Volatile Organic Compound	ls			
2-Fluorophenol		20-110	35-105	EPA 625/8270C
d5-Phenol		15-110	40-100	2171 020102100
d5-nitrobenzene		40-110	35-100	
2-Fluorobiphenyl		50-110	45-105	
2,4,6-Tribromophenol		40-110	40-125	
d14-p-terphenyl		50-130	30-125	
PAH's by SIM				
d5-nitrobenzene		21-110	35-110	EPA 8270C
2-Fluorobiphenyl		36-121	45-105	EFA 6270C
d14-p-terphenyl		33-141	30-125	
Pesticides and PCBs				
2,4,5,6-Tetrachloro-m-xylene (TCX	`	46 100	40.120	F)F)
Decachlorobiphenyl (DCB)	,	46-122	40-130	EPA 608/8082
Decachiologiphenyl (DCB)		40-135	40-130	
Herbicides				
Dichloroacetic acid (DCAA)		30-150	30-150	
Gasoline Range Organics/TPH Ga	soline			
Trifluorotoluene TFT (FID)		60-140	60-140	MEDEP 4217/EPA 8015
Bromofluorobenzene (BFB) (FID)		60-140	60-140	
Trifluorotoluene TFT (PID)		60-140	60-140	
Bromofluorobenzene (BFB) (PID)		60-140	60-140	
Diesel Range Organics/TPH Diese	1			
m-terphenyl		60-140	60-140	MEDEP 4125/EPA 8015/CT ETPH
Volatila Patroloum Hydrocombons				
Volatile Petroleum Hydrocarbons 2,5-Dibromotoluene (PID)		70-130	70 120	MADER UDITAL ASSAUR
2,5-Dibromotoluene (FID)			70-130	MADEP VPH May 2004 Rev1.1
2,5 Diotomotoruelle (FID)		70-130	70-130	
Extracatable Petroleum Hydrocarl	ons			
1-chloro-octadecane (aliphatic)		40-140	40-140	MADEP EPH May 2004 Rev1.1
o-Terphenyl (aromatic)		40-140	40-140	
2-Fluorobiphenyl (Fractionation)		40-140	40-140	
2-Bromonaphthalene (fractionation)		40-140	40-140	

VOLATILE DATA SUMMARIES

Mr. Scott Nesbit Terta Tech NUS, Inc. 661 Andersen Drive, Foster Plaza 7 Pittsburgh PA 15220

Project Name:

CLIENT SAMPLE ID

August 29, 2011

SAMPLE DATA

Lab Sample ID: Matrix:

MB08261C2

Solid 100

Percent Solid: Dilution Factor:

100

Collection Date:

N/A

Lab Receipt Date:

N/A

Analysis Date:

08/26/11

	ANALVTICAL DESIG	TS VOLATILE ORGANICS
		Analysis I
Field Sample ID:	LAB QC	Lab Recei
Project Number:		Collection

LMC Wilmington

COMPOUND	Quantitation Limit μ g/kg	Result µg/kg	TILE ORGANICS COMPOUND	Quantitation Limit µg/kg	Result µg/kg
Benzene	100	U	1,3-Dichloropropane	100	U
Bromobenzene	100	Ŭ	cis-1,3-Dichloropropene	100	U
Bromochloromethane	100	Ü	trans-1,3-Dichloropropene	100	U
Bromodichloromethane	75	Ü	2,2-Dichloropropane	100	U
Bromoform	75	Ü	1,1-Dichloropropene	100	U
Bromomethane	100	Ü	Ethylbenzene	100	U
n-butylbenzene	100	Ü	Hexachlorobutadiene	100	U
sec-butylbenzene	100	Ü	Isopropylbenzene	100	U
tert-butylbenzene	100	Ü	p-isopropyltoluene	100	U
Carbon Tetrachloride	100	Ū	Methylene Chloride	500	Ü
Chlorobenzene	100	Ü	Methyl-tert-butyl ether (MTBE)		U
Chloroethane	100	Ü	Naphthalene	100	U
Chloroform	75	Ü	n-Propylbenzene	100	U
Chloromethane	100	Ü	Styrene	100	U
2-Chlorotoluene	100	Ü	1,1,1,2-Tetrachloroethane	100	U
I-Chlorotoluene	100	Ū	1,1,2,2-Tetrachloroethane	75	U
Dibromochloromethane	75	U	Tetrachloroethene	100	U
2-Dibromo-3-chloropropane	100	Ü	Toluene	100	U
,2-Dibromoethane	75	U	1,2,3-Trichlorobenzene	100	U
Dibromomethane	100	U	1,2,4-Trichlorobenzene	100	U
2-Dichlorobenzene	100	Ū	1,1,1-Trichloroethane	100	U
,3-Dichlorobenzene	100	U	1.1.2-Trichloroethane	75	U
4-Dichlorobenzene	100	Ū	Trichloroethene	100	U
Dichlorodifluoromethane	100	Ü	Trichlorofluoromethane	100	U
,1-Dichloroethane	100	Ü	1,2,3-Trichloropropane	100	U
,2-Dichloroethane	75	U	1,2,4-Trimethylbenzene	100	U
,1-Dichloroethene	75	Ü	1,3,5-Trimethylbenzene	100	U
eis-1,2-Dichloroethene	100	Ũ	Vinyl Chloride	100	U
rans-1,2-Dichloroethene	100	Ū	o-Xylene	100	U
,2-Dichloropropane	75	U	m.p-Xylene	100	U
Acetone	1000	U	Diethyl ether	100	U
Carbon Disulfide	100	Ü	2-Hexanone	1000	U
etrahydrofuran	500	U	Methyl isobutyl ketone	1000	U
Methyl ethyl ketone	1000	U	Di-isopropyl ether (DIPE)	100	Ü
-Butyl alcohol (TBA)	2000	U	Ethyl t-butyl ether (ETBE)	100	Ü
-Amyl methyl ether (TAME)	100	Ŭ	1,4-Dioxane	3000	Ü
	Surroga	ite Standard Re			
d4-1,2-Dichloroethane 96	% d8-1	oluene 100	% Bromofluoro	benzene 9	06 %
U=Undetected	J=Estimated	E=Exceeds Ca	ibration Range B=Detected	in	

METHODOLOGY:Sample collection in accordance with SW-846 method 5035A. Sample analysis was conducted according to: Test Methods for Evaluating Solid Waste, SW-846 Method 8260B.

COMMENTS: Results are expressed on a dry weight basis.

Authorized signature

March Jamif

~8260MCP (3) + Dioxane:Res(72):Rec(3)

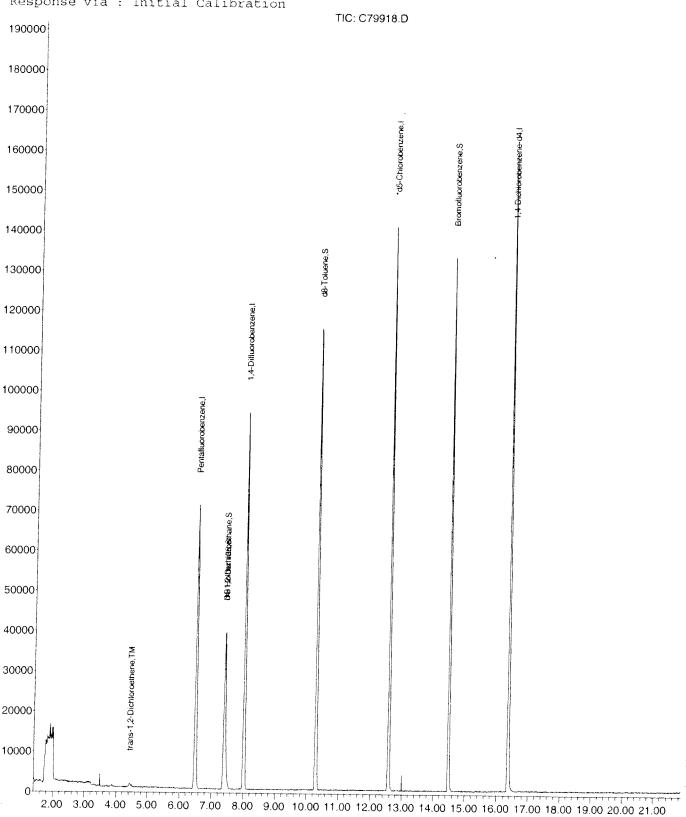
Data File : C:\HPCHEM\1\DATA\DATA\082611-C\C79918.D

: 26 Aug 2011 3:28 pm

Vial: 11 Operator: TD : Instr_C

Sample : MB08261C2 Misc : 50,10.00,SOIL

Multiplr: 1.00


MS Integration Params: rteint.p Quant Time: Aug 29 9:54 2011

Quant Results File: V808231C.RES

Method

: C:\HPCHEM\1\METHODS\MATHODS\METHODS\V808231C.M (RTE Integrator) : 8260 Purgable Organics

Title Last Update : Thu Aug 25 14:20:31 2011 Response via : Initial Calibration

Mr. Scott Nesbit Terta Tech NUS, Inc. 661 Andersen Drive, Foster Plaza 7 Pittsburgh PA 15220

CLIENT SAMPLE ID

Project Name:

LMC Wilmington

Project Number: 1121C03346

Field Sample ID: LMC-SO-PROCESSED

August 29, 2011

SAMPLE DATA

Lab Sample ID: Matrix:

70798-1 Solid

Percent Solid:

94

Dilution Factor:

96

Collection Date:

08/25/11

Analysis Date:

Lab Receipt Date: 08/25/11

08/26/11

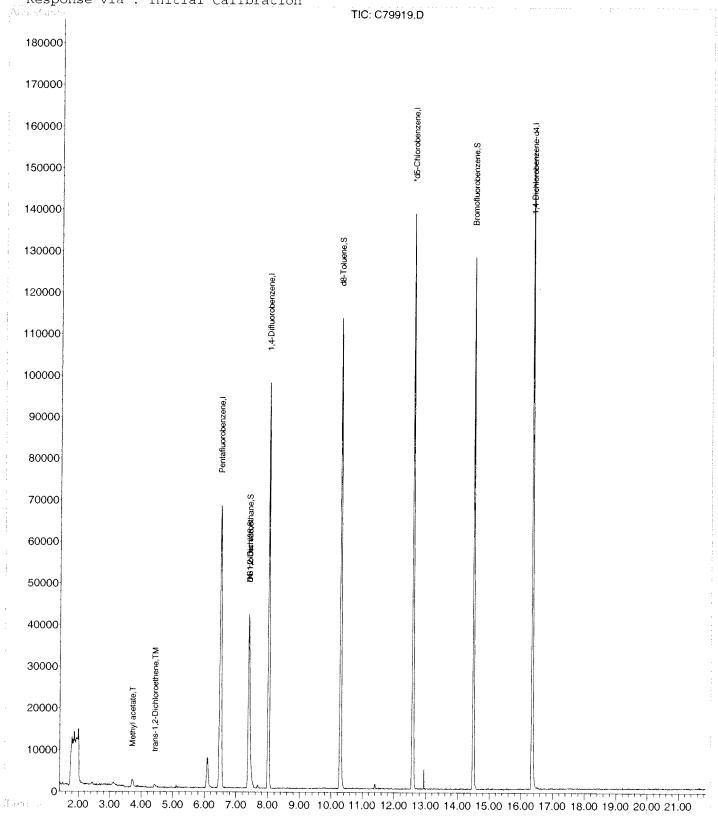
ANALYTICAL RESULTS VOLATILE ORGANICS							
COMPOUND	Quantitation Limit μg/kg	Result μg/kg	COMPOUND	Quantitation Limit μ g/kg	Result µg/kg		
Benzene	96	U	1,3-Dichloropropane	96	U		
Bromobenzene	96	U	cis-1,3-Dichloropropene	96	Ū		
Bromochloromethane	96	U	trans-1,3-Dichloropropene	96	Ū		
Bromodichloromethane	72	U	2,2-Dichloropropane	96	Ū		
Bromoform	72	U	1,1-Dichloropropene	96	Ü		
Bromomethane	96	U	Ethylbenzene	96	U		
n-butylbenzene	96	U	Hexachlorobutadiene	96	Ü		
sec-butylbenzene	96	U	Isopropylbenzene	96	Ü		
tert-butylbenzene	96	U	p-isopropyltoluene	96	Ü		
Carbon Tetrachloride	96	U	Methylene Chloride	481	Ŭ		
Chlorobenzene	96	U	Methyl-tert-butyl ether (MTBE)	72	U		
Chloroethane	96	U	Naphthalene	96	U		
Chloroform	72	U	n-Propylbenzene	96	U		
Chloromethane	96	U	Styrene	96	Ŭ		
2-Chlorotoluene	96	U	1.1.1.2-Tetrachloroethane	96	Ŭ		
4-Chlorotoluene	96	U	1,1,2,2-Tetrachloroethane	72	Ü		
Dibromochloromethane	72	U	Tetrachloroethene	96	Ü		
1,2-Dibromo-3-chloropropane	96	U	Toluene	96	Ü		
1,2-Dibromoethane	72	U	1.2.3-Trichlorobenzene	96	U		
Dibromomethane	96	U	1,2,4-Trichlorobenzene	96	Ü		
1,2-Dichlorobenzene	96	U	I.I.1-Trichloroethane	96	Ü		
1,3-Dichlorobenzene	96	U	1,1,2-Trichloroethane	72	Ü		
1,4-Dichlorobenzene	96	U	Trichloroethene	96	U		
Dichlorodifluoromethane	96	U	Trichlorofluoromethane	96	Ü		
1,1-Dichloroethane	96	U	1,2,3-Trichloropropane	96	U		
1,2-Dichloroethane	72	U	1.2.4-Trimethylbenzene	96	Ü		
I,1-Dichloroethene	72	U	1.3.5-Trimethylbenzene	96	Ü		
cis-1,2-Dichloroethene	96	U	Vinyl Chloride	96	Ü		
rans-1,2-Dichloroethene	96	U	o-Xylene	96	Ŭ		
1,2-Dichloropropane	72	U	m,p-Xylene	96	U		
Acetone	963	U	Diethyl ether	96	U		
Carbon Disulfide	96	Ū	2-Hexanone	963	U		
letrahydrofuran	481	U	Methyl isobutyl ketone	963	Ü		
Methyl ethyl ketone	963	U	Di-isopropyl ether (DIPE)	96	Ü		
-Butyl alcohol (TBA)	1930	U	Ethyl t-butyl ether (ETBE)	96	Ü		
-Amyl methyl ether (TAME)	96	Ū	1,4-Dioxane	2890	Ŭ		
	Surrog	ate Standard F	Recovery				
d4-1.2-Dichloroethane 101	% d8-1	Foluene 93	Bromofluoro	benzene 9	94 %		
U=Undetected	J=Estimated	E=Exceeds C	alibration Range B=Detected	in			

METHODOLOGY:Sample collection in accordance with SW-846 method 5035A. Sample analysis was conducted according to: Test Methods for Evaluating Solid Waste, SW-846 Method 8260B.

COMMENTS: Results are expressed on a dry weight basis.

Authorized signature Matthe purif

Data File: C:\HPCHEM\1\DATA\DATA\082611-C\C79919.D


Vial: 12 Acq On : 26 Aug 2011 4:14 pm Operator: TD Sample : 70798-1 Inst : Instr_C Misc : 50,11.07,SOIL Multiplr: 1.00

MS Integration Params: rteint.p

Quant Time: Aug 29 9:54 2011 Quant Results File: V808231C.RES

: C:\HPCHEM\1\METHODS\MATHODS\WETHODS\V808231C.M (RTE Integrator) Method

Title : 8260 Purgable Organics Last Update : Thu Aug 25 14:20:31 2011 Response via: Initial Calibration

VOLATILE QC FORMS

VOLATILE ORGANIC SOIL LABORATORY CONTROL/LABORATORY CONTROL DUPLICATE PERCENT RECOVERY

Instrument ID: C
GC Column: RTX-502.2
Column ID: 0.25 mm
Heated purge (Y/N): N

SDG: 70798 Non-spiked sample: MB08261C2 Spike: LS08261C Spike duplicate: LS08261C2

COMPONEND ADDREDOUGN LUMT		LCS SPIKE	LCSD SPIKE	LOWER	UPPER	RPD	NON-SPIKE	SPIKE	SPIKE		SPIKE DUP	SPIKE DUP		<u> </u>
Dicheronthiseconchaine	COMPOUND		1	i				1		#		l .	н	RPD #
Chloromethane 200	Dichlorodifluoromethane	2000								Ë			Γ"	I I
Name Charlesten 2000 2000 75 215 25 0 1448 377 0 1467 73 0 2 2 2 2 2 2 2 2 2	Chloromethane	2000	2000	75									-	
Bonnstreibune 200 200 75 125 25 0 1890 04 1792 05 0 15	Vinyl Chloride	2000	2000							*			*	
Chiescopane 300 200 278 125 25 0 1867 369 1498 375 0 1 1 1 1 1 1 1 1 1	Bromomethane	2000	2000	75	125	25	0							
EBBUT ALGOHOLTEAL 10000	Chloroethane	2000	2000											
Trichlom/touromenage 2000 2000 755 125 25 0 0 2014 101 2041 1028 102 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	t-Butyl alcohol (TBA)	10000	10000											
Deshyd teher	Trichlorofluoromethane	2000	2000	75	125	25	0			<u> </u>			Н	
Li,2 Tichhicroenhomenemenemenemenemenemenemenemenemenemen	Diethyl ether	2000	2000					· · · · · · · · · · · · · · · · · · ·						
Acetone	1,1,2-Trichlorotrifluoroethane	2000	2000						*****	<u> </u>			-	
Li-Dichlorentence 2000 2000 75 125 25 0 2228 111 2168 108 3 Nethal biotide 2000 2000 75 125 25 0 1788 88 1774 89 1 1 1 1 1 1 1 1 1	Acetone	5000	5000										_	
Methyle diduke	1,1-Dichloroethene	2000	2000											
Dissorpoys ether (DPP) 2000 2000 75 125 25 0 2023 101 2039 102 1 1 Methodate Chloride 2000 2000 75 125 25 0 1856 91 1840 92 0 105 1 Arzdontide 2000 2000 75 125 25 0 1844 92 1996 95 13 Arzdontide 2000 2000 75 125 25 0 1844 92 1996 95 13 Arzdontide 2000 2000 75 125 25 0 1844 92 1996 95 13 Arzdontide 2000 2000 75 125 25 0 1844 92 1996 95 13 Arzdontide 2000 2000 75 125 25 0 1844 92 1996 95 13 Arzdontide 2000 2000 75 125 25 0 2044 107 2183 109 2 trans-1.2 Dichloroschane 2000 2000 75 125 25 0 1994 102 2003 102 11 LDichloroschane 2000 2000 75 125 25 0 1994 102 2003 100 13 Methol ethyl kotoe 5000 5000 60 140 25 0 1494 77 2009 100 1772 99 10 Ethyl behalv ether (ETBL) 2000 2000 75 125 25 0 1992 100 1772 99 10 Ethyl behalv ethyl ether (ETBL) 2000 2000 75 125 25 0 2044 102 2536 126 15 Estal-Loholoroschane 2000 2000 75 125 25 0 1992 100 1972 99 100 Arad methyl ether (ETME) 2000 2000 75 125 25 0 1992 100 1972 99 100 Arad methyl ether (ETME) 2000 2000 75 125 25 0 1992 100 1972 99 100 Arad methyl ether (ETME) 2000 2000 75 125 25 0 1992 100 1972 99 100 1072 99 100 100 100 100 100 100 100 100 100	Methyl iodide	2000											\dashv	1
Methylethylethylether (FIRE) 2000 2000 75 125 25 0 1856 93 1840 92 0 0 0 0 0 0 0 0 0	Di-isopropyl ether (DIPE)	2000												
Carbon Disutifide 2001 250 75 125 25 0 2107 105 3090 105 1 Arzylonitrile 2000 2000 75 125 25 0 1844 92 1 1906 95 1 Methyl-terribuside (HTBB) 2000 2000 75 125 25 0 2144 107 2183 109 2 Li-Dickhorsechene 2000 2000 75 125 25 0 2044 102 2002 100 1 Herbyl-chyl kerne 5000 5000 60 140 25 0 1946 97 2000 100	Methylene Chloride	2000	2000				***************************************						\dashv	-
Aersjonitiste 2000 2000 75 125 25 0 1844 92 1906 93 0 3 3	Carbon Disulfide	2000												
Methyl-terr-butyl-therr (MTBIE)	Acrylonitrile	2000											_	2
Innest 2 Dichloroethene 2000 2000 75 125 25 0 2044 102 2003 102 1 1 1 1 1 1 1 1 1	Methyl-tert-butyl ether (MTBE)													
1.1-Dichloroethane				***				***************************************					\dashv	
Methyl ethyl ketone														
Ethyl r-butyl ether (ETBE) 2000 2000 75 125 25 0 1992 100 1972 99 1 2,2-Dichloropropane 2000 2000 75 125 25 0 2404 120 2526 126 \$ 6-Mordinary (Controllar) 2000 2000 75 125 25 0 2028 101 2027 101 0 6-Amyl methyl ether (TAME) 2000 2000 2000 75 125 25 0 1994 96 1923 96 0 Chroroforn 2000 2000 75 125 25 0 1994 96 1923 96 0 0 Chroroforn 2000 2000 75 125 25 0 1994 96 1934 94 94 1944 97 0 0 0 0 0 0 0 0 0 0 0 201 0 0 <td></td>														
2_2_Dichloropropane 2000 2000 75 125 25 0 2404 120 2526 126 \$ cis-1_2_Dichloropropane 2000 2000 75 125 25 0 2028 101 2027 101 0 Chloroform 2000 2000 75 125 25 0 1924 96 1923 96 0 Chloroform 2000 2000 75 125 25 0 1934 97 1944 97 0 Bromochloromethane 2000 2000 75 125 25 0 2031 102 2006 100 1 Ternhydrofran 2000 2000 75 125 25 0 2031 102 2006 100 1 1_1_1-Trichlorocthane 2000 2000 75 125 25 0 2109 105 2058 103 2 1,1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1													\dashv	
cis-1,2-Dichlorocythene 2000 2000 75 12S 25 0 2028 101 2027 101 0 L-Amyl methyl ether (TAME) 2000 2000 75 12S 25 0 1924 96 1923 96 0 0 Chloroform 2000 2000 75 12S 25 0 1948 97 1944 97 0 Bromochloromethane 2000 2000 75 12S 25 0 1948 97 1944 97 0 Bromochloromethane 2000 2000 60 140 25 0 1948 97 1944 97 0 Bromochloromethane 2000 2000 60 140 25 0 1862 93 1826 91 2 L1,1-Trichlorocythane 2000 2000 75 12S 25 0 210 105 235 105 116 2125 10													*	
t-Amyl methyl ether (TAME) 2000 2000 75 12S 2S 0 1924 96 1923 96 0 Chloroform 2000 2000 75 12S 2S 0 1948 97 1944 97 0 0 Bromochloromethane 2000 2000 75 12S 2S 0 1948 97 1944 97 0 0 Bromochloromethane 2000 2000 60 140 2S 0 2031 102 2006 100 1 Ternahydrofura 2000 2000 75 12S 2S 0 2109 105 288 103 2 1,1-Dichloropropene 2000 2000 75 12S 25 0 22198 110 2125 106 3 3 1,2-Dichloropropane 2000 2000 75 12S 25 0 2028 101 19973 99 2 <													7	
Chloroform 2000 2000 75 125 25 0 1948 97 1944 97 0 Bromochloromethane 2000 2000 75 125 25 0 2031 102 2006 100 1 Ternalydrofuran 2000 2000 60 140 25 0 1862 93 1826 91 2 1,1-1Frichlorogromen 2000 2000 75 125 25 0 2109 105 2058 103 1 2 1,1-Dichlorogromene 2000 2000 75 125 25 0 2201 110 2125 106 3 Carbon Terrachloride 2000 2000 75 125 25 0 299 110 2327 116 6 4 4 4 4 4 4 6 4 4 4 4 4 4 4 4 4 4 4	<u> </u>										***************************************		\dashv	
Bromochloromethane 2000 2000 75 125 25 0 2031 102 2006 100 1 Terrahydrofuran 2000 2000 60 140 25 0 1862 93 1826 91 2 1,1,1-Trichtoroethane 2000 2000 75 125 25 0 2109 105 2058 103 2 1,1-Dichtoroethane 2000 2000 75 125 25 0 2201 110 2125 106 3 Carbon Terrachloride 2000 2000 75 125 25 0 2298 110 2327 116 6 1,2-Dichlorochane 2000 2000 75 125 25 0 2198 110 2327 116 6 6 1,2-Dichlorochane 2000 2000 75 125 25 0 2198 101 1969 98 3 1,2-Dichloropropane										_			\dashv	
Tetrahydrofuran 2000 2000 60 140 25 0 1862 93 1826 91 2 2 1,1,1-Trichlorocthane 2000 2000 75 125 25 0 2109 105 2058 103 2 2 1,1-Dichlorocthane 2000 2000 75 125 25 0 2201 110 2125 106 3 3 2 2 2 2 2 2 2 2	· · · · · · · · · · · · · · · · · · ·												-	
1.1.1-Trichtorocethane 2000 2000 75 125 25 0 2109 105 2058 103 2 1.1-Dichtoropropene 2000 2000 75 125 25 0 2201 110 2125 106 3 3 3 3 3 3 3 3 3							*******************			_			-	
1.1-Dichloropropene 2000 2000 75 125 25 0 2201 110 2125 106 3 3 Carbon Tetrachloride 2000 2000 75 125 25 0 2198 110 2327 116 6 1.2-Dichlorocethane 2000 2000 75 125 25 0 1933 97 1973 99 2 Benzene 2000 2000 75 125 25 0 2198 101 1969 98 3 Trichlorocethane 2000 2000 75 125 25 0 2108 105 2148 107 2 1.2-Dichloropropane 2000 2000 75 125 25 0 1967 98 1943 97 1 Methylmethacrylate 2000 2000 75 125 25 0 1967 98 1943 97 1 Methylmethacrylate 2000 2000 75 125 25 0 1967 98 1943 97 1 Methylmethacrylate 2000 2000 75 125 25 0 1967 98 1943 97 1 Methylmethacrylate 2000 2000 75 125 25 0 1974 99 2063 103 14 Dibromomethane 2000 2000 75 125 25 0 1974 99 2063 103 4 Dibromomethane 2000 2000 75 125 25 0 1861 93 1972 99 6 1.4-Dioxane 25000 25000 60 140 25 0 23740 95 23515 94 1 2-Hexanone 5000 5000 75 125 25 0 4194 84 4707 94 12 Methyl isobutyl ketone 5000 5000 75 125 25 0 4406 88 4644 93 5 Toluene 2000 2000 75 125 25 0 2097 105 2056 103 2 Toluene 2000 2000 75 125 25 0 2094 100 2037 102 2 Toluene 2000 2000 75 125 25 0 1882 94 1923 96 2 Toluene 2000 2000 75 125 25 0 1882 94 1923 96 2 Toluene 2000 2000 75 125 25 0 1882 94 1923 96 2 Toluene 2000 2000 75 125 25 0 1882 94 1923 96 2 Toluene 2000 2000 75 125 25 0 1882 93 1960 98 6 Toluene 2000 2000 75 125 25 0 1882 93 1960 98 6 Toluene 2000 2000 75 125 25 0 2071 104 4 4 Toluene 2000 2000 75 125 25 0 2071 104 2066 105 2 Toluene 2000 2000 75 125 25 0 207												·····	-	
Carbon Tetrachloride 2000 2000 75 125 25 0 2198 110 2327 116 6 1,2-Dichloroethane 2000 2000 75 125 25 0 1933 97 1973 99 2 Benzene 2000 2000 75 125 25 0 2028 101 1969 98 3 Trichloroethene 2000 2000 75 125 25 0 2088 101 1969 98 3 Trichloroethene 2000 2000 75 125 25 0 2108 105 2148 107 2 1,2-Dichloropropane 2000 2000 75 125 25 0 1967 98 1943 97 1 1,2-Dichloropropane 2000 2000 75 125 25 0 1974 99 2063 103 4 Dibromochloromethane 2000													\dashv	
1.2-Dichloroethane 2000 2000 75 125 25 0 1933 97 1973 99 2 2										-			\dashv	
Benzene 2000 2000 75 125 25 0 2028 101 1969 98 3 3													\dashv	
Trichloroethene 2000 2000 75 125 25 0 2108 105 2148 107 2 1,2-Dichloropropane 2000 2000 75 125 25 0 1967 98 1943 97 1 Methylmethacrylate 2000 2000 2000 75 125 25 0 1738 87 1421 71 ★ 20 Bromodichloromethane 2000 2000 75 125 25 0 1774 99 2063 103 4 Dibromomethane 2000 2000 75 125 25 0 1974 99 2063 103 4 1,4-Dioxane 25000 2000 75 125 25 0 1861 93 1972 99 6 1,4-Dioxane 25000 60 140 25 0 23740 95 23515 94 12 2-Hexanone 5000 5000													-	
1,2-Dichloropropane 2000 2000 75 125 25 0 1967 98 1943 97 1 Methylmethacrylate 2000 2000 75 125 25 0 1738 87 1421 71 • 20 Bromodichloromethane 2000 2000 75 125 25 0 1974 99 2063 103 4 Dibromomethane 2000 2000 75 125 25 0 1861 93 1972 99 6 1,4-Dioxane 25000 25000 60 140 25 0 23740 95 23515 94 1 2-Hexanone 5000 5000 75 125 25 0 4194 84 4707 94 12 2-Hexanone 5000 5000 75 125 25 0 4194 84 4707 94 12 Methylisobutyl ketone 5000 75													\dashv	
Methylmethacrylate 2000 2000 75 125 25 0 1738 87 1421 71 * 20 Bromodichloromethane 2000 2000 75 125 25 0 1974 99 2063 103 4 Dibromomethane 2000 2000 75 125 25 0 1861 93 1972 99 6 1,4-Dioxane 25000 25000 60 140 25 0 23740 95 23515 94 1 2-Hexanone 5000 5000 75 125 25 0 4194 84 4707 94 12 2-Hexanone 5000 5000 75 125 25 0 4194 84 4707 94 12 2-Hexanone 5000 5000 75 125 25 0 4106 88 4644 93 5 cis-1,3-Dichoropropene 2000 2000													+	
Bromodichloromethane 2000 2000 75 125 25 0 1974 99 2063 103 4 Dibromomethane 2000 2000 75 125 25 0 1861 93 1972 99 6 1,4-Dioxane 25000 25000 60 140 25 0 23740 95 23515 94 1 2-Hexanone 5000 5000 75 125 25 0 4194 84 4707 94 12 Methyl isobutyl ketone 5000 5000 75 125 25 0 4406 88 4644 93 5 cis-1,3-Dichloropropene 2000 2000 75 125 25 0 2097 105 2056 103 2 Toluene 2000 2000 75 125 25 0 2097 105 2056 103 2 11,1,2-Triblorochane 2000 2000													-	20
Dibromomethane 2000 2000 75 125 25 0 1861 93 1972 99 6 1,4-Dioxane 25000 25000 60 140 25 0 23740 95 23515 94 1 2-Hexanone 5000 5000 75 125 25 0 4194 84 4707 94 12 Methyl isobutyl ketone 5000 5000 75 125 25 0 4406 88 4644 93 5 cis-1,3-Dichloropropene 2000 2000 75 125 25 0 2097 105 2056 103 2 Toluene 2000 2000 75 125 25 0 2097 105 2056 103 2 Toluene 2000 2000 75 125 25 0 2050 103 2084 104 2 trans-1,3-Dichloropropene 2000 2000<													+	
1,4-Dioxane 25000 25000 60 140 25 0 23740 95 23515 94 1 2-Hexanone 5000 5000 75 125 25 0 4194 84 4707 94 12 Methyl isobutyl ketone 5000 5000 75 125 25 0 4406 88 4644 93 5 cis-1,3-Dichloropropene 2000 2000 75 125 25 0 2097 105 2056 103 2 Toluene 2000 2000 75 125 25 0 2097 105 2056 103 2 Toluene 2000 2000 75 125 25 0 2050 103 2084 104 2 trans-1,3-Dichloropropene 2000 2000 75 125 25 0 2004 100 2037 102 2 1,2-Errichloropropane 2000										\dashv			+	
2-Hexanone 5000 5000 75 125 25 0 4194 84 4707 94 12 Methyl isobutyl ketone 5000 5000 75 125 25 0 4406 88 4644 93 5 cis-1,3-Dichloropropene 2000 2000 75 125 25 0 2097 105 2056 103 2 Toluene 2000 2000 75 125 25 0 2050 103 2084 104 2 trans-1,3-Dichloropropene 2000 2000 75 125 25 0 2050 103 2084 104 2 trans-1,3-Dichloropropene 2000 2000 75 125 25 0 2004 100 2037 102 2 1,1,2-Trichloroethane 2000 2000 75 125 25 0 1882 94 1923 96 2 1,3-Dichloropropane 2000 2000 75 125 25 0 1882 94 1923 96 2 Tetrachloroethene 2000 2000 75 125 25 0 1824 91 1797 90 2 Tetrachloroethene 2000 2000 75 125 25 0 1824 91 1797 90 2 Tetrachloroethene 2000 2000 75 125 25 0 1824 91 106 2184 109 3 Dibromochloromethane 2000 2000 75 125 25 0 1980 99 2071 104 4 1,2-Dibromochlaromethane 2000 2000 75 125 25 0 1852 93 1960 98 6 Chlorobenzene 2000 2000 75 125 25 0 2071 104 2106 105 2 I,1,1,2-Tetrachloroethane 2000 2000 75 125 25 0 2071 104 2106 105 2 I,1,1,2-Tetrachloroethane 2000 2000 75 125 25 0 2071 104 2106 105 2 Ethylbenzene 2000 2000 75 125 25 0 2118 106 2152 108 2 mp-Xylene 4000 4000 75 125 25 0 2118 106 2152 108 2 mp-Xylene 4000 4000 75 125 25 0 2118 106 2152 108 2 mp-Xylene 4000 4000 75 125 25 0 24495 112 4509 113 0										_			+	
Methyl isobutyl ketone 5000 5000 75 125 25 0 4406 88 4644 93 5 cis-1,3-Dichloropropene 2000 2000 75 125 25 0 2097 105 2056 103 2 Toluene 2000 2000 75 125 25 0 2050 103 2084 104 2 trans-1,3-Dichloropropene 2000 2000 75 125 25 0 2004 100 2037 102 2 1,1,2-Trichloroethane 2000 2000 75 125 25 0 2004 100 2037 102 2 1,1,2-Trichloroethane 2000 2000 75 125 25 0 1882 94 1923 96 2 1,3-Dichloropropane 2000 2000 75 125 25 0 1824 91 1797 90 2 Tetrachloroethane										\dashv			+	12
cis-1,3-Dichloropropene 2000 2000 75 125 25 0 2097 105 2056 103 2 Toluene 2000 2000 75 125 25 0 2050 103 2084 104 2 trans-1,3-Dichloropropene 2000 2000 75 125 25 0 2004 100 2037 102 2 1,1,2-Trichloroethane 2000 2000 75 125 25 0 1882 94 1923 96 2 1,3-Dichloropropane 2000 2000 75 125 25 0 1824 91 1797 90 2 Tetrachloroethane 2000 2000 75 125 25 0 1824 91 1797 90 2 Tetrachloroethane 2000 2000 75 125 25 0 1980 99 2071 104 4 1,2-Dibromoethane 2000										-			\dashv	
Toluene 2000 2000 75 125 25 0 2050 103 2084 104 2 trans-1,3-Dichloropropene 2000 2000 75 125 25 0 2004 100 2037 102 2 1,1,2-Trichloroethane 2000 2000 75 125 25 0 1882 94 1923 96 2 1,3-Dichloropropane 2000 2000 75 125 25 0 1824 91 1797 90 2 Tetrachloroethane 2000 2000 75 125 25 0 1824 91 1797 90 2 Tetrachloroethane 2000 2000 75 125 25 0 2127 106 2184 109 3 Dibromoethane 2000 2000 75 125 25 0 1980 99 2071 104 4 1,2-Dibromoethane 2000													+	
trans-1,3-Dichloropropene 2000 2000 75 125 25 0 2004 100 2037 102 2 1,1,2-Trichloroethane 2000 2000 75 125 25 0 1882 94 1923 96 2 1,3-Dichloropropane 2000 2000 75 125 25 0 1824 91 1797 90 2 Tetrachloroethene 2000 2000 75 125 25 0 2127 106 2184 109 3 Dibromochloromethane 2000 2000 75 125 25 0 1980 99 2071 104 4 1,2-Dibromoethane 2000 2000 75 125 25 0 1852 93 1960 98 6 Chlorobenzene 2000 2000 75 125 25 0 2071 104 2106 105 2 1,1,1,2-Tetrachloroethane													+	
1,1,2-Trichloroethane 2000 2000 75 125 25 0 1882 94 1923 96 2 1,3-Dichloropropane 2000 2000 75 125 25 0 1824 91 1797 90 2 Tetrachloroethene 2000 2000 75 125 25 0 2127 106 2184 109 3 Dibromochloromethane 2000 2000 75 125 25 0 1980 99 2071 104 4 1,2-Dibromoethane 2000 2000 75 125 25 0 1852 93 1960 98 6 Chlorobenzene 2000 2000 75 125 25 0 2071 104 2106 105 2 1,1,1,2-Tetrachloroethane 2000 2000 75 125 25 0 2037 102 2068 103 2 Ethylbenzene 2000 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-+</td> <td></td> <td></td> <td>+</td> <td></td>										-+			+	
1.3-Dichloropropane 2000 2000 75 125 25 0 1824 91 1797 90 2 Tetrachloroethene 2000 2000 75 125 25 0 2127 106 2184 109 3 Dibromochloromethane 2000 2000 75 125 25 0 1980 99 2071 104 4 1,2-Dibromoethane 2000 2000 75 125 25 0 1852 93 1960 98 6 Chlorobenzene 2000 2000 75 125 25 0 2071 104 2106 105 2 1,1,1,2-Tetrachloroethane 2000 2000 75 125 25 0 2037 102 2068 103 2 Ethylbenzene 2000 2000 75 125 25 0 2118 106 2152 108 2 mp-Xylene 4000													+	
Tetrachloroethene 2000 2000 75 125 25 0 2127 106 2184 109 3 Dibromochloromethane 2000 2000 75 125 25 0 1980 99 2071 104 4 1,2-Dibromoethane 2000 2000 75 125 25 0 1852 93 1960 98 6 Chlorobenzene 2000 2000 75 125 25 0 2071 104 2106 105 2 1,1,1,2-Tetrachloroethane 2000 2000 75 125 25 0 2037 102 2068 103 2 Ethylbenzene 2000 2000 75 125 25 0 2118 106 2152 108 2 mp-Xylene 4000 4000 75 125 25 0 4495 112 4509 113 0										\dashv			+	
Dibromochloromethane 2000 2000 75 125 25 0 1980 99 2071 104 4 1,2-Dibromoethane 2000 2000 75 125 25 0 1852 93 1960 98 6 Chlorobenzene 2000 2000 75 125 25 0 2071 104 2106 105 2 1,1,1,2-Tetrachloroethane 2000 2000 75 125 25 0 2037 102 2068 103 2 Ethylbenzene 2000 2000 75 125 25 0 2118 106 2152 108 2 mp-Xylene 4000 4000 75 125 25 0 4495 112 4509 113 0										-+			+	
1,2-Dibromoethane 2000 2000 75 125 25 0 1852 93 1960 98 6 Chlorobenzene 2000 2000 75 125 25 0 2071 104 2106 105 2 1,1,2-Tetrachloroethane 2000 2000 75 125 25 0 2037 102 2068 103 2 Ethylbenzene 2000 2000 75 125 25 0 2118 106 2152 108 2 mp-Xylene 4000 4000 75 125 25 0 4495 112 4509 113 0										\dashv			+	
Chlorobenzene 2000 2000 75 125 25 0 2071 104 2106 105 2 1.1,1,2-Tetrachloroethane 2000 2000 75 125 25 0 2037 102 2068 103 2 Ethylbenzene 2000 2000 75 125 25 0 2118 106 2152 108 2 m,p-Xylene 4000 4000 75 125 25 0 4495 112 4509 113 0										\dashv			+	
1,1,1,2-Tetrachloroethane 2000 2000 75 125 25 0 2037 102 2068 103 2 Ethylbenzene 2000 2000 75 125 25 0 2118 106 2152 108 2 m,p-Xylene 4000 4000 75 125 25 0 4495 112 4509 113 0										+			+	
Ethylbenzene 2000 2000 75 125 25 0 2118 106 2152 108 2 m,p-Xylene 4000 4000 75 125 25 0 4495 112 4509 113 0										\dashv			+	
m,p-Xylene 4000 4000 75 125 25 0 4495 112 4509 113 0									·				\dashv	
										-+			+	
o-Xylene 2000 2000 75 125 25 0 2174 109 2269 113 4										\dashv			+	

VOLATILE ORGANIC SOIL LABORATORY CONTROL/LABORATORY CONTROL DUPLICATE PERCENT RECOVERY

Instrument ID: C
GC Column: RTX-502.2
Column ID: 0.25 mm
Heated purge (Y/N): N

SDG: 70798

Non-spiked sample: MB08261C2

Spike: LS08261C

Spike duplicate: LS08261C2

	LCS SPIKE	LCSD SPIKE	LOWER	UPPER	RPD	NON-SPIKE	SPIKE	SPIKE		SPIKE DUP	SPIKE DUP			
COMPOUND	ADDED (ug/kg)	ADDED (ug/kg)	LIMIT	LIMIT	LIMIT	RESULT (ug/kg)	RESULT (ug/kg)	% REC	#	RESULT (ug/kg)	% REC	#	RPD	#
Styrene	2000	2000	75	125	25	0	2098	105		2207	110		5	Γ
Bromoform	2000	2000	75	125	25	0	1979	99		2108	105		6	T
Isopropylbenzene	2000	2000	75	125	25	0	2051	103		2166	108		5	T
1,1,2,2-Tetrachloroethane	2000	2000	75	125	25	0	1863	93		2024	101		8	T
1,2,3-Trichloropropane	2000	2000	75	125	25	0	1826	91		1967	98		7	T
trans-1,4-Dichloro-2-butene	2000	2000	75	125	25	0	1730	86		1883	94		8	T
n-Propylbenzene	2000	2000	75	125	25	0	2066	103		2189	109		6	T
Bromobenzene	2000	2000	75	125	25	0	2084	104		2118	106		2	T
1,3,5-Trimethylbenzene	2000	2000	75	125	25	0	2143	107		2222	111		4	Γ
2-Chlorotoluene	2000	2000	75	125	25	0	2098	105		2092	105		0	r
4-Chlorotoluene	2000	2000	75	125	25	0	2116	106		2225	111		5	T
tert-butylbenzene	2000	2000	75	125	25	0	2199	110		2222	111		1	Γ
1,2,4-Trimethylbenzene	2000	2000	75	125	25	0	2205	110		2318	116		5	Γ
sec-butylbenzene	2000	2000	75	125	25	0	2278	114		2330	117		2	Γ
p-isopropyltoluene	2000	2000	75	125	25	0	2170	108		2114	106		3	Г
1,3-Dichlorobenzene	2000	2000	75	125	25	0	2150	107		2125	106		1	Γ
1,4-Dichlorobenzene	2000	2000	75	125	25	0	2080	104		2069	103		1	Γ
n-butylbenzene	2000	2000	75	125	25	0	2200	110		2248	112		2	Γ
1,2-Dichlorobenzene	2000	2000	75	125	25	0	2028	101		2044	102	7	1	Γ
1,2-Dibromo-3-chloropropane	2000	2000	75	125	25	0	1854	93		2009	100		8	Г
1,2,4-Trichlorobenzene	2000	2000	75	125	25	0	2031	102		2264	113	1	11	Γ
Hexachlorobutadiene	2000	2000	75	125	25	0	2083	104		2261	113	1	8	Γ
Naphthalene	2000	2000	75	125	25	0	1865	93		2057	103	\neg	10	Ī
1,2,3-Trichlorobenzene	2000	2000	75	125	25	0	1988	99		2189	109	7	10	Г

#	Column to be used to	flog recovery and DDF	Values outside of OC limits

	Non-spike result of "0" used in place of "U" to allow calculation of spike recovery.
Comments:	

^{*} Values outside QC limits

SEMI-VOLATILE DATA SUMMARIES

195 Commerce Way Portsmouth, New Hampshire 03801 603-436-5111 Fax 603-430-2151 800-929-9906

September 1, 2011

SAMPLE DATA

Solid

Lab Sample ID: B082911AASE

Matrix: Percent Solid:

100 1.0

Dilution Factor: Collection Date:

Lab Receipt Date:

Extraction Date: 08/29/11 **Analysis Date:** 08/31/11

CLIENT SAMPLE ID

661 Andersen Drive, Foster Plaza 7

Project Name:

Mr. Scott Nesbit

Terta Tech NUS, Inc.

Pittsburgh PA 15220

LMC Wilmington

Project Number:

1121C03346

Field Sample ID:

LAB QC

			EMI-VOLATILE ORGANICS		_
COMPOUND	Detection Limit μg/	Result μg/kg	COMPOUND	Detection Limit μg/	Resul μg/kg
Acenaphthene	267	U	2,4-dinitrophenol	700	U
Acenaphthylene	267	U	2,4-Dinitrotoluene	350	U
Anthracene	267	U	2,6-Dinitrotoluene	500	U
Benzo[a]anthracene	267	U	di-n-octyl-phthalate	500	U
Benzo b fluoranthene	267	U	Fluoranthene	267	U
Benzo[k] fluoranthene	267	U	Fluorene	267	Ü
Benzo(g,h,i) perylene	267	U	Hexachlorobenzene	350	Ü
Benzo[a] pyrene	267	U	Hexachlorobutadiene	500	U
Bis(2-chloroethoxy)methane	500	U	Hexachloroethane	350	U
bis(2-chloroethyl) ether	350	U	Indeno [1,2,3-cd] pyrene	267	U
bis(2-chloroisopropyl)ether	350	U	Isophorone	500	Ü
Bis (2-ethylhexyl) phthalate	500	U	2-Methylnaphthalene	267	U
4-bromophenyl phenyl ether	500	U	2-Methylphenol	700	Ü
Butyl benzyl phthalate	500	U	3+4-Methylphenol	700	U
4-Chloroaniline	500	Ü	Naphthalene	267	U
2-Chloronaphthalene	267	U	Nitrobenzene	500	Ü
2-Chlorophenol	350	U	2-Nitrophenol	700	Ü
Chrysene	267	U	4-Nitrophenol	700	Ü
Dibenz [a,h] anthracene	267	U	Pentachlorophenol	700	U
Dibenzofuran	267	U	Phenanthrene	267	Ū
Di-n-butyl phthalate	500	U	Phenol	700	Ü
1,2-Dichlorobenzene	500	U	Pyrene	267	U
1,3-Dichlorobenzene	500	U	1,2,4-Trichlorobenzene	500	U
1,4-Dichlorobenzene	350	U	2,4,5-Trichlorophenol	500	Ŭ
3,3'-Dichlorobenzidine	500	U	2,4,6-Trichlorophenol	350	U
2,4-Dichlorophenol	350	U	Acetophenone	500	U
Diethyl Phthalate	500	U	Azobenzene	500	Ū
2,4-Dimethylphenol	350	U			
Dimethyl Phthalate	500	U			
Aniline	500	U			
		Surrogate Stand	lard Recovery		
2-Fluorophenol 54 %			62 %	d5-nitrobenzene	60 %
2-Fluorobiphenyl 67 %	2,4,6-Tril	promophenol	32 %	d14-p-terphenyl	87 %

METHODOLOGY:

Sample analysis was conducted according to: Test Methods for Evaluating Solid Waste, SW-846 Method 8270D. Sample preparation conducted according to Test Methods for Evaluating Solid Waste, SW-846 Method 3545.

COMMENTS: Results are expressed on a dry weight basis.

8270 MCP(63)

Mark Jarry

Data Path : C:\msdchem\1\DATA\083011-J\

Data File : J41194B.D

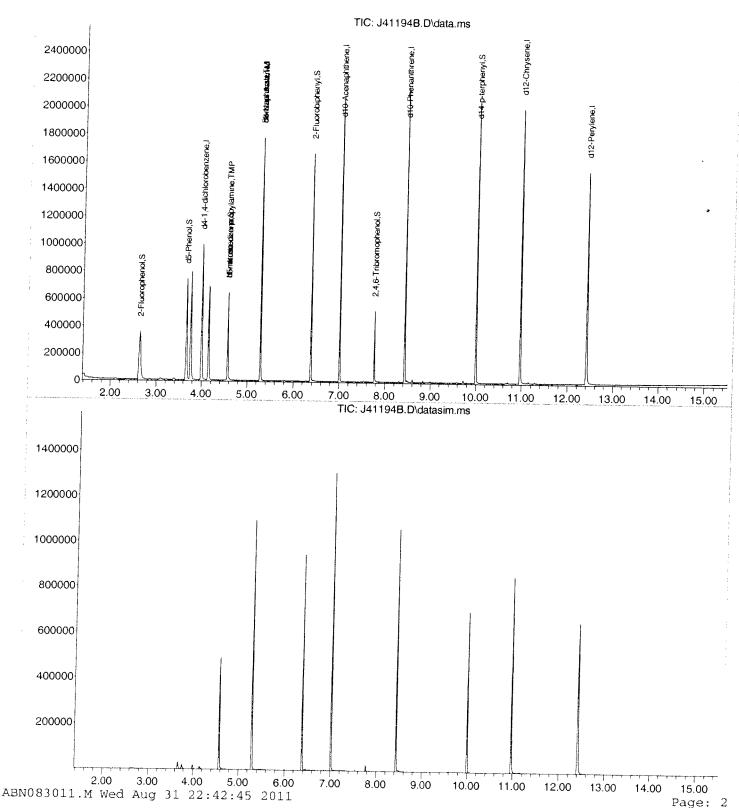
Acq On 31 Aug 2011 12:57 pm

Operator AR : Sample

B082911AASE :

Misc SOIL

ALS Vial 24 Sample Multiplier: 1


Quant Time: Aug 31 22:39:19 2011

Quant Method : C:\msdchem\1\METHODS\ABN083011.M

Quant Title : ABN FULL SCAN

QLast Update : Wed Aug 31 22:38:22 2011

Response via : Initial Calibration

195 Commerce Way Portsmouth, New Hampshire 03801 603-436-5111 Fax 603-430-2151 800-929-9906

September 1, 2011

SAMPLE DATA

Lab Sample ID: 70798-1 Matrix: Solid 94 **Percent Solid:**

1.0 **Dilution Factor:**

Collection Date: 08/25/11 Lab Receipt Date: 08/25/11

Extraction Date: 08/29/11 08/31/11 **Analysis Date:**

CLIENT SAMPLE ID

661 Andersen Drive, Foster Plaza 7

Mr. Scott Nesbit

Terta Tech NUS, Inc.

Pittsburgh PA 15220

Project Name: LMC Wilmington

Project Number: 1121C03346

Field Sample ID: LMC-SO-PROCESSED

COMPOUND	ANALYTICA Detection Limit μg/	AL RESULTS SI Result μg/kg	MI-VOLATILE ORGANICS COMPOUND	Detection Limit μg/	Resul μg/kg
Acenaphthene	280	U	2,4-dinitrophenol	730	U
Acenaphthylene	280	U	2,4-Dinitrotoluene	370	U
Anthracene	280	U	2,6-Dinitrotoluene	520	U
Benzo[a]anthracene	280	293	di-n-octyl-phthalate	520	U
Benzo b fluoranthene	280	298	Fluoranthene	280	655
Benzo[k] fluoranthene	280	U	Fluorene	280	U
Benzo(g,h,i) perylene	280	U	Hexachlorobenzene	370	Ü
Benzo[a] pyrene	280	215 J	Hexachlorobutadiene	520	U
Bis(2-chloroethoxy)methane	520	U	Hexachloroethane	370	U
bis(2-chloroethyl) ether	370	U	Indeno [1,2,3-cd] pyrene	280	197 J
bis(2-chloroisopropyl)ether	370	U	Isophorone	520	U
Bis (2-ethylhexyl) phthalate	520	U	2-Methylnaphthalene	280	U
4-bromophenyl phenyl ether	520	U	2-Methylphenol	730	U
Butyl benzyl phthalate	520	U	3+4-Methylphenol	730	Ü
4-Chloroaniline	520	U	Naphthalene	280	Ü
2-Chloronaphthalene	280	\mathbf{U}	Nitrobenzene	520	Ü
2-Chlorophenol	370	U	2-Nitrophenol	730	Ü
Chrysene	280	269 J	4-Nitrophenol	730	Ŭ
Dibenz [a,h] anthracene	280	U	Pentachlorophenol	730	Ū
Dibenzofuran	280	U	Phenanthrene	280	510
Di-n-butyl phthalate	520	U	Phenol	730	U
1,2-Dichlorobenzene	520	U	Pyrene	280	548
1,3-Dichlorobenzene	520	U	1,2,4-Trichlorobenzene	520	U
1,4-Dichlorobenzene	370	Ū	2,4,5-Trichlorophenol	520	Ū
3,3'-Dichlorobenzidine	520	U	2,4,6-Trichlorophenol	370	U
2,4-Dichlorophenol	370	U	Acetophenone	520	Ü
Diethyl Phthalate	520	Ü	Azobenzene	520	Ü
2,4-Dimethylphenol	370	U			
Dimethyl Phthalate	520	U			
Aniline	520	U			
		Surrogate Stand	lard Recovery		
2-Fluorophenol 65 %			74 %	d5-nitrobenzene	71 %
2-Fluorobiphenyl 71 %	2,4,6-Tri	bromophenol	86 %	d14-p-terphenyl	85 %

Sample analysis was conducted according to: Test Methods for Evaluating Solid Waste, SW-846 Method 8270D. Sample preparation conducted according to Test Methods for Evaluating Solid Waste, SW-846 Method 3545.

COMMENTS: Results are expressed on a dry weight basis.

Mark pruf Authorized signature

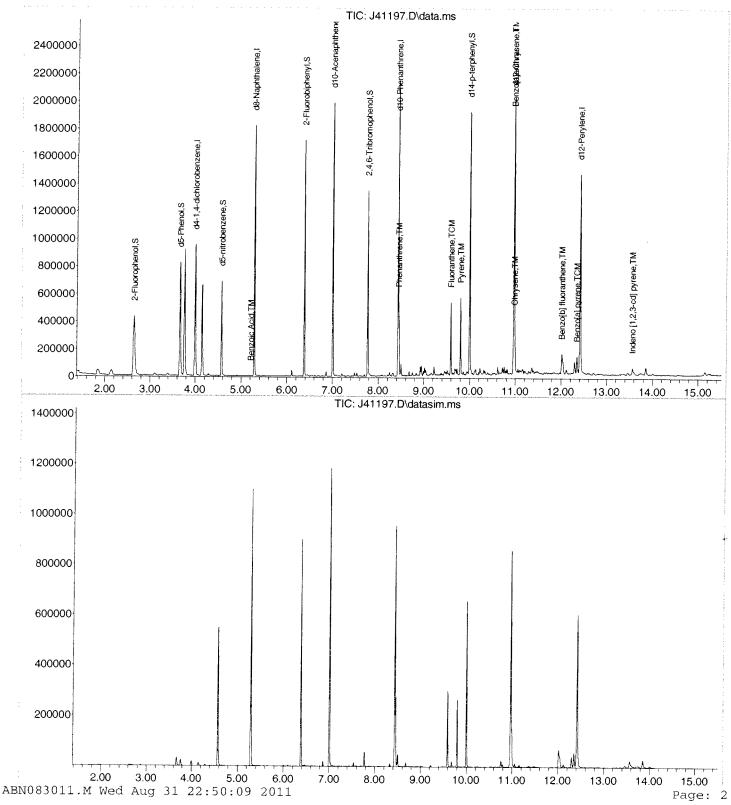
Data Path : C:\msdchem\1\DATA\083011-J\

Data File : J41197.D

Acq On : 31 Aug 2011 2:00 pm

Operator : AR 70798-1 Sample : SOIL Misc

: 27 ALS Vial Sample Multiplier: 1


Quant Time: Aug 31 22:49:20 2011

Quant Method : C:\msdchem\1\METHODS\ABN083011.M

Quant Title : ABN FULL SCAN

QLast Update : Wed Aug 31 22:38:22 2011

Response via : Initial Calibration

SEMI-VOLATILE QC FORMS

SEMIVOLATILE ORGANIC SOIL LABORATORY CONTROL/LABORATORY CONTROL DUPLICATE PERCENT RECOVERY

Instrument ID: J GC Column: ZB-5ms Column ID: 0.25 mm

SDG: 70798

Non-spiked sample: B082911AASE

Spike: L082911AASE

Spike duplicate: LD082911AASE

f .	L CC CDIVE	I GOD ODWO			I	I	Т			I			
COMPOUND	LCS SPIKE	LCSD SPIKE	LOWER	UPPER	RPD	NON-SPIKE	SPIKE	SPIKE		SPIKE DUP	SPIKE DUP		ļ
Pyridine	ADDED (ug/kg) 2667	ADDED (ug/kg)	LIMIT	LIMIT	LIMIT		RESULT (ug/kg)	% REC	#	RESULT (ug/kg)	% REC	#	RPD
N-nitrosodimethylamine	2667	2667	13	77	25	0	1804	68	-	1588	60	╂╾┤	13
n-Decane	2667	2667	20	115	25	0	1981	74		1707	64	\vdash	15
Acetophenone	2667	2667	40	140	25	0	1644	62		1426	53	-	14
	1	2667	40	140	25	0	1775	67		1635	61	\vdash	8
Aniline	2667	2667	60	120	25	0	2145	80	-	1867	70	\vdash	14
Phenol	5333	5333	40	100	25	0	3958	74		3527	66	\vdash	11
2-Chlorophenol	5333	5333	45	110	25	0	3652	68	<u> </u>	3352	63	Ш	9
bis(2-chloroethyl) ether	2667	2667	40	105	25	0	1937	73		1590	60	\sqcup	20
1,3-Dichlorobenzene	2667	2667	40	100	25	0	1755	66		1618	61	\bot	8
1,4-Dichlorobenzene	2667	2667	35	105	25	0	1777	67		1634	61		8
1,2-Dichlorobenzene	2667	2667	45	95	25	0	1778	67		1628	61		9
Benzyl Alcohol	2667	2667	20	125	25	0	2097	79		1885	71	Ш	11
2-Methylphenol	5333	5333	40	105	25	0	3983	75		3662	69		8
bis(2-chloroisopropyl)ether	2667	2667	20	115	25	0	1905	71		1655	62		14
3+4-Methylphenol	5333	5333	40	105	25	0	4209	79		3875	73		8
Hexachloroethane	2667	2667	35	110	25	0	1844	69		1638	61		12
N-nitroso-di-n-propylamine	2667	2667	40	115	25	0	2149	81		1924	72		11
alpha-terpineol	2667	2667	40	140	25	0	1775	67		1614	61		10
2,3-dichloroaniline	2667	2667	40	140	25	0	2034	76		1929	72	П	5
Nitrobenzene	2667	2667	40	115	25	0	1963	74		1832	69		7
Isophorone	2667	2667	45	110	25	0	2196	82		2007	75	П	9
2-Nitrophenol	5333	5333	40	110	25	0	3989	75		3723	70		7
2,4-Dimethylphenol	5333	5333	30	105	25	0	3660	69		3432	64	П	6
Bis(2-chloroethoxy)methane	2667	2667	45	110	25	0	2002	75	T	1813	68		10
2,4-Dichlorophenol	5333	5333	45	110	25	0	4139	78		3951	74	\vdash	5
Benzoic Acid	5333	5333	30	150	25	0	1043	20	*	1082	20	*	4
1,2,4-Trichlorobenzene	2667	2667	45	110	25	0	1806	68	T	1719	64	\vdash	5
Naphthalene	2667	2667	40	105	25	0	1895	71	\dashv	1768	66	\vdash	7
4-Chloroaniline	2667	2667	60	120	25	0	2168	81		1983	74	\vdash	9
Hexachlorobutadiene	2667	2667	40	115	25	0	1872	70	\dashv	1774	67	\vdash	5
4-Chloro-3-methylphenol	5333	5333	45	115	25	0	4425	83		4089	77	+	8
2-Methylnaphthalene	2667	2667	45	105	25	0	2100	79	寸	1921	72	-	9
Hexachlorocyclopentadiene	2667	2667	36	97	25	0	1994	75				-+	
2,4,6-Trichlorophenol	5333	5333	45	110	25	0	4377	82		1805	68	-	10
2,4,5-Trichlorophenol	5333	5333	50	110	25	0	4545	85	\dashv	4110	77	-	6
2-Chloronaphthalene	2667	2667	45	105	25	0				4250	80	+	7
2-Nitroaniline	2667	2667	45	120	25	0	2148	81	-+	1944	73		10
2,6-Dinitrotoluene	2667	2667	50	110	25	0	2718	102	\dashv	2257	85	+	19
Dimethyl Phthalate	2667	2667	50	110			2340	88	+	2176	82	-	7
Acenaphthylene	2667	2667	45	105	25	0	2364	89	\dashv	2201	83		7
3-Nitroaniline	2667	2667	25		25		2205	83	\dashv	2046	77	\dashv	7
Acenaphthene	2667			110	25	0	2610	98	+	2345	88	+	11
2,4-dinitrophenol	5333	2667	45	110	25	0	2144	80	+	1952	73	+	9
		5333	15	130	25	0	2360	44		2186	41	+	8
Dibenzofuran 4-Nitrophenol	2667	2667	50	105	25	0	2257	85		2039	76	+	10
	5333	5333	15	140	25	0	4943	93		4569	86	\dashv	8
2,4-Dinitrotoluene	2667	2667	50	115	25	0	2458	92	-	2331	87	\perp	5
Fluorene	2667	2667	50	110	25	0	2200	83	-	2052	77	\bot	7
Diethyl Phthalate	2667	2667	50	115	25	0	2280	85		2109	79	\perp	8
4-Chlorophenyl phenyl ether	2667	2667	45	110	25	0	2315	87	1	2184	82	_	6
4-Nitroaniline	2667	2667	35	115	25	0	2385	89	\perp	2170	81	\perp	9
4,6-Dinitro-2-methylphenol	5333	5333	30	135	25	0	3610	68	\bot	3167	59		13
n-nitrosodiphenylamine	2667	2667	50	115	25	0	1904	71	\perp	1823	68		4
Azobenzene	2667	2667	63	115	25	0	2337	88	\perp	2080	78		12
Biphenyl	2667	2667	60	140	25	0	2097	79		1927	72	- 1	8

SVOA FORM 3

SEMIVOLATILE ORGANIC SOIL LABORATORY CONTROL/LABORATORY CONTROL DUPLICATE PERCENT RECOVERY

Instrument ID: J GC Column: ZB-5ms Column 1D: 0.25 mm SDG: 70798

Non-spiked sample: B082911AASE Spike: L082911AASE

Spike duplicate: LD082911AASE

	LCS SPIKE	LCSD SPIKE	LOWER	UPPER	RPD	NON-SPIKE	SPIKE	SPIKE		SPIKE DUP	SPIKE DUP		
COMPOUND	ADDED (ug/kg)	ADDED (ug/kg)	LIMIT	LIMIT	LIMIT	RESULT (ug/kg)	RESULT (ug/kg)	% REC	#	RESULT (ug/kg)		#	RPD #
Octadecane	2667	2667	40	140	25	0	2288	86		1895	71		19
4-bromophenyl phenyl ether	2667	2667	4 5	115	25	0	2340	88		2171	81		7
Hexachlorobenzene	2667	2667	45	120	25	0	2296	86		2192	82		5
Pentachlorophenol	5333	5333	20	120	25	0	3862	72		3638	68		6
Phenanthrene	2667	2667	50	110	25	0	2273	85		2135	80		6
Anthracene	2667	2667	55	105	25	0	2302	86		2162	81		6
Carbazole	5333	5333	45	115	25	0	5082	95		4696	88		8
Di-n-butyl phthalate	2667	2667	55	110	25	0	2414	91		2254	85		7
Fluoranthene	2667	2667	55	115	25	0	2355	88		2225	83		6
Benzidine	5333	5333	29	187	25	0	3387	63		3201	60		6
Pyrene	2667	2667	45	125	25	0	2376	89		2197	82		8
Butyl benzyl phthalate	2667	2667	50	125	25	0	2572	96		2296	86		11
Benzo[a]anthracene	2667	2667	50	110	25	0	2261	85		2175	82		4
Chrysene	2667	2667	55	110	25	0	2370	89		2195	82		8
3,3'-Dichlorobenzidine	5333	5333	64	113	25	0	3667	69		3525	66		4
Bis (2-ethylhexyl) phthalate	2667	2667	45	125	25	0	2549	96		2291	86		11
di-n-octyl-phthalate	2667	2667	40	130	25	0	2537	95		2298	86		10
Benzo[b] fluoranthene	2667	2667	45	115	25	0	2344	88		2209	83		6
Benzo[k] fluoranthene	2667	2667	45	125	25	0	2277	85		2232	84		2
Benzo[a] pyrene	2667	2667	50	110	25	0	2174	82		2075	78		5
Indeno [1,2,3-cd] pyrene	2667	2667	40	120	25	0	2245	84		2196	82		2
Dibenz [a,h] anthracene	2667	2667	40	125	25	0	2427	91		2361	89		3
Benzo(g,h,i) perylene	2667	2667	40	125	25	0	2324	87		2296	86		1

[#] Column to be used to flag recovery and RPD values outside of QC limits * Values outside QC limits

	Non-spike result of "0" used in place of "U" to allow calculation of spike recovery.
Comments	:

SEMIVOLATILE ORGANIC SOIL MATRIX SPIKE/MATRIX SPIKE DUPLICATE PERCENT RECOVERY

Instrument ID: J
GC Column: ZB-5ms
Column ID: 0.25 mm

SDG: 70798

Non-spiked sample: 70798-1

Spike: 70798-1,MS Spike duplicate: 70798-1,MSD

	MS SPIKE	MSD SPIKE	LOWER	UPPER	RPD	NON-SPIKE	SPIKE	SPIKE	***	SPIKE DUP	SPIKE DUP	,		
COMPOUND	ADDED (ug/kg)	ADDED (ug/kg)	LIMIT	LIMIT	LIMIT	RESULT (ug/kg)	RESULT (ug/kg)	% REC	#	RESULT (ug/kg)	% REC	#	RPD	#
Pyridine	2730	2794	13	77	25	0	1724	63		1896	68		10	Γ
N-nitrosodimethylamine	2730	2794	20	115	25	0	1874	69		2092	75		11	Г
n-Decane	2730	2794	40	140	25	0	1490	55	Γ	1593	57		7	Γ
Acetophenone	2730	2794	40	140	25	0	1814	66		1955	70		7	Г
Aniline	2730	2794	60	120	25	0	2046	75		2221	79	T	8	Γ
Phenol	5459	5588	40	100	25	0	3965	73		4342	78	T	9	Γ
2-Chlorophenol	5459	5588	45	110	25	0	3747	69		4044	72		8	Γ
bis(2-chloroethyl) ether	2730	2794	40	105	25	0	1986	73		2229	80		12	Γ
1,3-Dichlorobenzene	2730	2794	40	100	25	0	1749	64		1864	67		6	Γ
1,4-Dichlorobenzene	2730	2794	35	105	25	0	1782	65		1908	68		7	Γ
1,2-Dichlorobenzene	2730	2794	45	95	25	0	1785	65		1922	69		7	Γ
Benzyl Alcohol	2730	2794	20	125	25	0	2207	81		2356	84		7	Γ
2-Methylphenol	5459	5588	40	105	25	0	4138	76		4473	80	T	8	Γ
bis(2-chloroisopropyl)ether	2730	2794	20	115	25	0	1832	67		2031	73		10	Γ
3+4-Methylphenol	5459	5588	40	105	25	0	4418	81		4722	85		7	_
Hexachloroethane	2730	2794	35	110	25	0	1770	65		1940	69		9	
N-nitroso-di-n-propylamine	2730	2794	40	115	25	0	2173	80		2354	84	П	8	Γ
alpha-terpineol	2730	2794	40	140	25	0	1845	68		1938	69		5	_
2,3-dichloroaniline	2730	2794	40	140	25	0	2226	82		2306	83	П	4	
Nitrobenzene	2730	2794	40	115	25	0	2046	75		2215	79		8	_
Isophorone	2730	2794	45	110	25	0	2264	83		2465	88	Н	8	_
2-Nitrophenol	5459	5588	40	110	25	0	4230	77		4483	80	Н	6	_
2,4-Dimethylphenol	5459	5588	30	105	25	0	4023	74		4284	77	Н	6	
Bis(2-chloroethoxy)methane	2730	2794	45	110	25	0	2056	75		2245	80	\vdash	9	_
2,4-Dichlorophenol	5459	5588	45	110	25	0	4516	83		4694	84	H	4	_
Benzoic Acid	5459	5588	30	150	25	0	392	7	*	403	7	*	3	
1,2,4-Trichlorobenzene	2730	2794	45	110	25	0	1880	69		1973	71		5	-
Naphthalene	2730	2794	40	105	25	0	1989	73		2105	75	\vdash	6	-
4-Chloroaniline	2730	2794	60	120	25	0	2311	85		2475	73 89	╁╌╁	7	
Hexachlorobutadiene	2730	2794	40	115	25	0	1991	73		2027	73	\vdash	2	
4-Chloro-3-methylphenol	5459	5588	45	115	25	0	4685	86		4933	88	Н	5	
2-Methylnaphthalene	2730	2794	45	105	25	0	2264	83		2392	 86	Н	6	-
Hexachlorocyclopentadiene	2730	2794	36	97	25	0	1857	68		2009	72	\vdash	8	_
2,4,6-Trichlorophenol	5459	5588	45	110	25	0	4740	87		4935	88	\vdash	4	-
2,4,5-Trichlorophenol	5459	5588	50	110	25	0	4954	91		5210	93	\vdash	5	
2-Chloronaphthalene	2730	2794	45	105	25	0	2282	84	-	2390	93 86	\vdash	5	
2-Nitroaniline	2730	2794	45	120	25	0	2688	98		3033	109		12	-
2,6-Dinitrotoluene	2730	2794	50	110	25	0	2528	93	_	2639	94	\vdash	4	
Dimethyl Phthalate	2730	2794	50	110	25	0	2497	91	一	2627	94	\vdash	5	_
Acenaphthylene	2730	2794	45	105	25	0	2396	88				\vdash		-
3-Nitroaniline	2730	2794	25	110	25	0	2713	99		2484	89	\vdash	4	
Acenaphthene	2730	2794	45	110	25	0			-	2867	103	\vdash	6	
2,4-dinitrophenol	5459	5588	15	130	25	0	2318	85		2415	86	+	4	
Dibenzofuran	2730	2794	50	105	25	0	812	15	-+	943	17	\vdash	15	
4-Nitrophenol	5459	5588	15				2457	90	\dashv	2567	92	\dashv	4	_
2,4-Dinitrotoluene	2730	2794		140	25	0	5194	95	\dashv	5515	99	\dashv	6	-
			50	115	25	0	2660	97		2760	99	\dashv	4	
Fluorene Diathyl Phthalata	2730	2794	50	110	25	0	2374	87	-+	2485	89	\dashv	5	
Diethyl Phthalate	2730	2794	50	115	25	0	2407	88	\dashv	2537	91	\dashv	5	
1-Chlorophenyl phenyl ether	2730	2794	45	110	25	0	2538	93		2635	94	\dashv	4	_
1-Nitroaniline	2730	2794	35	115	25	0	2483	91	\dashv	2637	94	-	6	_
4,6-Dinitro-2-methylphenol	5459	5588	30	135	25	0	3448	63		3918	70		13	

SVOA FORM 3

SEMIVOLATILE ORGANIC SOIL MATRIX SPIKE/MATRIX SPIKE DUPLICATE PERCENT RECOVERY

Instrument 1D: J GC Column: ZB-5ms Column 1D: 0.25 mm

SDG: 70798 Non-spiked sample: 70798-1 Spike: 70798-1,MS

Spike duplicate: 70798-1,MSD

	MS SPIKE	MSD SPIKE	LOWER	UPPER	RPD	NON-SPIKE	SPIKE	SPIKE		SPIKE DUP	SPIKE DUP	\Box	*
COMPOUND	ADDED (ug/kg)	ADDED (ug/kg)	LIMIT	LIMIT	LIMIT	RESULT (ug/kg)	RESULT (ug/kg)	% REC	#	RESULT (ug/kg)	% REC	#	RPD
n-nitrosodiphenylamine	2730	2794	50	115	25	0	2076	76		2134	76		3
Azobenzene	2730	2794	63	115	25	0	2385	87		2592	93		8
Biphenyl	2730	2794	60	140	25	0	2222	81		2315	83		4
Octadecane	2730	2794	40	140	25	_ 0	2192	80		2457	88		11
4-bromophenyl phenyl ether	2730	2794	45	115	25	0	2505	92		2600	93		4
Hexachlorobenzene	2730	2794	45	120	25	0	2531	93		2601	93		3
Pentachlorophenol	5459	5588	20	120	25	0	4143	76		4456	80		7
Phenanthrene	2730	2794	50	110	25	510	2693	80		2775	81		3
Anthracene	2730	2794	55	105	25	99	2497	88		2618	90		5
Carbazole	5459	5588	45	115	25	0	5343	98		5584	100		4
Di-n-butyl phthalate	2730	2794	55	110	25	0	2634	96		2695	96		2
Fluoranthene	2730	2794	55	115	25	655	2977	85		2962	83		0
Benzidine	5459	5588	29	187	25	0	2799	51		3016	54		7
Pyrene	2730	2794	45	125	25	548	3040	91		3132	93		3
Butyl benzyl phthalate	2730	2794	50	125	25	0	2616	96		2944	105		12
Benzo[a]anthracene	2730	2794	50	110	25	293	2712	89		2844	91		5
Chrysene	2730	2794	55	110	25	269	2713	90		2843	92		5
3,3'-Dichlorobenzidine	5459	5588	64	113	25	0	5228	96		5734	103		9
Bis (2-ethylhexyl) phthalate	2730	2794	45	125	25	0	2617	96		2948	106		12
di-n-octyl-phthalate	2730	2794	40	130	25	0	2661	97		2906	104		9
Benzo[b] fluoranthene	2730	2794	45	115	25	298	2840	93		2867	92	T	1
Benzo[k] fluoranthene	2730	2794	45	125	25	0	2527	93		2519	90		0
Benzo[a] pyrene	2730	2794	50	110	25	215	2543	85		2592	85		2
Indeno [1,2,3-cd] pyrene	2730	2794	40	120	25	197	2703	92		2794	93		3
Dibenz [a,h] anthracene	2730	2794	40	125	25	0	2735	100		2814	101	T	3
Benzo(g,h,i) perylene	2730	2794	40	125	25	0	2701	99		2739	98	T	7 1

[#] Column to be used to flag recovery and RPD values outside of QC limits

	Non-spike result of "0" used in place of "U" to allow calculation of spike recovery.
Comments	

^{*} Values outside QC limits

VPH DATA SUMMARIES

195 Commerce Way Portsmouth, New Hampshire 03801 603-436-5111 Fax 603-430-2151 800-929-9906

Mr. Scott Nesbit Terta Tech NUS, Inc. 661 Andersen Drive, Foster Plaza 7 Pittsburgh PA 15220

CLIENT SAMPLE ID

Project Name: LMC Wilmington

Project Number: 1121C03346 **Client Sample ID:** LabQC

August 31, 2011

SAMPLE DATA

Lab Sample ID: MBV083011K

Matrix:

Soil

Percent Solid:

100

Dilution Factor:

50.0

Collection Date: Lab Receipt Date:

Analysis Date:

08/30/11

	VPH AN	NALYTIC	AL RESULTS		
RANGE/TARGET ANALYTE	Elution Range	RL	Units	Result	
Unadjusted C5-C8 Aliphatics	N/A	2500	μg/kg	U	
Unadjusted C9-C12 Aliphatics	N/A	2500	μg/kg	UU	
Benzene	C5-C8	100	μg/kg	U	
Ethylbenzene	C9-C12	100	μg/kg	U	
Methyl-tert-butyl ether	C5-C8	100	μg/kg	U	
Naphthalene	N/A	100	μg/kg	U	
Toluene	C5-C8	100	μg/kg	U	
m- & p-Xylenes	C9-C12	200	μg/kg	U	
o-Xylene	C9-C12	100	μg/kg	U	
C5-C8 Aliphatics Hydrocarbons ^{1,2}	N/A	2500	μg/kg	U	
C9-C12 Aliphatic Hydrocarbons ^{1,3}	N/A	2500	μg/kg	U	
C9-C10 Aromatic Hydrocarbons	N/A	500	μg/kg	U	
Surrogate % Recovery (Trifluoroto	luene) PID			95	
Surrogate % Recovery (Trifluoroto	luene) FID			99	
Surrogate Acceptance Range				70-130%	

Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range.

RL = Report Limit

U=Undetected J=Estimated E=Exceeds Calibration Range B=Detected in Blank

METHODOLOGY: MADEP Volatile Petroleum Hydrocarbons (VPH), ORS Division of Environmental Analysis, Revision 1.1 May 2004.

COMMENTS: Samples were received in accordance with method criteria unless noted on the sample receipt checklist. Results are expressed on a moisture corrected and dry weight basis.

Authorized signature: Matthe family

C5-C8 Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range

³C9-C12 Aliphatic Hydrocarbons exclude conc. of Target Analytes eluting in that range and conc. of C9-C10 Aromatic Hydrocarbons.

```
Data Path : C:\msdchem\1\DATA\083011-K\
   Data File : K33563B.D
   Signal(s): Signal #1: FID1A.CH Signal #2: ELC2B.CH
               : 30 Aug 2011 11:07 am
   Operator
              : JJL
               : MBV083011K
   Sample
   Misc
               : 100,10.00,SOIL
                     Sample Multiplier: 1
   ALS Vial
               : 6
   Integration File signal 1: autoint1.e
   Integration File signal 2: autoint2.e
   Quant Time: Aug 30 11:26:44 2011
   Quant Method: C:\msdchem\1\METHODS\VPHTFT082611.M
   Quant Title : Volatile Petroleum Hydrocarbons (VPH) MA DEP 2004
   QLast Update: Mon Aug 29 07:37:33 2011
Response via: Initial Calibration
                                 6890 Scale Mode: Small noise peaks clipped
   Integrator: ChemStation
   Volume Inj.
   Signal #1 Phase :
                                             Signal #2 Phase:
   Signal #1 Info
                                             Signal #2 Info :
     Response_
                                               Signal: K33563B.D\FID1A.CH
        35000
        30000
        25000
        20000
        15000
        10000
         5000
           0
                          35-C8 ALI!
                                                                 FC127
    Time
               2.00
                     3.00
                           4.00
                                 5.00
                                       6.00
                                             7.00
                                                   8.00
                                                         9.00
                                                               10.00
                                                                     11.00 12.00 13.00
                                                                                             15.00
                                                                                      14.00
     Response
                                              Signal: K33563B.D\ELC2B.CH
        20000
        15000
        10000
        5000
                                 핲
               2.00
                     3.00
                                       6.00
                           4.00
                                 5.00
                                             7.00
                                                   8.00
                                                         9.00
                                                              10.00
                                                                    11.00
                                                                          12.00
                                                                                            15.00
                                                                                13.00
                                                                                      14.00
VPHTFT082611.M Wed Aug 31 09:14:45 2011
                                                                                                 Page: 2
```


195 Commerce Way Portsmouth, New Hampshire 03801 603-436-5111 Fax 603-430-2151 800-999-9904

Mr. Scott Nesbit Terta Tech NUS, Inc. 661 Andersen Drive, Foster Plaza 7 Pittsburgh PA 15220

August 31, 2011

SAMPLE DATA

08/30/11

Lab Sample ID: 70798-1
Matrix: Solid
Percent Solid: 94
Dilution Factor: 57
Collection Date: 08/25/11
Lab Receipt Date: 08/25/11

Analysis Date:

CLIENT SAMPLE ID

Project Name: LMC Wilmington
Project Number: 1121C03346

Client Sample ID: LMC-SO-PROCESSED

	VPH A	NALYTIC	AL RESULTS		
RANGE/TARGET ANALYTE	Elution Range	RL	Units	Result	
Unadjusted C5-C8 Aliphatics ¹	N/A	2838	μg/kg	U	
Unadjusted C9-C12 Aliphatics 1	N/A	2838	μg/kg	U	
Benzene	C5-C8	114	μg/kg	U	
Ethylbenzene	C9-C12	114	μg/kg	U	
Methyl-tert-butyl ether	C5-C8	114	μg/kg	U	
Naphthalene	N/A	114	μg/kg	U	
Toluene	C5-C8	114	μg/kg	U	
m- & p-Xylenes	C9-C12	227	μg/kg	U	
o-Xylene	C9-C12	114	μg/kg	U	
C5-C8 Aliphatics Hydrocarbons ^{1,2}	N/A	2838	μg/kg	UU	
C9-C12 Aliphatic Hydrocarbons ^{1,3}	N/A	2838	μg/kg	U	
C9-C10 Aromatic Hydrocarbons	N/A	568	μg/kg	U	
Surrogate % Recovery (2.5-Dibron	notoluene) PID				
Surrogate % Recovery (2.5-Dibron	notoluene) FID				
Surrogate Acceptance Range				70-130%	

Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range.

RL = Report Limit

U=Undetected J=Estimated E=Exceeds Calibration Range B=Detected in Blank

METHODOLOGY: MADEP Volatile Petroleum Hydrocarbons (VPH), ORS Division of Environmental Analysis, Revision 1.1 May 2004.

COMMENTS: Samples were received in accordance with method criteria unless noted on the sample receipt checklist. Results are expressed on a moisture corrected and dry weight basis.

Authorized signature:

²C5-C8 Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range

³C9-C12 Aliphatic Hydrocarbons exclude conc. of Target Analytes eluting in that range and conc. of C9-C10 Aromatic Hydrocarbons.

Data Path: C:\msdchem\1\DATA\083011-K\

Data File: K33564.D

Signal(s): Signal #1: FID1A.CH Signal #2: ELC2B.CH

Acq On : 30 Aug 2011 11:45 am

Operator : JJL Sample : 70798-1 Misc : 100,9.97

Misc : 100,9.97, SOIL

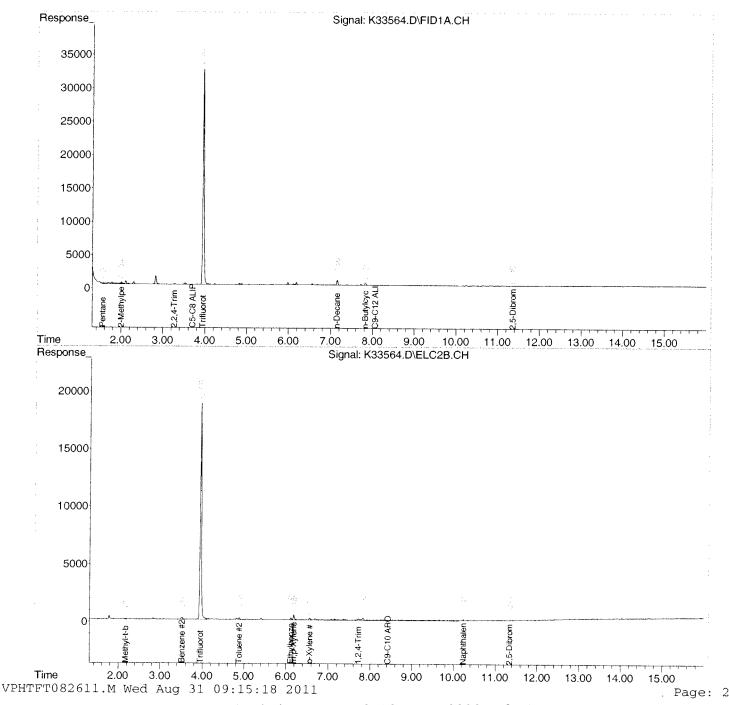
ALS Vial : 7 Sample Multiplier: 1

Integration File signal 1: autoint1.e Integration File signal 2: autoint2.e

Quant Time: Aug 30 12:04:09 2011

Quant Method : C:\msdchem\1\METHODS\VPHTFT082611.M

Quant Title : Volatile Petroleum Hydrocarbons (VPH) MA DEP 2004


QLast Update : Mon Aug 29 07:37:33 2011

Response via : Initial Calibration

Integrator: ChemStation 6890 Scale Mode: Small noise peaks clipped

Volume Inj. : Signal #1 Phase : Signal #1 Info :

Signal #2 Phase: Signal #2 Info :

VPH QC FORMS

VOLATILE PETROLEUM HYDROCARBONS SOIL LABORATORY CONTROL/LABORATORY CONTROL DUPLICATE PERCENT RECOVERY

Instrument ID: K GC Column: RTX-502.2 Column ID: 0.25 mm

SDG:

Non-spiked sample: MBV083011K

Spike: LSV083011K Spike duplicate: LSV083011K2

	LCS SPIKE	LCSD SPIKE	LOWER	UPPER	RPD	NON-SPIKE	SPIKE	SPIKE		SPIKE DUP	SPIKE DUP	П		
COMPOUND	ADDED (ug/kg)	ADDED (ug/kg)	LIMIT	LIMIT	LIMIT	RESULT (ug/kg)	RESULT (ug/kg)	% REC	#	RESULT (ug/kg)	% REC	#	RPD	#
Pentane	5000	5000	70	130	25	0	4530	91		4467	89		1	Γ
2-Methylpentane	5000	5000	70	130	25	0	4970	99		4905	98		1	Г
2,2,4-Trimethylpentane	5000	5000	70	130	25	0	5087	102		4907	98		4	Г
n-Decane	5000	5000	70	130	25	0	5779	116		6135	123		6	Г
n-Butylcyclohexane	5000	5000	70	130	25	0	5553	111		5797	116		4	
Methyl-t-butylether #2	5000	5000	70	130	25	0	4444	89		4624	92		4	Г
Benzene #2	5000	5000	70	130	25	0	4452	89		4491	90		1	Γ
Toluene #2	5000	5000	70	130	25	0	4290	86		4343	87		1	Г
Ethylbenzene #2	5000	5000	70	130	25	0	4519	90		4555	91		1	Г
m,p-Xylene #2	10000	10000	70	130	25	0	9373	94		9428	94		1	Г
o-Xylene #2	5000	5000	70	130	25	0	4523	90		4500	90		1	Г
1,2,4-Trimethylbenzene #2	5000	5000	70	130	25	0	4948	99		4985	100		1	Г
Naphthalene #2	5000	5000	70	130	25	0	4557	91		5069	101		11	Г
C5-C8 Aliphatics	15000	15000	70	130	25	0	14588	97		14279	95		2	
C9-C12 Aliphatics	10000	10000	70	130	25	0	11332	113		11932	119		5	
C9-C10 Aromatics #2	5000	5000	70	130	25	0	4948	99		4985	100		1	

[#] Column to be used to flag recovery and RPD values outside of QC limits

	Non-spike result of "0" used in place of "U" to allow calculation of spike recovery.
Comments	

^{*} Values outside QC limits

EPH DATA SUMMARIES

195 Commerce Way Portsmouth, New Hampshire 03801 603-436-5111 Fax 603-430-2151 800-929-9906

August 30, 2011

Mr. Scott Nesbit Terta Tech NUS, Inc. 661 Andersen Drive, Foster Plaza 7 Pittsburgh PA 15220

CLIENT SAMPLE ID

Project Name: LMC Wilmington

Project Number: 1121C03346 **Client Sample ID:** LabQC

SAMPLE DATA

Lab Sample ID: B082911EASE

Matrix:SolidPercent Solid:100Dilution Factor:1.0

Collection Date:
Lab Receipt Date:

Extraction Date: 08/29/11 **Analysis Date:** 08/30/1i

	EPH ANALYTIC	AL RESULT	rs	
RANGE/TA	RGET ANALYTE	RL	Units	Result
Unadjusted C	11-C22 Aromatics	26700	μg/kg	U
D: 15111	Naphthalene	267	μg/kg	U
Diesel PAH Analytes	2-Methylnaphthalene	267	μg/kg	U
Analytes	Phenanthrene	267	μg/kg	U
	Acenaphthene	267	μg/kg	U
	Acenaphthylene	267	μg/kg	U
	Fluorene	267	μg/kg	U
	Anthracene	267	μg/kg	U
	Fluoranthene	267	μg/kg	U
Other Target PAH Analytes	Pyrene	267	μg/kg	U
	Benzola lanthracene	267	μg/kg	U
	Chrysene	267	μg/kg	U
	Benzo[b]fluoranthene	267	μg/kg	U
	Benzolk lfluoranthene	267	μg/kg	U
	Benzolalpyrene	267	μg/kg	U
	Indeno[1,2,3-cd]pyrene	267	μg/kg	U
	Dibenzo[a,h]anthracene	267	μg/kg	U
	Benzo[gh.i perylene	267	μg/kg	U
C9-C18 Aliph	natic Hydrocarbons	26700	μg/kg	U
C19-C36 Alip	phatic Hydrocarbons 1	26700	μg/kg	U
C11-C22 Aro	matic Hydrocarbons 1.2	26700	μg/kg	U
Aliphatic Suri	rogate % Recovery (1-Chloro-octadecane)			71
Aromatic Sur	rogate % Recovery (O-Terphenyl)			86
Sample Surro	gate Acceptance Range	~~		40-140%
#1 Fractionati	on Surrogate % Recovery (2-Fluorobiphenyl)			80
#2 Fractionati	on Surrogate % Recovery (2-Bromonaphthalene)			67
Fractionation	Surrogate Acceptance Range			40-140%

Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that C11-C22 Aromatic Hydrocarbons exclude the concentration of Target PAH Analytes.

RL = Report Limit

U=Undetected J=Estimated E=Exceeds Calibration Range B=Detected in Blank

METHODOLOGY:MADEP Extractable Petroleum Hydrocarbons (EPH), ORS Division of Environmental Analysis, May 2004 Revision 1.1. Samples were extracted in accordance with SW-846 Method 3545

COMMENTS: EPH analyses utilized the use of a GC/MS system to detect and quantify ranges and target analytes. Samples were received in accordance with method criteria unless noted on the sample receipt checklist.

Results are expressed on a dry weight basis.

SIGNATURE: (Mapline Richard

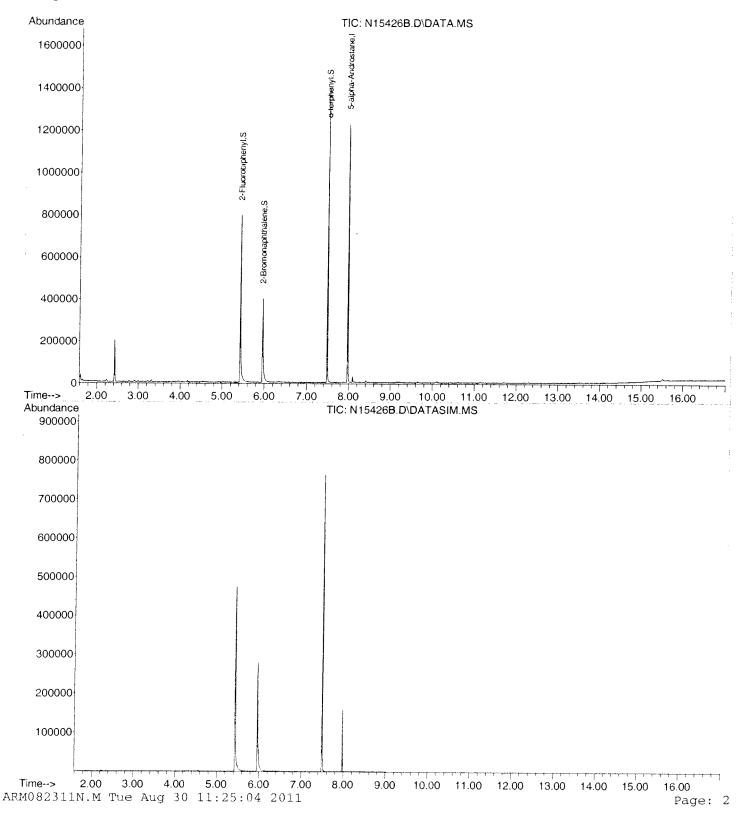
Data Path : C:\msdchem\1\DATA\083011-N\

Data File : N15426B.D

Acq On : 30 Aug 2011 11:08 am

Operator : MT

Sample : B082911EASE Misc : SOIL, ARO


ALS Vial : 9 Sample Multiplier: 1

Quant Time: Aug 30 11:25:04 2011

Quant Method: C:\msdchem\1\METHODS\ARM082311N.M

Quant Title : EPH MS AROMATICS QLast Update : Wed Aug 24 04:14:25 2011

Response via: Initial Calibration

Data Path : C:\msdchem\1\DATA\083011-N\

Data File : N15423B.D Signal(s) : DATA.MS

Acq On : 30 Aug 2011 10:06 am

Operator : MT

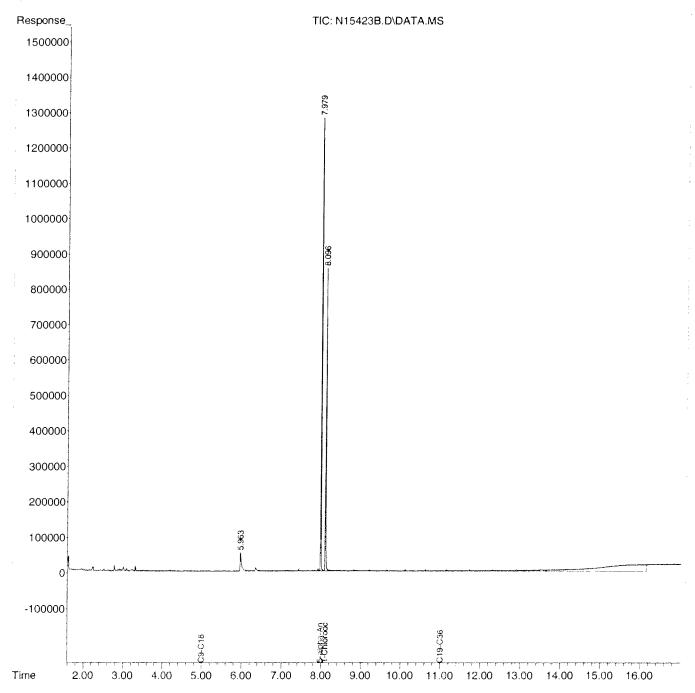
Sample : B082911EASE Misc : SOIL, ALI

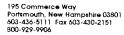
ALS Vial : 6 Sample Multiplier: 1

Integration File: rteint.p

Quant Time: Aug 30 10:22:22 2011

Quant Method: C:\msdchem\1\METHODS\ALG080611N.M


Quant Title : EPH GC ALIPHATICS


QLast Update : Sun Aug 07 09:15:03 2011

Response via : Initial Calibration

Integrator: RTE

Volume Inj. : Signal Phase : Signal Info :

Mr. Scott Nesbit Terta Tech NUS, Inc. 661 Andersen Drive, Foster Plaza 7 Pittsburgh PA 15220

CLIENT SAMPLE ID

Project Name: LMC Wilmington

Project Number: 1121C03346

Client Sample ID: LMC-SO-PROCESSED

August 30, 2011

SAMPLE DATA Lab Sample ID: 70798-1 Matrix: Solid Percent Solid: 94 **Dilution Factor:** 1.0 **Collection Date:** 08/25/11 Lab Receipt Date: 08/25/11 **Extraction Date:** 08/29/11 **Analysis Date:** 08/30/11

	EPH ANALYTIC	AL RESUL	ΓS	
RANGE/TA	RGET ANALYTE	RL	Units	Result
	11-C22 Aromatics	27500	μg/kg	38600
D: 10	Naphthalene	275	μg/kg	IJ
Diesel PAH Analytes	2-Methylnaphthalene	275	μg/kg	ŢĮ.
Analytes	Phenanthrene	275	μg/kg	629
***************************************	Acenaphthene	275	μg/kg	Ü
	Acenaphthylene .	275	μg/kg	U
	Fluorene	275	μg/kg	U
	Anthracene	275	μg/kg	U
	Fluoranthene	275	μg/kg	747
Other	Pyrene	275	μg/kg	782
Target PAH Analytes	Benzola lanthracene	275	μg/kg	378
	Chrysene	275	μg/kg	435
	Benzol b lf luoranthene	275	μg/kg	395
	Benzolk fluoranthene	275	μg/kg	144 J
	Benzo[a]pyrene	275	μg/kg	339
	Indeno[1,2,3-cd]pyrene	275	μg/kg	216 J
	Dibenzo[a,h]anthracene	275	μg/kg	U
	Benzolg h.i perylene	275	μg/kg	203 J
<u>C9-C18 Aliph</u>	natic Hydrocarbons	27500	μg/kg	U
C19-C36 Alip	phatic Hydrocarbons 1	27500	μg/kg	41200
<u>C11-C22 Aroi</u>	matic Hydrocarbons 1.2	27500	μg/kg	34300
	ogate % Recovery (1-Chloro-octadecane)			65
Aromatic Surr	rogate % Recovery (O-Terphenyl)			75
	gate Acceptance Range			40-140%
	on Surrogate % Recovery (2-Fluorobiphenyl)			71
#2 Fractionation	on Surrogate % Recovery (2-Bromonaphthalene)			66
Fractionation :	Surrogate Acceptance Range	van sar		40-140%

¹Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that ²C11-C22 Aromatic Hydrocarbons exclude the concentration of Target PAH Analytes.

RL = Report Limit

U=Undetected J=Estimated E=Exceeds Calibration Range B=Detected in Blank

METHODOLOGY:MADEP Extractable Petroleum Hydrocarbons (EPH), ORS Division of Environmental Analysis, May 2004 Revision 1.1. Samples were extracted in accordance with SW-846 Method 3545

COMMENTS: EPH analyses utilized the use of a GC/MS system to detect and quantify ranges and target analytes. Samples were received in accordance with method criteria unless noted on the sample receipt checklist.

Results are expressed on a dry weight basis.

SIGNATURE INGELMA Rihard

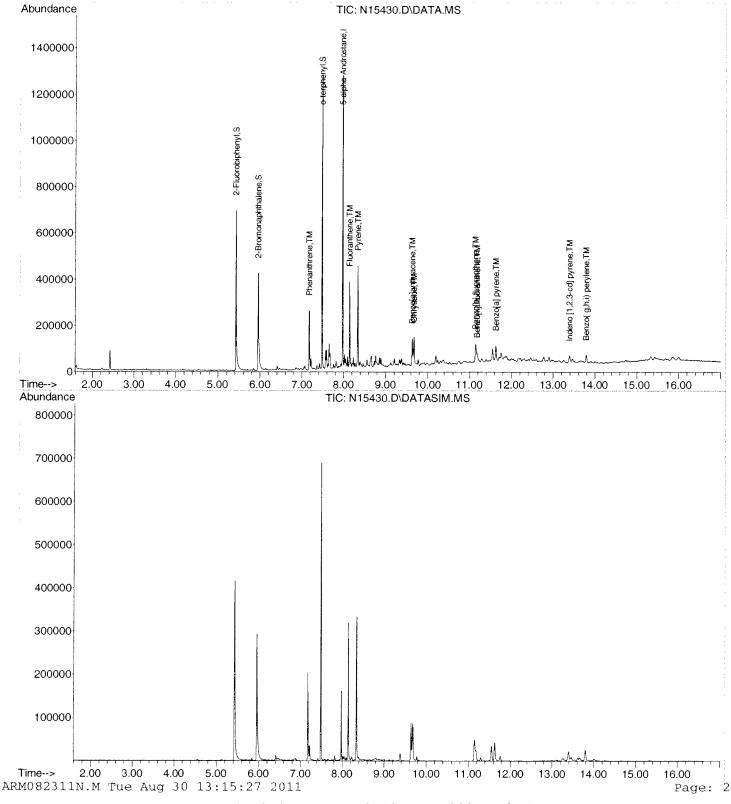
Data Path: C:\msdchem\1\DATA\083011-N\

Data File: N15430.D

Acq On : 30 Aug 2011 12:31 pm

: MT Operator : 70798-1 Sample Misc : SOIL, ARO

: 13 ALS Vial Sample Multiplier: 1


Quant Time: Aug 30 13:15:19 2011

Quant Method: C:\msdchem\1\METHODS\ARM082311N.M

Quant Title : EPH MS AROMATICS

QLast Update: Wed Aug 24 04:14:25 2011

Response via: Initial Calibration

Data Path : C:\msdchem\1\DATA\083011-N\

Data File : N15429.D Signal(s) : DATA.MS

Acq On : 30 Aug 2011 12:11 pm

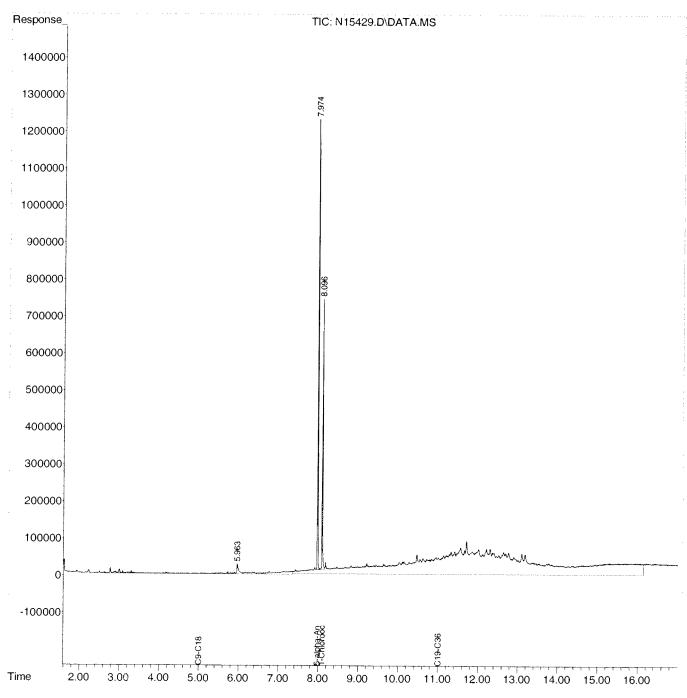
Operator : MT Sample : 70798-1 Misc : SOIL,ALI

ALS Vial : 12 Sample Multiplier: 1

Integration File: rteint.p

Quant Time: Aug 30 13:13:29 2011

Quant Method : C:\msdchem\1\METHODS\ALG080611N.M


Quant Title : EPH GC ALIPHATICS

QLast Update : Sun Aug 07 09:15:03 2011

Response via : Initial Calibration

Integrator: RTE

Volume Inj. : Signal Phase : Signal Info :

EPH QC FORMS

EPH ALIPHATICS SOIL MATRIX SPIKE MATRIX SPIKE DUPLICATE PERCENT RECOVERY

Instrument ID: N
GC Column: ZB-5ms
Column ID: 0.25 mm

SDG: 70798

Non-spiked sample: B082911EASE

Spike: L082911EASE Spike duplicate: LD082911EASE

	LCS SPIKE	LCD SPIKE	LOWER	UPPER	RPD	NON-SPIKE	SPIKE	SPIKE		SPIKE DUP	SPIKE DUP			
COMPOUND	ADDED (ug/kg)	ADDED (ug/kg)	LIMIT	LIMIT	LIMIT	RESULT (ug/kg)	RESULT (ug/kg)	% REC	#	RESULT (ug/kg)	% REC	#	RPD	ŧ
C-9	3333	3333	30	140	25	0	1539	46		1620	49		5	Γ
C-10	3333	3333	40	140	25	0	1771	53		1864	56		5	Γ
C-12	3333	3333	40	140	25	0	1952	59		2081	62		6	Γ
C-14	3333	3333	40	140	25	0	2076	62		2200	66		6	Γ
C-16	3333	3333	40	140	25	0	2232	67		2340	70		5	Γ
C-18	3333	3333	40	140	25	0	2303	69		2475	74		7	Γ
C-19	3333	3333	40	140	25	0	2217	67		2367	71		7	T
C-20	3333	3333	40	140	25	0	2427	73		2536	76		4	Γ
C-22	3333	3333	40	140	25	0	2385	72		2557	77	П	7	Γ
C-24	3333	3333	40	140	25	0	2373	71		2552	77	П	7	Γ
C-26	3333	3333	40	140	25	0	2324	70		2487	75	П	7	Γ
C-28	3333	3333	40	140	25	0	2157	65		2387	72		10	Г
C-30	3333	3333	40	140	25	0	2073	62		2297	69		10	Γ
C-36	3333	3333	40	140	25	0	2097	63		2372	71		12	
C9-C18 Aliphatics	20000	20000	40	140	25	0	11872	59		12580	63		6	Γ
C19-C36 Aliphatics	26667	26667	40	140	25	0	18055	68		19555	73	\vdash	8	T

[#] Column to be used to flag recovery and RPD values outside of QC limits

Non-spike result of "0" used in place of "U" to allow calculation of spike recovery.

Comments:			

^{*} Values outside QC limits

EPH AROMATICS SOIL LABORATORY CONTROL SAMPLE LABORATORY CONTROL SAMPLE DUPLICATE PERCENT RECOVERY

Instrument ID: N
GC Column: ZB-5ms
Column ID: 0.25 mm

SDG: 70798

Non-spiked sample: B082911EASE

Spike: L082911EASE

Spike duplicate: LD082911EASE

	LCS SPIKE	LCSD SPIKE	LOWER	UPPER	RPD	NON-SPIKE	SPIKE	SPIKE		SPIKE DUP	SPIKE DUP	T		
COMPOUND	ADDED (ug/kg)	ADDED (ug/kg)	LIMIT	LIMIT	LIMIT	RESULT (ug/kg)	RESULT (ug/kg)	% REC	#	RESULT (ug/kg)		#	RPD	#
Naphthalene	3333	3333	40	140	30	0	2053	62		2406	72	П	16	T
2-Methylnaphthalene	3333	3333	40	140	30	0	2184	66		2554	77	П	16	Г
Acenaphthylene	3333	3333	40	140	30	0	2366	71		2674	80		12	Г
Acenaphthene	3333	3333	40	140	30	0	2372	71		2684	81	П	12	Г
Fluorene	3333	3333	40	140	30	0	2591	78		2820	85		8	
Phenanthrene	3333	3333	40	140	30	0	2821	85		3007	90		6	
Anthracene	3333	3333	40	140	30	0	2823	85		2967	89		5	
Fluoranthene	3333	3333	40	140	30	0	2882	86		3036	91		5	П
Pyrene	3333	3333	40	140	30	0	2878	86		3053	92	П	6	П
Benzo[a]anthracene	3333	3333	40	140	30	0	2957	89		3152	95		6	
Chrysene	3333	3333	40	140	30	0	2896	87		3042	91		5	
Benzo[b] fluoranthene	3333	3333	40	140	30	0	2956	89		3101	93		5	П
Benzo[k] fluoranthene	3333	3333	40	140	30	0	2935	88		3154	95	П	7	П
Benzo[a] pyrene	3333	3333	40	140	30	0	2980	89		3160	95		6	П
Indeno [1,2,3-cd] pyrene	3333	3333	40	140	30	0	3126	94		3326	100		6	П
Dibenz [a,h] anthracene	3333	3333	40	140	30	0	3198	96		3420	103		7	
Benzo(g,h,i) perylene	3333	3333	40	140	30	0	3097	93		3351	101		8	

[#] Column to be used to flag recovery and RPD values outside of QC limits

Comments:		Non-spike result of "0" used in place of "U" to allow calculation of spike recovery.
	Comments	55

^{*} Values outside QC limits

EPH AROMATIC BREAKTHOUGH REPORT OF ALIPHATIC LABORATORY CONTROL SAMPLE

Instrument ID: N

SDG: 70798

GC Column: ZB-5ms

Aliphatic LCS: L082911EASE

Column ID: 0.25 mm

Aromatic LCS: L082911EASE

	LOWER	UPPER	ALIPHATIC	AROMATIC	%	
COMPOUND	LIMIT	LIMIT	RESULT (ug/mL)	RESULT (ug/mL)	BREAKTHROUGH	#
Naphthalene	0	5	0.00	15.4	0.0	
2-Methylnaphthalene	0	5	0.00	16.4	0.0	

- # Column to be used to flag breakthrough values outside of QC limits
- * Values outside QC limits

Non-spike result of "0" used in place of "U" to allow calculation of spike recovery

Comments:		 	

EPH AROMATIC BREAKTHOUGH REPORT OF ALIPHATIC LABORATORY CONTROL SAMPLE

Instrument ID: N SDG: 70798

GC Column: ZB-5ms Aliphatic LCS: LD082911EASE
Column lD: 0.25 mm Aromatic LCS: LD082911EASE

	LOWER	UPPER	ALIPHATIC	AROMATIC	%	
COMPOUND	LIMIT	LIMIT	RESULT (ug/mL)	RESULT (ug/mL)	BREAKTHROUGH	#
Naphthalene	0	5	0.00	18.0	0.0	
2-Methylnaphthalene	0	5	0.00	19.2	0.0	

Column to be used to flag breakthrough values outside of QC limits

Non-spike result of "0" used in place of "U" to allow calculation of spike recovery

Comments:	 · · · · · · · · · · · · · · · · · · ·	 	

^{*} Values outside QC limits

EPH AROMATICS SOIL MATRIX SPIKE/MATRIX SPIKE DUPLICATE PERCENT RECOVERY

Instrument ID: N GC Column: ZB-5ms Column ID: 0.25 mm

SDG: 70798

Non-spiked sample: 70798-1

Spike: 70798-1,MS Spike duplicate: 70798-1,MSD

	MS SPIKE	MSD SPIKE	LOWER	UPPER	RPD	NON-SPIKE	SPIKE	SPIKE		SPIKE DUP	SPIKE DUP	
COMPOUND	ADDED (ug/kg)	ADDED (ug/kg)	LIMIT	LIMIT	LIMIT	RESULT (ug/kg)	RESULT (ug/kg)	% REC	#	RESULT (ug/kg)	% REC #	RPD
Naphthalene	3371	3532	40	140	50	0	2035	60		2678	76	27
2-Methylnaphthalene	3371	3532	40	140	50	0	2207	65		2752	78	22
Acenaphthylene	3371	3532	40	140	50	0	2423	72		3026	86	22
Acenaphthene	3371	3532	40	140	50	0	2444	73		2993	85	20
Fluorene	3371	3532	40	140	50	0	2689	80		3199	91	17
Phenanthrene	3371	3532	40	140	50	629	3316	80		4239	102	24
Anthracene	3371	3532	40	140	50	0	2929	87		3448	98	16
Fluoranthene	3371	3532	40	140	50	747	3410	79		4337	102	24
Pyrene	3371	3532	40	140	50	782	3410	78		4218	97	21
Benzo[a]anthracene	3371	3532	40	140	50	378	3273	86		3961	101	19
Chrysene	3371	3532	40	140	50	435	3075	78		3685	92	18
Benzo[b] fluoranthene	3371	3532	40	140	50	395	3255	85		3876	99	17
Benzo[k] fluoranthene	3371	3532	40	140	50	144	3019	85		3600	98	18
Benzo[a] pyrene	3371	3532	40	140	50	339	3231	86		3839	99	17
Indeno [1,2,3-cd] pyrene	3371	3532	40	140	50	216	3433	95		4013	107	16
Dibenz [a,h] anthracene	3371	3532	40	140	50	0	3377	100		3844	109	13
Benzo(g,h,i) perylene	3371	3532	40	140	50	203	3390	95		3911	105	14

[#] Column to be used to flag recovery and RPD values outside of QC limits * Values outside QC limits

	Non-spike result of "0" used in place of "U" to allow calculation of spike recovery.
Comments:	

EPH ALIPHATICS SOIL MATRIX SPIKE MATRIX SPIKE DUPLICATE PERCENT RECOVERY

Instrument ID: N

GC Column: ZB-5ms

Column ID: 0.25 mm

SDG: 70798 Non-spiked sample: 70798-1 Spike: 70798-1,MS Spike duplicate: 70798-1,MSD

	LCS SPIKE	LCD SPIKE	LOWER	UPPER	RPD	NON-SPIKE	SPIKE	SPIKE		SPIKE DUP	SPIKE DUP			
COMPOUND	ADDED (ug/kg)	ADDED (ug/kg)	LIMIT	LIMIT	LIMIT	RESULT (ug/kg)	RESULT (ug/kg)	% REC	#	RESULT (ug/kg)	# REC	#	RPD	
C-9	3371	3532	30	140	50	0	1560	46		1723	49	T	10	T
C-10	3371	3532	40	140	50	0	1809	54		2031	58	T	12	T
C-12	3371	3532	40	140	50	0	2075	62		2270	64		9	T
C-14	3371	3532	40	14()	50	0	2246	67		2457	70		9	T
C-16	3371	3532	40	140	50	θ	2391	71		2659	75	T	11	T
C-18	3371	3532	40	140	50	0	2516	75		2917	83	\exists	15	T
C-19	3371	3532	40	140	50	0	2423	72		2745	78	П	12	T
C-20	3371	3532	40	140	50	0	2592	77		2947	83		13	T
C-22	3371	3532	40	140	50	0	2577	76		2878	81	T	11	T
C-24	3371	3532	40	140	50	0	2555	76		2845	81	T	11	T
C-26	3371	3532	40	140	50	0	2505	74		2799	79	T	11	T
C-28	3371	3532	40	140	50	0	2383	71		2763	78	1	15	T
C-30	3371	3532	40	140	50	0	2289	68		2694	76	T	16	T
C-36	3371	3532	40	140	50	0	2337	69		2818	80	T	19	Τ

C9-C18 Aliphatics	20225	21190	4()	140	50	0	12598	62	14058	66	11	П
C19-C36 Aliphatics	26967	28254	4()	140	50	0	19660	73	22489	80	13	

[#] Column to be used to flag recovery and RPD values outside of QC limits

_			
Comments:	 	 	

Non-spike result of "0" used in place of "U" to allow calculation of spike recovery.

^{*} Values outside QC limits

PCB DATA SUMMARIES

Mr. Scott Nesbit Terta Tech NUS, Inc. 661 Andersen Drive, Foster Plaza 7 Pittsburgh PA 15220

CLIENT SAMPLE ID

Project Name:

LMC Wilmington

Project Number:

1121C03346

Field Sample ID: Lab QC August 29, 2011

SAMPLE DATA

Lab Sample ID:

B082511PSOX RR

Matrix:

Soil

Percent Solid:

100

Dilution Factor:

1.0

Collection Date:

Lab Receipt Date:

Extraction Date:

08/25/11

Analysis Date:

08/26/11

	PCB ANALYTICAL RESULT	rs
COMPOUND	Quantitation Limit μg/kg	Results $\mu g/kg$
PCB-1016	33	U
PCB-1221	33	U
PCB-1232	33	U
PCB-1242	33	U
PCB-1248	33	U
PCB-1254	33	U
PCB-1260	33	U
PCB-1262	33	U
PCB-1268	33	U
	Surrogate Standard Recovery	
	2,4,5,6-Tetrachloro-m-xylene 95 Decachlorobiphenyl 75	% %
U=Undetected	J=Estimated E=Exceeds Calibration Range	B=Detected in Blank

METHODOLOGY: Sample analysis conducted according to Test Methods for Evaluating Solid Waste, SW-846 Method 8082.

Sample preparation conducted according to Test Methods for Evaluating Solid Waste, SW-846 Method 3540C.

COMMENTS: Results are expressed on a dry weight basis.

PCB EXT Report

Authorized signature Mubbell

Data Path : C:\msdchem\1\DATA\082611-M\

Data File: M47861B.D

Signal(s): Signal #1: ECD1A.ch Signal #2: ECD2B.ch

Acq On : 26 Aug 2011 5:30 pm

Operator : JK

Sample : B082511PSOX,RR,,A/C

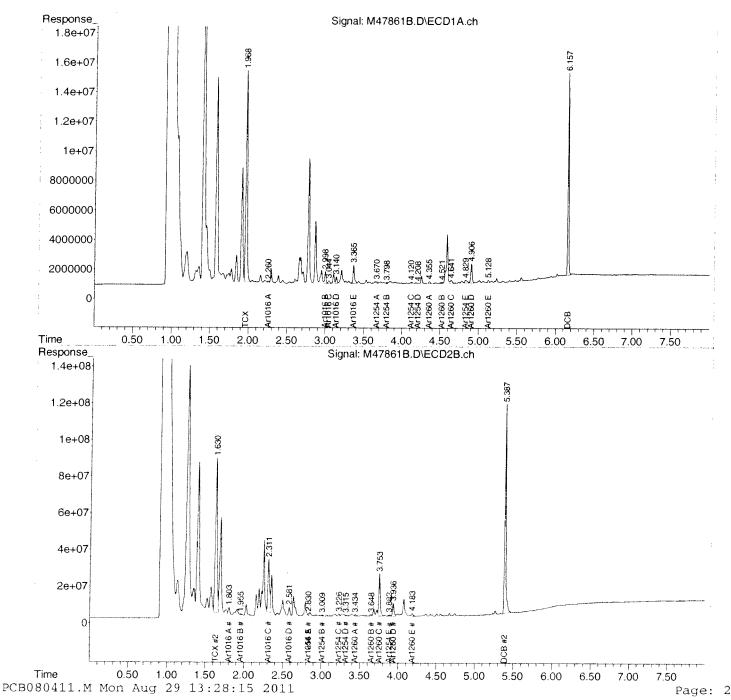
Misc : SOIL

ALS Vial : 6 Sample Multiplier: 1

Integration File signal 1: events.e Integration File signal 2: events2.e Quant Time: Aug 29 08:48:59 2011

Quant Method : C:\msdchem\1\METHODS\PCB080411.M

Quant Title : SW-846 METHOD 8082 Aroclor 1016/1260/1254


QLast Update : Tue Aug 23 09:00:21 2011 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 2 uL

Signal #1 Phase : STX-CLPPesticides Signal #2 Phase: STX-CLPPesticides

Signal #1 Info : 30 m x 0.25mm x 0 Signal #2 Info : 30 m x 0.25mm x 0.25 um

Mr. Scott Nesbit Terta Tech NUS, Inc. 661 Andersen Drive, Foster Plaza 7 Pittsburgh PA 15220

CLIENT SAMPLE ID

Project Name:

LMC Wilmington

Project Number:

1121C03346

Field Sample ID:

LMC-SO-PROCESSED

August 29, 2011

SAMPLE DATA

Lab Sample ID:

70798-1

Matrix:

Solid

Percent Solid:

94

Dilution Factor:

1.1

Collection Date:

08/25/11

Lab Receipt Date:

08/25/11

Extraction Date:

08/25/11

Analysis Date:

08/26/11

	PCB ANALYTICAL RESUL	TS
COMPOUND	Quantitation Limit μg/kg	Results $\mu g/kg$
PCB-1016	36	U
PCB-1221	36	U
PCB-1232	36	U
PCB-1242	36	U
PCB-1248	. 36	U
PCB-1254	36	U
PCB-1260	36	U
PCB-1262	36	U
PCB-1268	36	U
	Surrogate Standard Recovery	
	2,4,5,6-Tetrachloro-m-xylene 92	%
	Decachlorobiphenyl 75	%
U=Undetected .	J=Estimated E=Exceeds Calibration Range	B=Detected in Blank

METHODOLOGY: Sample analysis conducted according to Test Methods for Evaluating Solid Waste, SW-846 Method 8082.

Sample preparation conducted according to Test Methods for Evaluating Solid Waste, SW-846 Method 3540C.

COMMENTS:

Results are expressed on a dry weight basis.

PCB_EXT_Report

Authorized signature Mbbll

Data Path : C:\msdchem\1\DATA\082611-M\

Data File: M47864.D

Signal(s): Signal #1: ECD1A.ch Signal #2: ECD2B.ch

Acq On : 26 Aug 2011 6:00 pm

Operator : JK

: 70798-1,,A/C Sample

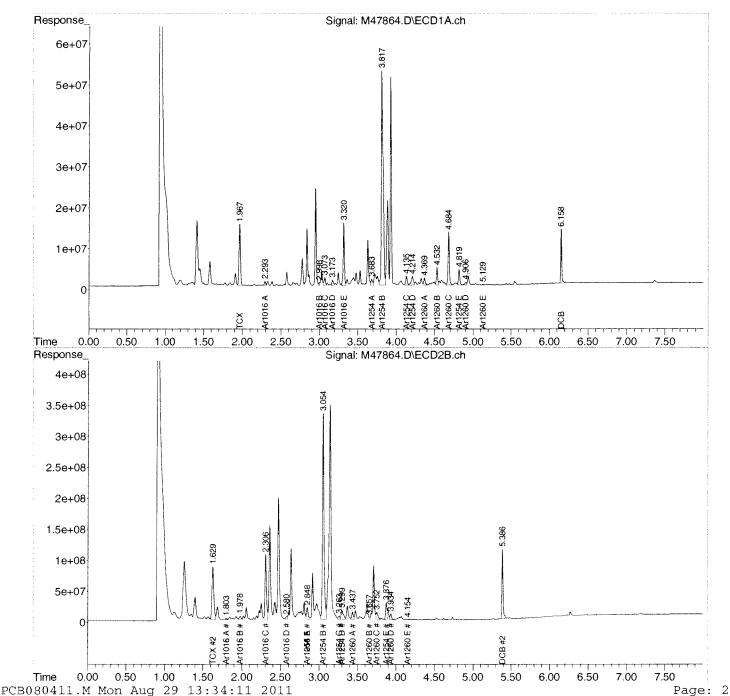
: SOIL Misc

: 17 Sample Multiplier: 1 ALS Vial

Integration File signal 1: events.e Integration File signal 2: events2.e Quant Time: Aug 29 08:49:05 2011

Quant Method: C:\msdchem\1\METHODS\PCB080411.M

Quant Title : SW-846 METHOD 8082 Aroclor 1016/1260/1254


QLast Update: Tue Aug 23 09:00:21 2011 Response via: Initial Calibration

Integrator: ChemStation

Volume Inj. : 2 uL

Signal #1 Phase: STX-CLPPesticides Signal #2 Phase: STX-CLPPesticides

Signal #1 Info : 30 m imes 0.25mm imes 0 Signal #2 Info : 30 m imes 0.25mm imes 0.25 um

PCB QC FORMS

PCB SOIL LABORATORY CONTROL SAMPLE/DUPLICATE PERCENT RECOVERY

Instrument ID: M

GC Column #1: STX-CLPesticides I

Non-spiked sample: B082511PSOX,RR,,A/C

Column ID: 0.25 mm

Column ID: 0.25 mm

Spike: L082511PSOX,,A/C

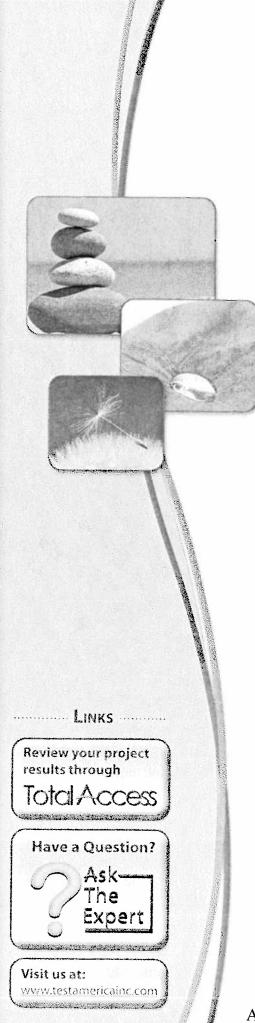
SDG:

GC Column #2: STX-CLPesticides II

Spike duplicate: LD082511PSOX,,A/C

	LCS SPIKE	LCSD SPIKE	LOWER	UPPER	RPD	NON-SPIKE	SPIKE	SPIKE		SPIKE DUP	SPIKE DUP			
COMPOUND	ADDED (ug/kg)	ADDED (ug/kg)	LIMIT	LIMIT	LIMIT	RESULT (ug/kg)	RESULT (ug/kg)	% REC	#	RESULT (ug/kg)	% REC	#	RPD	#
PCB 1016	200	200	65	140	30	0	189	94		188	94		0.7	
PCB 1260	200	200	60	130	30	0	207	103		194	97		6.2	
PCB 1016 #2	200	200	65	140	30	0	248	124		203	101		20.1	
PCB 1260 #2	200	200	60	130	30	0	184	92		177	89		3.5	

- # Column to be used to flag recovery and RPD values outside of QC limits
- * Values outside QC limits


LCS/LCSD spike added values have been weight adjusted.

Non-spike result of "0" used in place of "U" to allow calculation of spike recovery.

Comments:		

SUBCONTRACTED REPORTS & NARRATIVES

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Westfield
Westfield Executive Park
53 Southampton Road
Westfield, MA 01085
Tel: (413)572-4000

TestAmerica Job ID: 360-36016-1 Client Project/Site: LMC Wilmington

For.

Analytics Environmental Laboratory, LLC 195 Commerce Way Suite E Portsmouth, New Hampshire 03801

Attn: Ms. Kate Zaleski

Authorized for release by: 09/01/2011 12:56:27 PM

Joe Chimi

Report Production Representative

joe.chimi@testamericainc.com

Designee for

Lisa Worthington
Project Manager II

lisa.worthington@testamericainc.com

Results relate only to the items tested and the sample(s) as received by the laboratory. The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Page 1 of 19 Analytics Report 70798 page 0053 of 75 09/01/2011

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Detection Summary	5
Method Summary	6
Sample Summary	
Client Sample Results	8
Definitions	11
QC Association	12
QC Sample Results	13
Chronicle	15
Certification Summary	16
Receipt Checklists	18
Chain of Custody	10

	MassDEP Analytical Protocol Certification Form								
Laboi	ratory Nam	e: TestAme	rica Westfield	Project #:		360-36016	-1		
Proje	ect Location	: LMC V	Wilmington	RTN:					
This 1	orm provi	des certifications (for the following da	ıta set: list Laborato	ry Sample ID Num	ber(s):			
360-3	6016-1								
Matric	es:	Groundwater/Sui	rface Water 🔯	Soil/Sediment 🗌	Drinking Water	□Air	☐ Oth	ner:	
CAM	Protocol	s (check all that	apply below):						
8260	voc	7470/7471 Hg	Mass DEP VPH	8081 Pesticides	7196 Hex Cr	1	Mass DEF	APH	1
САМ	II A	CAM III B	CAMIVA	CAM V B	CAM VI B		CAM IX A		
8270	SVOC	7010 Metals	Mass DEP EPH	8151 Herbicides	8330 Explosives		TO-15 VO		
САМ	IIB 🔲	CAM III C] CAMIVB [CAM V C	CAM VIII A	(CAM IX B		
				9014 Total					
l .	Metals	6020 Metals	8082 PCB	Cyanide/PAC	332.0 Perchlorate				
CAM	III A X	CAM III D] CAM V A	CAM VIA	CAM VIII B				
	Affirmativ	e Responses to Q	uestions A through	F are required for "	Presumptive Cert	ainty" sta	tus		
	Were all s	amples received in	a condition consister	nt with those describe	ed on the Chain-o f -0	Custody,			
A			temperature) in the f	field or laboratory, and	d prepared/analyze		_		l
	method ho	lding time.					X Yes		No
В	Were the a protocol(s)	•) and all associated (QC requirements spe	cified in the selecte		XYes		No
Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?							XYes		No
	1			orting requirements sp		^			
D				for the Acquisition a		alvtical	X Yes	П	No
		PH and APH Method	ds only: Was each n	nethod conducted wit	hout significant				
E				for a list of significar		Į.	Yes	Ш	No
	1	• • •	` '	te analyte list reporte	,	· [Yes	П	No
F				nance standard non-c		fied and			
•				o" responses to Que			X Yes	<u>Ц</u>	No
	Respo	nses to Questions	s G, H and I below a	are required for "Pre	sumptive Certaint	y" status			
G	Were the r protocol(s)	•	below all CA M repo	rting limits specified i	n the selected CAM	1	X		No ¹
			•	ty" status may not ned	,	ata usabilit	ty and		
<i>repres</i> H				0. 1056 (2)(k) and WCS		Tr		$\overline{\Box}$	
1				he CAM protocol(s) a			X Yes	十	No
¹ All n				specified in the selected aboratory narrative		s) (X Yes	<u></u> _	No
				perjury that, based up		uiry of the	se resnon	sihla	for
obtain		rmation, the materia		nalytical report is, to t				0.0.0	
		4	1-						
Signa	ture:	200	toluna	Position:	Lab	oratory Dir	ector		
Printe	d Name:	Steven	C. Hartmann	Date:		9/1/11 12:5	53		
L		and all the state of the state							

Case Narrative

Client: Analytics Environmental Laboratory, LLC

Project/Site: LMC Wilmington

Job ID: 360-36016-1

Laboratory: TestAmerica Westfield

Narrative

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

RECEIPT

The samples were received on 08/31/2011; the samples arrived in good condition, properly preserved and on ice. The temperature of the coolers at receipt was 1.2 C.

Note: All samples that require thermal preservation are considered acceptable if the arrival temperature is <6°C or within the method specified range. For samples with a specified temperature of <6°C, temperatures ranging from just above the freezing temperature of water to 6°C shall be deemed acceptable. Samples that are hand delivered, immediately following collection, may not meet these criteria; however, they will be considered acceptable according to NELAC and State standards, if there is evidence that the chilling process has begun, such as stored and transported to the laboratory on ice.

TOTAL METALS (ICP)

Sample LMC-SO-Processed/70798-1 (360-36016-1) was analyzed for total metals (ICP) in accordance with EPA SW-846 Method 6010B. The sample was prepared and analyzed on 08/31/2011.

No difficulties were encountered during the metals analysis.

All quality control parameters were within the acceptance limits.

TOTAL MERCURY

Sample LMC-SO-Processed/70798-1 (360-36016-1) was analyzed for total mercury in accordance with EPA SW-846 Method 7471A. The sample was prepared on 08/31/2011 and analyzed on 09/01/2011.

No difficulties were encountered during the mercury analysis.

All quality control parameters were within the acceptance limits.

PERCENT SOLIDS

Sample LMC-SO-Processed/70798-1 (360-36016-1) was analyzed for percent solids in accordance with EPA Moisture. The sample was analyzed on 08/31/2011.

No difficulties were encountered during the % solids analysis.

All quality control parameters were within the acceptance limits.

TestAmerica Job ID: 360-36016-1

Detection Summary

Client: Analytics Environmental Laboratory, LLC

Project/Site: LMC Wilmington

TestAmerica Job ID: 360-36016-1

Lab Sample ID: 360-36016-1

Client Sample ID: LMC-SO-Processed/70798-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	6.6		1.3		mg/Kg	1	$\overline{\varphi}$	6010B	Total/NA
Barium	34		0.66		mg/Kg	1	Ф	6010B	Total/NA
Beryllium	0.31		0.27		mg/Kg	1	₽	6010B	Total/NA
Chromium	14		0.66		mg/Kg	1	₽	6010B	Total/NA
_ead	11		0.66		mg/Kg	1	₽	6010B	Total/NA
Nickel	9.6		1.3		mg/Kg	1	₽	6010B	Total/NA
/anadium	20		0.66		mg/Kg	1	₽	6010B	Total/NA
Zinc	30		3.3		mg/Kg	1	₽	6010B	Total/NA

Method Summary

Client: Analytics Environmental Laboratory, LLC

Project/Site: LMC Wilmington

TestAmerica Job ID: 360-36016-1

Method	Method Description	Protocol	Laboratory
6010B	Metals (ICP)	SW846	TAL WFD
7471A	Mercury (CVAA)	SW846	TAL WFD
Moisture	Percent Moisture	EPA	TAL WFD

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL WFD = TestAmerica Westfield, Westfield Executive Park, 53 Southampton Road, Westfield, MA 01085, TEL (413)572-4000

Sample Summary

Client: Analytics Environmental Laboratory, LLC

Project/Site: LMC Wilmington

TestAmerica Job ID: 360-36016-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
360-36016-1	LMC-SO-Processed/70798-1	Solid	08/25/11 14:00	08/31/11 07:50

Client Sample Results

Client: Analytics Environmental Laboratory, LLC

Project/Site: LMC Wilmington

TestAmerica Job ID: 360-36016-1

Method: 6010B - Metals (ICP)

Client Sample ID: LMC-SO-Processed/70798-1

Date Collected: 08/25/11 14:00 Date Received: 08/31/11 07:50

Lab Sample ID: 360-36016-1

Matrix: Solid

Percent Solids: 93.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.66		mg/Kg	φ	08/31/11 10:04	08/31/11 19:59	1
Arsenic	6.6		1.3		mg/Kg	₽	08/31/11 10:04	08/31/11 19:59	1
Barium	34		0.66		mg/Kg	₩	08/31/11 10:04	08/31/11 19:59	1
Beryllium	0.31		0.27		mg/Kg	≎	08/31/11 10:04	08/31/11 19:59	1
Cadmium	ND		0.27		mg/Kg	¢	08/31/11 10:04	08/31/11 19:59	1
Chromium	14		0.66		mg/Kg	ф	08/31/11 10:04	08/31/11 19:59	1
Lead	11		0.66		mg/Kg	₩	08/31/11 10:04	08/31/11 19:59	1
Nickel	9.6		1.3		mg/Kg	¢	08/31/11 10:04	08/31/11 19:59	1
Selenium	ND		0.66		mg/Kg	₩	08/31/11 10:04	08/31/11 19:59	1
Silver	ND		0.66		mg/Kg	♡	08/31/11 10:04	08/31/11 19:59	1
Thallium	ND		1.3		mg/Kg	₩	08/31/11 10:04	08/31/11 19:59	1
Vanadium	20		0.66		mg/Kg	✡	08/31/11 10:04	08/31/11 19:59	1
Zinc	30		3.3		mg/Kg	ф	08/31/11 10:04	08/31/11 19:59	1

Client Sample Results

Client: Analytics Environmental Laboratory, LLC

Project/Site: LMC Wilmington

TestAmerica Job ID: 360-36016-1

Method: 7471A - Mercury (CVAA)

Client Sample ID: LMC-SO-Processed/70798-1

Date Collected: 08/25/11 14:00 Date Received: 08/31/11 07:50

Lab Sample ID: 360-36016-1

Matrix: Solid

Percent Solids: 93.7

Analyte	Result	Qualifier	RL	MDL Un	nit D	Prepared	Anaiyzed	Dil Fac
Mercury	ND		0.11	mg	g/Kg 🙃	08/31/11 09:25	09/01/11 11:42	1

Client Sample Results

Client: Analytics Environmental Laboratory, LLC

Project/Site: LMC Wilmington

TestAmerica Job ID: 360-36016-1

General Chemistry

Client Sample ID: LMC-SO-Processed/70798-1

Date Collected: 08/25/11 14:00 Date Received: 08/31/11 07:50

Lab Sample ID: 360-36016-1

Matrix: Solid

Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	6.3		1.0		%			08/31/11 11:17	1
Percent Solids	94		1.0		%			08/31/11 11:17	1

Definitions/Glossary

Client: Analytics Environmental Laboratory, LLC

Project/Site: LMC Wilmington

TestAmerica Job ID: 360-36016-1

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
\(\tilde{\pi} \)	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
DL, RA, RE, IN	Indicates a Dilution, Reanalysis, Re-extraction, or additional Initial metals/anion analysis of the sample
EDL	Estimated Detection Limit (Dioxin)
EPA	United States Environmental Protection Agency
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
ND	Not detected at the reporting limit (or method detection limit if shown)
PQL	Practical Quantitation Limit
RL	Reporting Limit
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

QC Association Summary

Client: Analytics Environmental Laboratory, LLC

Project/Site: LMC Wilmington

TestAmerica Job ID: 360-36016-1

Metals

Prep	Batch:	79240
------	--------	-------

Lab Sample ID

360-36016-1

Ciient Sampie ID

LMC-SO-Processed/70798-1

Lab Sample iD	Client Sample iD	Prep Type	Matrix	Method	Prep Batch
360-36016-1	LMC-SO-Processed/70798-1	Total/NA	Solid	7471A	
360-36016-1 DU	LMC-SO-Processed/70798-1	Total/NA	Solid	7471A	
360-36016-1 MS	LMC-SO-Processed/70798-1	Total/NA	Solid	7471A	
LCDSRM 360-79240/3-A LCDSI	Lab Control Sample Dup	Total/NA	Solid	7471A	
LCSSRM 360-79240/2-A	Lab Control Sample	Total/NA	Solid	7471A	
MB 360-79240/1-A	Method Blank	Total/NA	Solid	7471A	
Prep Batch: 79256					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
360-36016-1	LMC-SO-Processed/70798-1	Total/NA	Solid	3050B	
LCDSRM 360-79256/3-A LCDSI	Lab Control Sample Dup	Total/NA	Solid	3050B	
LCSSRM 360-79256/2-A	Lab Control Sample	Total/NA	Solid	3050B	
MB 360-79256/1-A	Method Blank	Total/NA	Solid	3050B	
Analysis Batch: 79324					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
360-36016-1	LMC-SO-Processed/70798-1	Total/NA	Solid	6010B	79256
LCDSRM 360-79256/3-A LCDSI	Lab Control Sample Dup	Total/NA	Solid	6010B	79256
LCSSRM 360-79256/2-A	Lab Control Sample	Total/NA	Solid	6010B	79256
MB 360-79256/1-A	Method Blank	Totai/NA	Solid	6010B	79256
Analysis Batch: 79364					
Lab Sample ID	Cilent Sample ID	Prep Type	Matrix	Method	Prep Batch
360-36016-1	LMC-SO-Processed/70798-1	Total/NA	Solid	7471A	79240
360-36016-1 DU	LMC-SO-Processed/70798-1	Totai/NA	Solid	7471A	79240
360-36016-1 MS	LMC-SO-Processed/70798-1	Total/NA	Solid	7471A	79240
LCDSRM 360-79240/3-A LCDSI	Lab Control Sample Dup	Total/NA	Solid	7471A	79240
LCSSRM 360-79240/2-A	Lab Control Sample	Total/NA	Solid	7471A	79240
MB 360-79240/1-A	Method Blank	Total/NA	Solid	7471A	79240
General Chemistry					
Analysis Batch: 79270					

Prep Type

Total/NA

Matrix

Solid

Method

Moisture

Prep Batch

QC Sample Results

Client: Analytics Environmental Laboratory, LLC

Project/Site: LMC Wilmington

TestAmerica Job ID: 360-36016-1

Method: 6010B - Metals (ICP)

Lab Sample ID: MB 360-79256/1-A

Matrix: Solid

Analysis Batch: 79324

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 79256

•	MB	MB						. Top Bator	0200
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.50		mg/Kg		08/31/11 10:04	08/31/11 19:30	1
Arsenic	ND		1.0		mg/Kg		08/31/11 10:04	08/31/11 19:30	1
Barium	ND		0.50		mg/Kg		08/31/11 10:04	08/31/11 19:30	1
Beryllium	ND		0.20		mg/Kg		08/31/11 10:04	08/31/11 19:30	1
Cadmium	ND		0.20		mg/Kg		08/31/11 10:04	08/31/11 19:30	1
Chromium	ND		0.50		mg/Kg		08/31/11 10:04	08/31/11 19:30	1
Lead	ND		0.50		mg/Kg		08/31/11 10:04	08/31/11 19:30	1
Nickel	ND		1.0		mg/Kg		08/31/11 10:04	08/31/11 19:30	1
Selenium	ND		0.50		mg/Kg		08/31/11 10:04	08/31/11 19:30	1
Silver	ND		0.50		mg/Kg		08/31/11 10:04	08/31/11 19:30	1
Thallium	ND		1.0		mg/Kg		08/31/11 10:04	08/31/11 19:30	1
Vanadium	ND		0.50		mg/Kg		08/31/11 10:04	08/31/11 19:30	1
Zinc	ND		2.5		mg/Kg		08/31/11 10:04	08/31/11 19:30	1

Lab Sample ID: LCDSRM 360-79256/3-A

LCDSRM Matrix: Solid

Analysis Batch: 79324

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 79256

	Spike	LCDSRM	LCDSRM				% Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits	RPD	Limit
Antimony	152	40.0		mg/Kg	~	26	10.0 - 110	14	30
Arsenic	90.0	85.1		mg/Kg		95	61 - 117	0	30
Barium	730	655		mg/Kg		90	71.1 _ 119	2	30
Beryllium	83.0	73.5		mg/Kg		89	65.8 - 112	1	30
Cadmium	106	88.5		mg/Kg		83	65.6 - 113	1	30
Chromium	272	262		mg/Kg		96	68.0 - 124	1	30
Lead	267	215		mg/Kg		80	64.8 - 110	2	30
Nickel	179	161		mg/Kg		90	67.6 - 117	1	30
Selenium	154	129		mg/Kg		84	53.1 _ 110	1	30
Silver	67.5	57.1		mg/Kg		85	56.9 - 113	3	30
Thallium	286	230		mg/Kg		81	61.9 - 116	2	30
Vanadium	124	144		mg/Kg		116	73.0 - 138	6	30
Zinc	655	549		mg/Kg		84	67.5 - 116	1	30

Lab Sample ID: LCSSRM 360-79256/2-A

Matrix: Solid

Analysis Batch: 79324

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 79256

	Spike	LCSSRM	LCSSRM				% Rec.	
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits	
Antimony	152	34.9		mg/Kg		23	10.0 - 110	
Arsenic	90.0	85.4		mg/Kg		95	61 _ 117	
Barium	730	665		mg/Kg		91	71.1 - 119	
Beryllium	83.0	74.1		mg/Kg		89	65.8 - 112	
Cadmium	106	87.9		mg/Kg		83	65.6 - 113	
Chromium	272	264		mg/Kg		97	68.0 - 124	
Lead	267	218		mg/Kg		82	64.8 _ 110	
Nickel	179	163		mg/Kg		91	67.6 - 117	
Selenium	154	128		mg/Kg		83	53.1 - 110	
Silver	67.5	58.7		mg/Kg		87	56.9 - 113	
Thallium	286	235		mg/Kg		82	61.9 - 116	

QC Sample Results

Client: Analytics Environmental Laboratory, LLC

Project/Site: LMC Wilmington

TestAmerica Job ID: 360-36016-1

Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: LCSSRM 360-79256/2-A

Matrix: Solid

Analysis Batch: 79324

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 79256

	Spike	LCSSRM LCSSRM		% Rec.
Analyte	Added	Result Qualifier	Unit	D % Rec Limits
Vanadium	124	136	mg/Kg	110 73.0 - 138
Zinc	655	552	mg/Kg	84 67.5 - 116

Method: 7471A - Mercury (CVAA)

Lab Sample ID: MB 360-79240/1-A

Matrix: Solid

Analysis Batch: 79364

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 79240

•	MB	MB						-	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.10	***************************************	mg/Kg		08/31/11 09:25	09/01/11 11:37	1

Lab Sample ID: LCDSRM 360-79240/3-A

LCDSRM

Matrix: Solid

Analysis Batch: 79364

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 79240

RPD % Rec.

LCDSRM LCDSRM Spike Anaiyte Added Result Qualifier Unit Limits RPD Limit Mercury 10.3 9.85 mg/Kg 96 46.5 - 135

Lab Sample ID: LCSSRM 360-79240/2-A

Matrix: Solid

Analysis Batch: 79364

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 79240

LCSSRM LCSSRM Spike % Rec. Analyte Added Result Qualifier Unit Limits Mercury 10.3 8.28 mg/Kg 80 46.5 _ 135

Lab Sample ID: 360-36016-1 MS

Matrix: Solid

Analysis Batch: 79364

Client Sample ID: LMC-SO-Processed/70798-1

Prep Type: Total/NA

Prep Batch: 79240

Spike MS MS Sample Sample % Rec. Anaiyte Result Qualifier Added Result Qualifler % Rec Limits Mercury ND 1.27 1.19 mg/Kg 94 75 - 125

Lab Sample ID: 360-36016-1 DU

Matrix: Solid

Analysis Batch: 79364

Client Sample ID: LMC-SO-Processed/70798-1

Prep Type: Total/NA

Prep Batch: 79240 RPD

DU DU Sample Sample Analyte Result Qualifier Result Qualifier Limit Mercury ND ND NC 35

Lab Chronicle

Client: Analytics Environmental Laboratory, LLC

Project/Site: LMC Wilmington

TestAmerica Job ID: 360-36016-1

Client Sample ID: LMC-SO-Processed/70798-1

Date Collected: 08/25/11 14:00 Date Received: 08/31/11 07:50 Lab Sample ID: 360-36016-1

Matrix: Solid

Percent So	lids:	93.7
------------	-------	------

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Total/NA	Prep	3050B	s and a construction of the construction of th	·····	79256	08/31/11 10:04	OG	TAL WFD
Total/NA	Analysis	6010B		1	79324	08/31/11 19:59	TJS	TAL WFD
Total/NA	Prep	7471A			79240	08/31/11 09:25	OG	TAL WFD
Total/NA	Analysis	7471A		1	79364	09/01/11 11:42	EMN	TAL WFD
Total/NA	Analysis	Moisture		1	79270	08/31/11 11:17	OG	TAL WFD

Laboratory References:

TAL WFD = TestAmerica Westfield, Westfield Executive Park, 53 Southampton Road, Westfield, MA 01085, TEL (413)572-4000

Certification Summary

Client: Analytics Environmental Laboratory, LLC

Project/Site: LMC Wilmington

TestAmerica Job ID: 360-36016-1

Laboratory	Authority	Program	EPA Region	Certification ID	
TestAmerica Westfield	Connecticut	State Program	1	PH-0494	
TestAmerica Westfield	Maine	State Program	1	MA00014	
TestAmerica Westfield	Massachusetts	State Program	1	M-MA014	
TestAmerica Westfield	New Hampshire	NELAC	1	2539	
TestAmerica Westfield	New York	NELAC	2	10843	
TestAmerica Westfield	North Carolina	North Carolina DENR	4	647	
TestAmerica Westfield	Rhode Island	State Program	1	LAO00057	
TestAmerica Westfield	Vermont	State Program	1	VT-10843	

Accreditation may not be offered or required for all methods and analytes reported in this package. Please contact your project manager for the laboratory's current list of certified methods and analytes.

State Accreditation Matrix

		State w	here Primary A	ccreditation is C	arried
Method Name	Description	New Hampshire (NELAC)	Mass	Conn	North Carolina
821-R-02-012	Toxicity, Acute (48-Hour)(list upon request)	NP			
SM 4500 CI F	Chlorine, Residual		NP		
SM 9215E	Heterotrophic Plate Count (SimPlate)		Р		
SM 9222D	Coliforms, Fecal (Membrane Filter)		P/NP		
SM 9223	Coliforms, Total, and E.Coli (Colilert-P/A)		Р		
SM 9224	Coliforms, Total, and E.Coli (Enumeration)		Р		
1103.1	E.coli		ambient/		
Enterolert	Enterococcus		source		
200.8 Rev 5.4	Metals (ICP/MS) (list upon request)	NP/P	NP/P		
200.7 Rev 4.4	Metals (ICP)(list upon request)	NP/P	NP/P		
6010B	Metals (ICP)(list upon request)	NP/SW			1
245.1	Mercury (CVAA)	NP/P	NP		1
7470A	Mercury (CVAA)	NP			
7471A	Mercury (CVAA)	SW			·
SM 2340B	Total Hardness (as CaCO3) by calculation	NP/P	NP		i
3005A	Preparation, Total Recoverable or Dissolved Metals	NP/P			
3010A	Preparation, Total Metals	NP/P			
3020A	Preparation, Total Metals	NP/P/SW			
3050B	Preparation, Metals	SW			
504.1	EDB. DBCP and 1.2.3-TCP (GC)	P	P		
608	Organochlorine Pest/PCBs (list upon request)	NP	NP		
625	Semivolatile Org Comp (GC/MS)(list upon request)	NP	NP		
3546	Microwave Extraction	SW			
3510 C	Liquid-Liquid Extraction (Separatory Funnel)	NP			
3550B	Ultrasonic Extraction	SW			<u> </u>
8081A	Organochlorine Pesticides (GC)(list upon request)	NP/SW I			1
8082	PCBs by Gas Chromatography(list upon request)	NP/SW			
8270C	Semivolatile Comp.(GC/MS)(list upon request)	NP/SW			
CT ETPH	Conn - Ext. Total petroleum Hydrocarbons (GC)			NP/SW	
MA-EPH	Mass - Extractable Petroleum Hydrocarbons (GC)				NP/SW
524.2	Volatile Org Comp (GC/MS)(list upon request)	Р	Р		
524.2	Trihalomethane compounds	Р	Р		-
624	Volatile Org Comp (GC/MS)(list upon request)	NP I	NP		
5035	Closed System Purge and Trap	sw			
5030B	Purge and Trap	NP I			
8260B	Volatile Org Comp. (GC/MS)(list upon request)	NP/SW			
MAVPH	Mass - Volatile Petroleum Hydrocarbons (GC)				NP/SW
180.1	Turbidity, Nephelometric	P	Р		
300	Anions, Ion Chromatography	NP/P	NP/P		
410.4	COD	NP	NP		
1010	Ignitability, Pensky-Martens Closed-Cup Method	- sw			
10-107-06-2	Nitrogen, Total Kjeldahl	I NP	NP		1
7196A	Chromium, Hexavalent	NP/SW			
9012A	Cyanide, Total and/or Amenable	NP/SW			
9030B	Sulfide, Distillation (Acid Soluble and Insoluble)	NP NP			
9045C	pH	sw			
L107041C	Nitrogen, Nitrate	NP NP	Р		
L107-06-1B	Nitrogen Ammonia	NP I	NP		
L204001A CN	Cyanide, Total	P P	NP/P		
L210-001A	Phenolics, Total Recoverable	NP NP	NP		
SM 2320B	Alkalinity	NP/P	NP/P		
SM 2510B	Conductivity, Specific Conductance	NP/P	NP/P		
SM 2540C	Solids, Total Dissolved (TDS)	NP/P	NP/P		-
SM 2540D	Solids, Total Suspended (TSS)	NP I	NP		
SM 3500 CR D	Chromium, Hexavalent	NP NP	. 11		
		NP/P	NP/P		
SM 4500 H+ B	pH Nitrogen Alitrite	NP NP	P		
SM 4500 NO2 B	Nitrogen, Nitrite	NP/P	NP		-
SM 4500 P E	Phosphorus, Orthophosphate	NP NP	NP NP		
SM 4500 P E	Phosphorus, Total		NP		
SM 4500 S2 D	Sulfide, Total	NP NP	ND		
SM 5210B	BOD, 5-Day	NP NP	NP		
SM 5310B	Organic Carbon, Total (TOC)	NP/P	NP		1

Not all organic compounds are accreditied under NELAC

For methods with multiple compounds all compounds may not meet NELAC criteria, listing should be obtained from the laboratory. The lab carries additional accreditations with several states. This is the laboratories typical listing but is subject to change based on the laboratories current certification standing.

Login Sample Receipt Checklist

Client: Analytics Environmental Laboratory, LLC

Job Number: 360-36016-1

Login Number: 36016

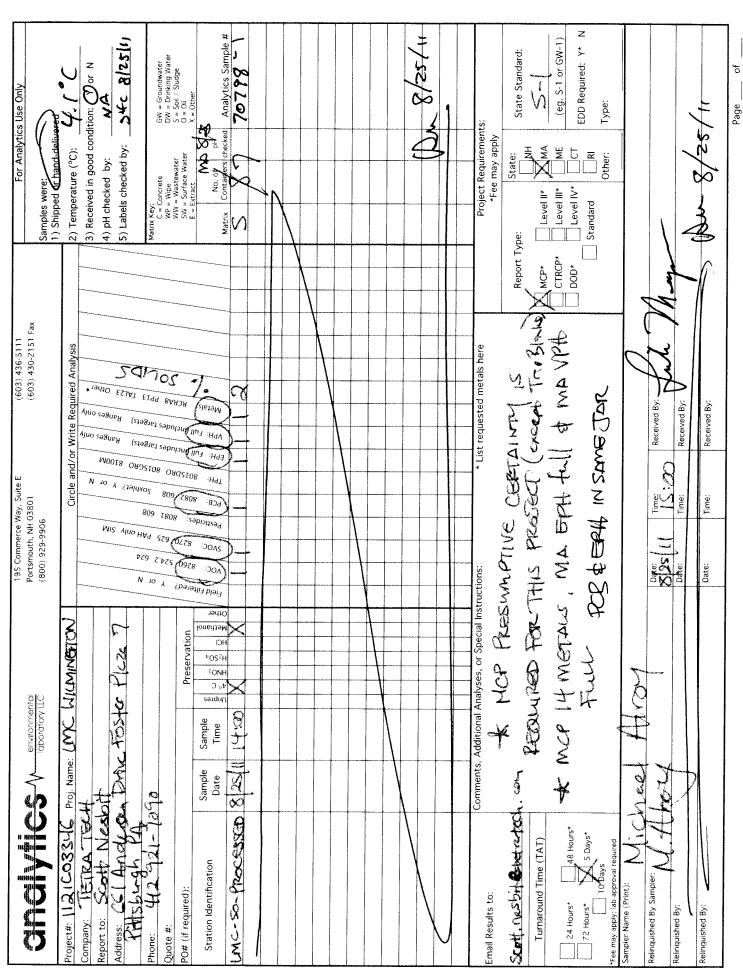
List Number: 1

Creator: Mason, Becky C

List Source: TestAmerica Westfield

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	
The cooler's custody seal, if present, is intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Chain Of Custody Form 17 + W25+


91098-295

the state of the s			195 Commerce Way, Suite E	(603) 436-5111	Sample Receipt
	environmental		Portsmouth, NH 03801	(603) 430-2151 Fax	
) 1		(800) 929-9906		Samples Were:
					o ampheo of right delivered
Project Name: LMC Wilmington			Circle and/or Write Required Analysis Follows	ed by Preservation Code	2) Temperature (°C):
Project#: 1121 C 03346	Preservation Code:	Ø	Please fill in preservation code here	er.	3) Received in good condition: (x)
Company: Analytics Environmental Laboratory	Preseravtion Key:	•			4) pH checked by:
Report to: Project Manager	A-15	2410			5) labels checked by:
Address: 195 Commerce Way, Suite E	C Lupres) EZ			
	E HNO3	N IAT			
Phone: 603-436-5111	F e H2SO4	0 to			
31.		1 84			WP - Wipe Ww - Wastewater S - Soi / Sludge
PO# (if required): 70798		RCR			SW = Surface Water O = Oil E = Extract X = Other
Sample Identification	Sample Sample Date Time	Field Fil			Matrix No. of PH Analytics Sample #
LMC-So-Proposed 8/2	8/25/h 1400	×			707983
	1-1				
			1.4.1.		•
		_	1 X		
		\ \ -			
Comments Add	Comments Additional Analyses of Special Instructions:	cial Instructions:	Nov 45! 144	** ict ramiactad matak hara	Designed Designed
Email Results to:			X THE TO COLUMN TO	Matha K	*Fee may apply
cpayne@anahticslab.com			こう言奏	Report Type:	pe: State: State Standard:
				- -	<u>₹</u>
Turnaround Time (TAT)				₹ 1	
24 Hours* 3 48 Hours*					ME (eg. S-1 or GW-1
72 Hours* S 5 Days*					Standard Other: Type*:
*Call if not able to approve requested date					
				5#C @ 130/11	
Retinquished By:		\bigvee	Date: Time:	Received By:	
Relinquished By:	3,		Date: 130 Lt Time:	Received By:	
Relinquished By:	sdr		がしる	Recogned By: (
5 GA GA ST 155 38	3863405				Page of

CHAIN OF CUSTODIES

Chain Of Custody Form

ANALYTICS SAMPLE RECEIPT CHECKLIST

AELLAB#: 70798	COOLER NUMBER:	635	
CLIENT: IETRA TECH	NUMBER OF COOLERS:		
PROJECT: LINC WILLIMINGTON	DATE RECEIVED:	8/25/11	
A: PRELIMINARY EXAMINATION: 1. Cooler received by(initials):	DATE COOLER OPENED: Date Received:	8/25/11	
2. Circle one:	Shipped		
3. Did cooler come with a shipping slip?	Y	\mathscr{O}	
3a. Enter carrier name and airbill number here:			
4. Were custody seals on the outside of cooler? How many & where: Seal Date:	Y Seal Name:		
5. Did the custody seals arrive unbroken and intact upon arrival?	Y	NA	
6. COC:			
7. Were Custody papers filled out properly (ink.signed, etc)?	${\mathfrak G}$	N	
8. Were custody papers sealed in a plastic bag?	Ø	N	
9. Did you sign the COC in the appropriate place?	\mathcal{O}	N	
10. Was the project identifiable from the COC papers?	Ø	N	
11. Was enough ice used to chill the cooler?	Temp. of cooler:	4.1°C	
B. Log-In: Date samples were logged in:	By:	-	
12. Type of packing in cooler (bubble wrap, popcorn)	O	N	
13. Were all bottles sealed in separate plastic bags?		N	
14. Did all bottles arrive unbroken and were labels in good condition?	${\mathfrak O}$	N	
15. Were all bottle labels complete(ID,Date.time.etc.)	Ø	N	
16. Did all bottle labels agree with custody papers?	Θ	N co	H . light
17. Were the correct containers used for the tests indicated:	D 8/23	The N Par	of in light sensitue comm
18. Were samples received at the correct pH?	Y	NA	300
19. Was sufficient amount of sample sent for the tests indicated?	Ø	N	
20. Were all samples submitted within holding time?	9	N	
21. Were bubbles absent in VOA samples?	Y	NA	
If NO, List Sample ID's and Lab #s:			
22. Laboratory labeling verified by (initials):	Date:	8125 [1]	

environmental iaboratory LLC

SAMPLE RECEIPT NON-COMPLIANCE NOTIFICATION (SENT VIA FACSIMILE)

DATE 8(25) h	FROM Analytics Environmental
FAX CONTACT Michael Alroy	FAX NUMBER
CLIENT Tetru Tech	LAB NUMBER 70798
The exceptions noted below were found on the sam Custody (COC) form. These exceptions may rende will continue to proceed with the analysis of the san analysis. This document may become part of the fin	r the data results as non-defensible. Analytics uple(s) unless notified in writing to stop the
Please check the appropriate box and sign be at 603-430-2151.	elow and fax back to "Sample Rescipt"
Exceptions: Sample(s) not on ice or not at $4^{\circ}C \pm 2^{\circ}C$	
Sample(s) received unpreserved or not a (pH was adjusted at the laboratory)	t the proper pH.
Sample(s) received in incorrect containe	Tar, not light blocked AEL to wrap jar in tin !
Insufficient sample volume received (Detection limits may be elevated due to	this exception)
Trip Blank provided in cooler, but not red	corded on the chain of custody
Other:	
Acknowledgment:	
Please do not analyze/report Trip Blan	k, proceed with other analyses
Proceed with the analysis.	
Please stop the analysis and wait for fun	rther instructions.

APPENDIX D

Laboratory Analytical Data Package – Waste Profile

195 Commerce Way Suite E Portsmouth, New Hampshire 03801 603-436-5111 Fax 603-430-2151 800-929-9906 www.analyticslab.com

August 4, 2011

Mr. Steve Vetere Tetra Tech NUS, Inc. 250 Andover Street Wilmington MA 01887

RE:

Analytical Results Case Narrative LMC Wilmington Project No:1121C03346 Analytics # 70594

Dear Mr. Vetere:

Enclosed please find the analytical results for samples submitted for the above-mentioned project. The attached Cover Page lists the sample IDs, Lab tracking numbers and collection dates for the samples included in this deliverable.

Samples were analyzed for Volatile Organic Compounds (VOCs) using EPA Method 8260B, Volatile Petroleum Hydrocarbons (VPH) using MADEP VPH Method Rev 1.1, May 2004, Extractable Petroleum Hydrocarbons (EPH) using MADEP EPH Method Rev 1.1, Polychlorinated Biphenyls (PCBs) by EPA Method 8082 and MCP Metals. The metals analysis were subcontracted to Eastern Analytical Concord NH.

Unless otherwise noted in the Non-conformance Summary listed below, all of the quality control (QC) criteria including initial calibration, calibration verification, surrogate recovery, holding time and method accuracy/precision for these analyses were within acceptable limits.

This Level II package has been assembled in the following:

Case Narrative/Non-Conformance Summary
Sample Log Sheet - Cover Page
MCP Cover Pages
VOC Form I Data Sheet for Samples and Blanks
VOC Form 3 MS/MSD (LCS) Recoveries
EPH Form I Data Sheet for Samples and Blanks
EPH Form 3 MS/MSD (LCS) Recoveries
PCB Form I Data Sheet for Samples and Blanks
PCB Form I Data Sheet for Samples and Blanks
PCB Form 3 MS/MSD (LCS) Recoveries
Subcontracted Reports and Narratives
Chain of Custody (COC) Forms
Sample Receipt Checklist

QC NON CONFORMANCE SUMMARY

Sample Receipt:

No exceptions.

Volatile Organic Compounds (VOCs) by EPA 8260B:

This narrative is specific to target analytes reported on the Form 1 data pages. Non-target (NT) analyte deviations were not addressed. The following analytes were not "J" flagged in this report: Methylene chloride, Diethyl ether and Acetone.

Due to method limitations the quantitation limits for Dibromochloromethane, Dichloromethane, 1,3-Dichloropropene, Methyl ethyl ketone, Methyl isobutyl ketone, 1,1,2,2-Tetrachloroethane and 1,4-Dioxane may not meet regulatory standards for high level preserved solid samples.

Methyl ethyl ketone did not meet minimum Rf requirement of 0.1 in the initial calibration (V807251C) and in the continuing calibration standard (file#C79696SC). The initial calibration verification standard was in control for all analytes. Results were reported without qualification.

The continuing calibration standard (File# C79696SC) did not meet %D criteria for Methylene chloride, Tetrahydrofuran and 1,4-Dioxane. These analytes were not detected in any samples for this SDG and results were reported without qualification.

The laboratory control samples (LS072811C/LS07281C2) had some analytes with recoveries above the laboratory acceptance but within MCP acceptance criteria (70-130%) (see form3). The LCS had recovery for 1,4-Dioxane below the MCP criteria however the LCSD was in control. These analytes were not detected in any samples associated with this QC and results were reported without qualification.

Volatile Petroleum Hydrocarbons (VPH):

No QC deviations.

Extractable Petroleum Hydrocarbons (EPH)

No QC deviations.

PCBs by EPA Method 8082:

No QC deviations.

If you have any questions or I can be of further assistance, please do not hesitate to contact me.

Sincerely,

ANALYTICS Environmental Laboratory, LLC

Stephen L. Knollmeyer Laboratory Director

195 Commerce Way Suite E Portsmouth, New Hampshire 03801 603-436-5111 Fax 603-430-2151 800-929-9906 www.analyticslab.com

Mr. Steve Vetere Tetra Tech NUS, Inc. 250 Andover Street Wilmington MA 01887

Report Number: 70594

Revision: Rev. 0

Re: LMC WILMINGTON (Project No: 1121C03346)

Enclosed are the results of the analyses on your sample(s). Samples were received on 27 July 2011 and analyzed for the tests listed. Samples were received in acceptable condition, with the exceptions noted below or on the chain of custody. These results pertain to samples as received by the laboratory and for the analytical tests requested on the chain of custody. The results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report. Please see individual reports for specific methodologies and references.

Sample Analysis: The attached pages detail the Client Sample IDs, Lab Sample IDs, and

Analyses requested

Sample Receipt Exceptions: None

Analytics Environmental Laboratory is certified by the states of New Hampshire, Maine, Massachusetts, Connecticut, Rhode Island, Virginia, Maryland, North Carolina, and is accredited by the Department of Defense (DOD) ELAP program. A list of actual certified parameters is available upon request.

If you have any questions on these results, please do not hesitate to contact us.

Authorized signature .

Stephen L. Knollmeyer Lab. Director

Date 1

This report shall not be reproduced, except in full, without the written consent of Analytics Environmental Laboratory, LLC.

195 Commerce Way Suite E Portsmouth, New Hampshire 03801 603-436-5111 Fax 603-430-2151 800-929-9906 www.analyticslab.com

CLIENT: Tetra Tech NUS, Inc.

REPORT NUMBER: 70594

REV: Rev. 0

PROJECT: LMC WILMINGTON (Project No: 1121C03346)

Lab Number	Sample Date	Station Location	Analysis	Cararaanta
70594-1	07/27/11	LMC-CONCRETE-NC-1	EPA 8082 (PCBs only)	Comments
	07/27/11	LMC-CONCRETE-NC-1		
			EPA 8260 Volatile Organics	
	07/27/11	LMC-CONCRETE-NC-1	MADEP EPH	
	07/27/11	LMC-CONCRETE-NC-1	Metals	
	07/27/11	LMC-CONCRETE-NC-1	Volatile Petroleum Hydrocarbo	ns
70594-2	07/27/11	LMC-CONCRETE-NC-2	EPA 8082 (PCBs only)	
	07/27/11	LMC-CONCRETE-NC-2	EPA 8260 Volatile Organics	
	07/27/11	LMC-CONCRETE-NC-2	MADEP EPH	
	07/27/11	LMC-CONCRETE-NC-2	Metals	
	07/27/11	LMC-CONCRETE-NC-2	Volatile Petroleum Hydrocarboi	ns
70594-3	07/27/11	LMC-SO-TRENCH-1	EPA 8260 Volatile Organics	
	07/27/11	LMC-SO-TRENCH-1	MADEP EPH	
	07/27/11	LMC-SO-TRENCH-1	Volatile Petroleum Hydrocarbon	ns
70594-4	07/27/11	LMC-TB02	EPA 8260 Volatile Organics	
	07/27/11	LMC-TB02	Volatile Petroleum Hydrocarbor	ns

MassDEP Analytical Protocol Certification Form								
Laboratory Name: Analytics Environmental Laboratory, LLC Project #: 70594								
Project Location: LMC WILMINGTON RTN:								
Th	is Form provid	les certifications fo	r the following dat	a set. Laborat	ory Sa	imple ID Number(s):		
70594-1, 70594-2, 70594-3, 70594-4								
Matrices: Groundwater/Surface Water Soil/Sediment Drinking Water Air Other								
CAM Protocol (check all that apply below):								
	8260 VOC CAM III B MassDEP VPH CAM IV A SO81 Pesticides CAM VI B MassDEP APH CAM IX A CAM IX A CAM III B CAM IX A CAM IX							
	Radius Cam III C MassDEP EPH CAM V C MassDEP EPH CAM IV B CAM V C CAM VIII A CAM IX B CAM IX B							
	6010 Metals CAM III D Solution							
Affirmative Responses to Questions A through F are required for "Presumptive Certainty" status								
A	Were all samples received in a condition conistent with those described on the Chain-of-Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times? Were the analytical method(s) and all associated QC requirements specified in the selected CAM							
В	protocol(s) fo	llowed?		-	•		⊠Yes	□No
C	CAM protoco	ired corrective action l(s) implemented for	r all identified perfo	rmance standa	rd non	-conformances?	⊠Yes	□No
D	"Quality Assu Analytical Da		Control Guidelines for	or the Acquisit	ion and	l Reporting of	⊠Yes	□No
E	b. APH and TO-15 Methods only: Was the complete analyte list reported for each method?							
F	Were all applicable CAM protocol OC and performance standard non conformance identified							
Responses to Questions G, H and I below are required for "Presumptive Certainty" status								
G	Were the warporting limits at an help well CAM and at a limit with the Limit with							
Data User Note: Data that achieve "Preseumptive Certainty" status may not necessarily meet the data usability and representativeness requirements described in 310 CMR 40. 1056 (2)(k) and WSC-07-350.								
H	- IW ALLOG C						⊠ No ¹	
I Were results reported for the complete analyte list specified in the selected CAM protocol(s)?					⊠Yes	□No ¹		
¹ All negative responses must be addressed in an attached laboratory narrative.								
t, the undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those responsible for obtaining the information, the material contained in this analytical report is, to the best of my knowledge and belief, accurate and complete.								
Signature: Position: Assistant Laboratory Director								
Printed Name: Melissa Gulli Date: August 04, 2011								

Surrogate Compound Limits

	Matrix: Units:	Aqueous % Recovery	Solid % Recovery	Method
Volatile Organic Compounds - Dr	inking Wat	er		
1,4-Difluorobenzene		70-130		EPA 524.2
Bromofluorobenzene		70-130		
1,2-Dichlorobenzene-d4		70-130		
Volatile Organic Compounds				
1,2-Dichloroethane-d4		70-120	70-120	EPA 624/8260B
Toluene-d8		85-120	85-120	
Bromofluorobenzene		75-120	75-120	
Semi-Volatile Organic Compounds	s			
2-Fluorophenol		20-110	35-105	EPA 625/8270C
d5-Phenol		15-110	40-100	
d5-nitrobenzene		40-110	35-100	
2-Fluorobiphenyl		50-110	45-105	
2,4,6-Tribromophenol		40-110	40-125	
d14-p-terphenyl		50-130	30-125	
PAH's by SIM				
d5-nitrobenzene		21-110	35-110	EPA 8270C
2-Fluorobiphenyl		36-121	45-105	
d14-p-terphenyl		33-141	30-125	
Pesticides and PCBs				
2,4,5,6-Tetrachloro-m-xylene (TCX)		46-122	40-130	EPA 608/8082
Decachlorobiphenyl (DCB)		40-135	40-130	
Herbicides				
Dichloroacetic acid (DCAA)		30-150	30-150	
Gasoline Range Organics/TPH Gas	oline			
Trifluorotoluene TFT (FID)		60-140	60-140	MEDEP 4217/EPA 8015
Bromofluorobenzene (BFB) (FID)		60-140	60-140	
Trifluorotoluene TFT (PID)		60-140	60-140	
Bromofluorobenzene (BFB) (PID)		60-140	60-140	
Diesel Range Organics/TPH Diesel				
m-terphenyl		60-140	60-140	MEDEP 4125/EPA 8015/CT ETPH
Volatile Petroleum Hydrocarbons				
2,5-Dibromotoluene (PID)		70-130	70-130	MADEP VPH May 2004 Rev1.1
2,5-Dibromotoluene (FID)		70-130	70-130	·
Extracatable Petroleum Hydrocarbo	ons			
1-chloro-octadecane (aliphatic)		40-140	40-140	MADEP EPH May 2004 Rev1.1
o-Terphenyl (aromatic)		40-140	40-140	-
2-Fluorobiphenyl (Fractionation)		40-140	40-140	
2-Bromonaphthalene (fractionation)		40-140	40-140	

VOLATILE DATA SUMMARIES

Mr. Steve Vetere Tetra Tech NUS, Inc. 250 Andover Street Wilmington MA 01887

CLIENT SAMPLE ID

Project Name:

LMC WILMINGTON

Project Number: 1121C03346

Field Sample ID: LAB QC

August 4, 2011

SAMPLE DATA

Lab Sample ID:

MB07281C

Matrix:

Solid

Percent Solid:

100

Dilution Factor:

100

Collection Date:

N/A N/A

Lab Receipt Date:

Analysis Date: 07/28/11

AN	NALYTICAL RES	SULTS VO	LATILE ORGANICS		
COMPOUND	Quantitation Limit μ g/kg	Result μg/kg	COMPOUND	Quantitation Limit µg/kg	Result μg/kg
Benzene	100	U	1,3-Dichloropropane	100	U
Bromobenzene	100	U	cis-1,3-Dichloropropene	100	U
Bromochloromethane	100	U	trans-1,3-Dichloropropene	100	U
Bromodichloromethane	75	U	2,2-Dichloropropane	100	U
Bromoform	75	U	1,1-Dichloropropene	100	U
Bromomethane	100	U	Ethylbenzene	100	U
n-butylbenzene	100	U	Hexachlorobutadiene	100	U
sec-butylbenzene	100	U	Isopropylbenzene	100	U
tert-butylbenzene	100	U	p-isopropyltoluene	100	U
Carbon Tetrachloride	100	U	Methylene Chloride	500	U
Chlorobenzene	100	U	Methyl-tert-butyl ether (MTBE)	75	U
Chloroethane	100	U	Naphthalene	100	U
Chloroform	75	U	n-Propylbenzene	100	U
Chloromethane	100	U	Styrene	100	U
2-Chlorotoluene	100	U	1,1,1,2-Tetrachloroethane	100	U
4-Chlorotoluene	100	U	1,1,2,2-Tetrachloroethane	75	U
Dibromochloromethane	75	U	Tetrachloroethene	100	U
1,2-Dibromo-3-chloropropane	100	U	Toluene	100	U
1,2-Dibromoethane	75	U	1,2,3-Trichlorobenzene	100	U
Dibromomethane	100	U	1,2,4-Trichlorobenzene	100	U
1,2-Dichlorobenzene	100	U	1,1,1-Trichloroethane	100	Ū
1,3-Dichlorobenzene	100	U	1,1,2-Trichloroethane	75	Ū
l,4-Dichlorobenzene	100	U	Trichloroethene	100	Ū
Dichlorodifluoromethane	100	U	Trichlorofluoromethane	100	Ū
1,1-Dichloroethane	100	U	1,2,3-Trichloropropane	100	Ü
,2-Dichloroethane	75	U	1,2,4-Trimethylbenzene	100	Ŭ
1,1-Dichloroethene	75	U	1,3,5-Trimethylbenzene	100	Ü
cis-1,2-Dichloroethene	100	U	Vinyl Chloride	100	Ü
rans-1,2-Dichloroethene	100	U	o-Xylene	100	Ü
,2-Dichloropropane	75	U	m,p-Xylene	100	Ü
Acetone	1000	U	Diethyl ether	100	Ü
Carbon Disulfide	100	Ū	2-Hexanone	1000	Ü
Tetrahydrofuran	500	U	Methyl isobutyl ketone	1000	Ü
Methyl ethyl ketone	1000	U	Di-isopropyl ether (DIPE)	100	Ü
-Butyl alcohol (TBA)	2000	U	Ethyl t-butyl ether (ETBE)	100	Ü
-Amyl methyl ether (TAME)	100	U	1,4-Dioxane	3000	U
	Surro	gate Standard	Recovery		
d4-1,2-Dichloroethane 104	% d8-	-Toluene	98 % Bromofluoro	benzene 9	9 %
U=Undetected	J=Estimated	E=Exceeds	Calibration Range B=Detected in	n Blank	

METHODOLOGY: Sample analysis was conducted according to: "Test Methods for Evaluating Solid Waste, SW-846 Method 8260B."

COMMENTS: Results are expressed on a dry weight basis.

Authorized signature Mulhull

Quantitation Report

Data File : C:\HPCHEM\1\DATA\DATA\072811-C\C79700.D

Vial: 8

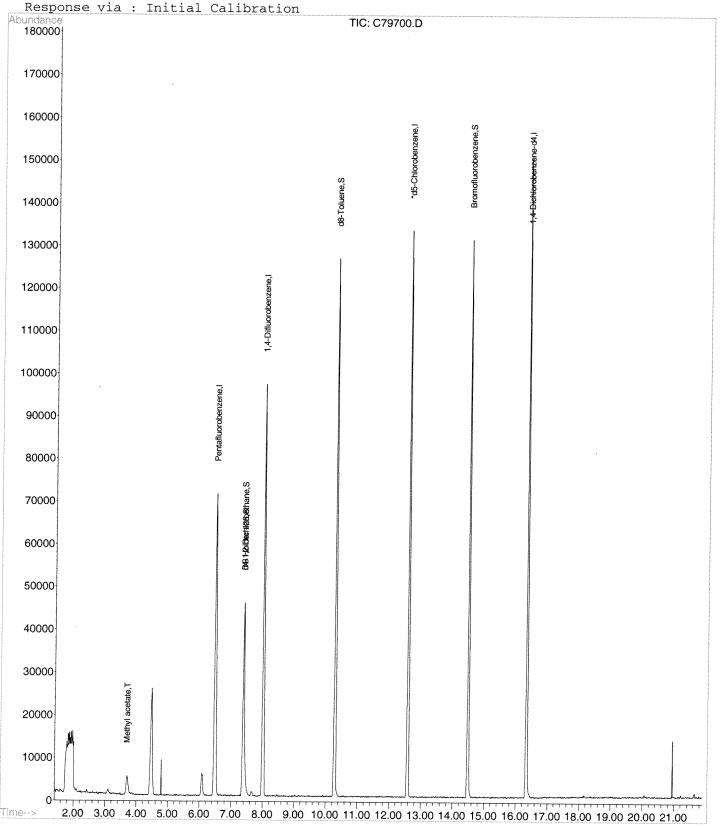
Acq On : 28 Jul 2011 3:23 pm

Operator: TD

Sample : MB07281C Misc : 50,10.00,SOIL

Method

Inst : Instr_C
Multiplr: 1.00


MS Integration Params: rteint.p

42 2011 Quant Results File: V807251C.RES

Quant Time: Jul 29 10:42 2011

: C:\HPCHEM\1\METHODS\MATHODS\WETHODS\V807251C.M (RTE Integrator)

Title : 8260 Purgable Organics
Last Update : Wed Jul 27 10:52:24 2011

Portsmouth, New Hampshire 03801 603-436-5111 Fax 603-430-2151 800-929-9906

Mr. Steve Vetere Tetra Tech NUS, Inc. 250 Andover Street Wilmington MA 01887

CLIENT SAMPLE ID

LMC WILMINGTON **Project Name:**

Project Number: 1121C03346

Field Sample ID: LMC-CONCRETE-NC-1

August 3, 2011 SAMPLE DATA

Lab Sample ID: 70594-1

Matrix: Solid

Percent Solid: 95

Dilution Factor: 126

Collection Date: 07/27/11 07/27/11 Lab Receipt Date:

Analysis Date: 07/28/11

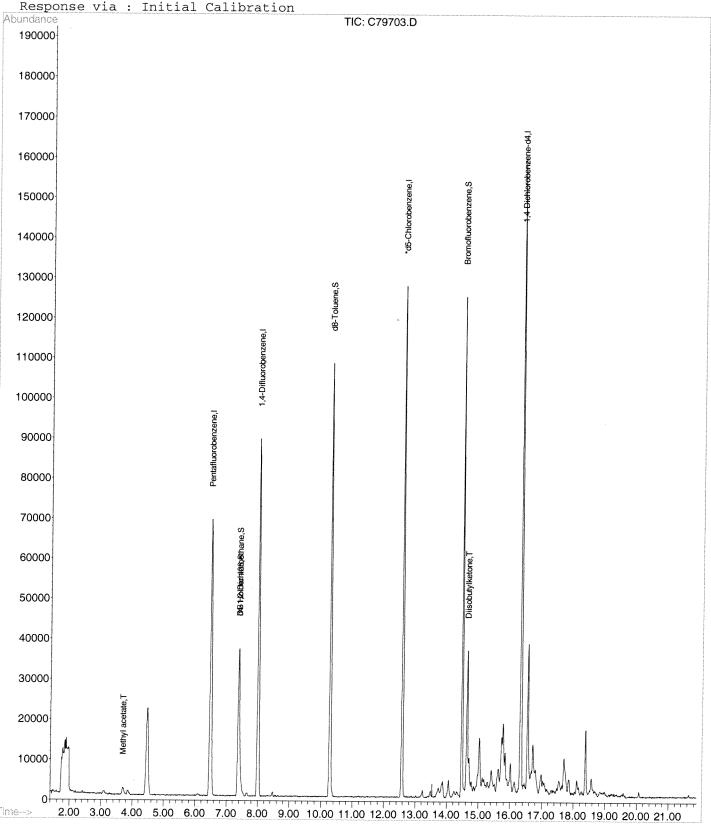
AN	ALYTICAL RESI	ULTS VOLA	TILE ORGANICS		
COMPOUND	Quantitation Limit µg/kg	Result µg/kg	COMPOUND	Quantitation Limit µg/kg	Result µg/kg
Benzene	126	U	1,3-Dichloropropane	126	U
Bromobenzene	126	U	cis-1,3-Dichloropropene	126	Ü
Bromochloromethane	126	U	trans-1,3-Dichloropropene	126	U
Bromodichloromethane	94	U	2,2-Dichloropropane	126	U
Bromoform	94	U	1,1-Dichloropropene	126	U
Bromomethane	126	U	Ethylbenzene	126	U
1-butylbenzene	126	U	Hexachlorobutadiene	126	U
sec-butylbenzene	126	U	Isopropylbenzene	126	U
ert-butylbenzene	126	U	p-isopropyltoluene	126	Ü
Carbon Tetrachloride	126	U	Methylene Chloride	628	Ŭ
Chlorobenzene	126	U	Methyl-tert-butyl ether (MTBE)		Ŭ
Chloroethane	126	U	Naphthalene	126	Ŭ
Chloroform	94	U	n-Propylbenzene	126	U
Chloromethane	126	U	Styrene	126	Ü
-Chlorotoluene	126 U 1,1,2-Tetrachloroethane		126	U	
-Chlorotoluene	126	U	1,1,2,2-Tetrachloroethane	94	U
Dibromochloromethane	94	U	그는 그는 그를 하면 하는데 하는데 그는 것이 없는데 그리고 있다.	126	U
,2-Dibromo-3-chloropropane	126	U	Toluene	126	U
,2-Dibromoethane	94	U	1,2,3-Trichlorobenzene	126	U
Pibromomethane	126	U	1,2,4-Trichlorobenzene	126	U
,2-Dichlorobenzene	126	U	1,1,1-Trichloroethane	126	U
,3-Dichlorobenzene	126	U	1,1,2-Trichloroethane	94	U
,4-Dichlorobenzene	126	U	Trichloroethene	126	Ü
Pichlorodifluoromethane	126	U	Trichlorofluoromethane	126	U
,1-Dichloroethane	126	U	1,2,3-Trichloropropane	126	U
,2-Dichloroethane	94	U	1,2,4-Trimethylbenzene	126	U
,1-Dichloroethene	94	U	1,3,5-Trimethylbenzene	126	U
is-1,2-Dichloroethene	126	U	Vinyl Chloride	126	U.
ans-1,2-Dichloroethene	126	U.	o-Xylene	126	U
,2-Dichloropropane	94	Ü	m,p-Xylene	126	
cetone	1260	U	Diethyl ether	126	U
'arbon Disulfide	126	Ū	2-Hexanone	1260	U
etrahydrofuran	628	U	Methyl isobutyl ketone	1260	U
lethyl ethyl ketone	1260	U	Di-isopropyl ether (DIPE)	126	U
Butyl alcohol (TBA)	2510	U	Ethyl t-butyl ether (ETBE)	126	U
Amyl methyl ether (TAME)	126	Ū	1,4-Dioxane	3770	U
		te Standard Re			
d4-1,2-Dichloroethane 91 c	% d8-T	oluene 87	% Bromofluorol	enzene 98	3 %

METHODOLOGY:Sample collection in accordance with SW-846 method 5035A. Sample analysis was conducted according to: Test Methods for Evaluating Solid Waste, SW-846 Method 8260B.

COMMENTS: Results are expressed on a dry weight basis.

Authorized signature Mullill

Quantitation Report


Data File: C:\HPCHEM\1\DATA\DATA\072811-C\C79703.D Vial: 12 : 28 Jul 2011 Acq On 4:44 pm Operator: TD Sample : 70594-1 Inst : Instr_C Multiplr: 1.00

: 50,8.35,SOIL MS Integration Params: rteint.p

Quant Time: Jul 29 10:42 2011 Quant Results File: V807251C.RES

Method : C:\HPCHEM\1\METHODS\MATHODS\METHODS\V807251C.M (RTE Integrator)

Title : 8260 Purgable Organics Last Update : Wed Jul 27 10:52:24 2011

Mr. Steve Vetere Tetra Tech NUS, Inc. 250 Andover Street Wilmington MA 01887

August 3, 2011

SAMPLE DATA

Lab Sample ID: 70594-2 Matrix: Solid **Percent Solid:** 97 **Dilution Factor:** 99 **Collection Date:** 07/27/11 Lab Receipt Date: 07/27/11

Analysis Date: 07/28/11

CLIENT SAMPLE ID

LMC WILMINGTON **Project Name:**

Project Number: 1121C03346

Field Sample ID: LMC-CONCRETE-NC-2

Al		ULIS VULA	TILE ORGANICS	0 22.2		
COMPOUND	Quantitation Limit μg/kg	Result μg/kg	COMPOUND	Quantitation Limit µg/kg	Resul µg/kg	
Benzene	99	U	1,3-Dichloropropane	99	U	
Bromobenzene	99	U	cis-1,3-Dichloropropene	99	Ü	
Bromochloromethane	99	U	trans-1,3-Dichloropropene	99	Ü	
Bromodichloromethane	74	U	2,2-Dichloropropane	99	Ü	
Bromoform	74	U	1,1-Dichloropropene	99	U	
Bromomethane	99	U	Ethylbenzene	99	Ü	
n-butylbenzene	99	U	Hexachlorobutadiene	99	U	
sec-butylbenzene	99	U	Isopropylbenzene	99	U	
tert-butylbenzene	99	U	p-isopropyltoluene	99	U	
Carbon Tetrachloride	99	U	Methylene Chloride	494	Ü	
Chlorobenzene	99	U	Methyl-tert-butyl ether (MTBE)		Ü	
Chloroethane	99	U	Naphthalene	99	241	
Chloroform	74	U	n-Propylbenzene	99	U	
Chloromethane	99	U	Styrene	99	U	
2-Chlorotoluene	99	U	1,1,1,2-Tetrachloroethane	99	U	
4-Chlorotoluene	luene 99 U 1,1,2,2-Tetrachloroethane		74	_		
Dibromochloromethane	74	- 1,1,2,2 i citacino octimane		99	U	
1,2-Dibromo-3-chloropropane	99	U	Toluene	99	U U	
1,2-Dibromoethane	74	U	1,2,3-Trichlorobenzene	99	U	
Dibromomethane	99	U	1,2,4-Trichlorobenzene	99	U	
1,2-Dichlorobenzene	99	U	1,1.1-Trichloroethane	99	U	
1,3-Dichlorobenzene	99	U	1,1,2-Trichloroethane	74		
1,4-Dichlorobenzene	99	U	Trichloroethene	99	U U	
Dichlorodifluoromethane	99	Ü	Trichlorofluoromethane	99	_	
1,1-Dichloroethane	99	Ü	1,2,3-Trichloropropane	99	U	
1,2-Dichloroethane	74	Ü	1,2,4-Trimethylbenzene	99	U	
1,1-Dichloroethene	74	Ŭ	1,3,5-Trimethylbenzene	99	98 J	
cis-1,2-Dichloroethene	99	Ü	Vinyl Chloride	99	U	
rans-1,2-Dichloroethene	99	Ü	o-Xylene	99	U	
2-Dichloropropane	74	Ü	m,p-Xylene	99	U	
Acetone	989	U	Diethyl ether	99	U	
Carbon Disulfide	99	U	2-Hexanone	99 989	U	
etrahydrofuran	494	Ü	Methyl isobutyl ketone	989 989	U	
Methyl ethyl ketone	989	U	Di-isopropyl ether (DIPE)	969	U	
-Butyl alcohol (TBA)	1980	U		99	U	
-Amyl methyl ether (TAME)	99	U	Ethyl t-butyl ether (ETBE) 1.4-Dioxane	99 2970	U U	
	Surroga	te Standard Re		2710	U	
d4-1,2-Dichloroethane 106		oluene 100	% Bromofluorob	enzene 10	6 %	
U=Undetected	J=Estimated	E=Exceeds Cal				

METHODOLOGY:Sample collection in accordance with SW-846 method 5035A. Sample analysis was conducted according to: Test Methods for Evaluating Solid Waste, SW-846 Method 8260B.

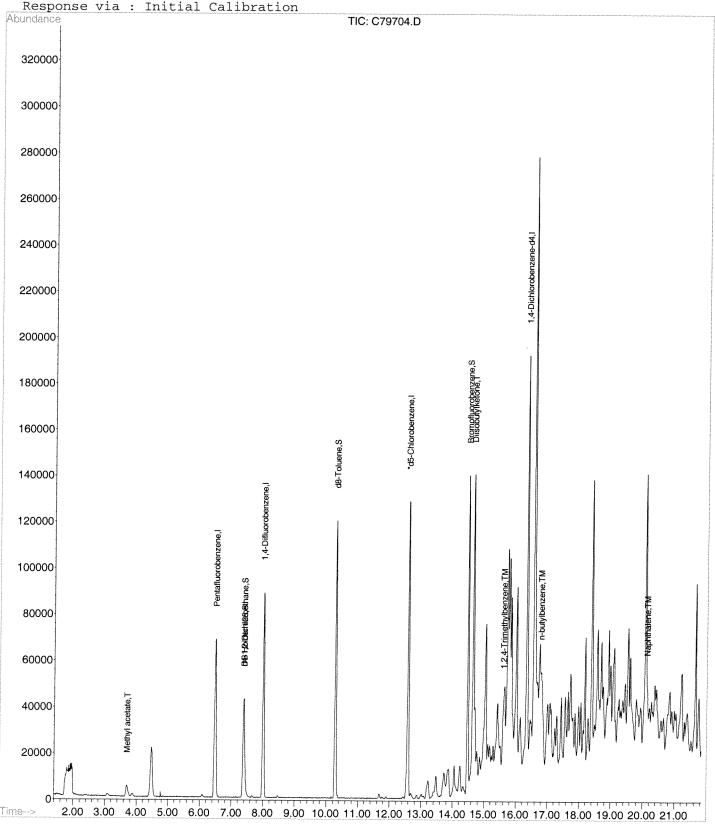
COMMENTS: Results are expressed on a dry weight basis.

Authorized signature Mulbll

~8260MCP (3) + Dioxane:Res(72):Rec(3)

Quantitation Report

Data File : C:\HPCHEM\1\DATA\DATA\072811-C\C79704.D


Vial: 13 Acq On : 28 Jul 2011 5:21 pm Operator: TD Sample : 70594-2 Inst : Instr_C Misc : 50,10.39,SOIL Multiplr: 1.00

MS Integration Params: rteint.p

Quant Time: Jul 29 10:42 2011 Quant Results File: V807251C.RES

Method : C:\HPCHEM\1\METHODS\MATHODS\WETHODS\V807251C.M (RTE Integrator)

Title : 8260 Purgable Organics Last Update : Wed Jul 27 10:52:24 2011

Mr. Steve Vetere Tetra Tech NUS, Inc. 250 Andover Street Wilmington MA 01887

CLIENT SAMPLE ID

Project Name: LMC WILMINGTON

Project Number: 1121C03346

Field Sample ID: LMC-SO-TRENCH-1

August 3, 2011 SAMPLE DATA

Lab Sample ID:

70594-3

Matrix:

Solid

Percent Solid:

98

Dilution Factor:

91

Collection Date:

07/27/11

Lab Receipt Date:

07/27/11

Analysis Data

07/28/11

	·		•	7/28/11	
Al		ULTS VOLA	TILE ORGANICS		
COMPOUND	Quantitation Limit µg/kg	Result μg/kg	COMPOUND	Quantitation Limit µg/kg	Result μg/kg
Benzene	91	U	1,3-Dichloropropane	91	U
Bromobenzene	91	U	cis-1,3-Dichloropropene	91	U
Bromochloromethane	91	U	trans-1,3-Dichloropropene	91	U
Bromodichloromethane	68	U	2,2-Dichloropropane	91	U
Bromoform	68	U	1,1-Dichloropropene	91	U
Bromomethane	91	U	Ethylbenzene	91	U
n-butylbenzene	91	U	Hexachlorobutadiene	91	U
sec-butylbenzene	91	U	Isopropylbenzene	91	
tert-butylbenzene	91	U	p-isopropyltoluene	91	U U
Carbon Tetrachloride	91	Ū	Methylene Chloride	457	U
Chlorobenzene	91	Ü	Methyl-tert-butyl ether (MTBE)		U
Chloroethane	91	Ū	Naphthalene	91	U
Chloroform	68	Ü	n-Propylbenzene	91	_
Chloromethane	91	Ü	Styrene	91	U
2-Chlorotoluene	91	Ū	1,1,1,2-Tetrachloroethane	91	U
4-Chlorotoluene 91		Ü	1,1,2,2-Tetrachloroethane	68	U
Dibromochloromethane	68	Ü	Tetrachloroethene	91	U
1,2-Dibromo-3-chloropropane	91	Ü	Toluene	91	U
1,2-Dibromoethane	68	Ü	1,2,3-Trichlorobenzene	91	U
Dibromomethane	91	Ŭ	1,2,4-Trichlorobenzene	91	U
1,2-Dichlorobenzene	91	Ü	1,1,1-Trichloroethane	91	U
1,3-Dichlorobenzene	91	Ü	1.1.2-Trichloroethane	68	U
1,4-Dichlorobenzene	91	Ü	Trichloroethene	91	U
Dichlorodifluoromethane	91	Ü	Trichlorofluoromethane	91	U
1,1-Dichloroethane	91	Ü	1,2,3-Trichloropropane	91	U
1,2-Dichloroethane	68	Ü	1,2,4-Trimethylbenzene	91 91	U
1,1-Dichloroethene	68	Ü	1,3,5-Trimethylbenzene	91 91	U
cis-1,2-Dichloroethene	91	Ü	Vinyl Chloride	91 91	U
trans-1.2-Dichloroethene	91	Ü	o-Xylene	91 91	U
1,2-Dichloropropane	68	Ü	m,p-Xylene	91 91	U
Acetone	913	U	Diethyl ether	91 91	U
Carbon Disulfide	91	U	2-Hexanone	91 913	U
Tetrahydrofuran	457	U		913 913	Ü
Methyl ethyl ketone	913	U	Methyl isobutyl ketone		U
-Butyl alcohol (TBA)	1830	U	Di-isopropyl ether (DIPE)	91 91	U
-Amyl methyl ether (TAME)	91	U	Ethyl t-butyl ether (ETBE) 1,4-Dioxane	91 2740	U U
	Surroga	ite Standard Re	•	2710	V
d4-1,2-Dichloroethane 125	% d8-1	oluene 114	% Bromofluorol	enzene 12	1 %
U=Undetected	J=Estimated	E=Exceeds Ca	libration Range B=Detected i	n	

METHODOLOGY:Sample collection in accordance with SW-846 method 5035A. Sample analysis was conducted according to: Test Methods for Evaluating Solid Waste, SW-846 Method 8260B.

COMMENTS: Results are expressed on a dry weight basis.

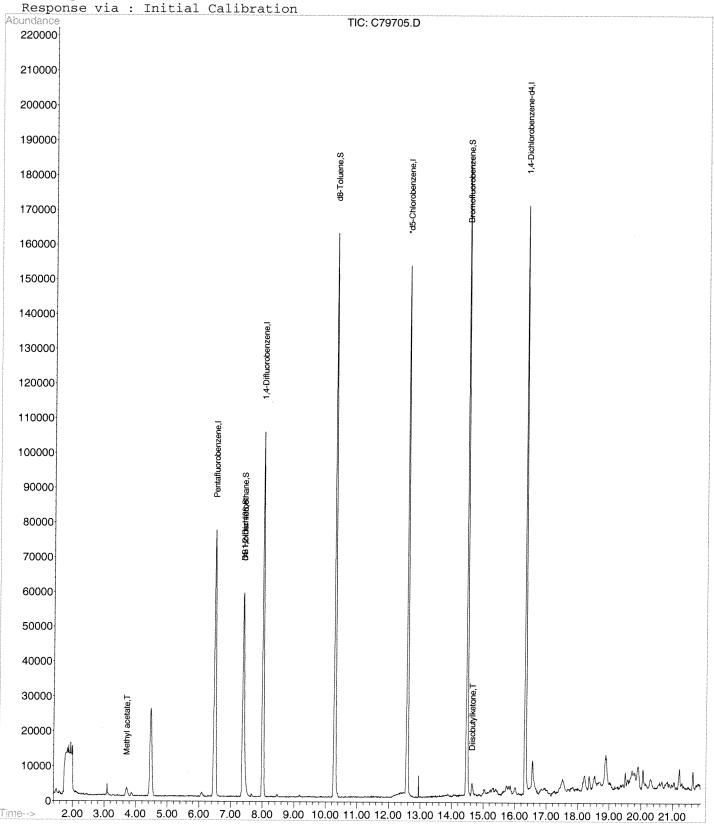
Authorized signature Mullill'

Data File : C:\HPCHEM\1\DATA\DATA\072811-C\C79705.D

Vial: 14 Operator: TD

Acq On : 28 Jul 2011 5:44 pm Sample : 70594-3

Inst : Instr_C
Multiplr: 1.00


Misc : 50,11.20,SOIL
MS Integration Params: rteint.p

Quant Time: Jul 29 10:42 2011

Quant Results File: V807251C.RES

Method : C:\HPCHEM\1\METHODS\MATHODS\V807251C.M (RTE Integrator)

Title : 8260 Purgable Organics
Last Update : Wed Jul 27 10:52:24 2011

Mr. Steve Vetere Tetra Tech NUS, Inc. 250 Andover Street Wilmington MA 01887

CLIENT SAMPLE ID

Project Name: LMC WILMINGTON

Project Number: 1121C03346 Field Sample ID: LMC-TB02

August 3, 2011 SAMPLE DATA

Lab Sample ID: 70594-4

Matrix:

Solid

Percent Solid:

100

Dilution Factor:

100

Collection Date: Lab Receipt Date: 07/27/11

07/27/11

Analysis Date:

			Analysis Date: 07	7/28/11	
AN		SULTS VOLA	ATILE ORGANICS		
COMPOUND	Quantitation Limit μg/kg	Result		Quantitation Limit µg/kg	Result
COMPOUND	Ellint µg/kg	μg/kg	COMPOUND	Emine µ g/kg	μg/kg
Benzene	100	U	1,3-Dichloropropane	100	U
Bromobenzene	100	U	cis-1,3-Dichloropropene	100	Ü
Bromochloromethane	100	U	trans-1,3-Dichloropropene	100	Ū
Bromodichloromethane	75	U	2,2-Dichloropropane	100	Ü
Bromoform	75	U	1,1-Dichloropropene	100	Ü
Bromomethane	100	U	Ethylbenzene	100	Ü
n-butylbenzene	100	U	Hexachlorobutadiene	100	U
sec-butylbenzene	100	U	Isopropylbenzene	100	U
ert-butylbenzene	100	U	p-isopropyltoluene	100	Ü
Carbon Tetrachloride	100	U	Methylene Chloride	500	Ŭ
Chlorobenzene	100	U	Methyl-tert-butyl ether (MTBE)	75	Ü
Chloroethane	100	U	Naphthalene	100	Ü
Chloroform	75	U	n-Propylbenzene	100	U
Chloromethane	100	U	Styrene	100	U
-Chlorotoluene	orotoluene 100 U 1,1,1,2-Tetrachloroethane		100	U	
-Chlorotoluene	toluene 100 U 1,1,2,2-Tetrachloroethane		75	U	
Dibromochloromethane	omochloromethane 75 U Tetrachloroethene		100	U	
,2-Dibromo-3-chloropropane	100	U	Toluene	100	U
,2-Dibromoethane	75	U	1,2,3-Trichlorobenzene	100	U
Dibromomethane	100	U	1,2,4-Trichlorobenzene	100	U
,2-Dichlorobenzene	100	U	1,1,1-Trichloroethane	100	U
,3-Dichlorobenzene	100	U	1,1,2-Trichloroethane	75	
,4-Dichlorobenzene	100	Ü	Trichloroethene	100	U
Dichlorodifluoromethane	100	Ū	Trichlorofluoromethane	100	U
,1-Dichloroethane	100	Ü	1,2,3-Trichloropropane	100	U
,2-Dichloroethane	75	Ü	1,2,4-Trimethylbenzene	100	U
,1-Dichloroethene	75	Ü	1,3,5-Trimethylbenzene	100	U
is-1,2-Dichloroethene	100	Ü	Vinyl Chloride	100	U
ans-1,2-Dichloroethene	100	Ü	o-Xylene	100	U
,2-Dichloropropane	75	Ü	m,p-Xylene	100	U
cetone	1000	U	Diethyl ether	100	U
arbon Disulfide	100	U	2-Hexanone	1000	U
etrahydrofuran	500	U	Methyl isobutyl ketone	1000	U
fethyl ethyl ketone	1000	U			U
Butyl alcohol (TBA)	2000	U	Di-isopropyl ether (DIPE) Ethyl t-butyl ether (ETBE)	100	U
Amyl methyl ether (TAME)	100	IJ	1,4-Dioxane	100	U
,, ()		gate Standard R		3000	U
d4-1,2-Dichloroethane 95		Toluene 86	ecovery 8 Bromofluorob	enzene 94	1 %
U=Undetected	J=Estimated	E=Exceeds Ca	Diomondo		т 70

METHODOLOGY: Sample analysis was conducted according to: Test Methods for Evaluating Solid Waste, SW-846 Method 8260B.

COMMENTS: Results are expressed on a dry weight basis.

~8260MCP (3) + Dioxane:Res(72):Rec(3)

Authorized signature _

Muhbeli

Quantitation Report

Data File : C:\HPCHEM\1\DATA\DATA\072811-C\C79702.D

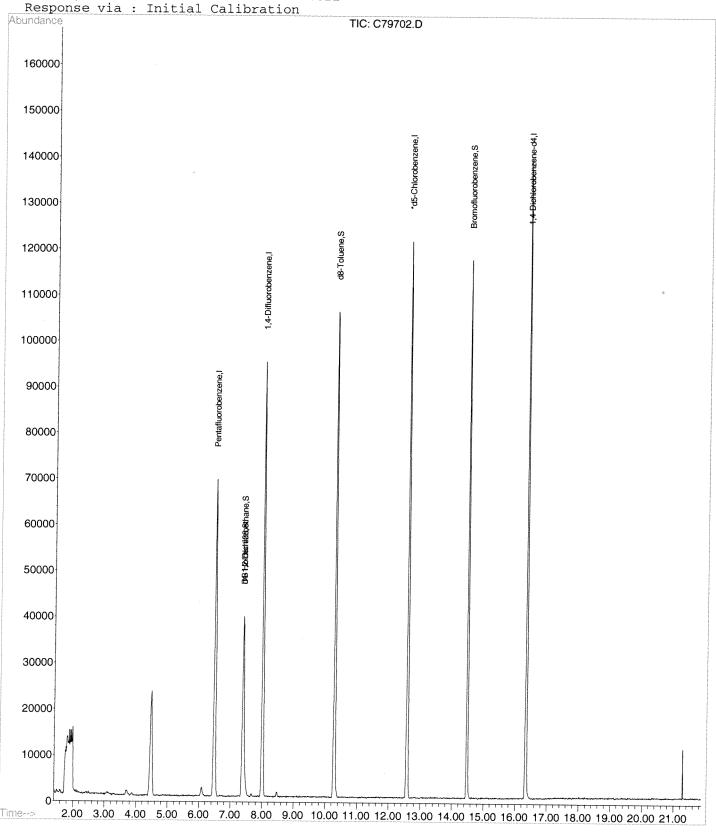
Vial: 11 : 28 Jul 2011 4:19 pm

Acq On Sample : 70594-4

Operator: TD Inst : Instr_C Multiplr: 1.00

Misc : 50,10.00,SOIL

MS Integration Params: rteint.p


Quant Results File: V807251C.RES

Quant Time: Jul 29 10:42 2011

Method

: C:\HPCHEM\1\METHODS\MATHODS\WETHODS\V807251C.M (RTE Integrator)

Title : 8260 Purgable Organics Last Update : Wed Jul 27 10:52:24 2011

VOLATILE QC FORMS

VOLATILE ORGANIC SOIL LABORATORY CONTROL/LABORATORY CONTROL DUPLICATE PERCENT RECOVERY

Instrument ID: C
GC Column: RTX-502.2
Column ID: 0.25 mm
Heated purge (Y/N): N

SDG: 70594 Non-spiked sample: MB07281C Spike: LS07281C Spike duplicate: LS07281C2

COMPOUND	LCS SPIKE ADDED (ug/kg)	LCSD SPIKE ADDED (ug/kg	LOWER		RPD	NON-SPIKE	SPIKE	SPIKE		SPIKE DUP	SPIKE DUI	>		
Dichlorodifluoromethane	2000	2000	LIMIT 49	LIMIT	LIMIT		RESULT (ug/kg	1	#	RESULT (ug/kg)	% REC	#	RPD	,
Chloromethane	2000	2000	75	125	25 25	0	1103	55	+	1207	60	+	9	L
Vinyl Chloride	2000	2000	75	125	25	0	1457	73	+	1573	79	+	8	L
Bromomethane	2000	2000	75	125	25	0	1654	83	╀	1728	86	+	4	L
Chloroethane	2000	2000	75	125	25	0	1764	88	+	1883	94	╀	7	L
t-Butyl alcohol (TBA)	10000	10000	60	140	25	0	1473	74	+	1766	88	╀	18	_
Trichlorofluoromethane	2000	2000	75	125	1	0	7949	79	+	10936	109	₩	32	1
Diethyl ether	2000	2000	75	125	25	0	1932	97	+-	2153	108	-	11	_
1,1,2-Trichlorotrifluoroethane	2000	2000	75	125	25	0	1583	79	├-	1950	98	$\perp \perp$	21	_
Acetone	5000	5000	75	125	25 25	0	1893	95	-	2055	103	\sqcup	8	_
1,1-Dichloroethene	2000	2000	75	125	25	0	4089	82	├-	5110	102	\vdash	22	
Methyl iodide	2000	2000	75	125			1887	94	├	2177	109	\vdash	14	
Di-isopropyl ether (DIPE)	2000	2000	75	125	25	0	1689	84	├-	1947	97	Н	14	_
Methylene Chloride	2000	2000	75	125	25	0	1696	85	-	1941	97	\sqcup	13	
Carbon Disulfide	2000	2000	75	125	25	0	1480	74	*	1716	86	$\vdash \vdash$	15	
Acrylonitrile	2000	2000	75	125	25	0	1658	83	-	1894	95	\sqcup	13	
Methyl-tert-butyl ether (MTBE)	2000	2000	75	125	25 25	0	1543	77	-	1900	95	$\vdash \vdash$	21	
trans-1,2-Dichloroethene	2000	2000	75	125		0	1904	95	_	2228	111	$\vdash \vdash$	16	
1,1-Dichloroethane	2000	2000	75	125	25 25	0	1880	94		2157	108	\vdash	14	
Methyl ethyl ketone	5000	5000	60	140	25	0	1815	91		2115	106	\vdash	15	
Ethyl t-butyl ether (ETBE)	2000	2000	75	125		0	3745	75	-	4672	93	\dashv	22	
2,2-Dichloropropane	2000	2000	75	125	25		1856	93		2141	107	\dashv	14	
cis-1,2-Dichloroethene	2000	2000	75	125	25	0	2036	102	\dashv	2220	111	\dashv	9	
-Amyl methyl ether (TAME)	2000	2000	75	125	25	0 0	1888	94	\dashv	2041	102	+	8	
Chloroform	2000	2000	75	125	25 25		1760	88	\dashv	2102	105	4	18	
Bromochloromethane	2000	2000	75	125	25	0	1835	92	\dashv	2064	103	4	12	
Tetrahydrofuran	2000	2000	60	140		0	1864	93	\dashv	2157	108	+	15	
,1,1-Trichloroethane	2000	2000	75	125	25	0	1498	75	-	1990	100	+	28	*
,1-Dichloropropene	2000	2000	75	125	25	0	2229	111	\dashv	2296	115	4	3	_
Carbon Tetrachloride	2000	2000	75	125	25	0	1950	98	\dashv	2152	108	+	10	_
,2-Dichloroethane	2000	2000	75	125	25	0	2229	111	\dashv	2524	120	* -	12	4
Benzene	2000	2000	75	125	25	0	1891	95	\dashv	2138	107	+	12	4
richloroethene	2000	2000	75	125	25	0	1808	90	+	2113	106	+	16	4
,2-Dichloropropane	2000	2000	75	125	25	0	2015	101	-	2239	112	+	10	4
1ethylmethacrylate	2000	2000	75	125	25	0	1975 1737	99	\dashv	2132	107	+	8	4
romodichloromethane	2000	2000	75	125	25	0		87	+	1973	99	+	13	4
ibromomethane	2000	2000	75	125	25	0	2075	104	+	2207	110	+	6	4
4-Dioxane	25000	25000	60	140	25	0	1989	99	+	2117	106	+	6	4
-Hexanone	5000	5000	75	125	25	0	13960		*+	20928	84	+	40 *	4
lethyl isobutyl ketone	5000	5000	75	125	25	0	4514	90	+	5166	103	+	13	4
s-1,3-Dichloropropene	2000	2000	75	125	25		4748	95	+	5313	106	+	11	4
oluene	2000	2000	75	125	25	0	2100	105	+	2273	114	+	8	4
ans-1,3-Dichloropropene	2000	2000	75	125		0	1960	98	+	* 2086	104	+	6	4
1,2-Trichloroethane	2000	2000	75	125	25	0	1953	98	+	2216	111	4	13	-
3-Dichloropropane	2000	2000	75	125		0	1856	93	+	2117	106	4	13	1
etrachloroethene	2000	2000	75	125	25	0	1907	95	+	2087	104	4	9	1
ibromochloromethane	2000	2000	75	125	25	0	2088	104	+	2246	112	╀	7	1
2-Dibromoethane	2000	2000			25	0	2000	100	+	2170	109	\bot	8	-
nlorobenzene	2000	2000	75	125	25	0	1928	96	+	2118	106	丄	9	
1,1,2-Tetrachloroethane	2000	2000	75	125	25	0	2032	102	+-	2224	111	1	9	1
hylbenzene	2000		75	125	25	0	2058	103	+	2219	111	\perp	8	
p-Xylene	4000	2000	75	125	25	0	2152	108	+	2306	115	1	7	
4	TVVV	4000	75	125	25	0	4244	106	1	4652	116	1	9	ł

VOLATILE ORGANIC SOIL LABORATORY CONTROL/LABORATORY CONTROL DUPLICATE PERCENT RECOVERY

Instrument ID: C
GC Column: RTX-502.2
Column ID: 0.25 mm
Heated purge (Y/N): N

SDG: 70594

Non-spiked sample: MB07281C

Spike: LS07281C Spike duplicate: LS07281C2

	LCS SPIKE	LCSD SPIKE	LOWER	UPPER	RPD	NON-SPIKE	SPIKE	SPIKE		SPIKE DUP	SPIKE DUP	,	Γ	
COMPOUND :	ADDED (ug/kg)	ADDED (ug/kg)	LIMIT	LIMIT	LIMIT	RESULT (ug/kg)	RESULT (ug/kg)	% REC	#	RESULT (ug/kg)		#	RPD	
Styrene	2000	2000	75	125	25	0	2212	111	Γ	2399	120	T	8	T
Bromoform	2000	2000	75	125	25	0	2078	104	 	2228	111	+	7	t
Isopropylbenzene	2000	2000	75	125	25	0	2242	112	 	2475	124	+	10	t
1,1,2,2-Tetrachloroethane	2000	2000	75	125	25	0	1823	91	 	2062	103	\vdash	12	t
1,2,3-Trichloropropane	2000	2000	75	125	25	0	1804	90	\vdash	2002	100	╁╌		t
trans-1,4-Dichloro-2-butene	2000	2000	75	125	25	0	1991	100		2258	113	-	10	ł
n-Propylbenzene	2000	2000	75	125	25	0	2121	106		2238	115	-	13	ł
Bromobenzene	2000	2000	75	125	25	0	2032	102		2251			8	╁
1,3,5-Trimethylbenzene	2000	2000	75	125	25	0	2253	113		2398	113		10	H
2-Chlorotoluene	2000	2000	75	125	25	0	2138	107		2398	120	\vdash	6	┞
4-Chlorotoluene	2000	2000	75	125	25	0	2122	106		2309	113	\vdash	6	H
tert-butylbenzene	2000	2000	75	125	25	0	2174	109	-	2394	115	\vdash	8	H
1,2,4-Trimethylbenzene	2000	2000	75	125	25	0	2241	112	-	2394	120	\vdash	10	-
sec-butylbenzene	2000	2000	75	125	25	0	2298	115	\dashv		116		4	-
p-isopropyltoluene	2000	2000	75	125	25	0	2295	115	\dashv	2516 2395	126	\vdash	9	H
1,3-Dichlorobenzene	2000	2000	75	125	25	0	2061	103	\dashv	2393	120	\vdash	4	-
1,4-Dichlorobenzene	2000	2000	75	125	25	0	2042	103	\dashv	2168	113	\vdash	9	-
1-butylbenzene	2000	2000	75	125	25	0	2207	110	-	2274	108	\dashv	6	_
1,2-Dichlorobenzene	2000	2000	75	125	25	0	2060	103	\dashv	2192	114	\dashv	3	
,2-Dibromo-3-chloropropane	2000	2000	75	125	25	0	2002	100	\dashv		110	\dashv	6	_
,2,4-Trichlorobenzene	2000	2000	75	125	25	0	2275	114	\dashv	2241	112	+	11	
Hexachlorobutadiene	2000	2000	75	125	25	0	2397	120	\dashv	2388	119	+	_5	
laphthalene	2000	2000	75	125	25	0	1939	97	\dashv	2607	130	*	8	
,2,3-Trichlorobenzene	2000	2000	75	125	25	0	2155	108	\dashv	2119	106 117	\dashv	9	

#	Column to b	e used to flag	recovery and	RPD values	outside of OC I	imales

	Non-spike result of "0" used in place of "U" to allow calculation of spike recovery.
Comments:	

^{*} Values outside QC limits

VPH DATA SUMMARIES

195 Commerce Way Portsmouth, New Hampshire 03801 603-436-5111 Fax 603-430-2151 800-929-9906

Mr. Steve Vetere Tetra Tech NUS, Inc. 250 Andover Street Wilmington MA 01887

CLIENT SAMPLE ID

Project Name:

LMC WILMINGTON

Project Number: 1121C03346 **Client Sample ID:** LabQC

August 1, 2011

SAMPLE DATA

Lab Sample ID:

MBV072811K2

Matrix:

Soil

Percent Solid:

0 50

Dilution Factor:

non ractor:

Collection Date: Lab Receipt Date:

Analysis Date:

07/28/11

	VPH ANALYTICAL RESULTS									
RANGE/TARGET ANALYTE	Elution Range	RL	Units	Result						
Unadjusted C5-C8 Aliphatics 1	N/A	2500	μg/kg	U						
Unadjusted C9-C12 Aliphatics	N/A	2500	μg/kg	U						
Benzene	C5-C8	100	μg/kg	U						
Ethylbenzene	C9-C12	100	μg/kg	U						
Methyl-tert-butyl ether	C5-C8	100	μg/kg	U						
Naphthalene	N/A	100	μg/kg	U						
Toluene	C5-C8	100	μg/kg	U						
m- & p-Xylenes	C9-C12	200	μg/kg	U						
o-Xylene	C9-C12	100	μg/kg	U						
C5-C8 Aliphatics Hydrocarbons ^{1,2}	N/A	2500	μg/kg	U						
C9-C12 Aliphatic Hydrocarbons ^{1,3}	N/A	2500	μg/kg	U						
C9-C10 Aromatic Hydrocarbons ¹	N/A	500	μg/kg	U						
Surrogate % Recovery (Trifluoroto	luene) PID			93						
Surrogate % Recovery (Trifluorotoluene) FID				91						
Surrogate Acceptance Range				70-130%						

Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range.

RL = Report Limit

U=Undetected J=Estimated E=Exceeds Calibration Range B=Detected in Blank

METHODOLOGY: MADEP Volatile Petroleum Hydrocarbons (VPH), ORS Division of Environmental Analysis, Revision 1.1 May 2004.

COMMENTS: Samples were received in accordance with method criteria unless noted on the sample receipt checklist. Results are expressed on a moisture corrected and dry weight basis.

Authorized signature:_

March famil

²C5-C8 Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range

³C9-C12 Aliphatic Hydrocarbons exclude conc. of Target Analytes eluting in that range and conc. of C9-C10 Aromatic Hydrocarbons.

Data Path : C:\msdchem\1\DATA\072811-K\

Data File: K33064B.D

Signal(s): Signal #1: FID1A.CH Signal #2: ELC2B.CH

Acq On : 28 Jul 2011 2:17 pm

Operator : KAM

Sample : MBV072811K2 Misc : 100,10.00,SOIL

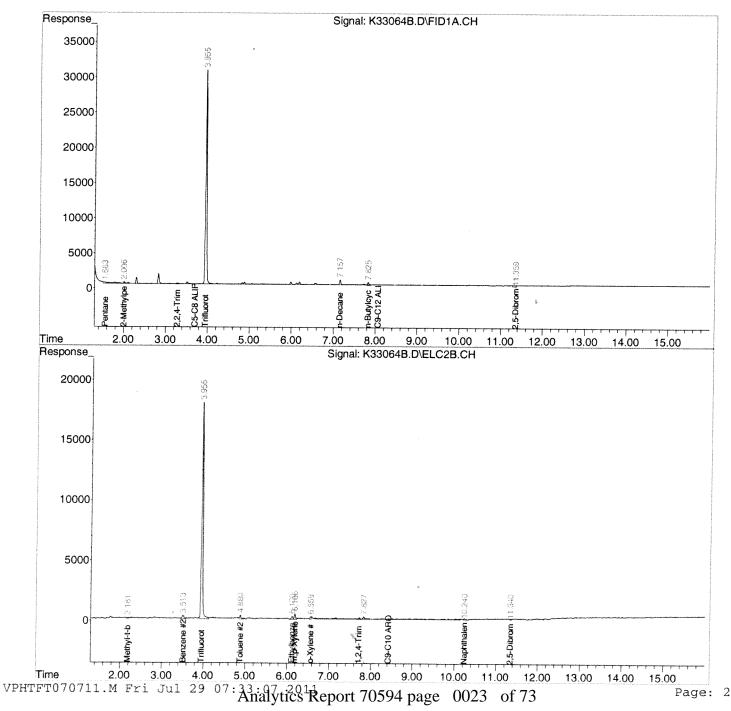
ALS Vial : 8 Sample Multiplier: 1

Integration File signal 1: autoint1.e
Integration File signal 2: autoint2.e

Quant Time: Jul 28 14:34:43 2011

Quant Method : C:\msdchem\1\METHODS\VPHTFT070711.M

Quant Title : Volatile Petroleum Hydrocarbons (VPH) MA DEP 2004


QLast Update : Fri Jul 08 18:01:21 2011

Response via : Initial Calibration

Integrator: ChemStation 6890 Scale Mode: Small noise peaks clipped

Volume Inj. : Signal #1 Phase : Signal #1 Info :

Signal #2 Phase: Signal #2 Info :

195 Commerce Way Portsmouth, New Hampshire 03801 603-436-5111 Fax 603-430-2151 800-929-9906

Mr. Steve Vetere Tetra Tech NUS, Inc. 250 Andover Street Wilmington MA 01887

CLIENT SAMPLE ID

Project Name: LMC WILMINGTON

Project Number:

1121C03346

Client Sample ID: LMC-CONCRETE-NC-1

August 1, 2011

SAMPLE DATA

Lab Sample ID: 70594-1
Matrix: Solid
Percent Solid: 95
Dilution Factor: 72
Collection Date: 07/27/11
Lab Receipt Date: 07/27/11
Analysis Date: 07/28/11

	VPH ANALYTICAL RESULTS									
RANGE/TARGET ANALYTE	Elution Range	RL	Units	Result						
Unadjusted C5-C8 Aliphatics 1	N/A	3594	μg/kg	U						
Unadjusted C9-C12 Aliphatics 1	N/A	3594	μg/kg	24700						
Benzene	C5-C8	144	μg/kg	U						
Ethylbenzene	C9-C12	144	μg/kg	U						
Methyl-tert-butyl ether	C5-C8	144	μg/kg	U						
Naphthalene	N/A	144	μg/kg	U						
Toluene	C5-C8	144	μg/kg	U						
m- & p-Xylenes	C9-C12	288	μg/kg	U						
o-Xylene	C9-C12	144	μg/kg	U						
C5-C8 Aliphatics Hydrocarbons ^{1,2}	N/A	3594	μg/kg	U	,					
C9-C12 Aliphatic Hydrocarbons ^{1,3}	· N/A	3594	μg/kg	16300						
C9-C10 Aromatic Hydrocarbons	N/A	719	μg/kg	8420						
Surrogate % Recovery (Trifluoroto	luene) PID			99						
Surrogate % Recovery (Trifluoroto	luene) FID			98						
Surrogate Acceptance Range				70-130%						

Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range.

RL = Report Limit

U=Undetected J=Estimated E=Exceeds Calibration Range B=Detected in Blank

METHODOLOGY: MADEP Volatile Petroleum Hydrocarbons (VPH), ORS Division of Environmental Analysis, Revision 1.1 May 2004.

COMMENTS: Samples were received in accordance with method criteria unless noted on the sample receipt checklist. Results are expressed on a moisture corrected and dry weight basis.

Authorized signature: Mando Jaury

²C5-C8 Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range

³C9-C12 Aliphatic Hydrocarbons exclude conc. of Target Analytes eluting in that range and conc. of C9-C10 Aromatic Hydrocarbons.

Data Path : C:\msdchem\1\DATA\072811-K\

Data File: K33066.D

Signal(s) : Signal #1: FID1A.CH Signal #2: ELC2B.CH

Acq On : 28 Jul 2011 3:31 pm

Operator : KAM Sample : 70594-1

Misc : 100,7.56,SOIL

ALS Vial : 10 Sample Multiplier: 1

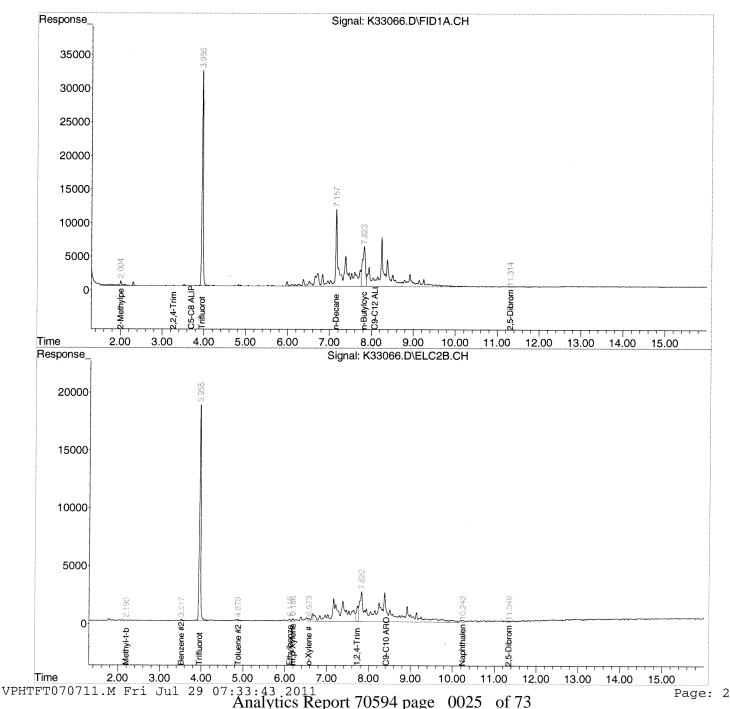
Integration File signal 1: autoint1.e Integration File signal 2: autoint2.e

Quant Time: Jul 28 15:56:12 2011

Quant Method: C:\msdchem\1\METHODS\VPHTFT070711.M

Quant Title : Volatile Petroleum Hydrocarbons (VPH) MA DEP 2004

QLast Update : Fri Jul 08 18:01:21 2011


Response via : Initial Calibration

Integrator: ChemStation 6890 Scale Mode: Small noise peaks clipped

Volume Inj. : Signal #1 Phase :

Signal #1 Info

Signal #2 Phase: Signal #2 Info :

195 Commerce Way Portsmouth, New Hampshire 03801 603-436-5111 Fax 603-430-2151 800-929-9906

Mr. Steve Vetere Tetra Tech NUS, Inc. 250 Andover Street Wilmington MA 01887

Project Name:

Project Number:

CLIENT SAMPLE ID

August 1, 2011

SAMPLE DATA

Lab Sample ID:

70594-2

Matrix:

Solid

Percent Solid:

97

Dilution Factor:

1150

Collection Date:

07/27/11

Lab Receipt Date: 07/27/11 **Analysis Date:**

07/28/11

Client Sample ID: LMC-CONCRETE-NC-2

1121C03346

LMC WILMINGTON

	VPH A	NALYTIC	AL RESULTS		
RANGE/TARGET ANALYTE	Elution Range	RL	Units	Result	
Unadjusted C5-C8 Aliphatics	N/A	57500	μg/kg	U	
Unadjusted C9-C12 Aliphatics	N/A	57500	μg/kg	118000	
Benzene	C5-C8	2299	μg/kg	U	
Ethylbenzene	C9-C12	2299	μg/kg	U	
Methyl-tert-butyl ether	C5-C8	2299	μg/kg	U	
Naphthalene	N/A	2299	μg/kg	U	
Toluene	C5-C8	2299	μg/kg	U	
m- & p-Xylenes	C9-C12	4599	μg/kg	U	
o-Xylene	C9-C12	2299	μg/kg	U	
C5-C8 Aliphatics Hydrocarbons ^{1,2}	N/A	57500	μg/kg	U	
C9-C12 Aliphatic Hydrocarbons ^{1,3}	N/A	57500	μg/kg	79600	
C9-C10 Aromatic Hydrocarbons	N/A	11500	μg/kg	39400	
Surrogate % Recovery (Trifluoroto	luene) PID			113	
Surrogate % Recovery (Trifluoroto	luene) FID			105	
Surrogate Acceptance Range				70-130%	

¹Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range.

RL = Report Limit

U=Undetected J=Estimated E=Exceeds Calibration Range B=Detected in Blank

METHODOLOGY: MADEP Volatile Petroleum Hydrocarbons (VPH), ORS Division of Environmental Analysis, Revision 1.1 May 2004.

COMMENTS: Samples were received in accordance with method criteria unless noted on the sample receipt checklist. Results are expressed on a moisture corrected and dry weight basis.

Authorized signature: Mattheway

²C5-C8 Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range

³C9-C12 Aliphatic Hydrocarbons exclude conc. of Target Analytes eluting in that range and conc. of C9-C10 Aromatic Hydrocarbons.

Data Path: C:\msdchem\1\DATA\072811-K\

Data File: K33068.D

Signal(s): Signal #1: FID1A.CH Signal #2: ELC2B.CH

Acq On : 28 Jul 2011 4:25 pm

Operator : KAM

Sample : 70594-2,,20X Misc : 5,9.15,SOIL

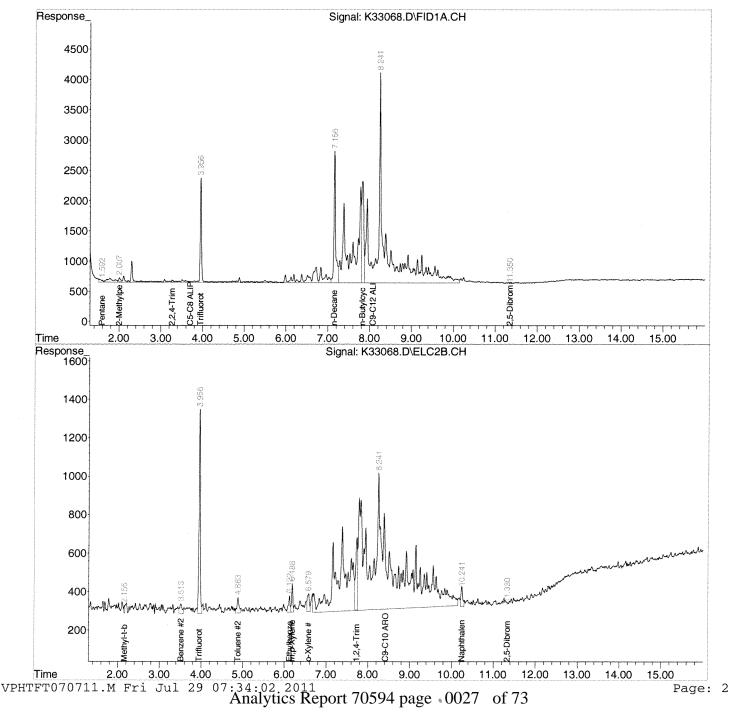
ALS Vial : 12 Sample Multiplier: 1

Integration File signal 1: autoint1.e
Integration File signal 2: autoint2.e

Quant Time: Jul 28 16:41:36 2011

Quant Method: C:\msdchem\1\METHODS\VPHTFT070711.M

Quant Title : Volatile Petroleum Hydrocarbons (VPH) MA DEP 2004


QLast Update: Fri Jul 08 18:01:21 2011

Response via: Initial Calibration

Integrator: ChemStation 6890 Scale Mode: Small noise peaks clipped

Volume Inj. :

Signal #1 Phase: Signal #2 Phase: Signal #1 Info : Signal #2 Info :

LMC WILMINGTON

195 Commerce Way Portsmouth, New Hampshire 03801 603-436-5111 Fax 603-430-2151 800-929-9906

Mr. Steve Vetere Tetra Tech NUS, Inc. 250 Andover Street Wilmington MA 01887

Project Name:

August 1, 2011

SAMPLE DATA

Lab Sample ID:

70594-3

Matrix:

Solid

Percent Solid: Dilution Factor: 98

50

Project Number: 1121C03346 Client Sample ID: LMC-SO-TRENCH-1

CLIENT SAMPLE ID

Collection Date: 07/27/11 Lab Receipt Date: 07/27/11 Analysis Date: 07/28/11

VPH ANALYTICAL RESULTS								
RANGE/TARGET ANALYTE	Elution Range	RL	Units	Result				
Unadjusted C5-C8 Aliphatics ¹	N/A	2496	μg/kg	U				
Unadjusted C9-C12 Aliphatics	N/A	2496	μg/kg	U				
Benzene	C5-C8	99.8	μg/kg	U				
Ethylbenzene	C9-C12	99.8	μg/kg	U				
Methyl-tert-butyl ether	C5-C8	99.8	μg/kg	U				
Naphthalene	N/A	99.8	μg/kg	U				
Toluene	C5-C8	99.8	μg/kg	U				
m- & p-Xylenes	C9-C12	200	μg/kg	U				
o-Xylene	C9-C12	99.8	μg/kg	U				
C5-C8 Aliphatics Hydrocarbons 1,2	N/A	2496	μg/kg	U				
C9-C12 Aliphatic Hydrocarbons ^{1,3}	N/A	2496	μg/kg	U				
C9-C10 Aromatic Hydrocarbons	N/A	499	μg/kg	U				
Surrogate % Recovery (Trifluoroto	luene) PID			97				
Surrogate % Recovery (Trifluoroto			97					
Surrogate Acceptance Range			70-130%					

Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range.

RL = Report Limit

U=Undetected J=Estimated E=Exceeds Calibration Range B=Detected in Blank

METHODOLOGY: MADEP Volatile Petroleum Hydrocarbons (VPH), ORS Division of Environmental Analysis, Revision 1.1 May 2004.

COMMENTS: Samples were received in accordance with method criteria unless noted on the sample receipt checklist. Results are expressed on a moisture corrected and dry weight basis.

Authorized signature:

²C5-C8 Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range

³C9-C12 Aliphatic Hydrocarbons exclude conc. of Target Analytes eluting in that range and conc. of C9-C10 Aromatic Hydrocarbons.

Data Path : C:\msdchem\1\DATA\072811-K\

Data File : K33067.D

Signal(s): Signal #1: FID1A.CH Signal #2: ELC2B.CH

Acq On : 28 Jul 2011 3:58 pm

Operator : KAM Sample : 70594-3

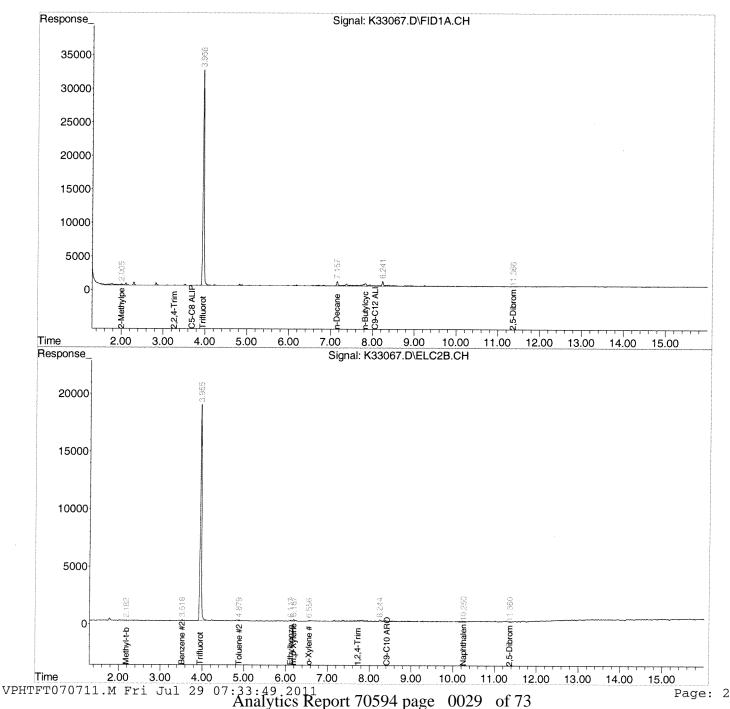
Misc : 100,12.58,SOIL,,12 ML FV,,KAM ALS Vial : 11 Sample Multiplier: 1

ALS Viai : II Sample Multiplier: I

Integration File signal 1: autoint1.e Integration File signal 2: autoint2.e Quant Time: Jul 28 16:37:20 2011

Quant Method: C:\msdchem\1\METHODS\VPHTFT070711.M

Quant Title : Volatile Petroleum Hydrocarbons (VPH) MA DEP 2004


QLast Update : Fri Jul 08 18:01:21 2011

Response via: Initial Calibration

Integrator: ChemStation 6890 Scale Mode: Small noise peaks clipped

Volume Inj. : Signal #1 Phase :

Signal #1 Phase: Signal #2 Phase: Signal #1 Info: Signal #2 Info:

LMC WILMINGTON

1121C03346

195 Commerce Way Portsmouth, New Hampshire 03801 603-436-5111 Fax 603-430-2151 800-929-9906

Mr. Steve Vetere Tetra Tech NUS, Inc. 250 Andover Street Wilmington MA 01887

Project Name:

Project Number:

CLIENT SAMPLE ID

August 1, 2011

SAMPLE DATA

Lab Sample ID:

70594-4

Matrix:

Solid

Percent Solid: Dilution Factor: 100 50

Collection Date:

07/27/11

Lab Receipt Date:

07/27/11

Analysis Date:

07/28/11

Client Sample ID: LMC-TB02 La

VPH ANALYTICAL RESULTS								
RANGE/TARGET ANALYTE	Elution Range	RL	Units	Result				
Unadjusted C5-C8 Aliphatics	N/A	2500	μg/kg	U				
Unadjusted C9-C12 Aliphatics	N/A	2500	μg/kg	U				
Benzene	C5-C8	100	μg/kg	U				
Ethylbenzene	C9-C12	100	μg/kg	U				
Methyl-tert-butyl ether	C5-C8	100	μg/kg	U				
Naphthalene	N/A	100	μg/kg	U				
Toluene	C5-C8	100	μg/kg	U				
m- & p-Xylenes	C9-C12	200	μg/kg	Ū	***************************************			
o-Xylene	C9-C12	100	μg/kg	Ū				
C5-C8 Aliphatics Hydrocarbons ^{1,2}	N/A	2500	μg/kg	U				
C9-C12 Aliphatic Hydrocarbons ^{1,3}	N/A	2500	μg/kg	U				
C9-C10 Aromatic Hydrocarbons	N/A	500	μg/kg	U				
Surrogate % Recovery (Trifluoroto	luene) PID			89				
Surrogate % Recovery (Trifluoroto			88	***************************************				
Surrogate Acceptance Range				70-130%				

¹Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range. ²C5-C8 Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range

U=Undetected J=Estimated E=Exceeds Calibration Range B=Detected in Blank

METHODOLOGY: MADEP Volatile Petroleum Hydrocarbons (VPH), ORS Division of Environmental Analysis, Revision 1.1 May 2004.

COMMENTS: Samples were received in accordance with method criteria unless noted on the sample receipt checklist. Results are expressed on a moisture corrected and dry weight basis.

Authorized signature:

C9-C12 Aliphatic Hydrocarbons exclude conc. of Target Analytes eluting in that range and conc. of C9-C10 Aromatic Hydrocarbons.

RL = Report Limit

Data Path : C:\msdchem\1\DATA\072811-K\

Data File: K33065.D

Signal(s): Signal #1: FID1A.CH Signal #2: ELC2B.CH

Acq On : 28 Jul 2011 3:05 pm

Operator : KAM Sample : 70594-4

Misc : 100,10.00,SOIL

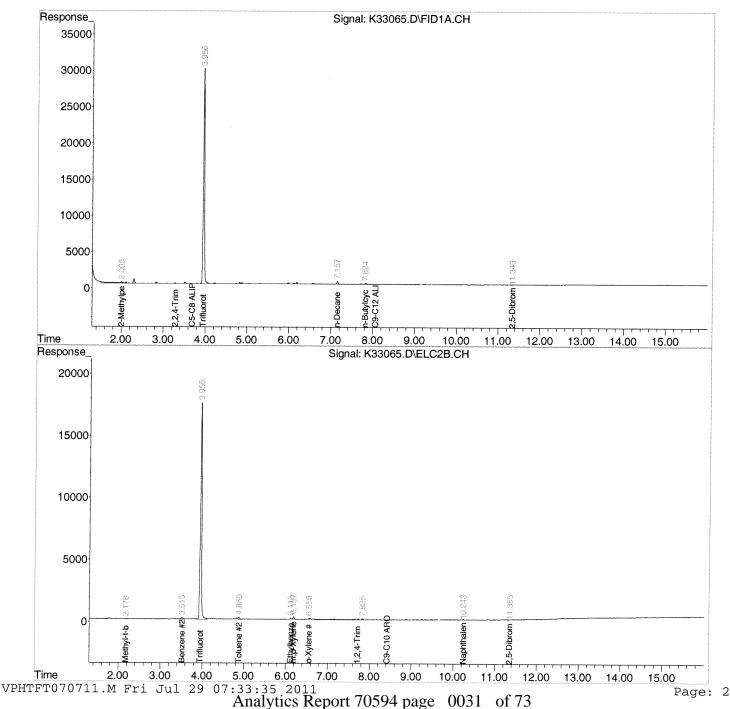
ALS Vial : 9 Sample Multiplier: 1

Integration File signal 1: autoint1.e
Integration File signal 2: autoint2.e

Quant Time: Jul 28 15:25:49 2011

Quant Method: C:\msdchem\1\METHODS\VPHTFT070711.M

Quant Title : Volatile Petroleum Hydrocarbons (VPH) MA DEP 2004


QLast Update : Fri Jul 08 18:01:21 2011

Response via : Initial Calibration

Integrator: ChemStation 6890 Scale Mode: Small noise peaks clipped

Volume Inj. :

Signal #1 Phase: Signal #2 Phase: Signal #1 Info: Signal #2 Info:

VPH QC FORMS

VOLATILE PETROLEUM HYDROCARBONS SOIL LABORATORY CONTROL/LABORATORY CONTROL DUPLICATE PERCENT RECOVERY

Instrument ID: K

GC Column: RTX-502.2 Column ID: 0.25 mm SDG: 70594

Non-spiked sample: MBV072811K2

Spike: LSV072811K2

Spike duplicate: LSV072811K3

	LCS SPIKE	LCSD SPIKE	LOWER	UPPER	RPD	NON-SPIKE	SPIKE	SPIKE		SPIKE DUP	SPIKE DUP	T	
COMPOUND	ADDED (ug/kg)	ADDED (ug/kg)	LIMIT	LIMIT	LIMIT	RESULT (ug/kg)	RESULT (ug/kg)	% REC	#	RESULT (ug/kg)	% REC	#	RPD
Pentane	5000	5000	70	130	25	0	4513	90		4527	91	T	0
2-Methylpentane	5000	5000	70	130	25	0	4492	90		4551	91		1
2,2,4-Trimethylpentane	5000	5000	70	130	25	0	4523	90		4640	93	T	3
n-Decane	5000	5000	70	130	25	0	4816	96		4803	96	T	0
n-Butylcyclohexane	5000	5000	70	130	25	0	4888	98		5009	100		2
Methyl-t-butylether #2	5000	5000	70	130	25	0	4484	90		4413	88	T	2
Benzene #2	5000	5000	70	130	25	0	4523	90		4565	91		1
Toluene #2	5000	5000	70	130	25	0	4434	89		4490	90	T	1
Ethylbenzene #2	5000	5000	70	130	25	0	4633	93		4692	94		1
m,p-Xylene #2	10000	10000	70	130	25	0	9351	94		9468	95	T	1
o-Xylene #2	5000	5000	70	130	25	0	4435	89		4457	89		0
1,2,4-Trimethylbenzene #2	5000	5000	70	130	25	0	4831	97		4892	98	T	1
Naphthalene #2	5000	5000	70	130	25	0	3714	74		3631	73	Τ	2
C5-C8 Aliphatics	15000	15000	70	130	25	0	13527	90		13718	91		1
C9-C12 Aliphatics	10000	10000	70	130	25	0	9704	97		9813	98	T	1
C9-C10 Aromatics #2	5000	5000	70	130	25	0	4831	97		4892	98	T	1

[#] Column to be used to flag recovery and RPD values outside of QC limits

Non-spike result of "0" used in place of "U" to allow calculation of spike recovery.

Comments:

^{*} Values outside QC limits

EPH DATA SUMMARIES

195 Commerce Way Portsmouth, New Hampshire 03801 603-436-5111 Fax 603-430-2151 800-929-9906

August 2, 2011

Mr. Steve Vetere Tetra Tech NUS, Inc. 250 Andover Street Wilmington MA 01887

CLIENT SAMPLE ID

Project Name: LMC WILMINGTON

Project Number: 1121C03346 Client Sample ID: LabQC

SAMPLE DATA

Lab Sample ID: B072811EASE

Matrix:

Solid 100

Percent Solid: **Dilution Factor:**

1.0

Collection Date:

Lab Receipt Date:

Extraction Date:

07/28/11 **Analysis Date:** 07/29/11

EPH ANALYTICAL RESULTS						
RANGE/TA	RGET ANALYTE	RL	Units	Result		
Unadjusted C	11-C22 Aromatics 1	26700	μg/kg	U		
D. IDAM	Naphthalene	267	μg/kg	U		
Diesel PAH Analytes	2-Methylnaphthalene	267	μg/kg	U		
1 mary tes	Phenanthrene	267	μg/kg	U		
	Acenaphthene	267	μg/kg	Ū		
	Acenaphthylene	267	μg/kg	U		
	Fluorene	267	μg/kg	Ū		
	Anthracene	267	μg/kg	U		
	Fluoranthene	267	μg/kg	Ú		
Other	Pyrene	267	μg/kg	Ü		
Target PAH	Benzo[a]anthracene	267	μg/kg	ŢŢ		
Analytes	Chrysene	267	μg/kg	IJ		
	Benzo[b]fluoranthene	267	μg/kg	U		
	Benzo[k]fluoranthene	267	μg/kg	IJ		
	Benzo[a]pyrene	267	μg/kg	U		
	Indeno[1,2,3-cd]pyrene	267	μg/kg	U		
	Dibenzo[a,h]anthracene	267	μg/kg	U		
	Benzo[g,h,i]perylene	267	μg/kg	U		
C9-C18 Aliph	atic Hydrocarbons	26700	μg/kg	· U		
C19-C36 Alip	hatic Hydrocarbons	26700	μg/kg	ΥŢ		
C11-C22 Aromatic Hydrocarbons 1,2		26700	μg/kg	U		
Aliphatic Surrogate % Recovery (1-Chloro-octadecane)				83		
	ogate % Recovery (O-Terphenyl)			<u>81</u>		
	gate Acceptance Range		~ ~	40-140%		
1 Fractionation	on Surrogate % Recovery (2-Fluorobiphenyl)			70		
	on Surrogate % Recovery (2-Bromonaphthalene)			57		
	Surrogate Acceptance Range			40-140%		

Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that C11-C22 Aromatic Hydrocarbons exclude the concentration of Target PAH Analytes.

RL = Report Limit

U=Undetected J=Estimated E=Exceeds Calibration Range B=Detected in Blank

METHODOLOGY:MADEP Extractable Petroleum Hydrocarbons (EPH), ORS Division of Environmental Analysis, May 2004 Revision 1.1. Samples were extracted in accordance with SW-846 Method 3545

COMMENTS: EPH analyses utilized the use of a GC/MS system to detect and quantify ranges and target analytes. Samples were received in accordance with method criteria unless noted on the sample receipt checklist. Results are expressed on a dry weight basis.

SIGNATURE: Mullill

Data Path : $C:\msdchem\1\DATA\072911-N\$

Data File: N14608B.D

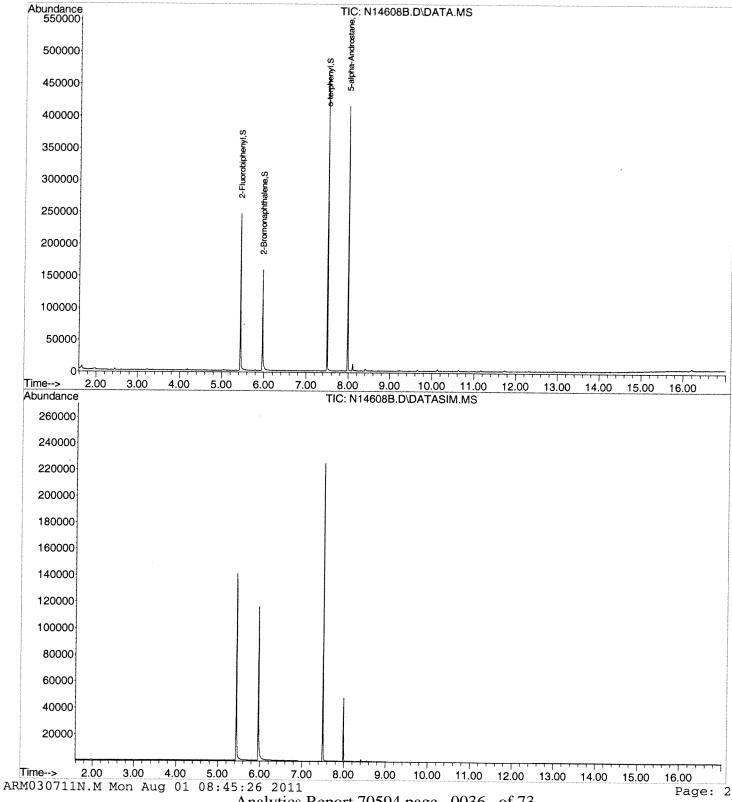
Acq On : 29 Jul 2011 4:11 pm

Operator : MT

Sample

Misc

: B072811EASE : SOIL,,ALI


ALS Vial Sample Multiplier: 1 : 6

Quant Time: Aug 01 08:45:26 2011

Quant Method : C:\msdchem\1\METHODS\ARM030711N.M

Quant Title : EPH MS AROMATICS

QLast Update : Mon Jul 25 09:43:47 2011 Response via : Initial Calibration

Data Path : C:\msdchem\1\DATA\072911-N\

Data File : N14611B.D Signal(s) : DATA.MS

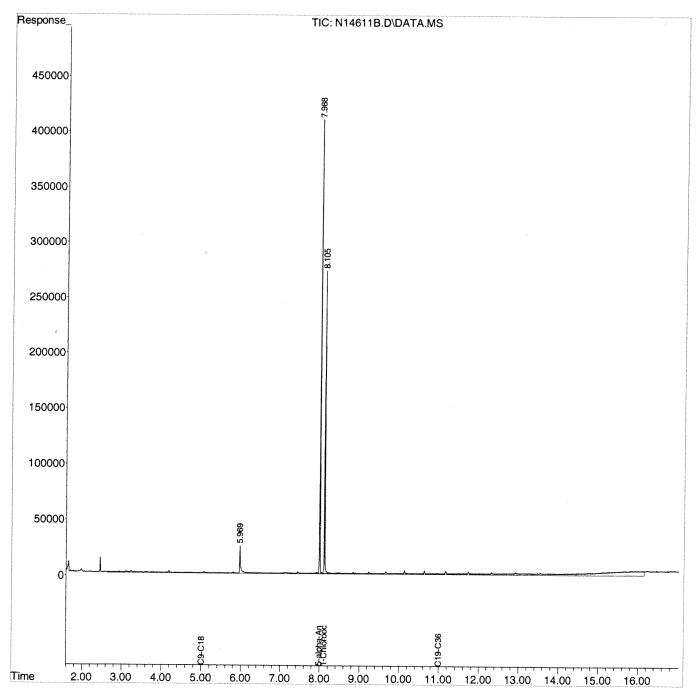
Acq On : 29 Jul 2011 5:14 pm

Operator : MT

Sample : B072811EASE Misc : SOIL,,ARO

ALS Vial : 9 Sample Multiplier: 1

Integration File: rteint.p


Quant Time: Aug 01 08:27:37 2011

Quant Method : C:\msdchem\1\METHODS\ALG051711N.M

Quant Title : EPH GC ALIPHATICS QLast Update : Thu Jun 16 01:18:37 2011 Response via : Initial Calibration

Integrator: RTE

Volume Inj. : Signal Phase : Signal Info :

195 Commerce Way Portsmouth, New Hampshire 03801 603-436-5111 Fax 603-430-2151 800-929-9906

August 2, 2011

Mr. Steve Vetere Tetra Tech NUS, Inc. 250 Andover Street Wilmington MA 01887

CLIENT SAMPLE ID

LMC WILMINGTON Project Name:

Project Number: 1121C03346 Client Sample ID: LabQC

SAMPLE DATA

Lab Sample ID: **B072811EASE RR**

Matrix:

Solid

Percent Solid:

100

Dilution Factor:

1.0

Collection Date:

Lab Receipt Date:

Extraction Date: 07/28/11 Analysis Date: 08/01/11

EPH ANALYTICAL RESULTS						
RANGE/TAI	RGET ANALYTE	RL	Units	Result		
	11-C22 Aromatics	26700	μg/kg	U		
	Naphthalene	267	μg/kg	U		
Diesel PAH	2-Methylnaphthalene	267	μg/kg	U		
Analytes	Phenanthrene	267	μg/kg	U		
	Acenaphthene	267	μg/kg	U		
	Acenaphthylene	267	μg/kg	U		
	Fluorene	267	μg/kg	U		
	Anthracene	267	μg/kg	U		
	Fluoranthene	267	μg/kg	U		
Other	Pyrene	267	μg/kg	U		
Target PAH	Benzola lanthracene	267	μg/kg	U		
Analytes	Chrysene	267	μg/kg	U		
	Benzo[b]fluoranthene	267	μg/kg	U		
	Benzolklfluoranthene	267	μg/kg	U		
	Benzofalpyrene	267	μg/kg	U		
	Indenol 1.2.3-cd pyrene	267	μg/kg	U		
	Dibenzo[a,h]anthracene	267	µg/kg	U		
	Benzo[g.h.i]pervlene	267	μg/kg	U		
C9-C18 Aliph	natic Hydrocarbons	26700	μg/kg	U		
	phatic Hydrocarbons	26700	μg/kg	U		
C11-C22 Aromatic Hydrocarbons 1,2		26700	μg/kg	U		
Aliphatic Surrogate % Recovery (1-Chloro-octadecane)				83		
Aromatic Surrogate % Recovery (O-Terphenyl)				81		
Sample Surrogate Acceptance Range				40-140%		
#1 Fractionation Surrogate % Recovery (2-Fluorobiphenyl)				69		
	on Surrogate % Recovery (2-Bromonaphthalene)			60		
	Surrogate Acceptance Range	-		40-140%		

Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that

RL = Report Limit

U=Undetected J=Estimated E=Exceeds Calibration Range B=Detected in Blank

METHODOLOGY:MADEP Extractable Petroleum Hydrocarbons (EPH), ORS Division of Environmental Analysis, May 2004 Revision 1.1. Samples were extracted in accordance with SW-846 Method 3545

COMMENTS: EPH analyses utilized the use of a GC/MS system to detect and quantify ranges and target analytes. Samples were received in accordance with method criteria unless noted on the sample receipt checklist. Results are expressed on a dry weight basis.

> Mullell SIGNATURE:

²C11-C22 Aromatic Hydrocarbons exclude the concentration of Target PAH Analytes.

Data Path : C:\msdchem\1\DATA\080111-N\

Data File: N14637B.D

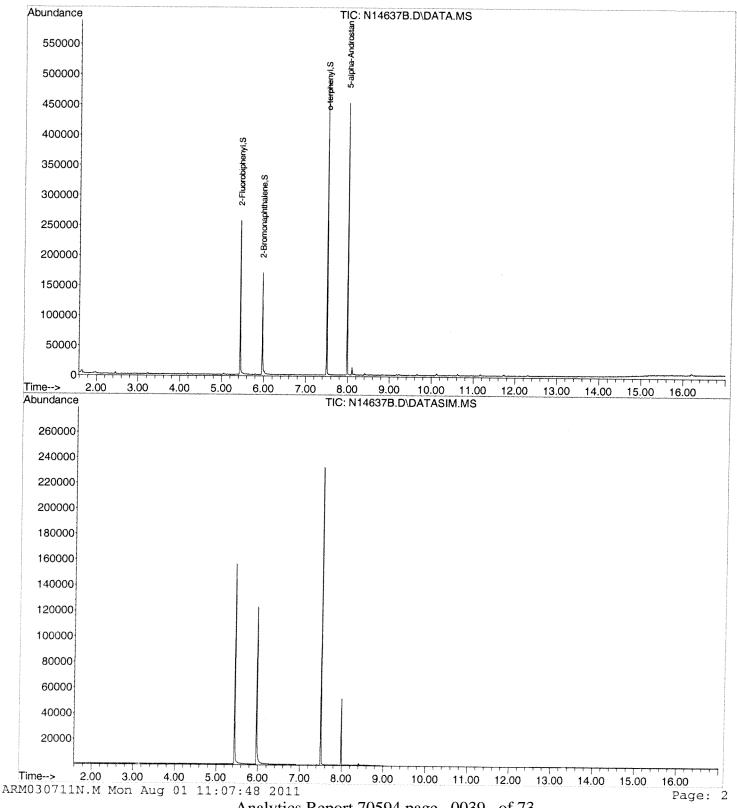
Acq On : 1 Aug 2011 9:57 am

Operator : MT

Sample : B072811EASE,,RR

Misc : SOIL,, ARO

ALS Vial : 6 Sample Multiplier: 1


Quant Time: Aug 01 11:07:48 2011

Quant Method : C:\msdchem\1\METHODS\ARM030711N.M

Quant Title : EPH MS AROMATICS

QLast Update: Mon Jul 25 09:43:47 2011

Response via : Initial Calibration

Data Path : C:\msdchem\1\DATA\080111-N\

Data File: N14638B.D Signal(s) : DATA.MS

Acq On : 1 Aug 2011 10:18 am

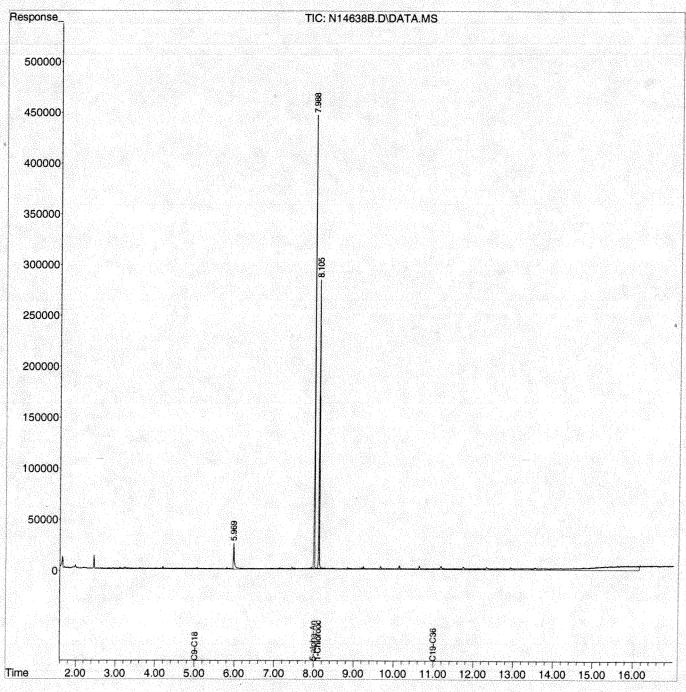
: MT Operator

Sample : B072811EASE,,RR Misc : SOIL,,ALI

: 9 ALS Vial Sample Multiplier: 1

Integration File: rteint.p

Quant Time: Aug 01 11:07:55 2011


Quant Method : C:\msdchem\1\METHODS\ALG051711N.M

Quant Title : EPH GC ALIPHATICS QLast Update : Thu Jun 16 01:18:37 2011

Response via : Initial Calibration

Integrator: RTE

Volume Inj. Signal Phase: Signal Info

Mr. Steve Vetere Tetra Tech NUS, Inc. 250 Andover Street Wilmington MA 01887

CLIENT SAMPLE ID

Project Name: LMC WILMINGTON

Project Number: 1121C03346

Client Sample ID: LMC-CONCRETE-NC-1

August 2, 2011

SAMPLE DATA Lab Sample ID: 70594-1 Matrix: Solid **Percent Solid:** 95 **Dilution Factor:** 1.0 **Collection Date:** 07/27/11 Lab Receipt Date: 07/27/11 **Extraction Date:** 07/28/11 **Analysis Date:** 08/01/11

EPH ANALYTICAL RESULTS							
RANGE/TARGET ANALYTE RL Units Result							
Unadjusted C	11-C22 Aromatics ¹	27800	μg/kg	17200 J			
Discol DAII	Naphthalene	278	μg/kg	U			
Diesel PAH Analytes	2-Methylnaphthalene	278	μg/kg	U			
7 thary tes	Phenanthrene	278	μg/kg	U			
	Acenaphthene	278	μg/kg	U			
	Acenaphthylene	278	μg/kg	U			
	Fluorene	278	μg/kg	U			
	Anthracene	278	μg/kg	U			
	Fluoranthene	278	μg/kg	U			
Other	Pyrene	278	μg/kg	U			
Target PAH	Benzo[a]anthracene	278	μg/kg	U			
Analytes	Chrysene	278	μg/kg	U			
	Benzo[b]fluoranthene	278	μg/kg	U			
	Benzo[k]fluoranthene	278	μg/kg	U			
	Benzo[a]pyrene	278	μg/kg	U			
	Indeno[1,2,3-cd]pyrene	278	μg/kg	U			
	Dibenzo[a,h]anthracene	278	μg/kg	U			
	Benzo[g,h,j]perylene	278	μg/kg	U			
C9-C18 Aliph	atic Hydrocarbons 1	139000	μg/kg	U			
C19-C36 Alip	shatic Hydrocarbons 1	139000	μg/kg	236000			
C11-C22 Aromatic Hydrocarbons 1,2		27800	μg/kg	17200 J			
Aliphatic Surr	ogate % Recovery (1-Chloro-octadecane)			74			
Aromatic Surrogate % Recovery (O-Terphenyl)				73			
	gate Acceptance Range			40-140%			
#1 Fractionation Surrogate % Recovery (2-Fluorobiphenyl)				65			
	on Surrogate % Recovery (2-Bromonaphthalene)			56			
	Surrogate Acceptance Range			40-140%			

Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that

RL = Report Limit

U=Undetected J=Estimated E=Exceeds Calibration Range B=Detected in Blank

METHODOLOGY:MADEP Extractable Petroleum Hydrocarbons (EPH), ORS Division of Environmental Analysis, May 2004 Revision 1.1. Samples were extracted in accordance with SW-846 Method 3545

COMMENTS: EPH analyses utilized the use of a GC/MS system to detect and quantify ranges and target analytes. Samples were received in accordance with method criteria unless noted on the sample receipt checklist.

Results are expressed on a dry weight basis.

SIGNATURE: Mullell

C11-C22 Aromatic Hydrocarbons exclude the concentration of Target PAH Analytes.

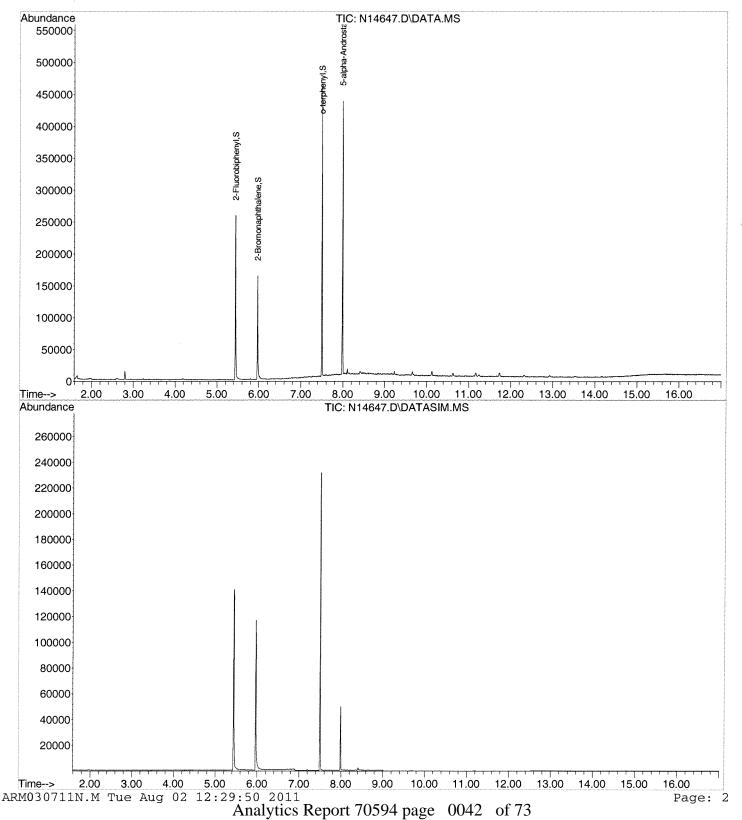
Data Path : C:\msdchem\1\DATA\080111-N\

Data File: N14647.D

Acq On : 1 Aug 2011 1:28 pm

Operator : MT Sample : 70594-1 Misc : SOIL,,ARO

ALS Vial : 20 Sample Multiplier: 1


Quant Time: Aug 02 12:29:49 2011

Quant Method : $C:\msdchem\1\METHODS\ARM030711N.M$

Quant Title : EPH MS AROMATICS

QLast Update : Mon Jul 25 09:43:47 2011

Response via : Initial Calibration

Data Path : C:\msdchem\1\DATA\080111-N\

Data File : N14655.D Signal(s) : DATA.MS

Acq On : 1 Aug 2011 5:08 pm

Operator : MT

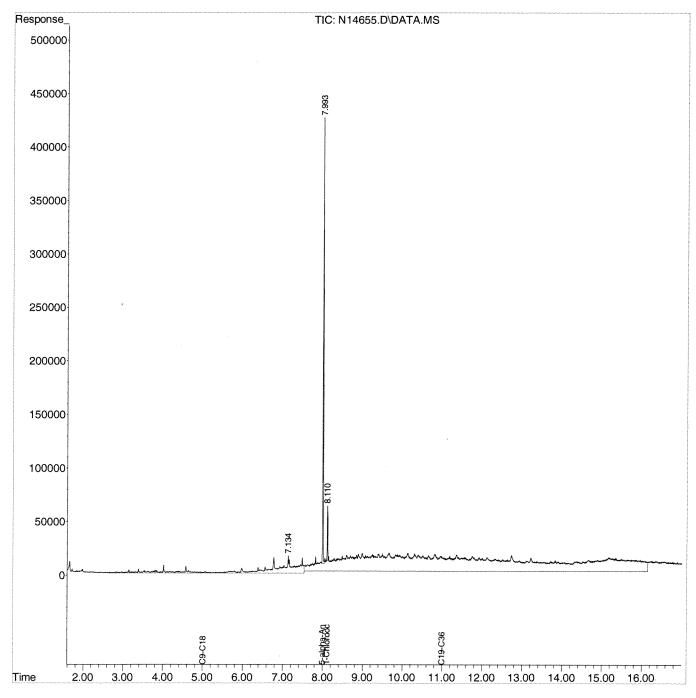
Sample : 70594-1,,5X Misc : SOIL,,ALI

ALS Vial : 28 Sample Multiplier: 1

Integration File: rteint.p

Quant Time: Aug 02 12:20:40 2011

Quant Method: C:\msdchem\1\METHODS\ALG051711N.M


Quant Title : EPH GC ALIPHATICS

QLast Update : Thu Jun 16 01:18:37 2011

Response via : Initial Calibration

Integrator: RTE

Volume Inj. : Signal Phase : Signal Info :

195 Commerce Way Portsmouth, New Hampshire 03801 603-436-5111 Fax 603-430-2151 800-929-9906

August 2, 2011

Mr. Steve Vetere Tetra Tech NUS, Inc. 250 Andover Street Wilmington MA 01887

CLIENT SAMPLE ID

Project Name: LMC WILMINGTON

Project Number: 1121C03346

Client Sample ID: LMC-CONCRETE-NC-2

SAMPLE DATA

 Lab Sample ID:
 70594-2

 Matrix:
 Solid

 Percent Solid:
 97

 Dilution Factor:
 1.0

 Collection Date:
 07/27/11

 Lab Receipt Date:
 07/27/11

 Extraction Date:
 07/28/11

 Analysis Date:
 08/01/11

EPH ANALYTICAL RESULTS RANGE/TARGET ANALYTE Units RL Result Unadjusted C11-C22 Aromatics 26700 µg/kg 27900 Naphthalene 267 µg/kg 329 Diesel PAH 2-Methylnaphthalene 267 μg/kg 980 Analytes Phenanthrene 267 μg/kg U Acenaphthene 267 μg/kg U Acenaphthylene 267 μg/kg U Fluorene 267 μg/kg U Anthracene 267 µg/kg U Fluoranthene 267 μg/kg U Other Pyrene 267 ug/kg U Target PAH Benzo[a]anthracene 267 μg/kg U Analytes Chrysene 267 μg/kg U Benzo[b]fluoranthene 267 μg/kg U Benzo[k]fluoranthene 267 μg/kg U Benzo[a]pyrene 267 μg/kg U Indeno[1,2,3-cd]pyrene 267 μg/kg U Dibenzo[a,h]anthracene 267 μg/kg U Benzolg,h,ilperylene 267 μg/kg U C9-C18 Aliphatic Hydrocarbons 1 266000 μg/kg 407000 C19-C36 Aliphatic Hydrocarbons 266000 μg/kg U C11-C22 Aromatic Hydrocarbons 1,2 26700 μg/kg 26600 Aliphatic Surrogate % Recovery (1-Chloro-octadecane) 105 Aromatic Surrogate % Recovery (O-Terphenyl) 77 Sample Surrogate Acceptance Range 40-140% #1 Fractionation Surrogate % Recovery (2-Fluorobiphenyl) 65 #2 Fractionation Surrogate % Recovery (2-Bromonaphthalene) 53 Fractionation Surrogate Acceptance Range 40-140%

RL = Report Limit

U=Undetected J=Estimated E=Exceeds Calibration Range B=Detected in Blank

METHODOLOGY:MADEP Extractable Petroleum Hydrocarbons (EPH), ORS Division of Environmental Analysis, May 2004 Revision 1.1. Samples were extracted in accordance with SW-846 Method 3545

COMMENTS: EPH analyses utilized the use of a GC/MS system to detect and quantify ranges and target analytes. Samples were received in accordance with method criteria unless noted on the sample receipt checklist.

Results are expressed on a dry weight basis.

SIGNATURE: Mullilli

Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that

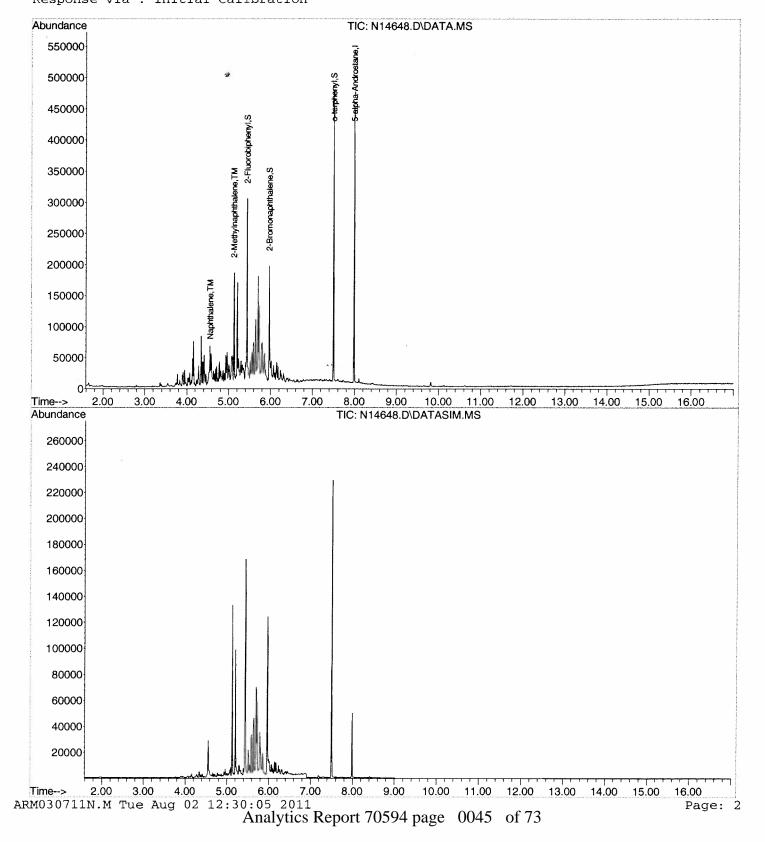
C11-C22 Aromatic Hydrocarbons exclude the concentration of Target PAH Analytes.

Data Path : C:\msdchem\1\DATA\080111-N\

Data File: N14648.D

Acq On : 1 Aug 2011 1:49 pm

Operator : MT Sample : 70594-2 Misc : SOIL,,ARO


ALS Vial : 21 Sample Multiplier: 1

Quant Time: Aug 02 12:30:04 2011

Quant Method: C:\msdchem\1\METHODS\ARM030711N.M

Quant Title : EPH MS AROMATICS

QLast Update: Mon Jul 25 09:43:47 2011 Response via: Initial Calibration

Data Path : C:\msdchem\1\DATA\080111-N\

Data File : N14656.D Signal(s) : DATA.MS

Acq On : 1 Aug 2011 5:29 pm

Operator : MT

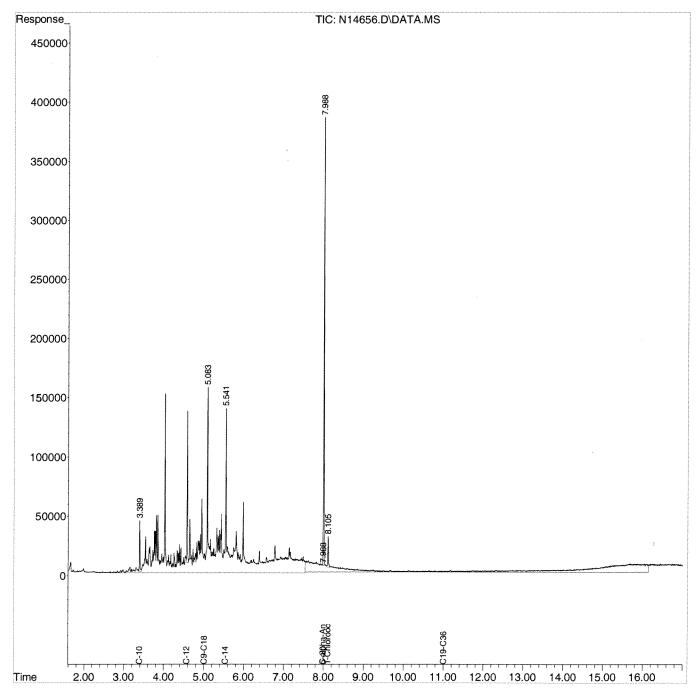
Sample : 70594-2,,10X Misc : SOIL,,ALI

ALS Vial : 29 Sample Multiplier: 1

Integration File: rteint.p

Quant Time: Aug 02 11:17:53 2011

Quant Method: C:\msdchem\1\METHODS\ALG051711N.M


Quant Title : EPH GC ALIPHATICS

QLast Update: Thu Jun 16 01:18:37 2011

Response via : Initial Calibration

Integrator: RTE

Volume Inj. : Signal Phase : Signal Info :

195 Commerce Way Portsmouth, New Hampshire 03801 603-436-5111 Fax 603-430-2151 800-929-9906

August 2, 2011

Mr. Steve Vetere Tetra Tech NUS, Inc. 250 Andover Street Wilmington MA 01887

CLIENT SAMPLE ID

Project Name:

LMC WILMINGTON

Project Number:

1121C03346

Client Sample ID: LMC-SO-TRENCH-1

SAMPLE DATA

Lab Sample ID: 70594-3 Matrix: Solid **Percent Solid:** 98 **Dilution Factor:** 1.0 **Collection Date:** 07/27/11 Lab Receipt Date: 07/27/11 **Extraction Date:** 07/28/11 **Analysis Date:** 08/01/11

	EPH ANALYTIC	AL RESULT	ΓS	
RANGE/TA	RGET ANALYTE	RL	Units	Result
Unadjusted C	C11-C22 Aromatics ¹	27000	μg/kg	Ū
	Naphthalene	270	μg/kg	U
Diesel PAH Analytes	2-Methylnaphthalene	270	μg/kg	U
Analytes	Phenanthrene	270	μg/kg	U
	Acenaphthene	270	μg/kg	U
	Acenaphthylene	270	μg/kg	U
	Fluorene	270	μg/kg	U
	Anthracene	270	μg/kg	U
	Fluoranthene	270	μg/kg	U
Other	Pyrene	270	μg/kg	U
Target PAH	Benzo[alanthracene	270	μg/kg	U
Analytes	Chrysene	270	μg/kg	U
	Benzo[b]fluoranthene	270	μg/kg	U
	Benzo[k]fluoranthene	270	μg/kg	U
	Benzo[a]pyrene	270	μg/kg	U
	Indeno[1,2,3-cd]pyrene	270	μg/kg	U
	Dibenzo[a,h]anthracene	270	μg/kg	U
	Benzo[g.h.i]perylene	270	μg/kg	U
C9-C18 Aliph	natic Hydrocarbons 1	27000	μg/kg	U
C19-C36 Alip	phatic Hydrocarbons 1	27000	μg/kg	14300 J
C11-C22 Aro	matic Hydrocarbons 1,2	27000	μg/kg	U
Aliphatic Sur	rogate % Recovery (1-Chloro-octadecane)			90
	rogate % Recovery (O-Terphenyl)			86
Sample Surro	gate Acceptance Range			40-140%
#1 Fractionati	ion Surrogate % Recovery (2-Fluorobiphenyl)			69
#2 Fractionati	on Surrogate % Recovery (2-Bromonaphthalene)			56
	Surrogate Acceptance Range	w. 		40-140%

Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that ²C11-C22 Aromatic Hydrocarbons exclude the concentration of Target PAH Analytes.

RL = Report Limit

U=Undetected J=Estimated E=Exceeds Calibration Range B=Detected in Blank

METHODOLOGY:MADEP Extractable Petroleum Hydrocarbons (EPH), ORS Division of Environmental Analysis, May 2004 Revision 1.1. Samples were extracted in accordance with SW-846 Method 3545

COMMENTS: EPH analyses utilized the use of a GC/MS system to detect and quantify ranges and target analytes. Samples were received in accordance with method criteria unless noted on the sample receipt checklist. Results are expressed on a dry weight basis.

SIGNATURE: Mullull'

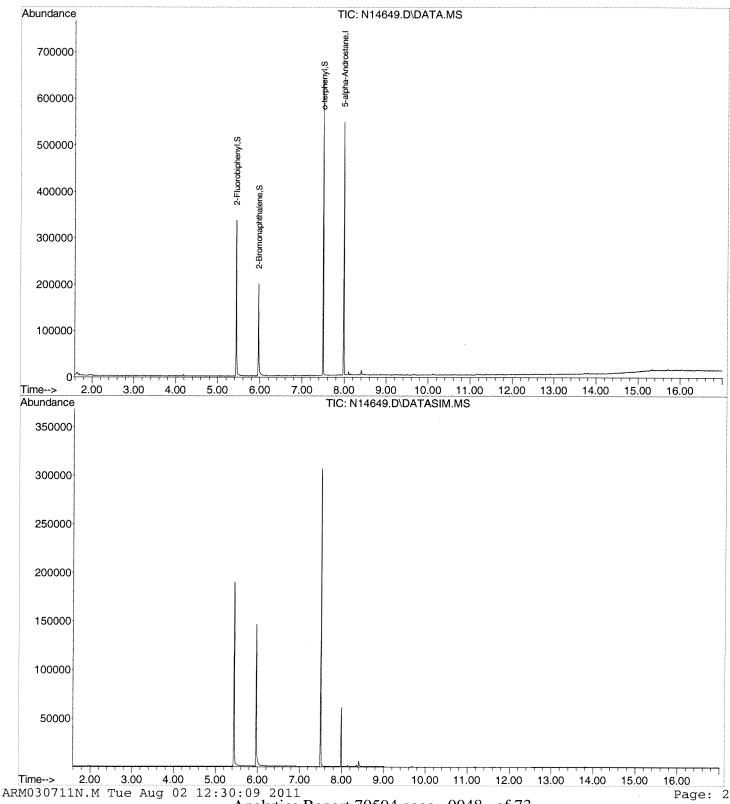
Data Path : C:\msdchem\1\DATA\080111-N\

Data File: N14649.D

Acq On : 1 Aug 2011 2:10 pm

Operator : MT Sample : 70594-3 Misc : SOIL,,ARO

ALS Vial : 22 Sample Multiplier: 1


Quant Time: Aug 02 12:30:09 2011

Quant Method : C:\msdchem\1\METHODS\ARM030711N.M

Quant Title : EPH MS AROMATICS

QLast Update: Mon Jul 25 09:43:47 2011

Response via : Initial Calibration

Data Path : C:\msdchem\1\DATA\080111-N\

Data File: N14641.D

Signal(s) : DATA.MS

Acq On : 1 Aug 2011 11:22 am

Operator : MT

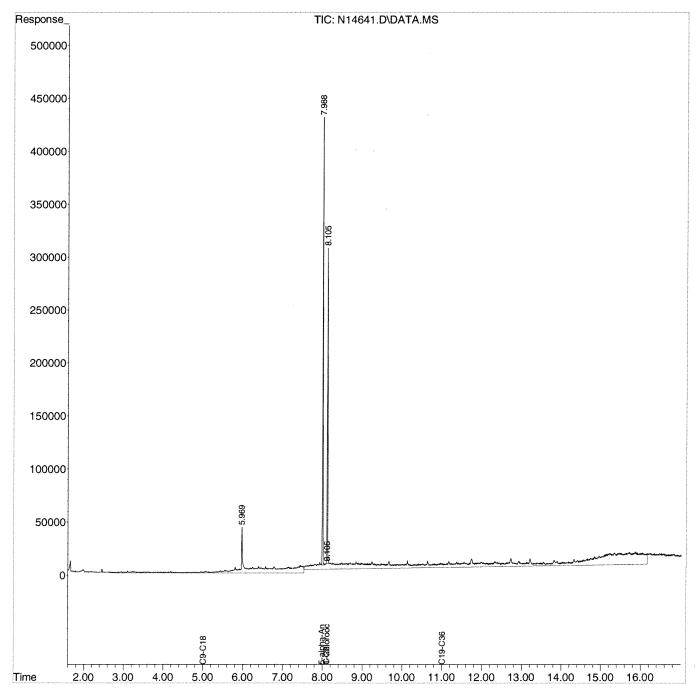
Sample : 70594-3 Misc : SOIL,,ALI

ALS Vial : 14 Sample Multiplier: 1

Integration File: rteint.p

Quant Time: Aug 01 11:39:58 2011

Quant Method: C:\msdchem\1\METHODS\ALG051711N.M


Quant Title : EPH GC ALIPHATICS

QLast Update: Thu Jun 16 01:18:37 2011

Response via : Initial Calibration

Integrator: RTE

Volume Inj. : Signal Phase : Signal Info :

EPH QC FORMS

EPH ALIPHATICS SOIL MATRIX SPIKE MATRIX SPIKE DUPLICATE PERCENT RECOVERY

Instrument ID: N GC Column: ZB-5ms

Column ID: 0.25 mm

SDG: 70594 Non-spiked sample: B072811EASE Spike: L072811EASE Spike duplicate: LD072811EASE

	LCS SPIKE	LCD SPIKE	LOWER	UPPER	RPD	NON-SPIKE	SPIKE	SPIKE		SPIKE DUP	SPIKE DUP		ĺ	
COMPOUND	ADDED (ug/kg)	ADDED (ug/kg)	LIMIT	LIMIT	LIMIT	RESULT (ug/kg)	RESULT (ug/kg)	% REC	#	RESULT (ug/kg)	% REC	#	RPD	#
C-9	3333	3333	30	140	25	0	2245	67		2308	69		3	
C-10	3333	3333	40	140	25	0	2452	74		2652	80		8	Γ
C-12	3333	3333	40	140	25	0	2671	80		2767	83		4	Γ
C-14	3333	3333	40	140	25	0	2877	86		3008	90		4	Γ
C-16	3333	3333	40	140	25	0	3011	90		3187	96		6	Γ
C-18	3333	3333	40	140	25	0	3193	96		3303	99		3	Γ
C-19	3333	3333	40	140	25	0	2987	90		3096	93		4	Γ
C-20	3333	3333	40	140	25	0	3272	98		3347	100		2	Γ
C-22	3333	3333	40	140	25	0	3264	98		3384	102		4	Γ
C-24	3333	3333	40	140	25	0	3252	98		3388	102		4	Γ
C-26	3333	3333	40	140	25	0	3256	98		3364	101		3	Γ
C-28	3333	3333	40	140	25	0	3191	96		3331	100		4	Γ
C-30	3333	3333	40	140	25	0	3184	96		3275	98		3	Γ
C-36	3333	3333	40	140	25	0	2991	90		3180	95		6	Γ
C9-C18 Aliphatics	20000	20000	40	140	25	0	16449	82		17224	86		5	Γ
C19-C36 Aliphatics	26667	26667	40	140	25	0	25396	95		26364	99		4	Г

26667	26667	40	140	25	0	25396	95	26364	99	4	

[#] Column to be used to flag recovery and RPD values outside of QC limits * Values outside QC limits

Non-spike result of "0" used in place of "U" to allow calculation of spike recovery.	
--	--

Comments:	

EPH AROMATICS SOIL LABORATORY CONTROL SAMPLE LABORATORY CONTROL SAMPLE DUPLICATE PERCENT RECOVERY

Instrument ID: N

GC Column: ZB-5ms

GC Column: ZB-5ms Column ID: 0.25 mm SDG: 70594

Non-spiked sample: B072811EASE

Spike: L072811EASE Spike duplicate: LD072811EASE

	LCS SPIKE	LCSD SPIKE	LOWER	UPPER	RPD	NON-SPIKE	SPIKE	SPIKE		SPIKE DUP	SPIKE DUP			
COMPOUND	ADDED (ug/kg)	ADDED (ug/kg)	LIMIT	LIMIT	LIMIT	RESULT (ug/kg)	RESULT (ug/kg)	% REC	#	RESULT (ug/kg)	% REC	#	RPD	#
Naphthalene	3333	3333	40	140	30	0	2049	61		1939	58		5	Γ
2-Methylnaphthalene	3333	3333	40	140	30	0	2150	65		2072	62		4	
Acenaphthylene	3333	3333	40	140	30	0	2375	71		2278	68		4	
Acenaphthene	3333	3333	40	140	30	0	2400	72		2367	71		1	
Fluorene	3333	3333	40	140	30	0	2544	76		2527	76		1	
Phenanthrene	3333	3333	40	140	30	0	2775	83		2798	84		1	
Anthracene	3333	3333	40	140	30	0	2945	88		2952	89		0	
Fluoranthene	3333	3333	40	140	30	0	3048	91		3052	92		0	
Pyrene	3333	3333	40	140	30	0	3033	91		3094	93		2	
Benzo[a]anthracene	3333	3333	40	140	30	0	2997	90		3044	91		2	
Chrysene	3333	3333	40	140	30	0	3192	96		3206	96		0	
Benzo[b] fluoranthene	3333	3333	40	140	30	0	3056	92		3085	93		1	
Benzo[k] fluoranthene	3333	3333	40	140	30	0	3161	95		3133	94		1	
Benzo[a] pyrene	3333	3333	40	140	30	0	3020	91		3062	92		1	
Indeno [1,2,3-cd] pyrene	3333	3333	40	140	30	0	3048	91		3014	90		1	
Dibenz [a,h] anthracene	3333	3333	40	140	30	0	3008	90		3040	91		1	
Benzo(g,h,i) perylene	3333	3333	40	140	30	0	3113	93		3155	95	T	1	

[#] Column to be used to flag recovery and RPD values outside of QC limits

Non-spike result of "0" used in place of "U" to allow calculation of spike recovery.

Comments	:

^{*} Values outside QC limits

EPH AROMATIC BREAKTHOUGH REPORT OF ALIPHATIC LABORATORY CONTROL SAMPLE

Instrument ID: N

SDG: 70594

GC Column: ZB-5ms

Aliphatic LCS: L072811EASE

Column ID: 0.25 mm

Aromatic LCS: L072811EASE

	LOWER	UPPER	ALIPHATIC	AROMATIC	%	
COMPOUND	LIMIT	LIMIT	RESULT (ug/mL)	RESULT (ug/mL)	BREAKTHROUGH	#
Naphthalene	0	5	0.00	15.4	0.0	
2-Methylnaphthalene	0	5	0.00	16.1	0.0	

Column to be used to flag breakthrough values outside of QC limits

Non-spike result of "0" used in place of "U" to allow calculation of spike recovery

Comments:	

^{*} Values outside QC limits

EPH AROMATIC BREAKTHOUGH REPORT OF ALIPHATIC LABORATORY CONTROL SAMPLE

Instrument ID: N

SDG: 70594

GC Column: ZB-5ms

Aliphatic LCS: LD072811EASE

Column ID: 0.25 mm

Aromatic LCS: LD072811EASE

	LOWER	UPPER	ALIPHATIC	AROMATIC	%	
COMPOUND	LIMIT	LIMIT	RESULT (ug/mL)	RESULT (ug/mL)	BREAKTHROUGH	#
Naphthalene	0	5	0.00	14.5	0.0	
2-Methylnaphthalene	0	5	0.00	15.5	0.0	

- # Column to be used to flag breakthrough values outside of QC limits
- * Values outside QC limits

Non-spike result of "0" used in place of "U" to allow calculation of spike recovery

Comments:	

PCB DATA SUMMARIES

Mr. Steve Vetere Tetra Tech NUS, Inc. 250 Andover Street Wilmington MA 01887

August 3, 2011 SAMPLE DATA

Lab Sample ID: B080111PSOX

Matrix: Soil **Percent Solid:** 100 **Dilution Factor:** 1.0

Collection Date: Lab Receipt Date:

Extraction Date: 08/01/11 **Analysis Date:** 08/03/11

CLIENT SAMPLE ID

Project Name: LMC WILMINGTON

Project Number: 1121C03346

Field Sample ID: Lab QC

	PCB ANALYTICAL RESUL	TS
COMPOUND	Quantitation Limit μ g/kg	Results μg/kg
PCB-1016	33	U
PCB-1221	33	U
PCB-1232	33	U
PCB-1242	33	U
PCB-1248	33	U
PCB-1254	33	U
PCB-1260	33	U
PCB-1262	33	U
PCB-1268	33	U
	Surrogate Standard Recovery	
	2,4,5,6-Tetrachloro-m-xylene 103 Decachlorobiphenyl 98	% %
U=Undetected J	I=Estimated E=Exceeds Calibration Range	B=Detected in Blank

METHODOLOGY: Sample analysis conducted according to Test Methods for Evaluating Solid Waste, SW-846 Method 8082.

Sample preparation conducted according to Test Methods for Evaluating Solid Waste, SW-846 Method 3540C.

COMMENTS: Results are expressed on a dry weight basis.

PCB EXT Report

Data Path: C:\msdchem\1\DATA\080311-M\

Data File: M46230B.D

Signal(s): Signal #1: ECD1A.ch Signal #2: ECD2B.ch

Acq On : 3 Aug 2011 11:18 am

Operator : JL

Sample : B080111PSOX,,A/C

Misc

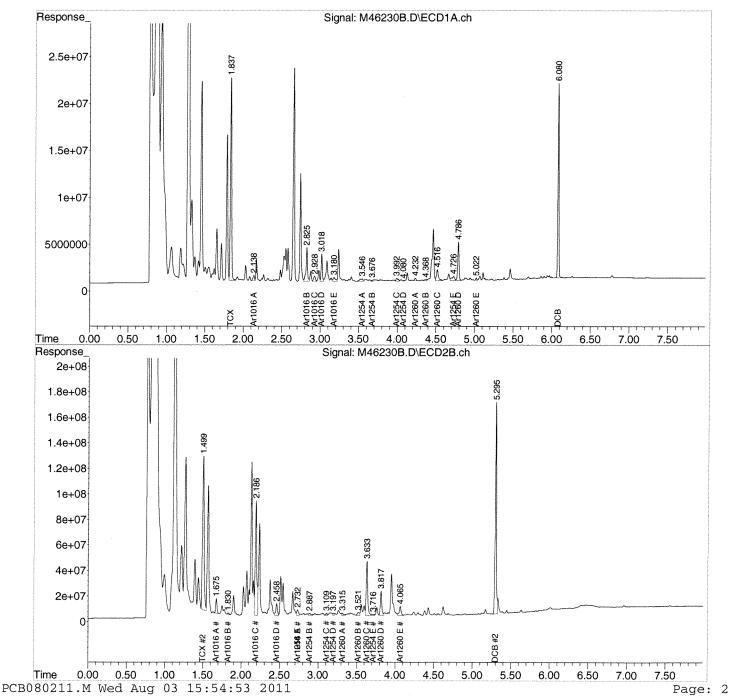
ALS Vial : 6 Sample Multiplier: 1

Integration File signal 1: events.e Integration File signal 2: events2.e Quant Time: Aug 03 15:54:37 2011

Quant Method: C:\msdchem\1\METHODS\PCB080211.M

Quant Title : SW-846 METHOD 8082 Aroclor 1016/1260/1254

QLast Update : Wed Aug 03 11:00:55 2011


Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 2 uL

Signal #1 Phase: STX-CLPPesticides Signal #2 Phase: STX-CLPPesticides

Signal #1 Info : 30 m x 0.25mm x 0 Signal #2 Info : 30 m x 0.25mm x 0.25 um

Mr. Steve Vetere Tetra Tech NUS, Inc. 250 Andover Street Wilmington MA 01887

CLIENT SAMPLE ID

Project Name: LMC WILMINGTON

Project Number: 1121C03346

Field Sample ID: LMC-CONCRETE-NC-1 August 3, 2011

SAMPLE DATA

08/03/11

Lab Sample ID: 70594-1 Matrix: Solid **Percent Solid:** 95 **Dilution Factor:** 1.0 **Collection Date:** 07/27/11 Lab Receipt Date: 07/27/11 **Extraction Date:** 08/01/11

Analysis Date:

PCB ANALYTICAL RESULTS							
COMPOUND	Quantitation Limit µg/kg	Results μg/kg					
PCB-1016	33	U					
PCB-1221	33	U					
PCB-1232	33	U					
PCB-1242	33	U					
PCB-1248	33	U					
PCB-1254	33	U					
PCB-1260	33	U					
PCB-1262	33	U					
PCB-1268	33	U					
Surrogate Standard Recovery							
	2,4,5,6-Tetrachloro-m-xylene 84 Decachlorobiphenyl 101	% %					
U=Undetected	J=Estimated E=Exceeds Calibration Range	B=Detected in Blank					

METHODOLOGY: Sample analysis conducted according to Test Methods for Evaluating Solid Waste, SW-846 Method 8082.

Sample preparation conducted according to Test Methods for Evaluating Solid Waste, SW-846 Method 3540C.

COMMENTS: Results are expressed on a dry weight basis.

PCB EXT Report

Authorized signature Mullill

Data Path: C:\msdchem\1\DATA\080311-M\

Data File: M46233.D

Signal(s): Signal #1: ECD1A.ch Signal #2: ECD2B.ch

Acq On : 3 Aug 2011 11:49 am

Operator : JL Sample : 70594-1

Misc :

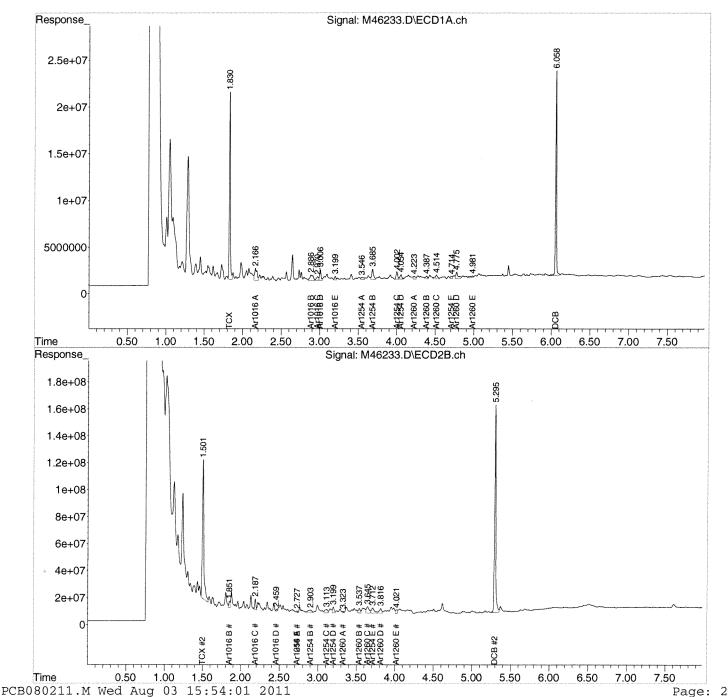
ALS Vial : 9 Sample Multiplier: 1

Integration File signal 1: events.e Integration File signal 2: events2.e Quant Time: Aug 03 15:54:01 2011

Quant Method: C:\msdchem\1\METHODS\PCB080211.M

Quant Title : SW-846 METHOD 8082 Aroclor 1016/1260/1254

QLast Update : Wed Aug 03 11:00:55 2011


Response via: Initial Calibration

Integrator: ChemStation

Volume Inj. : 2 uL

Signal #1 Phase : STX-CLPPesticides Signal #2 Phase: STX-CLPPesticides

Signal #1 Info $: 30 \text{ m} \times 0.25 \text{mm} \times 0$ Signal #2 Info $: 30 \text{ m} \times 0.25 \text{mm} \times 0.25$ um

Mr. Steve Vetere Tetra Tech NUS, Inc. 250 Andover Street Wilmington MA 01887

CLIENT SAMPLE ID

Project Name:

LMC WILMINGTON

Project Number:

1121C03346

Field Sample ID:

LMC-CONCRETE-NC-2

August 3, 2011

SAMPLE DATA

Lab Sample ID:

70594-2

Matrix:

Solid

Percent Solid:

97

Dilution Factor:

1.0

Collection Date:

07/27/11

Lab Receipt Date: **Extraction Date:**

07/27/11 08/01/11

Analysis Date:

08/03/11

P	CB ANALYTICAL RESULTS	
COMPOUND	Quantitation Limit μg/kg	Results μg/kg
PCB-1016	33	U
PCB-1221	33	U
PCB-1232	33	U
PCB-1242	33	U
PCB-1248	33	U
PCB-1254	33	U
PCB-1260	33	U
PCB-1262	33	U
PCB-1268	33	U
Sı	urrogate Standard Recovery	

Decachlorobiphenyl

% 95

U=Undetected J=Estimated E=Exceeds Calibration Range B=Detected in Blank

METHODOLOGY: Sample analysis conducted according to Test Methods for Evaluating Solid Waste, SW-846 Method 8082.

Sample preparation conducted according to Test Methods for Evaluating Solid Waste, SW-846 Method 3540C.

COMMENTS: Results are expressed on a dry weight basis.

Authorized signature Mulull

Data Path : C:\msdchem\1\DATA\080311-M\

Data File: M46234.D

Signal(s): Signal #1: ECD1A.ch Signal #2: ECD2B.ch

Acq On : 3 Aug 2011 11:59 am

Operator : JL Sample : 70594-2

Misc

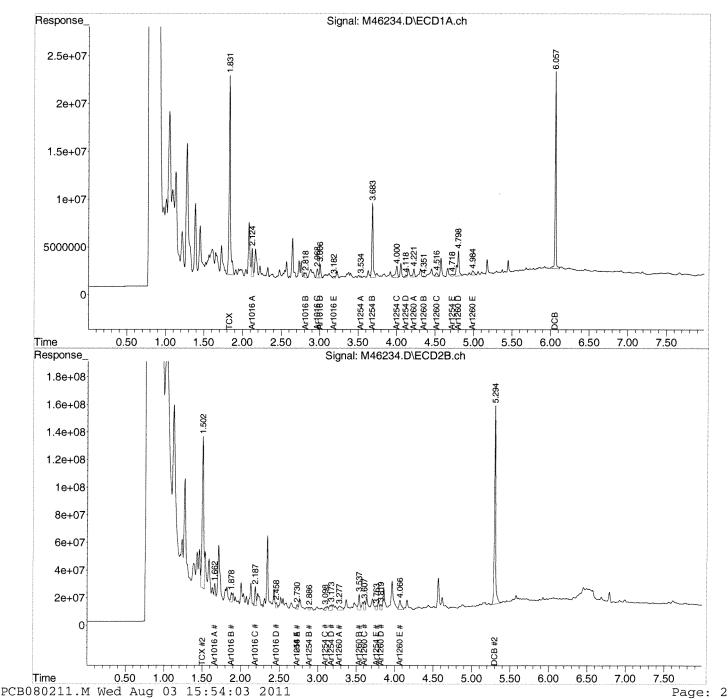
ALS Vial : 10 Sample Multiplier: 1

Integration File signal 1: events.e Integration File signal 2: events2.e Quant Time: Aug 03 15:54:03 2011

Quant Method: C:\msdchem\1\METHODS\PCB080211.M

Quant Title : SW-846 METHOD 8082 Aroclor 1016/1260/1254

QLast Update : Wed Aug 03 11:00:55 2011


Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 2 uL

Signal #1 Phase: STX-CLPPesticides Signal #2 Phase: STX-CLPPesticides

Signal #1 Info : 30 m x 0.25mm x 0 Signal #2 Info : 30 m x 0.25mm x 0.25 um

PCB QC FORMS

PCB SOIL LABORATORY CONTROL SAMPLE/DUPLICATE PERCENT RECOVERY

Instrument ID: M

GC Column #1: STX-CLPesticides I

SDG:

Column ID: 0.25 mm

Non-spiked sample: B080111PSOX,,A/C

GC Column #2: STX-CLPesticides II

Spike: L080111PSOX,,A/C

Column ID: 0.25 mm

Spike duplicate: LD080111PSOX,,A/C

	LCS SPIKE	LCSD SPIKE	LOWER	UPPER	RPD	NON-SPIKE	SPIKE	SPIKE		SPIKE DUP	SPIKE DUP		
COMPOUND	ADDED (ug/kg)	ADDED (ug/kg)	LIMIT	LIMIT	LIMIT	RESULT (ug/kg)	RESULT (ug/kg)	% REC	#	RESULT (ug/kg)	% REC	#	RPD
PCB 1016	200	200	65	140	30	0	221	111		210	105		5.0
PCB 1260	200	200	60	130	30	0	227	114		212	106		6.8
PCB 1016 #2	200	200	65	140	30	0	232	116		225	113	-	2.7
PCB 1260 #2	200	200	60	130	30	0	215	107		201	101		6.5

Column to be used to flag recovery and RPD values outside of QC limits

LCS/LCSD spike added values have been weight adjusted.

Non-spike result of "0" used in place of "U" to allow calculation of spike recovery.

Comments:	

^{*} Values outside QC limits

SUBCONTRACTED REPORTS & NARRATIVES

eastern analytical

Casey Payne
Analytics Environmental Lab, LLC
195 Commerce Way
Portsmouth, NH 03801

Subject: Laboratory Report

Eastern Analytical, Inc. ID: 101841

Client Identification: 1121C03346 | LMC Wilmington

Date Received: 8/3/2011

Dear Ms. Payne:

Enclosed please find the laboratory report for the above identified project. All analyses were performed in accordance with our QA/QC Program. Unless otherwise stated, holding times, preservation techniques, container types, and sample conditions adhered to EPA Protocol. Samples which were collected by Eastern Analytical, Inc. (EAI) were collected in accordance with approved EPA procedures. Eastern Analytical, Inc. certifies that the enclosed test results meet all requirements of NELAP and other applicable state certifications. Please refer to our website at www.eailabs.com for a copy of our NELAP certificate and accredited parameters.

The following standard abbreviations and conventions apply to all EAI reports:

Solid samples are reported on a dry weight basis, unless otherwise noted

< : "less than" followed by the reporting limit

> : "greater than" followed by the reporting limit

%R: % Recovery

Eastern Analytical Inc. maintains certification in the following states: Connecticut (PH-0492), Maine (NH005), Massachusetts (M-NH005), New Hampshire/NELAP (1012), Rhode Island (269) and Vermont (VT1012).

The following information is contained within this report: Sample Conditions summary, Analytical Results/Data, Quality Control data (if requested) and copies of the Chain of Custody. This report may not be reproduced except in full, without the written approval of the laboratory.

If you have any questions regarding the results contained within, please feel free to directly contact me or the chemist(s) who performed the testing in question. Unless otherwise requested, we will dispose of the sample(s) 30 days from the sample receipt date.

We appreciate this opportunity to be of service and look forward to your continued patronage.

Sincerely,

Lorraine Olashaw, Lab Director

9/4///
Date

of pages (excluding cover letter)

www.eailabs.com

Analytical Method Report Certification Form

EAI ID#: 101841

Client: Analytics Environmental Lab, LLC

Client Designation: 1121C03346 | LMC Wilmington

This Form provides certification for the following data set.						Received on ice or cold packs (Yes/No): Y Temperature upon receipt (°C): 2.4		
Lab ID	Sample ID	Date Rec'd	Date Samp'd	Sample Matrix	% Dry Weight	Acceptable temperature range (°C): 0-6 Exceptions/Comments (other than thermal preservation)		
101841.01	LMC-Concrete-NC-1 70594-1	8/3/2011	7/27/2011	soil	78	Adheres to Sample Acceptance Policy		
101841.02	LMC-Concrete-NC-2 70594-2	8/3/2011	7/27/2011	soil	87	Adheres to Sample Acceptance Policy		

CAM Protocol(s) Reported 8260 () 8082 () VPH () 6010 () 9014 (8270() 8081() EPH() 6020 🗸	7196 ()						
CERTIFICATION: Affirmative responses to questions A to	nrough F are required for "Presumptive Certainty" sta	tus						
A Were all samples received in a condition consistent with that described on the chain-of-custody, properly preserved, and prepared/analyzed within holding times? B Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed? C Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances? Does the laboratory report comply with all the reporting requirements in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data"? E VPH and EPH Methods only: Was each CAM protocol selected above run without significant modifications? Yes_No_NA F Were all applicable CAM protocol and QC performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?								
Responses to questions G, H and I below are required for "Presumptive Certainty" status G Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)? H Were all QC performance standards specified in the CAM protocol(s) achieved? I Were results reported for the complete analyte list specified in the selected CAM protocol(s)? YesNo								
I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.								
Signature: Mely durity	_ Lorraine Olashaw, Laboratory Director	Date: 8/4/ //						
eastern analytical, inc.	www.eailabs.com	Phone: (603) 228-0525						

EAI ID#: 101841

Client Designation: 1121C03346 | LMC Wilmington

Samples Received on: 8/3/2011

SAMPLE RECEIPT

All samples were stored and analyzed in accordance with all quality control and method requirements unless otherwise noted below.

No field QC was designated for this sample delivery group.

QUALITY CONTROL

All samples were analyzed as part of an analytical QC batch consisting of a method blank, a laboratory control sample (LCS), a matrix duplicate, a matrix spike (MS) and a matrix spike duplicate (MSD), where applicable. Any deviations from QC acceptance criteria are noted below, this includes sample preservation and holding time requirements.

Method References:
EPA SW-846 Update III
Mass. Dept. of Environmental Protection Bureau of Waste Site Cleanup - Compendium of Analytical Methods (CAM)

METALS

All QC acceptance criteria were met.

LABORATORY REPORT

EAI ID#: 101841

Client: Analytics Environmental Lab, LLC

Client Designation: 1121C03346 | LMC Wilmington

Sample ID:	LMC-Concrete-NC- Lt 1 70594-1	MC-Concrete -NC-2 70594-2					
Lab Sample ID:	101841.01	101841.02					
Matrix:	soil	soil					
Date Sampled:	7 <i>1</i> 27/11	7/27/11	Analytical		Date of		
Date Received:	8/3/11	8/3/11	Matrix	Units	Analysis	Method	Analyst
Antimony	< 0.5	< 0.5	SolTotDry	mg/kg	8/3/11	6020	DS
Arsenic	7.3	5.4	SolTotDry	mg/kg	8/3/11	6020	DS
Barium	52	33	SolTotDry	mg/kg	8/3/11	6020	DS
Beryllium	< 0.5	< 0.5	SolTotDry	mg/kg	8/3/11	6020	DS
Cadmium	< 0.5	< 0.5	SolTotDry	mg/kg	8/3/11	6020	DS
Chromium	21	15	SolTotDry	mg/kg	8/3/11	6020	DS
Copper	5.5	4.2	SolTotDry	mg/kg	8/3/11	6020	DS
Lead	2.8	3.8	SolTotDry	mg/kg	8/3/11	6020	DS
Mercury	< 0.1	< 0.1	SolTotDry	mg/kg	8/3/11	6020	DS
Nickel	14	9.0	SolTotDry	mg/kg	8/3/11	6020	DS
Selenium	< 0.5	< 0.5	SolTotDry	mg/kg	8/3/11	6020	DS
Silver	< 0.5	< 0.5	SolTotDry	mg/kg	8/3/11	6020	DS
Thallium	< 0.5	< 0.5	SolTotDry	mg/kg	8/3/11	6020	DS
Zinc	17	17	SolTotDry	mg/kg	8/3/11	6020	DS

EAI ID#: 101841

Client: Analytics Environmental Lab, LLC

Client Designation: 1121C03346 | LMC Wilmington

				Date of		
Parameter Name	Blank	LCS	LCSD	Units Analysis	Limits RPD Metho	bc
Antimony	< 0.5	43 (108 %R)		mg/kg 8/3/11	80 - 120 20 60	020
Arsenic	< 0.5	36 (89 %R)		mg/kg 8/3/11		020
Barium	< 0.5	36 (89 %R)		mg/kg 8/3/11		020
Beryllium	< 0.5	34 (85 %R)		mg/kg 8/3/11		020
Cadmium	< 0.5	36 (90 %R)		mg/kg 8/3/11		020
Chromium	< 0.5	32 (80 %R)		mg/kg 8/3/11		020
Copper	< 0.5	34 (85 %R)		mg/kg 8/3/11		020
Lead	< 0.5	36 (90 %R)		mg/kg 8/3/11		020
Mercury	< 0.1	0.4 (91 %R)		mg/kg 8/3/11		020
Nickel	< 0.5	32 (81 %R)		mg/kg 8/3/11		020
Selenium	< 0.5	37 (94 %R)		mg/kg 8/3/11		020
Silver	< 0.5	37 (92 %R)		mg/kg 8/3/11	80 - 120 20 60	020
Thallium	< 0.5	36 (89 %R)		mg/kg 8/3/11)20
Zinc	< 5	40 (99 %R)		mg/kg 8/3/11)20

Parameter Name	MS/MSD Parent ID	MS/MSD Parent	Matrix Spike	MSD	Units	Date of Analysis		RPD	Method
					***		WMENT'S BOTH THOSE, AND REPRESENTATIONS AND		T-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
Antimony	101841.02	< 0.5	1100 (115 %R)	1200 (117 %R) (2 RPD)	mg/kg	8/3/11	75-125	20	6020
Arsenic	101841.02	5.4	980 (97 %R)	980 (97 %R) (0 RPD)	mg/kg	8/3/11	75-125	20	6020
Barium	101841.02	33	1000 (98 %R)	1000 (99 %R) (1 RPD)	mg/kg	8/3/11	75-125	20	6020
Beryllium	101841.02	< 0.5	880 (87 %R)	900 (90 %R) (3 RPD)	mg/kg	8/3/11	75-125	20	6020
Cadmium	101841.02	< 0.5	980 (98 %R)	960 (96 %R) (2 RPD)	mg/kg	8/3/11	75-125		6020
Chromium	101841.02	15	780 (77 %R)	810 (79 %R) (3 RPD)		8/3/11	75-125		6020
Copper	101841.02	4.2	790 (79 %R)	810 (80 %R) (1 RPD)		8/3/11	75-125		6020
Lead	101841.02	3.8	980 (98 %R)	990 (99 %R) (1 RPD)		8/3/11	75-125	20	6020
Mercury	101841.02	< 0.1	1.0 (99 %R)	1.0 (98 %R) (1 RPD)		8/3/11	75-125		6020
Nickel	101841.02	9.0	820 (81 %R)	760 (75 %R) (8 RPD)		8/3/11	75-125		6020
Selenium	101841.02	< 0.5	940 (94 %R)	920 (92 %R) (2 RPD)		8/3/11	75-125		6020
Silver	101841.02	< 0.5	1000 (103 %R)	1100 (106 %R) (3 RPD)		8/3/11	75-125	20	6020
Thallium	101841.02	< 0.5	1000 (101 %R)	1000 (100 %R) (1 RPD)		8/3/11	75-125		6020
Zinc	101841.02	17	790 (77 %R)	810 (79 %R) (3 RPD)	_	8/3/11	75-125		6020

Samples were analyzed within holding times unless noted on the sample results page. Instrumentation was calibrated in accordance with the method requirements. The method blanks were free of contamination at the reporting limits. The associated matrix spikes and/or Laboratory Control Samples met the above stated criteria. Exceptions to the above statements are flagged or noted above or on the QC Narrative page.

*/! Flagged analyte recoveries deviated from the QA/QC limits.

eastern analytical, inc.

www.eailabs.com

Phone: (603) 228-0525

ain Of Custody Form Accommence way, Just E (603) 430-2315 Fax Cords and/or write Required Analysis Ords and/or write Required Ords Ords and/ords Ords and/ords and/ords Ords and/ords and/ords Ords and/ords and/ords Ords and/ord	A Hours 2 (1)	Email Results to: Comments, Additional Analyses, or Special Instructions: Email Results to:	Company: Analytics Environmental Lab LLC	Project#: [[2][C03546 Proj. Name: LHC WILH(NGTON
For Analytics U For Analytics U For Analytics U Received in good condition H checked by: abolts checked by: Abolts checked by: E-Frinct SW - Wirtewater SW - Surface Water E-Frinct Froject Requirements: Froject Requirements: Froject Requirements: Froject Requirements: Froject Requirements: Project Requirements: Froject Requirem			Sethanol Other Field Filtered? V or N Metals: RCRAB PP13 TAL23 Other* MADED 14 metals	Chain Of Custody Form 195 Commerce Way, Suite E (603) 436-5111 Pontamouth, NH 03801 (800) 929-9906 Circle and/or Write Required Analysis
of Nired: Y'N interest	Level II* Level III* Standard CT EDD Required: Y* Other: Page of	Project Requirements: *Fee may apply	Sold / Sludge Analytics Sample # TOS9 4	For Analytics Use Only For Analytics Use Only Shipped or hand-delivered remperature (°C):

CHAIN OF CUSTODIES

Chain Of Custody Form

Way, Suite E (603) 436-5111 Fax Samples were (603) 430-2151 Fax Samples were (1) Shinned or Control (603) 430-2151 Fax (603) 43	Circle and/or Write Required Analysis Oricle and/or Write Required Analysis PCB: 8082) 608 Soxhler? Y OF N Whetak: Full Indudes targets) Ranges only Whetak: Round R	2000 800 800 800 800 800 800 800 800 800	ments, Additional Analyses, or Special Instructions: ** MGFALS DEP 14 LIST Com. MASS DEP 6PH & VPH Com. MASS DEP 6PH &
195 Commerce Way, Suite E Portsmouth, NH 03801 (800) 929-9906	Pesticides: SVOC. 8260 S24.2 624 VOC. 8260 S24.2 624 Field Ellhered? Y Or N Field Ellhered? Y Or N		Metals or Special Instructions: Metals Are MASS Def MASS Def CP44 & VP44 SSUMPTIVE CERTAINTS
environmental laboratory LLC	Proj. Name: Unc. Wildmington Preservation Sample Sample Sample Time Preservation	>>>>	Comments, Additional Analyses, or Special Instructions: ** Methods Are MAS The Comments Additional Analyses, or Special Instructions: ** Methods Are MAS ** Methods Are MAS ** Methods Are Mass ** Methods Are Cept Are Methods Are
\cs	+ 2 2 5 1	127 11 -3 127 11 +-1	Comments Tology Tology
analytics	Project#: [[2] Co3346 Pro Company: TETRA TECH Report to: Steve Verker Address: 250 ANDOVER MILMIN GRON Phone: 928-474-84 Quote #: PO# (if required):	UMC-CONEREGE-NC-1 7 27 11 13:00 UMC-CONCEGG-NC-2 13:30 UMC-80-TRENCH-1 14:00 UMC-TB 02 14:00 UMC-TB 02	Email Results to: Stephen Ackregitatrated, Comments. Turnaround Time (TAT) MC 24 Hours*

Analytics Report 70594 page 0072 of 73

ANALYTICS SAMPLE RECEIPT CHECKLIST

AEL LAB#: 70594 CLIENT: TETRA TECH PROJECT: LMC WILMINGTON	COOLER NUMBER: NUMBER OF COOLERS: DATE RECEIVED:	223 	
A: PRELIMINARY EXAMINATION: 1. Cooler received by(initials):	DATE COOLER OPENED: Date Received:	7/27/11 7/27/K	
2. Circle one:	Shipped	•	
3. Did cooler come with a shipping slip?	Y		
3a. Enter carrier name and airbill number here:			
4. Were custody seals on the outside of cooler? How many & where: Scal Date:	Y Seal Name:	<u> </u>	
5. Did the custody seals arrive unbroken and intact upon arrival?	Y	NA-	
6. COC*.			
7. Were Custody papers filled out properly (ink.signed, etc)?	\mathscr{O}	N	
8. Were custody papers sealed in a plastic bag?	\mathscr{O}	N	
9. Did you sign the COC in the appropriate place?	Ø	N	
10. Was the project identifiable from the COC papers?	\mathcal{O}	N	
11. Was enough ice used to chill the cooler? N	Temp. of cooler:	29°C	
B. Log-In: Date samples were logged in: 7/29/11	Ву:		
12. Type of packing in coolectbubble vrap, popcorn)	Ø	N	
13. Were all bottles sealed in separate plastic bags?	O	N	
14. Did all bottles arrive unbroken and were labels in good condition?	Ø,	N	\sim
15. Were all bottle labels complete(ID.Date.time.etc.)	B	N SOL	
16. Did all bottle labels agree with custody papers?	de 140	N	
17. Were the correct containers used for the tests indicated:	1/2/1/10	N	
18. Were samples received at the correct pH?	(Y	NA	
19. Was sufficient amount of sample sent for the tests indicated?	O	N	
20. Were all samples submitted within holding time?	(Y)	N	
21. Were bubbles absent in VOA samples?	Y	NA	
If NO, List Sample ID's and Lab #s:			
22. Laboratory labeling verified by (initials):	Date: _	1/2/11	

APPENDIX E

Copy of Bill of Lading

C52-01-12-4414W

January 20, 2012

Project Number 112lC03346

Mr. Kenneth Sanderson
Massachusetts Department of Environmental Protection
Northeast Regional Office
205B Lowell Street
Wilmington, Massachusetts 01887

Reference:

Final Bills of Lading

Utility-related Abatement Measure Former General Electric Property

50 Fordham Road

Wilmington, Massachusetts

Release Tracking Number (RTN) 3-29952

Dear Mr. Sanderson:

On behalf of Lockheed Martin Corporation, Tetra Tech is submitting (attached) bills of lading BWSC112A and BWSC112B in regards to a Utility-Related Abatement Measure (URAM) at the subject property. A URAM status report for this site was last provided on August 24, 2011.

The URAM was conducted to relocate electrical service to an existing on-site groundwater treatment building and parking lot light poles. A URAM Plan was provided to MassDEP to document the potential to encounter contaminated soils associated with the release of VOCs and petroleum hydrocarbons (Stoddard solvent) from historical site operations. This URAM is being conducted in support of a Release Abatement Measure (RAM) conducted under RTN 3-00518.

In total, approximately 27.02 tons of soil was removed from the site as a part of the URAM. Final BOLs, statement of attestation, and waste characterization data is provided attached. Tetra Tech collected one composite waste characterization sample to facilitate the generation of the waste disposal profile. Based on the analytical data, this material consists of remediation waste containing low concentrations of petroleum hydrocarbons.

You will notice that this submittal is being made more than 30 days following the receipt of the material at the receiving facility, this is due to complications with EDEP permissions and submittals and a lack of familiarity of this process by the receiving facility in Pennsylvania. We apologize for this variance.

Tetra Tech will prepare a URAM Completion Report on behalf of Lockheed Martin to comply with the requirements of 310 CMR 40.0466. If you have any questions or comments on this matter, please do not hesitate to contact me by telephone at 978-474-8434 or by e-mail at stephen.parker@tetratech.com.

Very truly yours

Stephen S. Parker, LSP

Project Manager

SSP/lh

Mr. Kenneth Sanderson MassDEP January 20, 2012 - Page 2 of 2

Attachment

c: R. Phillips, Lockheed Martin Corporation J. Winkler, CDM

S. Nesbit, Tetra Tech M. Alroy, Tetra Tech M. Martin, Tetra Tech

K. Cormier, TRC Environmental

File IC03346-3.2 w/o attach.

File IC03346-8.0 w/ attach.

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup

BWSC112

BILL OF LADING (pursuant to 310 CMR 40.0030)

Release Tracking Number

3 - 29952

A. LOCATION OF SITE OR DISPOSAL SITE WHERE REMEDIATION WASTE WAS GENERATED:				
Release Name/Location Aid: FORMER GE SITE				
3 Street Address: 50 FORDHAM ROAD				
2. Street Address:				
3. City/Town: WILMINGTON 4. Zip Code: 01887-2177				
5. Check her if a Tier Classification Submittal has been provided to DEP for this disposal site:				
a. Tier 1A b. Tier 1B b. Tier 1C d. Tier II				
6. If applicable provide the Permit Number:				
B. THIS FORM IS BEING USED TO: (check one: B1-B4):				
 ✓ 1. Submit a Bill of Lading (BOL) to transport Remediation Waste to Temporary Storage or a Receiving Facility. Response Actions associated with this BOL (check all that apply): □ a. Immediate Response Action (IRA) □ e. Comprehensive Response Actions □ b. Release Abatement Measure (RAM) □ f Limited Removal Action (LRA): 				
(must be retained pursuant to 310 CMR c. Downgradient Property Status (DPS) (must be retained pursuant to 310 CMR 40.0034(6); can't be submitted via eDEP)				
d. Utility Release Abatement Measure (URAM)				
 2. Submit an Attestation of Completion of Shipment to Temporary Storage (Sections C, F and J are not required): 3. Submit an Attestation of Completion of Shipment to a Receiving Facility (Sections C, F and J are not required): 4. Certify that Remediation Waste Was Not Shipped, and the Bill of Lading is Void. (Sections C, D, E, and F are not required) 5. Date Bill of Lading submitted to the Department:				
6. Period of Generation Associated with this Bill of Lading 6/21/2011 to 6/21/2011 (mm/dd/yyyy) (mm/dd/yyyy)				
(All sections of this transmittal form must be filled out unless otherwise noted) The Bill of Lading is not considered complete until the Attestation of Completion of Shipment is received by the Department.				
C. DESCRIPTION OF WASTE AND WASTE SOURCE: 1. Contaminated Media /Debris (check all that apply):				

Massachusetts Department of Environmental Protection

Bureau of Waste Site Cleanup

BILL OF LADING (pursuant to 310 CMR 40.0030)

BWSC112

Release Tracking Number

3 -	29952

C. DESCRIPTION OF WASTE AND WASTE SOURCE (cont.): 3. Containerized Waste (check all that apply): a. Tank Bottoms/Sludges b. Containers c. Drums d. Engineered Impoundments e. Other: 50 4. Estimated Quantity: Cu. Yds. Tons Gallons 5. Contaminant Source (check one): a. Transportation Accident b. Underground Storage Tank c. Brownfields Redevelopment d. Other: OLD SURFACE RELEASE 6. Type of Contaminant (check all that apply): 🗌 a. Gasoline 🔲 b. Diesel Fuel 🔲 c. #2 Fuel Oil 🔲 d. #4 Fuel Oil 🔲 e. #6 Fuel Oil 🔲 f. Jet Fuel g. Waste Oil h. Kerosene 7. Constituents of Concern (check all that apply): b. Cd d. Pb f. EPH/TPH g. VPH a. As c. Cr e. Hg h. PCBs i. VOCs i. SVOCs k. Other: 8. If applicable, check the box for the Reportable Concentration Category of the site: ✓ a. RCS-1 b. RCS-2 ✓ c. RCGW-1 d. RCGW-2 9. Remediation Waste Characterization Documentation (check at least one): a. Site History Information b. Sampling Analytical Methods and Procedures ✓ c. Laboratory Data e. Characterization Documentation previously submitted to the Department d. Field Screening Data i. Date submitted: ii. Type of Documentation:

D. TRANSPORTER OR COMMON CARRIER INFORMATION:

(mm/dd/yyyy)

1.	Transporter/Common Carrier Name:	GOULET TRUCKING INC	
2.	Contact First Name: JEFF	3. Last Name:	GOULET
	: OO INDUCTRIAL BRIVE	WEST	

4. Street: 20 INDUSTRIAL DRIVE WEST 5. **T**itle: 7. State: MA 01373-0000 6. City/Town: SOUTH DEERFIELD 8. Zip Code:

9. Telephone: (413) 665-1323 11. Fax: (413) 665-1327 10. Ext:

BWSC112

BILL OF LADING (pursuant to 310 CMR 40.0030)

Release Tracking Number

3 - 29952
E. RECEIVING FACILITY/TEMPORARY STORAGE LOCATION:
Operator/Facility Name WMPA LF (GROWS NORTH) / TULLYTOWN PA
2. Contact First Name: KAREN 3. Last Name: SCHOEDEL
4. Street: 444 OXFORD VALLEY ROAD 5. Title:
6. City/Town: LANGHORNE 7. State: PA 8. Zip Code: 19047-0000
9. Telephone: (267) 580-2831 10. Ext: 11. Fax: (267) 580-3003
12. Type of Facility: (Check one)
a. Temporary Storage i. Period of Temporary Storage: to (mm/dd/yyyy) (mm/dd/yyyy)
ii. Reason for Temporary Storage:
b. Asphalt Batch/Hot Mix c. Landfill/Disposal d. Landfill/Structural Fill e. Landfill/Daily Cover
f. Asphalt Batch/Cold Mix g. Thermal Processing h. Incinerator i. Other:
13. Division of Hazardous Waste/Class A Permit Number:
14. Division of Solid Waste Permit Number: 101680 / 101494
15. EPA Identification Number: NA
F. LSP SIGNATURE AND STAMP: I attest under the pains and penalties of perjury that I have personally examined and am familiar with this submittal form, including
any and all documents accompanying this submittal. In my professional opinion and judgment based upon application of (i) the standard of care in 309 CMR 4.02(1), (ii) the applicable provisions of 309 CMR 4.02(2) and (3), and 309 CMR 4.03(2), and (iii) the provisions of 309 CMR 4.03(3), to the best of my knowledge, information and belief, the assessment action(s) undertaken to characterize the Remediation Waste which is (are) the subject of this submittal for acceptance at the facility identified in this submittal comply with applicable provisions of 310 CMR 40.0000, and such facility is permitted to accept Remediation Waste having the characteristics described in this submittal.
standard of care in 309 CMR 4.02(1), (ii) the applicable provisions of 309 CMR 4.02(2) and (3), and 309 CMR 4.03(2), and (iii) the provisions of 309 CMR 4.03(3), to the best of my knowledge, information and belief, the assessment action(s) undertaken to characterize the Remediation Waste which is (are) the subject of this submittal for acceptance at the facility identified in this submittal comply with applicable provisions of 310 CMR 40.0000, and such facility is permitted to accept Remediation Waste having
standard of care in 309 CMR 4.02(1), (ii) the applicable provisions of 309 CMR 4.02(2) and (3), and 309 CMR 4.03(2), and (iii) the provisions of 309 CMR 4.03(3), to the best of my knowledge, information and belief, the assessment action(s) undertaken to characterize the Remediation Waste which is (are) the subject of this submittal for acceptance at the facility identified in this submittal comply with applicable provisions of 310 CMR 40.0000, and such facility is permitted to accept Remediation Waste having the characteristics described in this submittal. I am aware that significant penalties may result, including, but not limited to, possible fines and imprisonment, if I submit information
standard of care in 309 CMR 4.02(1), (ii) the applicable provisions of 309 CMR 4.02(2) and (3), and 309 CMR 4.03(2), and (iii) the provisions of 309 CMR 4.03(3), to the best of my knowledge, information and belief, the assessment action(s) undertaken to characterize the Remediation Waste which is (are) the subject of this submittal for acceptance at the facility identified in this submittal comply with applicable provisions of 310 CMR 40.0000, and such facility is permitted to accept Remediation Waste having the characteristics described in this submittal. I am aware that significant penalties may result, including, but not limited to, possible fines and imprisonment, if I submit information which I know to be false, inaccurate or materially incomplete.
standard of care in 309 CMR 4.02(1), (ii) the applicable provisions of 309 CMR 4.02(2) and (3), and 309 CMR 4.03(2), and (iii) the provisions of 309 CMR 4.03(3), to the best of my knowledge, information and belief, the assessment action(s) undertaken to characterize the Remediation Waste which is (are) the subject of this submittal for acceptance at the facility identified in this submittal comply with applicable provisions of 310 CMR 40.0000, and such facility is permitted to accept Remediation Waste having the characteristics described in this submittal. I am aware that significant penalties may result, including, but not limited to, possible fines and imprisonment, if I submit information which I know to be false, inaccurate or materially incomplete. 1. LSP #: 9867 2. First Name: STEPHEN S 3. Last Name: PARKER 4. Telephone: (978) 658-7899 5. Ext.
standard of care in 309 CMR 4.02(1), (ii) the applicable provisions of 309 CMR 4.02(2) and (3), and 309 CMR 4.03(2), and (iii) the provisions of 309 CMR 4.03(3), to the best of my knowledge, information and belief, the assessment action(s) undertaken to characterize the Remediation Waste which is (are) the subject of this submittal for acceptance at the facility identified in this submittal comply with applicable provisions of 310 CMR 40.0000, and such facility is permitted to accept Remediation Waste having the characteristics described in this submittal. I am aware that significant penalties may result, including, but not limited to, possible fines and imprisonment, if I submit information which I know to be false, inaccurate or materially incomplete. 1. LSP #: 9867 2. First Name: STEPHEN S 3. Last Name: PARKER 4. Telephone: (978) 658-7899 5. Ext.

BWSC112

BILL OF LADING (pursuant to 310 CMR 40.0030)

Relea	se	Tracking	Numbe
3	-	29952	

G. PERSON SUBMITTING BILL OF LADING:
Check all that apply: a. change in contact name b. Change of address c. change in person undertaking response actions
Name of Organization: LOCKHEED MARTIN CORP
3. Contact First Name: ROBERT S 4. Last Name: PHILLIPS
6004 BOCKI EDGE DD MD DM24F
5. Street: 6. Title:
7. City/Town: BETHESDA 8. State: MD 9. Zip Code: 20817-1803
10. Telephone: (817) 763-7629 11. Ext 12. Fax:
II DELATIONOUID TO GITE OF REPOON CURMITTING DU LA COLLADADA
H. RELATIONSHIP TO SITE OF PERSON SUBMITTING BILL OF LADING: Check here to change relationship
1. RP or PRP: a. Owner b. Operator c. Generator d. Transporter
e. Other RP or PRP Specify: NON-SPECIFIED PRP
2. Fiduciary, Secured Lender or Municipality with Exempt Status (as defined by M.G.L. c.21E, s.2):
3. Agency or Public Utility on a Right of Way (as defined by M.G.L. c.21E, s.5(j))
4. Any Other person Undertaking Response Actions: Specify Relationship:
I. REQUIRED ATTACHMENTS AND SUBMITTALS :
 Check here if the Response Action(s) on which this opinion is based, if any, are (were) subject to any order(s), permit(s) and/or approvals issued by DEP or EPA. If the box is checked, you must attach a statement identifying the applicable provisions thereof.
2. Check here if any non-updatable information provided on this form is incorrect, e. g. property address. Send corrections to BWSC.eDEP@state.ma.us
3. Check here to certify that the LSP Opinion containing the material facts, data, and other information is attached.
J. CERTIFICATION OF PERSON SUBMITTING BILL OF LADING :
1.1, ROBERT STANLEY PHILLIPS , attest under the pains and penalties or perjury (i) that I have personally
examined and am familiar with the information contained in this submittal, including any and all documents accompanying this
transmittal form, (ii) that, based on my inquiry of those individuals immediately responsible for obtaining the information, the material information contained in this submittal is, to the best of my knowledge and belief, true, accurate and complete, and (iii)
that I am fully authorized to make this attestation on behalf of the entity legally responsible for this submittal. I/the person or
entity on whose behalf this submittal is made am/is aware that there are significant penalties, including, but not limited to, possible fines and imprisonment, for willfully submitting false, inaccurate, or incomplete information.
2. By: ROBERT STANLEY PHILLIPS 3. Title:
4. For LOCKHEED MARTIN CORP 5. Date: 10/21/2011
(Name of person or entity recorded in Section H) (mm/dd/yyyy)
l l

BWSC112

Release Tracking Number

BILL OF LADING (pursuant to 310 CMR 40.0030)	3 - 29952
J. CERTIFICATION OF PERSON SUBMITTING BILL OF LADING (cont.):	
6. Check here if the address of the person providing certification is different from address	recorded in Section H.
7. Street:	
8. City/Town: 9. State: 10. Zip Co	ode.
11. Telephone: 12. Ext: 13. Fax:	
11. Telephone12. LAU13. Fax	
YOU ARE SUBJECT TO AN ANNUAL COMPLIANCE ASSURANCE FEE OF UP TO BILLABLE YEAR FOR THIS DISPOSAL SITE. YOU MUST LEGIBLY COMPLETE SECTIONS OF THIS FORM OR DEP MAY RETURN THE DOCUMENT AS INCOMPLETE FORM, YOU MAY BE PENALIZED FOR MISSING A REQ	ALL RELEVANT IPLETE. IF YOU
Date Stamp (MassDEP USE ONLY):	
Received by DEP on 1/3/2012 11:48:54 AM	

Revised: 03/10/2010

476671PAE

K	
	K
	(1)

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup

BWSC112A

11 11 11 11 11 11 11 11 11 11 11 11 11	ADING (pursuant to 310 CMR 40.00	30) OF 4	Release Tracking Number		
A. SUMMARY OF SHIPMENT (To be filled out by the receiving facility upon receipt of Remediation Waste):					
Date of Shipment: (mm/dd/yyyy)	Date of Receipt: (mm/dd/yyyy)	3. Number of Loads Shipped:	4. Daily Volume Shipped: yds³ Vons gals		
11/4/2011	11/4/2011		22:01		
11/4/2011	11/7/2011	1	5.01		
·					
5. Totals Recorded on this Summar	y of Shipment Sheet:	2	27.02		
B. Check here if additional BWSC112A BOL SummarySheets are needed.					

476671846

1/13/11

Massachusetts Department of Environmental P

Bureau of Waste Site Cleanup	
BILL OF LADING Transport Log Sheet	Release Tracking Number
Page OF	- 3-29952
Load 1: SC Ballevel, I have be furnished to be because of Shipment: Time of Shipment:	Bacefulng Facility/Demporary Storage Representative: Karen Tully Fawn Rescurse Receivery Schoedel Date of Receipt: Time of Receipt:
11/4/2011 8:00 DEAM DIPM Truck/Tractor Registration: Trailer Registration (if any): C+50957A C+V-74320	11/1/2011 8:09 PAM FM
Load 2: Signature of Transporter Representative:	Load Size (cu. yda./tons): 5,01 tons
Govelet 09-0:2 Charty to Pencine 1 Date of Shipment: Time of Shipment: 11/4/2011 7:45 MAM PM Truck/Tractor Registration: Trailer Registration (if any): MA 59275 NY120205 Load 3: Signature of Transporter Representative:	Receiving Facility/Temporary Storage Representative: Haven Tully town Resource Receivery with tisk Date of Receipt: 11/4/2011 2:46 [] An IPM IT PM +: CKe+#613939 man: (es+ 438096 Load Size (cu. yds./tons); 22.01 tons
	Receiving Facility/Temporary Storage Representative
Truck/Tractor Registration: Time of Shipment W PM Truck/Tractor Registration: Trailer Registration (if any):	Date of Receipt: Time of Receipt: AM
(Load Size (cu. yds./tons):
Load 4: Signature of Transporter Representative:	Receiving Facility/Temporary Storage Representative:
Date of Shipment: AM PM Truck/Tractor Registration: Trailer Registration (if any):	Date of Receipt: Time of Receipt: PM
	Load Size (cu. yda./tone):
Load 5: Signature of Transporter Representative:	Receiving Facility/Temporary Storage Representative:
Date of Shipment: Time of Shipment: ÁM PM	Date of Receipt: Time of Receipt: PM
Truck/Tractor Registration: Trailer Registration (if any):	Load Size (cu. yds./tons):
Load 6: Signatiure of Transporter Representative:	Receiving Facility/Temmorany Storage Representative:
Date of Shipment: Time of Shipment: AM	Date of Receipt:
Truck/Tractor Registration: Trailer Registration (if any):	Load Size (cu. yds./tons):
rotal carried Forwa	and (cu. yds./tons): 27, 92 and (cu. yds./tons): 27, 92 and This Page (cu. yds./tons): 27, 92
/13/11	- 1.VL

BWSC112B

BILL OF LADING (pursuant to 310 CMR 40.0030) SUMMARY SHEET SIGNATURE PAGE

Release Tracking Number

A ACKNOWLEDGEMENT OF DEGELET OF DEVICE OF	
A. ACKNOWLEDGEMENT OF RECEIPT OF REMEDIATION WASTE AT	RECEIVING FACILITY OR TEMPORARY STORAGE:
transmittal form, (ii) that, based on my inquiry of those individuals immed material information contained in this submittal is, to the best of my know that I am fully authorized to make this attestation on behalf of the entity le entity on whose behalf this submittal is made am/is aware that there are possible fines and imprisonment, for willfully submitting false, inaccurate,	platery responsible for obtaining the information, the viledge and belief, true, accurate and compete, and (iii) egally responsible for this submittal. I/the person or significant penalties, including, but not limited to, or incomplete information.
2. By: Karen ASchwedel 4. For: Waste Management	3. Title: ナら、尺。
4. For: Waste Management	5. Date: 12/22/2011
6. Date of Final Shipment associated with this Bill of Lading:	2011 nm/dd/yyyy)
B. ACKNOWLEDGEMENT OF SHIPMENT AND RECEIPT OF REMEDIA ACTIONS ASSOCIATED WITH THIS BILL OF LADING:	TION WASTE BY PERSON CONDUCTING RESPONSE
examined and am familiar with the information contained in this submittal, transmittal form, (ii) that, based on my inquiry of those individuals immedia material information contained in this submittal is, to the best of my knowle that I am fully authorized to make this attestation on behalf of the entity leg entity on whose behalf this submittal is made am/Is aware that there are signossible fines and imprisonment, for willfully submitting false, inaccurate, of the content of the entity leg entity on whose behalf this submittal is made am/Is aware that there are signossible fines and imprisonment, for willfully submitting false, inaccurate, of the formation of the person or entity recorded in Section G. 4. For Lackheed Martin Corp. (Name of person or entity recorded in Section G.) 6. Check here if the address of the person providing certification is different formation.	and belief, true, accurate and complete, and (iii) gally responsible for this submittal. I/the person or gnificant penalties, including, but not limited to, or incomplete information. 3. Title: Or 10 12 (mm/dd/yyyy)
8. City/Town: 9. State:	10. Zip Code;
11. Telephone: 12. Ext:	13. Fax:
14. Check here if attaching optional supporting documentation such as o	copies of Load Information Summary Sheets

Grows North Landfill

1000 New Ford Mill Road,

Morrisville, PA, 19067-3704

Ph: (215) 428-4340

Customer Name TantaraCorp

Ticket Date 11/04/2011

Payment Type Credit Account **Manual Ticket#**

Hauling Ticket#

Route

StateWasteCode 920

Manifest

438096

Destination

N2 PO#

Profile

476671PAE(Non-Haz Contaminated Soil & Debris)

Generator

930986 132-LOCKHEEDMA

Time

Scale

Operator bseverns

Inbound

Reprint Ticket#

Carrier

Vehicle#

Container Driver

Check#

Billing#

Grid

Gen EPA ID

Gross 79940 lb

613939

GOULET

0004156

N2 11-4-11

Volume

092

11/04/11 02:46:59 PM

Out 11/04/11 03:17:12 PM

NORTH LAB INBOUND

NORTH 4

OUTBOUND

bseverns

Tare

Net 44020 lb

35920 lb

Tons 22.01

Tullytown Landfill

200 Bordentown Road,

Tullytown, PA, 19007-6309

Ph: (215) 428-3291

Customer Name TantaraCorp

Ticket Date

11/07/2011

Payment Type

Credit Account

Manual Ticket# Hauling Ticket#

Route

StateWasteCode 920

Manifest

438097

Destination

T2

PO#

In

Profile

476671PAE(Non-Haz Contaminated Soil & Debris)

Generator

940075 132-LOCKHEEDMA

Time

11/07/11 08:09:49 AM

Scale

Operator TRRF LAB

bseverns

Inbound

Reprint Ticket #

Carrier

Vehicle#

Container

Driver

Check#

Billing#

Grid

Gen EPA ID

Gross 45540 lb

1224623

41

0004157

T1 11-10-11

SCBALLARD

Volume

Tare 35520 lb

Out 11/07/11 08:44:34 AM

INBOUND TRRF 2 OUTBOUND

bseverns

Net

10020 lb

Tons 5.01

		* .e
.25		

	on-hazardous Waste Profile Sheet			
Requested Disposal Facility: WMPA L/F (GROWS North)	Allyfown Profile Number: 476671PAE			
Renewal for Profile Number:	Waste Approval Expiration Date:			
☐ Check here if there are multiple generating locations for	this waste. Attach additional locations.			
A. Waste Generator Facility Information (mus	t reflect location of waste generation/origin)			
Generator Name: Lockheed Martin Corporation				
2. Site Address: 50 Fordham Road	7. Email Address; robert.s.phillips@lmco.com			
3. City/ZIP: Wilmington, 01887	8. Phone: 817-495-0251 9. FAX: 817-762-4884			
4. State: Massachusetts				
5. County: Middlesex	11. Generator USEPA ID #:			
	12. State ID# (if applicable):			
B. Customer information 🔾 same as above	P. O. Number: TtNUS Wilmington			
1. Customer Name: TANTARA Corporation	6. Phone: 508.752.5599 FAX: 508.752.1005			
	7. Transporter Name: Goulet Trucking, Inc.			
	8. Transporter ID # (if appl.):			
4. Contact Name: Chris Pereira	9. Transporter Address: 20 Industrial Drive, West			
	10. City, State and ZIP: South Deerfield , Massachusetts, 01373			
C.Waste Stream Information				
1. DESCRIPTION				
a. Common Waste Name: Contaminated Soil				
State Waste Code(s): None 920				
 Describe Process Generating Waste or Source of Contar Operational spills and leaks 	nination;			
Operational spills and leaks				
c. Typical Color(s): Brown				
d Strong Odor? Tes V No Describe:				
e. Physical State at 70°F: 🗹 Solid 🚨 Liquid 🚨 Pow	rder 🛘 Semi-Solid or Sludge 🚨 Other:			
f. Layers? Single layer OMulti-layer TNA				
g. Water Reactive? 🚨 Yes 🗹 No lf Yes, Describe: _				
h. Free Liquid Range (%):toto NA(solid)			
i. pH Range: 7 to to NA(solid)				
j. Liquid Flash Point: 🔾 < 140°F 💢 140°- 199°F	☐ ≥ 200°F ☑ NA(solid)			
k. Flammable Solid: 🔲 Yes 🗹 No				
1. Physical Constituents: List all constituents of waste stream	The state of the s			
Constituents (Total Composition Must be ≥ 100%) 1. Soil	Lower Range Unit of Measure Upper Range Unit of Measure 85 % 92 %			
2. Concrete	5 % 15 %			
3. Debris / Plastic	1 2 %			
8				
6.				
2. ESTIMATED QUANTITY OF WASTE AND SHIPPING INFORMA	TION			
a. I One Time Event Base Repeat Event				
	Cubic Yards Drums Gallons Other (specify):			
<u> </u>				
d. Is this a U.S. Department of Transportation (USDOT) Hazardous Material? (If yes, answer e.) Yes No				
e. USDOT Shipping Description (if applicable):				
©2010 Waste Management, Inc.	age 1 of 2 May 2010			
\				

RAM = 45 CY - 50 CY RAM = Remainder

Generator's Non-hazardous Waste Profile Sheet

476671PAE

	appropriate responses)			•
1. Waste Identification:				
a. Does the waste meet the definition of a USE	PA listed or characteristic hazardous waste as defined	by 40 CFR Part 281	? 🗆 Vaa	IV N
1. If yes, please complete a hazardous wa	aste profile.	,,	. — .05	C3 110
b. Does the waste meet the definition of a state	e hazardous waste other than identified in D.1.a?		☐ Yes	V No
l. If yes, please complete a hazardous wa	aste profile.			
2. Is this waste included in one or more of categor	ries below (Check all that apply)? If yes, attach suppor	ting documentation.	O Yes	W No
☐ Delisted Hazardous Waste	☐ Excluded Wastes Under 40CFR 261.4		- 163	C NO
☐ Treated Hazardous Waste Debris	☐ Treated Characteristic Hazardous Wast	6		
3. Is the waste from a Federal (40 CFR 300, Appendi	ix B) or state mandated clean-up? If yes, see instructions		O Yes	raf ss_
4. Does the waste represented by this waste prof		•	_	
a. If yes, is disposal regulated by the Nuclear R		D	Q Yes	W No
b. If yes, is disposal regulated by a State Agenc		Yes No		
		☐ Yes ☐ No		,
(If yes, list in Chemical Composition - C.1.1)	le sheet contain Polychlorinated Biphenyls (PCBs)?		O Yes	Ø No
a. If yes, are the PCBs regulated by 40 CFR 781		O Yes O No		
b. If yes, is it remediation waste from a project	being performed under the Self-Implementing option	provided in		
40 CFR 761.61(a)?		🔾 Yes 🔾 No		
c. If yes, were the PCBs imported into the US?		Yes No		
6. Does the waste contain untreated, regulated me	edical or infectious waste?		Q Yes	M No
7. Does the waste contain asbestos?			C) Yes	M No
a. If Yes,		C Friable C 1		
8. Is this profile for remediation waste from a facili	ty that is a major source of Hazardous Air Pollutants (S	Site Remediation NE	SHAP.	_
40 CFR 63 subpart GGGGG)?			Q Yes	80 No
a. If yes, does the waste contain <500 ppmw VC	OHAPs at the point of determination?	☐ Yes ☐ No		
E. Generator Certification (Please res				
By signing this Generator's Waste Profile Sheet, I h				
1. Information submitted in this prome and all affact	ched documents contain true and accurate description	ns of the waste mate	rial;	
Relevant information within the possession of the disclosed to WM/the Contractor;	e Generator regarding known or suspected hazards p	ertaining to this was	ite has be	en
Analytical data attached pertaining to the profile	ed waste was derived from testing a representative sa	mple in accordance	with	
40 CFR 261.20(c) or equivalent rules; and				
4. Changes that occur in the character of the waste	(i.e. changes in the process or new analytical) will be	identified by the G	enerator	- 1
and disclosed to WM (and the Contractor if ap	plicable) prior to providing the wests to WM (and the			- 1
	Farest to brostonia me waste to saut (and me	contractor if applic	able).	1
5. Check all that apply:			able).	
5. Check all that apply:	Identify laboratory & sample ID #'s and parameters		able).	
5. Check all that apply: a. Attached analytical pertains to the waste.	Identify laboratory & sample ID #'s and parameters # Pages:	tested:		
5. Check all that apply: a. Attached analytical pertains to the waste. b. Only the analysis identified on the attacht	Identify laboratory & sample ID #'s and parameters	tested:		
5. Check all that apply: a. Attached analytical pertains to the waste. b. Only the analysis identified on the attach tested). Attachment #: Alpha Analytical Sa	Identify laboratory & sample ID #'s and parameters #Pages: #Pages: ment pertain to the waste (identify by laboratory & sample NC-2, ST-1 and SO-1 - See attached	tested: mple ID #'s and par	ameters	
5. Check all that apply: a. Attached analytical pertains to the waste. b. Only the analysis identified on the attach tested). Attachment #; Alpha Analytical Sa	Identify laboratory & sample ID #'s and parameters #Pages:#Pages:# ment pertain to the waste (identify by laboratory & sample NC-2, ST-1 and SO-1 - See attached acterize the profiled waste lies been attached (other t	tested: mple ID #'s and par	ameters).
5. Check all that apply: a. Attached analytical pertains to the waste. b. Only the analysis identified on the attachment #: Alpha Analytical (See C. Additional information necessary to charal Indicate the number of attached pages:	Identify laboratory & sample ID #'s and parameters # Pages:	mple ID #'s and par hen analytical, such	ameters as MSDS	
5. Check all that apply: a. Attached analytical pertains to the waste. b. Only the analysis identified on the attachment #: Alpha Analytical (See C. Additional information necessary to charal Indicate the number of attached pages:	Identify laboratory & sample ID #'s and parameters #Pages:#Pages:# ment pertain to the waste (identify by laboratory & sample NC-2, ST-1 and SO-1 - See attached acterize the profiled waste lies been attached (other t	mple ID #'s and par hen analytical, such	ameters as MSDS	
 5. Check all that apply: a. Attached analytical pertains to the waste. b. Only the analysis identified on the attach tested). Attachment #: Alpha Analytical Sales. c. Additional information necessary to charal Indicate the number of attached pages: d. I am an agent signing on behalf of the Ger 	Identify laboratory & sample ID #'s and parameters # Pages:	mple ID #'s and par hen analytical, such	ameters as MSDS	
5. Check all that apply: a. Attached analytical pertains to the waste. b. Only the analysis identified on the attachment #: Alpha Analytical Security of attachment #: Alpha Analytical Security of attached pages: a. Additional information necessary to charal indicate the number of attached pages: d. I am an agent signing on behalf of the Gerisavailable upon request. Certification Signature:	Identify laboratory & sample ID #'s and parameters # Pages:	mple ID #'s and par hen analytical, such e Generator for this	ameters as MSDS	
 5. Check all that apply: a. Attached analytical pertains to the waste. b. Only the analysis identified on the attach tested). Attachment #: Alpha Analytical Sales. c. Additional information necessary to charal Indicate the number of attached pages: d. I am an agent signing on behalf of the Ger 	Identify laboratory & sample ID #'s and parameters # Pages:	mple ID #'s and par hen analytical, such e Generator for this	ameters as MSDS	
5. Check all that apply: a. Attached analytical pertains to the waste. b. Only the analysis identified on the attachment #: Alpha Analytical Security of attachment #: Alpha Analytical Security of attached pages: a. Additional information necessary to charal indicate the number of attached pages: d. I am an agent signing on behalf of the Gerisavailable upon request. Certification Signature: Company Name: Lockheed Martin	Identify laboratory & sample ID #'s and parameters # Pages:	mple ID #'s and par hen analytical, such	ameters as MSDS	
5. Check all that apply: a. Attached analytical pertains to the waste. b. Only the analysis identified on the attachment #: Alpha Analytical Security of attachment #: Alpha Analytical Security of attached pages: a. Additional information necessary to charal indicate the number of attached pages: d. I am an agent signing on behalf of the Gerisavailable upon request. Certification Signature:	Identify laboratory & sample ID #'s and parameters # Pages:	mple ID #'s and par hen analytical, such e Generator for this	ameters as MSDS	
5. Check all that apply: a. Attached analytical pertains to the waste. b. Only the analysis identified on the attachment #: Alpha Analytical Security of attachment #: Alpha Analytical Security of attached pages: a. Additional information necessary to charal indicate the number of attached pages: d. I am an agent signing on behalf of the Gerisavailable upon request. Certification Signature: Company Name: Lockheed Martin	Identify laboratory & sample ID #'s and parameters # Pages:	mple ID #'s and par hen analytical, such e Generator for this	ameters as MSDS	

- Data for URAM & RAM

ANALYTICAL REPORT

SOIL

Lab Number:

L1112155

Client:

Tetra Tech Nus, Inc.

250 Andover St

Suite 200

Wilmington, MA 01887

ATTN:

Steve Vetere

Phone:

(978) 474-8444

Project Name:

LMC WILMINGTON

Project Number:

1121C03346

Report Date:

08/18/11

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY NELAC (11148), CT (PH-0574), NH (2003), NJ (MA935), RI (LAO00065), ME (MA0086), PA (Registration #68-03671), USDA (Permit #S-72578), US Army Corps of Engineers, Naval FESC.

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

LMC WILMINGTON

Project Number:

1121C03346

Lab Number:

L1112155

Report Date:

08/18/11

Alpha Sample ID	Client ID	Sample Location	Collection Date/Time
L1112155-01	LMC-WC-CONCRETE-C-1	50 FORDHAM RD. WILMINGTON, MA	08/10/11 09:00
L1112155-02	LMC-WC-CONCRETE-NC-2	50 FORDHAM RD. WILMINGTON, MA	08/10/11 09:30
L1112155-03	LMC-WC-CONCRETE-ST-1	50 FORDHAM RD. WILMINGTON, MA	08/10/11 10:00
L1112155-04	LMC-WC-SO-1	50 FORDHAM RD. WILMINGTON, MA	08/10/11 10:30

LMC WILMINGTON

Project Number:

1121C03346

Lab Number:

L1112155

Report Date:

08/18/11

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

For additional information, please contact Client Services at 800-624-9220.

TCLP Semivolatiles

The surrogate recoveries for L1112155-03 are outside the individual acceptance criteria for 2,4,6-Tribromophenol (132%) and 4-Terphenyl-d14 (122%), but within the overall method allowances. The results of the original analysis are reported.

PCB

L1112155-01, -02, -03, and the associated QC have elevated detection limits due to the limited sample volume utilized during extraction, as required by the sample matrix.

TCLP Pesticides

L1112155-03: The internal standard (IS) response for 1-Bromo-2-nitrobenzene was above the acceptance criteria on the confirmation column; however, the sample was non-detect. Due to the high internal standard

LMC WILMINGTON

Project Number:

1121C03346

Lab Number:

L1112155

Report Date:

08/18/11

Case Narrative (continued)

response, the surrogate recoveries for L1112155-03 are outside the individual acceptance criteria for 2,4,5,6-Tetrachloro-m-xylene (8%) and Decachlorobiphenyl (13%) on the confirmation column.

TCLP Herbicides

The surrogate recoveries for the following LCS samples are outside the individual acceptance criteria for DCAA, but within the overall method allowances. The results of the original analyses are reported.

WG484424-2: 22%

WG484425-2: 22%

Chemical Oxygen Demand

L1112155-03 has an elevated detection limit due to the dilution required to quantitate the result within the calibration range.

Oil & Grease

The WG484656-3 MS recovery, performed on L1112155-03, is below the acceptance criteria (44%); however, the associated LCS recovery was within criteria. No further action was taken.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Kun I. Waster Lisa Westerlind

Title: Technical Director/Representative

Date: 08/18/11

Lab Number:

L1112155

08/10/11 10:30

Not Specified

Report Date:

Date Collected:

Date Received:

Field Prep:

08/18/11

08/10/11

SAMPLE RESULTS

Lab ID:

1121C03346

L1112155-04

LMC WILMINGTON

Client ID: Sample Location:

Project Name:

Project Number:

LMC-WC-SO-1

50 FORDHAM RD. WILMINGTON, MA

Matrix:

Analytical Method:

1,8260B

Analytical Date: Analyst:

08/18/11 10:38 MM

Percent Solids:

95%

Şoil

TCLP/SPLP Ext.

08/16/11 15:10

Date:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
TCLP Volatiles by EPA 1311 - Westborough Lab	Tel a					2.idaioii i doloi
Chloroform	ND		ug/l	7.5		10
Carbon tetrachloride	ND		ug/l	5.0		10
Tetrachloroethene	ND		ug/l	5.0		10
Chlorobenzene	ND		ug/l	5.0		10
1,2-Dichloroethane	ND		ug/l	5.0		10
Benzene	ND		ug/l	5.0		10
Vinyl chloride	ND		ug/l	10		10
1,1-Dichloroethene	ND		ug/l	5.0		10
Trichloroethene	ND		ug/l	5.0		10
1,4-Dichlorobenzene	ND		ug/l	25		10
2-Butanone	ND		ug/l	50		10

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	107		70-130	
Toluene-d8	98		70-130	
4-Bromofluorobenzene	96		70-130	
Dibromofluoromethane	103		70-130	

LMC WILMINGTON

Lab Number:

L1112155

Project Number:

1121C03346

Report Date:

Extraction Date:

08/18/11

08/16/11 15:10

Method Blank Analysis Batch Quality Control

Analytical Method:

1,8260B

Analytical Date:

08/18/11 06:58

Analyst:

MM

TCLP Extraction Date: 08/16/11 15:10

Parameter	Result	Qualifier	Units	RL	MDL
TCLP Volatiles by EPA 1311 - V	Westborough La	ab for sample(s): 01-04	Batch: V	NG485248-3
Chloroform	ND		ug/l	7.5	27
Carbon tetrachloride	ND		ug/l	5.0	
Tetrachloroethene	ND		ug/l	5.0	
Chlorobenzene	ND		ug/l	5.0	
1,2-Dichloroethane	ND		ug/l	5.0	**
Benzene	ND		ug/i	5.0	**
Vinyl chloride	ND		ug/l	10	**
1,1-Dichloroethene	ND		ug/l	5.0	
Trichloroethene	ND		ug/l	5.0	
1,4-Dichlorobenzene	ND		ug/l	25	
2-Butanone	ND		ug/i	50	

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	102		70-130	
Toluene-d8	101		70-130	
4-Bromofluorobenzene	101		70-130	
Dibromofluoromethane	100		70-130	

Lab Control Sample Analysis

Batch Quality Control

LMC WILMINGTON

1121C03346

Project Number:

Project Name:

L1112155 Lab Number:

08/18/11

Report Date:

RPD %Recovery Limits Qual LCSD %Recovery Qual "Recovery **Parameter**

RPD Limits 25 20 25 20 25 25 20 20 Qual 16 0 TCLP Volatiles by EPA 1311 - Westborough Lab Associated sample(s): 01-04 Batch: WG485248-1 WG485248-2 75-125 63-132 70-130 75-130 71-125 76-127 55-140 61-145 75-125 63-138 71-120 65 105 9 88 92 95 96 8 88 9 88 9/ 9 85 8 92 88 9 88 88 93 Carbon tetrachloride 1,4-Dichlorobenzene 1,2-Dichloroethane 1,1-Dichloroethene Tetrachioroethene Trichloroethene Chlorobenzene Vinyl chloride Chloroform 2-Butanone Benzene

,
70-130 70-130 70-130 70-130
102 101 99
99 101 98
1,2-Dichloroethane-d4 Toluene-d8 4-Bromofluorobenzene Dibromofluoromethane

Lab Number:

L1112155

Report Date:

08/18/11

Date Collected:

08/10/11 10:30

Date Received:

08/10/11

Field Prep: Extraction Method:

Not Specified **EPA 3510C**

Extraction Date:

08/13/11 18:38

Lab ID: Ĺ1112155-04 Client ID: LMC-WC-SO-1

Sample Location:

Project Name:

Project Number:

Matrix:

Analytical Method: Analytical Date: Analyst:

Percent Solids:

JB-95%

Soil

1,8270C

08/15/11 20:41

LMC WILMINGTON

50 FORDHAM RD. WILMINGTON, MA

1121C03346

TCLP/SPLP Ext. 08/11/11 16:15

Date:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
TCLP Semivolatiles by EPA 1311 - Wes	stborough Lab	: 2/1	T. Francisco			E E E E
Hexachlorobenzene	ND		ug/l	10		1
2,4-Dinitrotoluene	ND		ug/l	25		1
Hexachlorobutadiene	ND		ug/l	10		1
Hexachloroethane	ND		ug/l	10		1
Nitrobenzene	ND		ug/l	10		1
2,4,6-Trichlorophenol	ND		ug/l	25		1
Pentachlorophenol	ND		ug/l	50		1
2-Methylphenol	ND		ug/l	25	s	1
3-Methylphenol/4-Methylphenol	ND		ug/I	25		1
2,4,5-Trichlorophenol	ND		ug/l	25	**	1
Pyridine	ND		ug/l	25		1
2,4,5-Trichlorophenol	ND		ug/l	25	***	

SAMPLE RESULTS

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
2-Fluorophenol	52		21-120	
Phenol-d6	45		10-120	
Nitrobenzene-d5	65		23-120	
2-Fluorobiphenyl	71		15-120	
2,4,6-Tribromophenol	89		10-120	
4-Terphenyl-d14	99		33-120	

LMC WILMINGTON

Project Number:

1121C03346

Lab Number:

L1112155

Report Date:

08/18/11

Method Blank Analysis Batch Quality Control

Analytical Method:

1,8270C

Analytical Date:

08/15/11 18:22

Analyst:

JB

Extraction Method: EPA 3510C

Extraction Date:

08/13/11 18:38

TCLP Extraction Date: 08/11/11 16:15

Parameter	Result	Qualifier	Units		RL	MDL
TCLP Semivolatiles by EPA 1311 -	Westborough	Lab for samp	ole(s): 0	01-04	Batch:	WG484436-1
Hexachlorobenzene	ND		ug/l		10	
2,4-Dinitrotoluene	ND		ug/l		25	
Hexachlorobutadiene	ND		ug/l		10	
Hexachloroethane	ND		ug/l		10	
Nitrobenzene	ND		ug/l		10	
2,4,6-Trichlorophenol	ND		ug/l		25	
Pentachlorophenol	ND		ug/l		50	
2-Methylphenol	ND		ug/l		25	
3-Methylphenol/4-Methylphenol	ND		ug/l		25	
2,4,5-Trichlorophenol	ND		ug/l		25	
Pyridine	ND		ug/l		25	

	Acceptance
%Recovery	Qualifier Criteria
68	21-120
63	10-120
83	23-120
89	15-120
120	10-120
118	33-120
	68 63 83 89 120

Lab Control Sample Analysis

Batch Quality Control

LMC WILMINGTON

1121C03346

Project Number:

Project Name:

L1112155 Lab Number:

Report Date:

08/18/11

Qual RPD %Recovery Limits Qual LCSD %Recovery Qual LCS %Recovery Parameter

RPD Limits 30 30 30 30 30 30 TCLP Semivolatiles by EPA 1311 - Westborough Lab Associated sample(s): 01-04 Batch: WG484436-2 WG484436-3 40-140 48-136 22-116 19-108 26-125 38-128 39-127 30-121 102 103 86 118 116 28 8 107 66 66 114 108 92 9/ 2 8 3-Methylphenol/4-Methylphenol Hexachlorobutadiene 2,4,6-Trichlorophenol Hexachlorobenzene Pentachlorophenol Hexachloroethane 2,4-Dinitrotoluene 2-Methylphenol Nitrobenzene

30 30 30

32-114 44-132 0-100

122

114

2,4,5-Trichlorophenol

Pyridine

56

7

83

21

	rcs	CSD		Accentance
urrogate	"Recovery Qual	%	Qual	Criteria
2-Fluorophenol	65	74		21-120
henol-de	99			27 12
	8	ر2		10-120
trobenzene-d5	80	68		22,420
Fluorohiphopy				22-120
Tago oppose by	ns N	86		15-120
2,4,6-Tribromophenol	113	118		40 420
Tours Louis J. 44.4				021-01
- I erpnenyi-d14	109	115		33-120

Lab Number:

L1112155

08/10/11 10:30

Not Specified

Report Date:

Date Collected:

Date Received:

08/18/11

08/10/11

EPA 3546

Lab ID:

1121003346 **Project Number:**

Client ID:

Sample Location:

Project Name:

Matrix: Analytical Method: Analytical Date:

Analyst:

Percent Solids:

L1112155-04

LMC WILMINGTON

LMC-WC-SO-1

1,8082 08/12/11 18:05

ΚB 95% **SAMPLE RESULTS**

50 FORDHAM RD. WILMINGTON, MA

Field Prep: **Extraction Method:** Extraction Date: Cleanup Method1:

08/11/11 15:01 EPA 3665A 08/12/11 EPA 3660B

Cleanup Method2: Cleanup Date2:

Cleanup Date1:

08/12/11

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
PCB by GC - Westborough Lab				Talan.	A HELD	- A
Aroclor 1016	ND		ug/kg	34.5		1
Aroclor 1221	ND		ug/kg	34.5		1
Aroclor 1232	ND		ug/kg	34.5		1
Aroclor 1242	ND		ug/kg	34.5		1
Aroclor 1248	ND		ug/kg	34.5		1
Aroclor 1254	ND		ug/kg	34.5		1
Aroclor 1260	ND		ug/kg	34.5		1
Aroclor 1262	ND		ug/kg	34.5		1
Aroclor 1268	ND		ug/kg	34.5		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2,4,5,6-Tetrachloro-m-xylene	86		30-150	
Decachlorobiphenyl	70		30-150	
2,4,5,6-Tetrachloro-m-xylene	97		30-150	
Decachlorobiphenyl	79		30-150	

08/12/11

Project Name:

LMC WILMINGTON

Project Number:

1121C03346

Lab Number:

L1112155

Report Date:

08/18/11

Method Blank Analysis Batch Quality Control

Analytical Method:

Analytical Date:

1,8082

08/12/11 09:42

Analyst:

ΚB

Extraction Method: EPA 3546

Extraction Date:

Cleanup Method1: EPA 3665A

08/11/11 15:01

Cleanup Date1:

08/12/11

Cleanup Method2: EPA 3660B

Cleanup Date2:

08/12/11

Parameter	Result	Qu	ıalifier	Units	RL	MDL
PCB by GC - Westborough Lab for	sample(s):	04	Batch:	WG484099-1	45 Higgs	
Aroclor 1016	ND			ug/kg	33.3	
Aroclor 1221	ND			ug/kg	33.3	
Aroclor 1232	ND			ug/kg	33.3	
Aroclor 1242	ND			ug/kg	33.3	
Aroclor 1248	ND			ug/kg	33.3	
Aroclor 1254	ND			ug/kg	33.3	
Aroclor 1260	ND			ug/kg	33.3	
Aroclor 1262	ND			ug/kg	33.3	
Aroclor 1268	ND			ug/kg	33.3	

	Acceptance					
Surrogate	%Recovery	Qualifier	Criteria			
2,4,5,6-Tetrachloro-m-xylene	85		30-150			
Decachlorobiphenyl	63		30-150			
2,4,5,6-Tetrachloro-m-xylene	90		30-150			
Decachlorobiphenyl	78		30-150			

08/14/11

Project Name:

LMC WILMINGTON

Project Number:

1121C03346

Lab Number:

L1112155

Report Date:

08/18/11

Method Blank Analysis Batch Quality Control

Analytical Method:

1,8082

Analytical Date:

08/15/11 17:11

Analyst:

ΚB

Extraction Method: EPA 3540C

Extraction Date:

08/12/11 05:10

Cleanup Method1: EPA 3665A

Cleanup Date1:

08/14/11

Cleanup Method2:

EPA 3660B

Cleanup Date2:

08/14/11

Parameter	Result	Qualifier	Units	RL	MDL	
PCB by GC - Westborough L	ab for sample(s):	01-03 E	Batch: WG4842	211-1		20
Aroclor 1016	ND		ug/kg	60.0		
Aroclor 1221	ND		ug/kg	60.0		
Aroclor 1232	ND		ug/kg	60.0		
Aroclor 1242	ND		ug/kg	60.0		
Aroclor 1248	ND		ug/kg	40.0		
Aroclor 1254	ND		ug/kg	60.0		
Arocior 1260	ND		ug/kg	40.0		
Arocior 1262	ND		ug/kg	20.0		
Aroclor 1268	ND		ug/kg	20.0		

			Acceptance
Surrogate	%Recovery	Qualifier	Criteria
2,4,5,6-Tetrachloro-m-xylene	83		30-150
Decachiorobiphenyi	87		30-150
2,4,5,6-Tetrachioro-m-xylene	90		30-150
Decachlorobiphenyl	81		30-150

LMC WILMINGTON

1121C03346

Project Number: Project Name:

L1112155 Lab Number:

08/18/11 Report Date:

"Recovery **CSD LCS** Para PCB

arameter	"Recovery	Qual	%Recovery	Dual	/orecovery limite	מ			
					F.IIII153	טאא	ر ر	RPD Limits	
CB by GC - Westborough Lab Associated sample(s): 04	sample(s): 04	Batch:	WG484099-2 WG484	6099-3					
Aroclor 1016	C								
	00		86		40-140	14		C U	
Arodor 1260	104		•					OS.	
	2		88		40-140	14		20	

	SOT		LCSD		Acceptance
Surrogate	%Recovery	Qual	>	Qual	Criteria
2,4,5,6-Tetrachloro-m-xylene	87		8		2 0
December 1971			1		001-00
Decacnioropipnenyl	29		64		30-150
2,4,5,6-Tetrachloro-m-xylene	191		ଧ		
			8		30-150
Decacniorobiphenyl	84		80		30-150

PCB by GC - Westborough Lab Associated sample(s): 01-03 Batch: WG484211-2 WG484211-3

20 20

	,	ı
10	Acceptance Criteria	30-150 30-150 30-150 30-150
40-140	Qual	
F 80	LCSD %Recovery Qual	97 107 102 97
111	Qual	
	LCS %Recovery Qual	93 94 88
99		
	Surrogate	2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl 2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl
Aroclor 1016 Aroclor 1260		

ALPHA

Lab Number:

L1112155

08/10/11 10:30

Not Specified

08/13/11 18:51

EPA 3510C

EPA 3620B

08/15/11

Report Date:

Date Collected:

Date Received:

Extraction Date:

Cleanup Date1:

ug/l

Extraction Method:

Cleanup Method1:

1.00

Field Prep:

08/18/11

08/10/11

Lab ID:

Client ID:

Sample Location:

Project Name:

Project Number:

Matrix:

Analytical Method: Analytical Date:

Analyst:

Percent Solids:

TCLP/SPLP Ext.

Date:

L1112155-04

LMC WILMINGTON

1121003346

LMC-WC-SO-1

50 FORDHAM RD. WILMINGTON, MA

Soil 1,8082/8081

08/18/11 02:06

SH 95%

08/11/11 16:15

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
TCLP Pesticides by EPA 1311 - Westborough Lab		- Emportan				La Caracter Control
Lindane	ND		ug/l	0.100	Mile Spin	1
Heptachlor	ND		ug/l	0.100		1
Heptachlor epoxide	ND		ug/l	0.100		1
Endrin	ND		ug/l	0.200	**	1
Methoxychlor	ND		ug/l	1.00	**	1
Toxaphene	ND		ug/l	1.00		1
Chlordane	ND		ua/l	1.00		1

SAMPLE RESULTS

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	55		30-150	A
Decachlorobiphenyl	48		30-150	A
2,4,5,6-Tetrachloro-m-xylene	37		30-150	В
Decachlorobiphenyl	96		30-150	B

ND

Lab Number:

L1112155

08/10/11 10:30

Report Date:

Date Collected:

08/18/11

1121C03346

LMC WILMINGTON

SAMPLE RESULTS

Lab ID:

Matrix:

Client ID: Sample Location:

£1112155-04 LMC-WC-SO-1

50 FORDHAM RD/WILMINGTON, MA

1,8151A(M)

Soil

Analytical Method:

Project Name:

Project Number:

Analytical Date:

08/14/11 11:15

Analyst:

SH 95%

Percent Solids:

TCLP/SPLP Ext.

08/11/11 16:15

Date:

Date Received: 08/10/11 Field Prep: Not Specified **Extraction Method: EPA 8151A Extraction Date:** 08/13/11 02:42

Methylation Date:

08/13/11 09:03

Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
TCLP Her	bicides by EPA 1311 -	Westborough Lab		E A DIVERSE			
2,4-D		ND		mg/l	0.025		1
2,4,5-TP (Sil-	vex)	ND		mg/l	0.005		1
	Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column	1	
	DCAA	41		30-150	A	-	
	DCAA	48		30-150	В		

Project Name:

LMC WILMINGTON

Project Number:

1121C03346

Lab Number:

L1112155

Report Date:

08/18/11

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date:

1,8151A(M) 08/14/11 11:35

Analyst:

SH

TCLP Extraction Date: 08/11/11 16:15

Extraction Method: EPA 8151A

Extraction Date:

08/13/11 02:36

Methylation Date:

08/13/11 09:00

Parameter	Result	Qualifier	Units	RL	MDL
TCLP Herbicides by EPA 13	311 - Westborough	Lab for samp	ole(s): 01-03	Batch:	WG484424-1
2,4-D	ND		mg/l	0.025	
2,4,5-TP (Silvex)	ND		mg/l	0.005	

			Acceptance	•
Surrogate	%Recovery	Qualifier	Criteria	Column
DCAA	49		30-150	Α
DCAA	46		30-150	В

Project Name:

LMC WILMINGTON

Project Number:

Lab Number:

L1112155

1121C03346

Report Date:

08/18/11

Method Blank Analysis Batch Quality Control

Analytical Method:

1,8151A(M) 08/14/11 11:35

Analytical Date:

SH

Analyst: TCLP Extraction Date: 08/11/11 16:15

Extraction Method: EPA 8151A

Extraction Date:

08/13/11 02:42

Methylation Date:

08/13/11 09:03

Parameter	Result	Qualifier	Units	RL	MDL	
TCLP Herbicides by EPA	1311 - Westborough	Lab for samp	ole(s): 04	Batch: WG48	4425-1	
2,4-D	ND		mg/l	0.025		
2,4,5-TP (Silvex)	ND		mg/l	0.005		

_		Acceptance				
Surrogate	%Recovery	Qualifier	Criteria	Column		
DOAA						
DCAA	49		30-150	Α		
DCAA	46		30-150	В		

LMC WILMINGTON

Project Number:

1121C03346

Lab Number:

L1112155

Report Date:

08/18/11

Method Blank Analysis Batch Quality Control

Analytical Method:

1,8082/8081

Analytical Date:

08/18/11 02:19

Analyst:

SH

TCLP Extraction Date: 08/11/11 16:15

Extraction Method: EPA 3510C

Extraction Date:

08/13/11 18:33

Cleanup Date1:

Cleanup Method1: EPA 3620B 08/15/11

Result	Qualifier	Units	RL	MDL
Westborough	Lab for samp	ole(s): 01-03		WG484437-1
ND		ug/l	0.100	
ND		ū		
ND		•		
ND		-		
ND		_		
ND		-		
ND		ug/l		
	Westborough ND ND ND ND ND ND ND ND	Westborough Lab for samp ND ND ND ND ND ND ND ND ND N	ND ug/l	ND

Surrogate	%Recovery	Qualifier	Acceptance Criteria	
	70110001019	Quanner	Officeria	Column
2,4,5,6-Tetrachloro-m-xylene	66		30-150	Α
Decachlorobiphenyl	39		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	44		30-150	В
Decachlorobiphenyl	65		30-150	В

LMC WILMINGTON

1121C03346

Lab Number:

L1112155

Project Number:

Report Date:

08/18/11

Method Blank Analysis
Batch Quality Control

Analytical Method:

1,8082/8081

Analytical Date: Analyst:

SH

08/18/11 02:19

TCLP Extraction Date: 08/11/11 16:15

Extraction Method: EPA 3510C

Extraction Date:

08/13/11 18:51

Cleanup Method1: EPA 3620B

Cleanup Date1:

08/15/11

Parameter	Result	Qualifier	Units	RL	MDL	
TCLP Pesticides by EPA 1	311 - Westborough	Lab for samp	le(s): 04	Batch: WG485	190-1	
Lindane	ND		ug/l	0.100		
Heptachlor	ND		ug/l	0.100		
Heptachlor epoxide	ND		ug/l	0.100	=	
Endrin	ND		ug/i	0.200		
Methoxychlor	ND		ug/l	1.00		
Toxaphene	ND		ug/i	1.00		
Chlordane	ND		ug/l	1.00		

			Acceptance	•
Surrogate	%Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachioro-m-xylene	66		30-150	Α
Decachlorobiphenyl	39		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	44		30-150	В
Decachlorobiphenyl	65		30-150	В

Lab Control Sample Analysis

Batch Quality Control

Lab Number: L1112155

Project Number: 1121C03346

LMC WILMINGTON

Project Name:

Report Date: 08/18/11

Qual RPD %Recovery Limits Qual "Recovery LCSD Qual "Recovery Parameter

RPD Limits

25

8 ß TCLP Herbicides by EPA 1311 - Westborough Lab Associated sample(s): 01-03 Batch: WG484424-2 WG484424-3 30-150 30-150 106 43 101 36 2,4,5-TP (Silvex) 2,4-D

Column **∀** 8 Acceptance Criteria 30-150 30-150 Qual "Recovery **LCSD** 39 Qual Ø "Recovery 39 Surrogate DCAA DCAA

Batch: WG484425-2 WG484425-3 TCLP Herbicides by EPA 1311 - Westborough Lab Associated sample(s): 04

Column ×ω Acceptance Criteria 30-150 30-150 Qual LCSD %Recovery 39 Qual G "Recovery **CCS** 39 Surrogate DCAA DCAA

Lab Control Sample Analysis Batch Quality Control

LMC WILMINGTON

1121C03346

Project Number: Project Name:

Lab Number:

L1112155

08/18/11 Report Date:

%Recovery Circ LCSD %Recovery Qual LCS %Recovery Parameter

	613.3	Kuai	where year	Cua	Limits	200	70	:
TCLP Pesticides by EPA 1311 - Westborough Lab Associated sample(s): 01-03 Batch:	h Lab Associat	ed sample(s):	01-03 Batch:	WG4844:	WG484437-2 WG484437-3	1000	en e	dual RPD Limits
Lindane	22		52		30-150	Ş		
Heptachior	63		85		5 6	2		20
Heptachlor epoxide	3		} ;		001-00	on .		20
	0		26		30-150	o		20
החמזוח	63		22		30-150	σ		
Methoxychlor	72		ě		9	•		07
			5		30-150	16		20

Column	4	(∢	: <u> </u>	ω
Acceptance Criteria	30-150	30-150	30-150	30-150
Qual				
LCSD %Recovery	25	38	37	122
Qual				
LCS %Recovery	61	43	39	63
Surrogate	2,4,5,6-Tetrachloro-m-xylene	Decachlorobiphenyl	2,4,5,6-Tetrachloro-m-xylene	Decacniorobipnenyl

Lab Control Sample Analysis Batch Quality Control

LMC WILMINGTON

1121C03346

Project Number: Project Name:

L1112155 Lab Number:

08/18/11 Report Date:

RPD Limits
Qual
RPD
%Recovery Limits
Qual
LCSD %Recovery
Qual
LCS %Recovery
Parameter %Reco

CLP Pesticides by EPA 1311 - Westborough Lab Associated sample(s): 04 Batch: WG485190-2 WG485190-3	ab Associated sample(s):	04 Batch	: WG485190-2 WG485190-3		
Lindane	57	52	, , , , , , , , , , , , , , , , , , ,		
Hentachlor		5	30-150	10	
	633	28	30-150	o.	
Heptachlor epoxide	61	95	0		
т 500 610 610 610 610 610 610 610 610 610 6		3	30-150	o	
	63	22	30-150	ď	
Methoxychlor	72	2			

20 20 20 20 20

16

30-150

61

72

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria	
						Column
2,4,5,6-Tetrachloro-m-xylene	64		ŭ			
Docachorokinhoni	; •		3		30-150	⋖
Decacinotophietry	43		38		30-150	*
2,4,5,6-Tetrachloro-m-xvlene	30		24		201-00	<
)		3/		30-150	œ
Decachiorobiphenyl	63		122		30-150	В

Project Name: Project Number:	LMC WILMINGTON 1/21/203346		Lab Number: Report Date:	L1112155 08/18/11
/		SAMPLE RESULTS		
Lab ID:	L1112155-04		Date Collected:	08/10/11 10:30
Client ID:	LMC-WC-SO-1		Date Received:	08/10/11
Sample Location:	50 FORDHAM RD. WILI	MINGTON, MA	Field Prep:	Not Specified
Matrix:	Soil		TCLP/SPLP Ext. Date:	08/11/11 16:15
Percent Solids:	95%		i de la constanta de la consta	00/11/11 10.13

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
TCLP Metals by EPA	A 1311 - \	Vestborou	gh Lab							b .	
Arsenic, TCLP	ND		mg/l	1.0		1	08/16/11 14:00	08/17/11 11:50	EPA 3015	1,6010B	Al
Barium, TCLP	ND		mg/l	0.50		1	08/16/11 14:00	08/17/11 11:50	EPA 3015	1,6010B	Al
Cadmium, TCLP	ND		mg/l	0.10		1	08/16/11 14:00	08/17/11 11:50	EPA 3015	1,6010B	Al
Chromium, TCLP	ND		mg/l	0.20		1	08/16/11 14:00	08/17/11 11:50	EPA 3015	1,6010B	Al
Lead, TCLP	ND		mg/l	0.50		1	08/16/11 14:00	08/17/11 11:50	EPA 3015	1,6010B	Al
Mercury, TCLP	ND		mg/l	0.0010		1	08/15/11 17:00	08/16/11 10:23	EPA 7470A	1,7470A	JP
Selenium, TCLP	ND	2:	mg/l	0.50		1	08/16/11 14:00			1,6010B	Al
Silver, TCLP	ND		mg/l	0.10		1	08/16/11 14:00		12:1	1,6010B	Al

LMC WILMINGTON

Project Number: 1121C03346

Lab Number:

L1112155

Report Date:

08/18/11

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
TCLP Metals by EPA 1311	- Westborough Lab	for samp	ole(s): (03 Bat	ch: WG48	34506-1	7,		
Mercury, TCLP	ND	mg/l	0.0010		1	08/13/11 16:00	08/14/11 08:34	1,7470A	JP

Prep Information

Digestion Method:

EPA 7470A

TCLP/SPLP Extraction Date:

08/11/11 16:15

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	
TCLP Metals by EPA 131	1 - Westborough Lab	for sam	ple(s):	01-02,04	4 Batch:	WG484648-1		niwiifa, n	
Mercury, TCLP	ND	mg/l	0.0010)	1	08/15/11 17:00	08/16/11 10:12	2 1,7470A	JP

Prep Information

Digestion Method:

EPA 7470A

TCLP/SPLP Extraction Date:

08/11/11 16:15

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
TCLP Metals by EPA 1311	- Westborough Lab	for sam	ple(s):	01-04	Batch: WG	9484845-1	ar Sast		
Barium, TCLP	ND	mg/l	0.50		1		08/17/11 11:09	1,6010B	Al
Lead, TCLP	ND	mg/l	0.50		1	08/16/11 14:00	08/17/11 11:09	1,6010B	Al

Prep Information

Digestion Method:

EPA 3015

TCLP/SPLP Extraction Date: 08/11/11 16:15

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Anaiyst
TCLP Metals by EPA 131	1 - Westborough Lab	for sam	ple(s):	01-04	Batch: Wo	G484845-1	A. ASTALIS		
Arsenic, TCLP	ND	mg/l	1.0		1	08/16/11 14:00	08/17/11 11:09	1.6010B	Al
Cadmium, TCLP	ND	mg/l	0.10		1	08/16/11 14:00	08/17/11 11:09	,	Al
Chromium, TCLP	ND	mg/l	0.20		1	08/16/11 14:00	08/17/11 11:09	1,6010B	Al
Selenium, TCLP	ND	mg/l	0.50		1	08/16/11 14:00	08/17/11 11:09	1,6010B	Al
Silver, TCLP	ND	mg/l	0.10		1	08/16/11 14:00	08/17/11 11:09	1,6010B	AI

Serial_No:08181115:36

Project Name:

LMC WILMINGTON

Project Number: 1121C03346

Lab Number:

L1112155

Report Date:

08/18/11

Method Blank Analysis Batch Quality Control

Prep Information

Digestion Method: EPA 3015

TCLP/SPLP Extraction Date: 08/11/11 16:15

ALPHA

Lab Control Sample Analysis Batch Quality Control

LMC WILMINGTON

1121C03346

Project Number: Project Name:

Lab Number:

L1112155

08/18/11 Report Date:

	RPD Limits
	Qual
	Z A
%Recovery	
0	5-2
LCSD %Recovery	Batch: WG484506
LCS Parameter %Recovery Qual	TCLP Metals by EPA 1311 - Westborough Lab Associated sample(s): 03

TCLP Metals by EPA 1311 - Westborough Lab Associated sample(s): 01-02,04 Batch: WG484648-2

96

Mercury, TCLP

80-120

		ć	2 8	₹ ;	97	8 8	8 8	70 70
80-120		75-125	75-125	125	75.125	75-125	75-125	75-125
80	/G484845-2	75	75	75.	75.	25.	75-	75-
	Associated sample(s): 01-04 Batch: WG484845-2	•	•	٠	•	٠	ı	•
96		100	46	001	86	26	105	26
Mercury, TCLP	TCLP Metals by EPA 1311 - Westborough Lab	Arsenic, TCLP	Barium, TCLP	Cadmium, TCLP	Chromium, TCLP	Lead, TCLP	Selenium, TCLP	Silver, TCLP

Matrix Spike Analysis

Batch Quality Control

LMC WILMINGTON

1121C03346

Project Number: Project Name:

Lab Number:

L1112155

08/18/11 Report Date:

TCLP Metals by EPA 1311 - Westborough Lab Associated sample(s): 01-04 QC Batch ID: WG484845-4 QC Sample: L1112155-01 Client ID: LMC-WC-Client ID: MS Sample TCLP Metals by EPA 1311 - Westborough Lab Associated sample(s): 01-02,04 QC Batch ID: WG484648-4 QC Sample: L1112155-01 Client ID: LMC-RPD Qual Limits 20 2 2 8 20 20 20 20 TCLP Metals by EPA 1311 - Westborough Lab Associated sample(s): 03 QC Batch ID: WG484506-4 QC Sample: L1112291-20 Recovery Limits 70-130 70-130 75-125 75-125 75-125 75-125 75-125 75-125 75-125 "Recovery Qual MSD MS MS MSFound Secovery Qual Found 118 122 9 100 105 86 66 96 8 0.0059 0.0061 9.9 9.6 9.0 9 86 5 7 MS Added 0.005 0.005 9 10 9 9 2 9 Native Sample 2 9 9 2 9 2 9 2 9 CONCRETE-C-1 Chromium, TCLP Cadmium, TCLP Selenium, TCLP Mercury, TCLP Mercury, TCLP Arsenic, TCLP Barium, TCLP Lead, TCLP Silver, TCLP **Parameter**

20

Project Name:

LMC WILMINGTON 1121C03346 Project Number:

Lab Duplicate Analysis Batch Quality Control

Lab Number:

L1112155 08/18/11 Report Date:

Parameter	Native Sample	Dunlicate Camela		1		
TCLP Metals by EPA 1311 - Westborough I ab Associated Samulo(2), 62		Supincate Sample	Onits	RPD	Qual	RPD Limits
		C Batch ID: WG484506-3	QC Sample:	L1112291	-20 Client	QC Sample: L1112291-20 Client ID: DUP Sample
Mercury, ICLP	QN	QV	l/gm	NC		20
TCLP Metals by EPA 1311 - Westborough Lab Associated sample(s): 01-02,04 QC Batch ID: WG484648-3 QC Sample: L1112155-01 Client ID: LMC-WC-CONCRETE-C-1	ated sample(s): 01-02,0	4 QC Batch ID: WG4846	48-3 QC Sa	mple: L11	12155-01	Client ID: LMC-
Mercury, TCLP	QN	N	mg/l	S		20
TCLP Metals by EPA 1311 - Westborough Lab Associated sample(s): 01-04 QC Batch ID: WG484845-3 CONCRETE-C-1	ited sample(s): 01-04	QC Batch ID: WG484845-		le: L11121	55-01 Cli	QC Sample: L1112155-01 Client ID: LMC-WC-
Arsenic, TCLP	N	QN	mg/l	Š		G
Barium, TCLP	QN	QN) J/Biu	S		0 %
Cadmium, TCLP	Ŋ	QN) ma/l	CN		0 0
Chromium, TCLP	Ŋ	QN	l/bw	2 2		0 6
Lead, TCLP	QN	QN	mg/l	S		0 6
Selenium, TCLP	N	QN		S		2 02
Silver, TCLP	ND	Q	l/gm	NC		50 2

Serial_No:08181115:36

Project Name:

LMC WILMINGTON

Project Number:

1121C03346

SAMPLE RESULTS

Lab ID:

Client ID:

Sample Location:

L11/12155-04 LMC-WC-SO-1

Matrix:

50 FORDHAM RD. WILMINGTON, MA

\$oil

Lab Number:

L1112155

Report Date:

08/18/11

Date Collected:

08/10/11 10:30

Date Received:

08/10/11

Field Prep:

Not Specified

Test Material Information

Source of Material:

Unknown

Description of Material:

Non-Metallic - Damp Soil

Particle Size:

Medium

Preliminary Burning Time (sec):

120

Parameter	Result	Date Analyzed	Analytical Method	Analyst
Ignitability of Solid	ds - Westborough Lab	48" 4.50"1		
Ignitability	NI	08/15/11 15:20	1,1030	TL

Serial_No:08181115:36

Project Name:

LMC WILMINGTON

Project Number: 1121C03346

Lab Number:

L1112155

Report Date:

08/18/11

SAMPLE RESULTS

Lab ID:

Client ID:

L1112155-04

Sample Location:

LMC-WC-SO-1

50 FORDHAM RD. WILMINGTON, MA

Matrix:

Soil

Date Collected:

08/10/11 10:30

Date Received:

08/10/11

Field Prep:

Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab					, V			A 3	
Solids, Total	95		%	0.10	NA	1		08/10/11 23:31	30,2540G	RD
Solids, Total Volatile	0.80		%	0.10		1	-	08/11/11 14:15	30,2540E	DW
рH	8.9		SU	-	NA	1	-	08/10/11 22:45	1,9045C	KK
Nitrogen, Ammonia	23		mg/kg	7.8		1	08/12/11 11:00	08/15/11 20:54	30,4500NH3-BH	AT
Oil & Grease, Hem-Grav	78.4		mg/kg	46.3		1.1	08/16/11 12:00		1,9071B	70
Cyanide, Reactive	ND		mg/kg	10		1	08/11/11 14:45	08/11/11 19:07	1,7.3	TL
Sulfide, Reactive	ND		mg/kg	10		1	08/11/11 14:45	08/11/11 19:20	1,7.3	TL
Paint Filter Liquid	NEGATIVE		-	0	NA	1	-	08/16/11 14:00	1,9095A	ST
General Chemistry					7 5 8					01
Chemical Oxygen Demand	1500		mg/kg	190		1	-	08/15/11 07:45	30,5220-M	DW

Project Name:

LMC WILMINGTON

Project Number: 1121C03346

Lab Number:

L1112155

Report Date:

08/18/11

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifie	r Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Anaiysi
General Chemistry - We	estborough Lab for sa	mple(s): 0	1-03 Ba	tch: W	3483987-1		Property		. = 1/2
Solids, Total Volatile	ND	%	0.10		1	-	08/11/11 14:15	30,2540E	DW
General Chemistry - We	stborough Lab for sa	mple(s): 04	4 Batch:	WG48	3988-1				
Solids, Total Volatile	ND	%	0.10		1	-	08/11/11 14:15	30,2540E	DW
General Chemistry - We	stborough Lab for sai	mple(s): 04	Batch:	WG48	4082-1				
Cyanide, Reactive	ND	mg/kg	10		1	08/11/11 14:45	08/11/11 19:04	1,7.3	TL
General Chemistry - We	stborough Lab for sar	mple(s): 04	Batch:	WG48	4083-1			7	or Take .
Sulfide, Reactive	ND	mg/kg	10		1	08/11/11 14:45	08/11/11 19:13	1,7.3	10 m
General Chemistry - We	stborough Lab for sar	nnle(s): 01	-03 Rat	ch: MC	2494094 1		15 = 1=3	1,7.0	TL
Cyanide, Reactive	ND	mg/kg	10	 	1 -40404 1	08/11/11 14:45	08/11/11 19:04	1,7.3	
General Chemistry - Wes	sthorough Lah for san	nnie/e)· 01	∩2 Pot	ob: \4/C	404005.4	00/11/11/14.40	00/11/11 19:04	1,7.3	TL
Sulfide, Reactive	ND	mg/kg	-03 Ball 10	vve	1 484085-1	08/11/11 14:45	08/11/11/14/10:42	470	i Line
General Chemistry - Wes	sthorough Lab for som			L. Mo		08/11/11 14.45	08/11/11 19:13	1,7.3	TL
Nitrogen, Ammonia	ND	mg/kg	-03 Bate 7.5	en: vvG	484239-1				
						08/12/11 11:00	08/15/11 20:48	30,4500NH3-BH	AT
General Chemistry - Wes		4. K.3.1.N.		WG484					
Jitrogen, Ammonia	ND	mg/kg	7.5		1	08/12/11 11:00	08/15/11 20:49	30,4500NH3-BH	AT
General Chemistry for sa	ample(s): 01-03 Bato	h: WG484	566-1						
Chemical Oxygen Demand	ND	mg/kg	200		1	•	08/15/11 07:45	30,5220-M	DW
Seneral Chemistry for sa	ample(s): 04 Batch:	WG484567	7-1						
hemical Oxygen Demand	ND	mg/kg	200		1	-	08/15/11 07:45	30,5220-M	DW
General Chemistry - Wes	tborough Lab for sam	ple(s): 01-	03 Bato	h: WG	484656-2				7. 1.
il & Grease, Hem-Grav	ND	mg/kg	40.0		1	08/16/11 12:00	08/17/11 12:00	1,9071B	JO
General Chemistry - West	thorough Lab for sam	nle(s). M	Batch:	MCASA	657.0			1,007 10	30
il & Grease, Hem-Grav	ND	mg/kg	40.0	v v G404		00/10/14 10 65	2-3/11/2-1		
	115	mg/kg	40.0		1	08/16/11 12:00	08/17/11 12:00	1,9071B	JO

Lab Control Sample Analysis Batch Quality Control

LMC WILMINGTON

1121C03346

Project Number: Project Name:

L1112155 08/18/11 Lab Number:

Report Date:

99-101 - 99-	Parameter	LCS %Recovery Qual	LCSD %Recovery	Oual	%Recovery Limits	0	Č	:
Batch: WG483955-1 Batch: WG484083-2 Batch: WG484084-2 Batch: WG484085-2	General Chemistry - Westborough Lab As		atch: WG483937-1				Guai	KPD Limits
Batch: WG483955-1 Satch: WG484082-2 Batch: WG484084-2 Batch: WG484085-2 Batch: WG484239-2	Hd	100			99-101			
Satch: WG484082-2 Satch: WG484083-2 Batch: WG484085-2 Batch: WG484239-2	General Chemistry - Westborough Lab As	ssociated sample(s): 01-03		7				
Satch: WG484082-2 Satch: WG484083-2 Batch: WG484085-2 Batch: WG484239-2	Hd	100			99-101			
Batch: WG484083-2 Batch: WG484085-2 Batch: WG484239-2	General Chemistry - Westborough Lab As		atch: WG484082-2					
Batch: WG484083-2 Batch: WG484085-2 Batch: WG484239-2	Cyanide, Reactive	87	•		30-125			40
Batch: WG484084-2 Batch: WG484085-2 Batch: WG484239-2	General Chemistry - Westborough Lab As		atch: WG484083-2					
Batch: WG484085-2 Batch: WG484239-2	Sulfide, Reactive	103	•		60-125			40
Batch: WG484085-2 Batch: WG484239-2	General Chemistry - Westborough Lab As	ssociated sample(s): 01-03	Batch: WG484084	7				
Batch: WG484085-2 Batch: WG484239-2	Cyanide, Reactive	87			30-125			40
Batch: WG484239-2	General Chemistry - Westborough Lab As	sociated sample(s): 01-03	Batch: WG484085-	Ģ				
Batch: WG484239-2	Sulfide, Reactive	103			60-125			40
. 88	General Chemistry - Westborough Lab As:	sociated sample(s): 01-03	Batch: WG484239-	2				
	Nitrogen, Ammonia	93	ı		83-115	•		20

S	
·ig	
>	1
ਰ	
⋖	
Ð	
<u>a</u>	
Idmi	•
2	
Š	
9	
ᆂ	
Ξ	1
Ŋ	١
O	
9	
a	

Batch Quality Control

LMC WILMINGTON

1121C03346

Project Number:

Project Name:

Lab Number: L1112155

Report Date: 08/18/11

RPD Limits	
RPD	
%Recovery Limits	A Property of
LCSD "Recovery): 04 Batch: WG484240-2
LCS %Recovery	ab Associated sample(s): 04
Parameter	General Chemistry - Westborough La

83-115 94 100 Associated sample(s): 01-03 Batch: WG484566-2 Associated sample(s): 04 Batch: WG484567-2 Chemical Oxygen Demand Nitrogen, Ammonia

2

General Chemistry - Westborough Lab Associated sample(s): 01-03 Batch: WG484656-1

102

Chemical Oxygen Demand

68

Oil & Grease, Hem-Grav

64-132 General Chemistry - Westborough Lab Associated sample(s): 04 Batch: WG484657-1 68 Oil & Grease, Hem-Grav

发

64-132

34

Matrix Spike Analysis Batch Quality Control

08/18/11 Report Date:

L1112155 Lab Number: LMC WILMINGTON 1121C03346

Project Number: Project Name:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual Fo	MSD Found	MSD WBscovery		Recovery		RPD:	<u>م</u> :
General Chemistry - Westborough Lab Associated sar CONCRETE-C-1	gh Lab Asso	ociated samp	mple(s): 01-03	3 QC Batch ID: WG484239-4): WG4842	39-4	QC Sample: L1112155-01 Client ID: LMC-WC-	11215	5-01 Client	RPD Qual Limits	ai Lim	st l
Nitrogen, Ammonia	8.5	410	360	85					55-144			20
General Chemistry - Westborough Lab Associated sample(s): 04 Nitrogen, Ammonia 2000 4000	gh Lab Asso	ociated samp	le(s): 04 (QC Batch ID: V	VG484240- Q	φ.	QC Batch ID: WG484240-4 QC Sample: L1112077-01 Client ID: MS Sample	.0-2203	Client ID: 55-144	MS Sam		8
Associated sample(s): 01-03 QC Batch ID: WG484566-3 Chemical Oxygen Demand 13000 414	QC Batch IC): WG484566 414		QC Sample: L1112155-03	55-03 CI	ient ID:	Client ID: LMC-WC-CONCRETE-ST-1	ICRETI	E-ST-1			
Associated sample(s): 04 QC Batch ID: WG484567-3 Chemical Oxygen Demand 1500 198	Batch ID: W	/G484567-3 198		QC Sample: L1112155-04 Client ID: LMC-WC-SO-1	04 Client	ID: LN	C-WC-SO-1			<u></u> .		
General Chemistry - Westborough Lab Associated sample(s): 01-03 CONCRETE-ST-1	gh Lab Asso	ciated sampl	e(s): 01-03	QC Batch ID: WG484656-3	ı: WG4846		QC Sample: L1112155-03	112155		Client ID: LMC-WC-	WC-	
Oil & Grease, Hem-Grav	1950	4480	3930	4	ø				64-132		ņ	34
General Chemistry - Westborough Lab Associated sample(s): 04 Oil & Grease, Hem-Grav 78.4 4130 4070	jh Lab Asso _{78.4}	ciated sample 4130		QC Batch ID: WG484657-3	'G484657-:		QC Sample: L1112155-04 Client ID: LMC-WC-SO-1 64-132	155-04	Client ID: 64-132	LMC-WC	-80-1	4

Project Name:

LMC WILMINGTON

1121C03346 Project Number:

Lab Duplicate Analysis Batch Quality Control

Lab Number:

L1112155

08/18/11 Report Date:

Parameter Na	Native Sample	Duplicate Sample	mole Hnite	0	Ċ	
General Chemistry - Westborough Lab Associated sample(s): 04 QC Batch ID: WG483937-2): 04 QC Batch ID:	WG483937-2	Samr	112138_01_Clic	Cual Cual	RPD Limits
Hď	8.4	8.4	ns			Sample
General Chemistry - Westborough Lab Associated sample(s): 04 QC Batch ID: WG483948-1): 04 QC Batch ID:	WG483948-1	QC Sample: L1112104-01 Client ID: DUP Sample	112104-01 Clie	nt ID: DUF	Sample
Solids, Total	96	26	%	1		20
General Chemistry - Westborough Lab Associated sample(s): 01-03 CONCRETE-C-1		QC Batch ID: WG483955-2	10000	QC Sample: L1112155-01 Client ID: LMC-WC-	Nient ID: L	MC-WC-
Н	11.6	11.7	ns	0		2
General Chemistry - Westborough Lab Associated sample(s): 01-03 CONCRETE-C-1		QC Batch ID: WG483987-2		QC Sample: L1112155-01 Client ID: LMC-WC-	lient ID: L	MC-WC-
Solids, Total Volatile	4.1	3.5	%	16		
General Chemistry - Westborough Lab Associated sample(s): 04 QC Batch ID: WG483988-2	: 04 QC Batch ID:	WG483988-2	QC Sample: L1112155-04 Client ID: LMC-WC-SO-1	12155-04 Clier	it ID: LMC	-WC-SO-1
Solids, Total Volatile	0.80	0.70	%	13		
General Chemistry - Westborough Lab Associated sample(s): 04 QC Batch ID: WG484082-3	: 04 QC Batch ID:	WG484082-3	QC Sample: L1112155-04 Client ID: LMC-WC-SO-1	12155-04 Clier	It ID: LMC	-WC-SO-1
Cyanide, Reactive	QN	Q	mg/kg	S N		40
General Chemistry - Westborough Lab Associated sample(s): 04 QC Batch ID: WG484083-3 QC Sample: L1112155-04 Client ID: LMC-WC-SO-1	: 04 QC Batch ID:	WG484083-3	QC Sample: L11	12155-04 Clien	It ID: LMC	-WC-SO-1
Sulfide, Reactive	ND	Q	mg/kg	Ŋ.		40
General Chemistry - Westborough Lab Associated sample(s): CONCRETE-ST-1	ple(s): 01-03 QC Batch II	QC Batch ID: WG484084-3		QC Sample: L1112155-03 Client ID: LMC-WC-	lient ID: LI	MC-WC-
Cyanide, Reactive	Ŋ	Q	mg/kg	ON		40

ALPHA

Project Name:

LMC WILMINGTON Project Number: 1121C03346

Lab Duplicate Analysis Batch Quality Control

Lab Number:

L1112155 08/18/11 Report Date:

Parameter Nat	Native Sample	Duplicate Sample	- dial		į
General Chemistry - Westborough Lab Associated sample(s): 01-03 CONCRETE-ST-1	1200160	QC Batch ID: WG484085-3	QC Sample:	KPD L1112155-03	QC Sample: L1112155-03 Client ID: LMC-WC-
Sulfide, Reactive	QN	QN	mg/kg	Ŋ	40
General Chemistry - Westborough Lab Associated sample(s):	le(s): 01-03 QC Batcl	QC Batch ID: WG484121-1	QC Sample:	L1111606-01	QC Sample: L1111606-01 Client ID: Dl IP Sample
Solids, Total	95	96	. %	0	
General Chemistry - Westborough Lab Associated sample(s): CONCRETE-C-1	le(s): 01-03 QC Batcl	QC Batch ID: WG484239-3	QC Sample:	L1112155-01	QC Sample: L1112155-01 Client ID: LMC-WC-
Nitrogen, Ammonia	8.5	Q	mg/kg	O N	20
General Chemistry - Westborough Lab Associated sample(s):	le(s): 04 QC Batch ID: WG484240-3		Sample: L11	12077-01 Cli	QC Sample: L1112077-01 Client ID: DUP Sample
Nitrogen, Ammonia	2000	3100	mg/kg	43	۵ 20
Associated sample(s): 01-03 QC Batch ID: WG484566-4	QC Sample: L11	QC Sample: L1112155-03 Client ID: LMC-WC-CONCRETE-ST-1	LMC-WC-CON	CRETE-ST-	
Chemical Oxygen Demand	13000	12000	mg/kg	ω	
Associated sample(s): 04 QC Batch ID: WG484567-4 QC	Sample: L11121	QC Sample: L1112155-04 Client ID: LMC-WC-SO-1	C-WC-SO-1		
Chemical Oxygen Demand	1500	2100	mg/kg	33	
General Chemistry - Westborough Lab Associated sample(s): 01-03 CONCRETE-ST-1		QC Batch ID: WG484656-4 (C Sample: L	.1112155-03	QC Sample: L1112155-03 Client ID: LMC-WC-
Oil & Grease, Hem-Grav	1950	1560	mg/kg	22	34
General Chemistry - Westborough Lab Associated sample(s): Oil & Grease, Hem-Grav	04 QC Batch ID: WG484657-4 78.4 77.6		Sample: L111	12155-04 Clie	QC Sample: L1112155-04 Client ID: LMC-WC-SO-1
					;

Serial_No:08181115:36

Project Name:

LMC WILMINGTON

Project Number: 1121C03346

Lab Number: L1112155 **Report Date:** 08/18/11

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Reagent H2O Preserved Vials Frozen on:

NA

Cooler Information Custody Seal Cooler

Α

Absent

Container In	formation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1112155-01A	Vial Large unpreserved	Α	N/A	2	Y	Absent	TCLP-EXT-ZHE(14),TCLP- VOA(14)
L1112155-01B	Amber 250ml unpreserved	Α	N/A	2	Υ	Absent	PCB-8082LL-3540C(14)
L1112155-01C	Amber 250ml unpreserved	Α	N/A	2	Υ	Absent	-
L1112155-01D	Amber 250ml unpreserved	Α	N/A	2	Υ	Absent	TCLP-8270(14),HERB- TCLP*(14),PEST-TCLP*(14)
L1112155-01E	Amber 250ml unpreserved	Α	N/A	2	Y	Absent	IGNIT- 1030(14),REACTS(14),SPECWC(),TS(7),TVS-2540(7),PH- 9045(1),PAINTF(),OG- 9071(28),REACTCN(14),NH3- 4500(28)
L1112155-01X	Plastic 250ml HNO3 preserved spl	NA	NA		Y	Absent	CD-CI(180),AS-CI(180),BA- CI(180),HG-C(28),PB- CI(180),CR-CI(180),SE- CI(180),AG-CI(180)
L1112155-02A	Vial Large unpreserved	Α	N/A	2	Υ	Absent	TCLP-EXT-ZHE(14),TCLP- VOA(14)
L1112155-02B	Amber 250ml unpreserved	Α	N/A	2	Υ	Absent	PCB-8082LL-3540C(14)
L1112155-02C	Amber 250ml unpreserved	Α	N/A	2	Υ	Absent	-
L1112155-02D	Amber 250ml unpreserved	Α	N/A	2	Υ	Absent	TCLP-8270(14),HERB- TCLP*(14),PEST-TCLP*(14)
L1112155-02E	Amber 250ml unpreserved	A	N/A	2	Y	Absent	IGNIT- 1030(14),REACTS(14),SPECWC(),TS(7),TVS-2540(7),PH- 9045(1),PAINTF(),OG- 9071(28),REACTCN(14),NH3- 4500(28)
L1112155-02X	Plastic 250ml HNO3 preserved spl	NA	NA		Υ	Absent	CD-CI(180),AS-CI(180),BA- CI(180),HG-C(28),PB- CI(180),CR-CI(180),SE- CI(180),AG-CI(180)
L1112155-03A	Vial Large unpreserved	Α	N/A	2	Υ	Absent	TCLP-EXT-ZHE(14),TCLP- VOA(14)
L1112155-03B	Amber 250ml unpreserved	Α	N/A	2	Υ	Absent	PCB-8082LL-3540C(14)
L1112155-03C	Amber 250ml unpreserved	Α	N/A	2	Υ	Absent	-
L1112155-03D	Amber 250ml unpreserved	Α	N/A	2	Υ	Absent	TCLP-8270(14),HERB- TCLP*(14),PEST-TCLP*(14)

Serial_No:08181115:36

Project Name: LMC WILMINGTON

Project Number: 1121C03346

Lab Number: L1112155 **Report Date:** 08/18/11

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1112155-03E	Amber 250ml unpreserved	A	N/A	2	Y	Absent	IGNIT- 1030(14),REACTS(14),SPECWC(),TS(7),TVS-2540(7),PH- 9045(1),PAINTF(),OG- 9071(28),REACTCN(14),NH3- 4500(28)
L1112155-03X	Plastic 250ml HNO3 preserved spl	NA	NA		Y	Absent	CD-Cl(180),AS-Cl(180),BA- Cl(180),HG-C(28),PB- Cl(180),CR-Cl(180),SE- Cl(180),AG-Cl(180)
L1112155-04A	Vial Large unpreserved	Α	N/A	2	Υ	Absent	TCLP-EXT-ZHE(14),TCLP- VOA(14)
L1112155-04B	Amber 250ml unpreserved	Α	N/A	2	Υ	Absent	PCB-8082(14)
L1112155-04C	Amber 250ml unpreserved	Α	N/A	2	Υ	Absent	-
L1112155-04D	Amber 250ml unpreserved	Α	N/A	2	Υ	Absent	TCLP-8270(14),HERB- TCLP*(14),PEST-TCLP*(14)
L1112155-04E	Amber 250ml unpreserved	A	N/A	2	Y	Absent	IGNIT- 1030(14),REACTS(14),TS(7),TVS -2540(7),PH- 9045(1),PAINTF(),OG- 9071(28),REACTCN(14),NH3- 4500(28)
L1112155-04X	Plastic 250ml HNO3 preserved spl	NA	NA		Y	Absent	CD-Cl(180),AS-Cl(180),BA- Cl(180),HG-C(28),PB- Cl(180),CR-Cl(180),SE- Cl(180),AG-Cl(180)

Container Comments

L1112155-04E

Project Name:

LMC WILMINGTON

Project Number:

1121C03346

Lab Number:

L1112155

Report Date:

08/18/11

GLOSSARY

Acronyms

EPA - Environmental Protection Agency.

LCS
- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

MDL

• Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

MS

• Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA · Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NI · Not Ignitable.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

Footnotes

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than five times (5x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank.
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The RPD between the results for the two columns exceeds the method-specified criteria; however, the lower value has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less

Report Format: Data Usability Report

Serial_No:08181115:36

Project Name:

LMC WILMINGTON

Project Number:

1121C03346

Lab Number:

L1112155

Report Date:

08/18/11

Data Qualifiers

than 5x the RL. (Metals only.)

R - Analytical results are from sample re-analysis.

RE - Analytical results are from sample re-extraction.

- Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs). J

ND · Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Name:

LMC WILMINGTON

Project Number:

1121C03346

Lab Number:

L1112155

Report Date:

08/18/11

REFERENCES

1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IIIA, 1997.

30 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WPCF. 18th Edition. 1992.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certificate/Approval Program Summary

Last revised July 28, 2011 - Westboro Facility

The following list includes only those analytes/methods for which certification/approval is currently held.

For a complete listing of analytes for the referenced methods, please contact your Alpha Customer Service Representative.

Connecticut Department of Public Health Certificate/Lab ID: PH-0574. NELAP Accredited Solid Waste/Soil.

Drinking Water (Inorganic Parameters: Color, pH, Turbidity, Conductivity, Alkalinity, Chloride, Free Residual Chlorine, Fluoride, Calcium Hardness, Sulfate, Nitrate, Nitrite, Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Calcium, Chromium, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Vanadium, Zinc, Total Dissolved Solids, Total Organic Carbon, Total Cyanide, Perchlorate. Organic Parameters: Volatile Organics 524.2, Total Trihalomethanes 524.2, 1,2-Dibromo-3-chloropropane (DBCP), Ethylene Dibromide (EDB), 1,4-Dioxane (Mod 8270). Microbiology Parameters: Total Coliform-MF mEndo (SM9222B), Total Coliform – Colilert (SM9223 P/A), E. Coli. – Colilert (SM9223 P/A), HPC – Pour Plate (SM9215B), Fecal Coliform – MF m-FC (SM9222D))

Wastewater/Non-Potable Water (Inorganic Parameters: Color, pH, Conductivity, Acidity, Alkalinity, Chloride, Total Residual Chlorine, Fluoride, Total Hardness, Silica, Sulfate, Sulfide, Ammonia, Kjeldahl Nitrogen, Nitrate, Nitrite, O-Phosphate, Total Phosphorus, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Strontium, Thallium, Tin, Titanium, Vanadium, Zinc, Total Residue (Solids), Total Dissolved Solids, Total Suspended Solids (non-filterable), BOD, CBOD, COD, TOC, Total Cyanide, Phenolics, Foaming Agents (MBAS), Bromide, Oil and Grease. Organic Parameters: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, 2,4-D, 2,4,5-T, 2,4,5-TP(Silvex), Acid Extractables (Phenols), Benzidines, Phthalate Esters, Nitrosamines, Nitroaromatics & Isophorone, Polynuclear Aromatic Hydrocarbons, Haloethers, Chlorinated Hydrocarbons, Volatile Organics, TPH (HEM/SGT), Extractable Petroleum Hydrocarbons (ETPH), MA-EPH, MA-VPH. Microbiology Parameters: Total Coliform – MF mEndo (SM9222B), Total Coliform – MTF (SM9221B), HPC – Pour Plate (SM9215B), Fecal Coliform – MF m-FC (SM9222D), Fecal Coliform – A-1 Broth (SM9221E).)

Solid Waste/Soil (Inorganic Parameters: pH, Sulfide, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Tin, Vanadium, Zinc, Total Cyanide, Ignitability, Phenolics, Corrosivity, TCLP Leach (1311), SPLP Leach (1312 metals only), Reactivity. Organic Parameters: PCBs, PCBs in Oil, Organochlorine Pesticides, Technical Chlordane, Toxaphene, Extractable Petroleum Hydrocarbons (ETPH), MA-EPH, MA-VPH, Dicamba, 2,4-D, 2,4,5-T, 2,4,5-TP(Silvex), Volatile Organics, Acid Extractables (Phenols), 3.3'-Dichlorobenzidine, Phthalates, Nitrosamines, Nitroaromatics & Cyclic Ketones, PAHs, Haloethers, Chlorinated Hydrocarbons.)

Maine Department of Human Services Certificate/Lab ID: 2009024.

Drinking Water (Inorganic Parameters: SM9215B, 9222D, 9223B, EPA 180.1, 353.2, SM2130B, 2320B, 2540C, 4500Cl-D, 4500CN-C, 4500CN-E, 4500F-C, 4500H+B, 4500NO3-F, EPA 200.7, EPA 200.8, 245.1, EPA 300.0. Organic Parameters: 504.1, 524.2.)

Wastewater/Non-Potable Water (Inorganic Parameters: EPA 120.1, 1664A, 350.1, 351.1, 353.2, 410.4, 420.1, SM2320B, 2510B, 2540C, 2540D, 426C, 4500Cl-D, 4500Cl-E, 4500CN-C, 4500CN-E, 4500F-B, 4500F-C, 4500H+B, 4500Norg-B, 4500NH3-B, 4500NH3-B, 4500NH3-H, 4500NO3-F, 4500P-B, 4500P-E, 5210B, 5220D, 5310C, 9010B, 9040B, 9030B, 7470A, 7196A, 2340B, EPA 200.7, 6010, 200.8, 6020, 245.1, 1311, 1312, 3005A, Enterolert, 9223D, 9222D. Organic Parameters: 608, 8081, 8082, 8330, 8151A, 624, 8260, 3510C, 3630C, 5030B, MEDRO, ME-GRO, MA-EPH, MA-VPH.)

Solid Waste/Soil (Inorganic Parameters: 9010B, 9012A, 9014A, 9040B, 9045C, 6010B, 7471A, 7196A, 9050A, 1010, 1030, 9065, 1311, 1312, 3005A, 3050B. Organic Parameters: ME-DRO, ME-GRO, MA-EPH, MA-VPH, 8260B, 8270C, 8330, 8151A, 8081A, 8082, 3540C, 3546, 3580A, 3630C, 5030B, 5035.)

Massachusetts Department of Environmental Protection Certificate/Lab ID: M-MA086.

Drinking Water (Inorganic Parameters: (EPA 200.8 for: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl) (EPA 200.7 for: Ba,Be,Ca,Cd,Cr,Cu,Na,Ni) 245.1, (300.0 for: Nitrate-N, Fluoride, Sulfate); (EPA 353.2 for: Nitrate-N, Nitrite-N); (SM4500NO3-F for: Nitrate-N and Nitrite-N); 4500F-C, 4500CN-CE, EPA 180.1, SM2130B, SM4500Cl-D, 2320B, SM2540C, SM4500H-B. Organic Parameters: (EPA 524.2 for: Trihalomethanes, Volatile Organics); (504.1 for: 1,2-Dibromoethane, 1,2-Dibromo-3-Chloropropane), EPA 332. Microbiology Parameters: SM9215B; ENZ. SUB. SM9223; ColilertQT SM9223B; MF-SM9222D.)

Non-Potable Water (Inorganic Parameters:, (EPA 200.8 for: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn); (EPA 200.7 for: Al,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,Tl, V,Zn); 245.1, SM4500H,B, EPA 120.1,

SM2510B, 2540C, 2340B, 2320B, 4500CL-E, 4500F-BC, 426C, SM4500NH3-BH, (EPA 350.1 for: Ammonia-N), LACHAT 10-107-06-1-B for Ammonia-N, SM4500NO3-F, 353.2 for Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, 4500P-B,E, 5220D, EPA 410.4, SM 5210B, 5310C, 4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D.

Organic Parameters: (EPA 624 for Volatile Halocarbons, Volatile Aromatics),(608 for: Chlordane, Aldrin, Dieldrin, DDD, DDE, DDT, Heptachlor, Heptachlor Epoxide, PCBs-Water), (EPA 625 for SVOC Acid Extractables and SVOC Base/Neutral Extractables), 600/4-81-045-PCB-Oil. Microbiology Parameters: (ColilertQT SM9223B;Enterolert-QT: SM9222D-MF.)

New Hampshire Department of Environmental Services Certificate/Lab ID: 200307. NELAP Accredited.

Drinking Water (Inorganic Parameters: SM 9222B, 9223B, 9215B, EPA 200.7, 200.8, 245.2, 300.0, SM4500CN-E, 4500H+B, 4500NO3-F, 2320B, 2510B, 2540C, 4500F-C, 5310C, 2120B, EPA 332.0. Organic Parameters: 504.1, 524.2.)

Non-Potable Water (Inorganic Parameters: SM9222D, 9221B, 9222B, 9221E-EC, EPA 3005A, 200.7, 200.8, 245.1, 245.2, SW-846 6010B, 6020, 7196A, 7470A, SM3500-CR-D, EPA 120.1, 300.0, 350.1, 351.1, 353.2, 410.4, 420.1, 1664A, SW-846 9010, 9030, 9040B, 9050A, SM426C, SM2120B, 2310B, 2320B, 2540B, 2540D, 4500H+B, 4500CL-E, 4500CN-E, 4500NH3-H, 4500NO3-F, 4500NO2-B, 4500P-E, 4500-S2-D, 5210B, 5220D, 2510B, 2540C, 4500F-C, 5310C, 5540C, LACHAT 10-204-00-1-A, LACHAT 10-107-06-2-D. Organic Parameters: SW-846 3510C, 5030B, 8260B, 8270C, 8330, EPA 624, 625, 608, SW-846 8082, 8081A, 8151A.)

Solid & Chemical Materials (Inorganic Parameters: SW-846 6010B, 7196A, 7471A, 1010, 1030, 9010, 9012A, 9014, 9030B, 9040B, 9045C, 9050C, 9065,1311, 1312, 3005A, 3050B. Organic Parameters: SW-846 3540C, 3546, 3580A, 5030B, 5035, 8260B, 8270C, 8330, 8151A, 8015B, 8082, 8081A.)

New Jersey Department of Environmental Protection Certificate/Lab ID: MA935. NELAP Accredited.

Drinking Water (Inorganic Parameters: SM9222B, 9221E, 9223B, 9215B, 4500CN-CE, 4500NO3-F, 4500F-C, EPA 300.0, 200.7, 200.8, 245.2, 2540C, SM2120B, 2320B, 2510B, 5310C, SM4500H-B. Organic Parameters: EPA 332, 504.1, 524.2.)

Non-Potable Water (Inorganic Parameters: SM5210B, EPA 410.4, SM5220D, 4500Cl-E, EPA 300.0, SM2120B, SM4500F-BC, EPA 200.7, 351.1, LACHAT 10-107-06-2-D, EPA 353.2, SM4500NO3-F, 4500NO2-B, EPA 1664A, SM5310B, C or D, 4500-PE, EPA 420.1, SM510ABC, SM4500P-B5+E, 2540B, 2540C, 2540D, EPA 120.1, SM2510B, SM15 426C, 9222D, 9221B, 9221C, 9221E, 9222B, 9215B, 2310B, 2320B, 4500NH3-H, 4500-S D, EPA 350.1, 350.2, SW-846 1312, 6020, 6020A, 7470A, 5540C, 4500H-B, EPA 200.8, SM3500Cr-D, 4500CN-CE, EPA 245.1, 245.2, SW-846 9040B, 3005A, 3015, EPA 6010B, 6010C, 7196A, 3060A, SW-846 9010B, 9030B. Organic Parameters: SW-846 8260B, 8270C, 8270D, 8270C-SIM, 8270D-SIM, 3510C, EPA 608, 624, 625, SW-846 3630C, 5030B, 8081A, 8081B, 8082, 8082A, 8151A, 8330, NJ OQA-QAM-025 Rev.7, NJ EPH.)

Solid & Chemical Materials (<u>Inorganic Parameters</u>: SW-846, 6010B, 6010C, 7196A, 3060A, 9010B, 9030B, 1010, 1030, 1311, 1312, 3005A, 3050B, 7471A, 7471B, 9014, 9012A, 9040B, 9045C, 9050A, 9065. <u>Organic Parameters</u>: SW-846 8015B, 8015C, 8081A, 8081B, 8082, 8082A, 8151A, 8330, 8260B, 8270C, 8270D, 8270C-SIM, 8270D-SIM, 3540C, 3545, 3546, 3550B, 3580A, 3630C, 5030B, 5035L, 5035H, NJ OQA-QAM-025 Rev.7, NJ EPH.)

New York Department of Health Certificate/Lab ID: 11148. NELAP Accredited.

Drinking Water (Inorganic Parameters: SM9223B, 9222B, 9215B, EPA 200.8, 200.7, 245.2, SM5310C, EPA 332.0, SM2320B, EPA 300.0, SM2120B, 4500CN-E, 4500F-C, 4500H-B, 4500NO3-F, 2540C, SM 2510B. Organic Parameters: EPA 524.2, 504.1.)

Non-Potable Water (Inorganic Parameters: SM9221E, 9222D, 9221B, 9222B, 9215B, 5210B, 5310C, EPA 410.4, SM5220D, 2310B-4a, 2320B, EPA 200.7, 300.0, SM4500CL-E, 4500F-C, SM15 426C, EPA 350.1, SM4500NH3-BH, EPA 351.1, LACHAT 10-107-06-2, EPA 353.2, LACHAT 10-107-04-1-C, SM4500-NO3-F, 4500-NO2-B, 4500P-E, 2540C, 2540B, 2540D, EPA 200.8, EPA 6010B, 6020, EPA 7196A, SM3500Cr-D, EPA 245.1, 245.2, 7470A, SM2120B, LACHAT 10-204-00-1-A, EPA 9040B, SM4500-HB, EPA 1664A, EPA 420.1, SM14 510C, EPA 120.1, SM2510B, SM4500S-D, SM5540C, EPA 3005A, 9010B, 9030B.. Organic Parameters: EPA 624, 8260B, 8270C, 625, 608, 8081A, 8151A, 8330, 8082, EPA 3510C, 5030B.)

Solid & Hazardous Waste (Inorganic Parameters: 1010, 1030, EPA 6010B, 7196A, 7471A, 9012A, 9014, 9040B, 9045C, 9065, 9050, EPA 1311, 1312, 3005A, 3050B, 9010B, 9030B. Organic Parameters: EPA 8260B, 8270C, 8015B, 8081A, 8151A, 8330, 8082, 3540C, 3545, 3546, 3580, 5030B, 5035.)

North Carolina Department of the Environment and Natural Resources Certificate/Lab ID: 666. Organic Parameters: MA-EPH, MA-VPH.

Drinking Water Program Certificate/Lab ID: 25700. (Inorganic Parameters: Chloride EPA 300.0. Organic Parameters: 524.2)

Pennsylvania Department of Environmental Protection Certificate/Lab ID: 68-03671. NELAP Accredited. Drinking Water (Organic Parameters: EPA 524.2, 504.1)

Non-Potable Water (Inorganic Parameters: EPA 1312, 200.7, 410.4, 1664A, SM2540D, 5210B, 5220D, 4500-P,BE. Organic Parameters: EPA 3510C, 5030B, 625, 624, 608, 8081A, 8082, 8151A, 8260B, 8270C, 8330)

Solid & Hazardous Waste (Inorganic Parameters: EPA 350.1, 1010, 1030, 1311, 1312, 3050B, 6010B, 7196A, 7471A, 9010B, 9012A, 9014, 9040B, 9045C, 9050, 9065, SM 4500NH3-H. Organic Parameters: 3540C, 3545, 3546, 3550B, 3580A, 3630C, 5035, 8015B, 8081A, 8082, 8151A, 8260B, 8270C, 8330)

Rhode Island Department of Health Certificate/Lab ID: LAO00065. NELAP Accredited via NY-DOH. Refer to MA-DEP Certificate for Potable and Non-Potable Water. Refer to NJ-DEP Certificate for Potable and Non-Potable Water.

Texas Commisson on Environmental Quality Certificate/Lab ID: T104704476-09-1. NELAP Accredited. Non-Potable Water (Inorganic Parameters: EPA 120.1, 1664, 200.7, 200.8, 245.1, 245.2, 300.0, 350.1, 351.1, 353.2, 376.2, 410.4, 420.1, 6010, 6020, 7196, 7470, 9040, SM 2120B, 2310B, 2320B, 2510B, 2540B, 2540C, 2540D, 426C, 4500CL-E, 4500CN-E, 4500F-C, 4500H+B, 4500NH3-H, 4500NO2B, 4500P-E, 4500 S2 D, 510C, 5210B, 5220D, 5310C, 5540C. Organic Parameters: EPA 608, 624, 625, 8081, 8082, 8151, 8260, 8270, 8330.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 1311, 1312, 9012, 9014, 9040, 9045, 9050, 9065.)

Department of Defense Certificate/Lab ID: L2217.

Drinking Water (Inorganic Parameters: SM 4500H-B. Organic Parameters: EPA 524.2, 504.1.)

Non-Potable Water (Inorganic Parameters: EPA 200.7, 200.8, 6010B, 6020, 245.1, 245.2, 7470A, 9040B, 300.0, 332.0, 6860, 353.2, 410.4, 9060, 1664A, SM 4500CN-E, 4500H-B, 4500NO3-F, 5220D, 5310C, 2320B, 2540C, 3005A, 3015, 9010B, 9056. Organic Parameters: EPA 8260B, 8270C, 8330A, 625, 8082, 8081A, 3510C, 5030B, MassDEP EPH, MassDEP VPH.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 200.7, 6010B, 7471A, 9010, 9012A, 6860, 1311, 1312, 3050B, 7196A, 9010B, 3500-CR-D, 4500CN-CE, 2540G, Organic Parameters: EPA 8260B, 8270C, 8330A/B-prep, 8082, 8081A, 3540C, 3546, 3580A, 5035A, MassDEP EPH, MassDEP VPH.)

The following analytes are not included in our current NELAP/TNI Scope of Accreditation:

EPA 8260B: Freon-113, 1,2,4,5-Tetramethylbenzene, 4-Ethyltoluene. EPA 8330A: PETN, Picric Acid, Nitroglycerine, 2,6-DANT, 2,4-DANT. EPA 8270C: Methyl naphthalene, Dimethyl naphthalene, Total Methylnapthalenes, Total Dimethylnaphthalenes, 1,4-Diphenylhydrazine (Azobenzene). EPA 625: 4-Chloroaniline, 4-Methylphenol. Phosphorus in a soil matrix, Chloride in a soil matrix, TKN in a soil matrix, NO2 in a soil matrix, NO3 in a soil matrix, SO4 in a soil matrix.

Project Name Unc. With Uncertainty Andre Project Section Project Name Unc. With Uncertainty Andre Project Section Project Sect	WESTBORO, MA	CHAIN OF	CHAIN OF CUSTODY Project Information	PAGE_OF_	Parone (Mossis Report Informa	전에 Residing ab Report Information - Data Deliverables	ABPER Volver
Project London: Spreadballs with a region of the Library of Auto. Project H. (12)LCo Str. Alexandra Manager Str. (12)LCo Str. (12	TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300	Project Name: 1 Av 1.33			Mailori - Data Deliverables	Billing Information
Policit R 1/3 Co 5724 Velocit R 1/3 Co 5724 Velocit R 1/3 Co 5724 Velocit R 1/3 Co 5724 Velocit R 1/3 Co 5724 Velocit R 1/3 Co 5724 Velocit R 1/3 Ve	lient Information	Section 2.	Project Location: C. C. T.	CLOWING MICHIGAD	ADEX	M EMAIL Add'l Deliverables	
Project Names Chiefe Project Names	lient: TETPA	Trail	Project #: 11 71 7 7 2 1/	DUN TO THE	Regulatory Rec	Juirements/Report Limits	
The O \$5.7 Al Pith Cuoto #.	ddress: 950 O	MANUEL ST	Project Manager: St. 5 1		State /Fed Progra	am Crite	ie
Furnationed Time 10 New Order 10	WITE 200 WI	UMINITETION MA 01887	ALPHA Quote #:	27	MA MCP PRESU	UMPTIVE CERTAINTY CT	REASONABLE CONFIDENCE PROTO
Standard Contraction Cont	hone: 978-4	ከትስ 8 - ከ/	Turn-Around Time			Are MCP Analytical Methods P	sequired?
CONTRICTED A CONTRICTED CONTRICTE	14-816 xe	4-8499				Is Matrix Spike (MS) Required Are QT RCP (Reasonable Con	on this SDG? (If yes see note in Comments)
C Sequiperments/Comments which samples and what bees not a least not be performed. In Sample Specific Comments which samples and what bees not a least not be performed. Sample Specific Comments which samples and what bees not a least not be compensed by the samples of the s	Email's reprendent	Wetce Tetrated, Con.	Date Due: 8/17/11	confirmed if pre-approved() Time:	MIS	20214	SW IGNA
Sample ID	Other Project Sif MS is required, in (Note: All CAM met	pecific Requirements/Commericate in Sample Specific Comments whethous for inorganic analyses require MS of	s MS to	e performed.	E41	20M 20M 20M 20M	De la constitución de la constit
WcCovCrecteC1 8[10]1 0900 S MA X X X X X X X X X X X X X X X X X X	ALPHA tab ID Lab Use Orly)	Sample ID	ollectic		Tich A CoD A	State of the state	
WC-CONCRETE -NC-2 8 10 11 000 S MA X X X X X X X X X X X X X X X X X X	7/00/7	LMC-WC-CONCRETE-C-	11 8/10/11		K		
STIONS ABOVE: Relinquished By: TRCP? Recovered to the transport of the	N	UMC-WC-CONCRETE-N	8/10/11	-			
Stop 10:30 S MA	62)	unc-we-ancheres		-			
STIONS ABOVE: Container Type G G G G G G G G G	7	LMC-MC-SO-1					
STIONS ABOVE: Container Type G G G G G G G G G							
STIONS ABOVE: Container Type & & & & & & & & & & & & & & & & & & &							
STIONS ABOVE: SECT Relinquished By: Date/Time Received: By: Bib ii Received: By: Container Type & & & & & & & & & & & & & & & & & & &							
STIONS ABOVE! JECT Relinquished By: TRCP? Received By: Date/Time Received By: Received By: Date/Time Received By: Recei							
TRCP? Relinquished By: Date/Time Received By: Received By: Date/Time Received By: Received By: Received By: Date/Time Received By: Rece							
T RCP? Relinquished By: Date/Time Received By: Receive	LEASE ANSWER	QUESTIONS ABOVE!		Container Type	&	9	Please more value and a second
T RCP? Received By: Date/Time Received By: Date/Time Track Syllol 11 Monte Charles 8 10-11 PM	YOUR PI	ROJECT		ive	केट परि परि	3) 3h	pletely Samples can nat be logged
My Word (Jack 8:104) 1655 1 2 8/10/11/165	A MCP 0	N.A.	quisned by:	S to II	Received Manual Control	8.10	ime starturullanyambigutussare-resolves W 34 Alf Samples submitted are subject to
	1 NO: 01-01 (rev. 18-Jar	n-2010)	" Male	1		8/10	Alphais, terms and conditions See reverse side

ANALYTICAL REPORT

Lab Number:

L1114942

Client:

Tetra Tech Nus, Inc.

250 Andover St

Suite 200

Wilmington, MA 01887

ATTN:

Steve Vetere

Phone:

(978) 474-8444

Project Name:

LMC WILMINGTON

Project Number:

1121C03346

Report Date:

09/23/11

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY NELAC (11148), CT (PH-0574), NH (2003), NJ (MA935), RI (LAO00065), ME (MA0086), PA (Registration #68-03671), USDA (Permit #S-72578), US Army Corps of Engineers, Naval FESC.

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:09231116:18

Project Name:

LMC WILMINGTON

Project Number:

1121C03346

Lab Number:

L1114942

Report Date:

09/23/11

Alpha Sample ID	Client ID	Sample Location	Collection Date/Time
L1114942-01	LMC-WC-CONCRETE-C-1	50 FORDHAM RD. WILMINGTON, MA	08/10/11 09:00
L1114942-02	LMC-WC-CONCRETE-NC-2	50 FORDHAM RD. WILMINGTON, MA	08/10/11 09:30
L1114942-03	LMC-WC-CONCRETE-ST-1	50 FORDHAM RD. WILMINGTON, MA	08/10/11 10:00
L1114942-04	LMC-WC-SO-1	50 FORDHAM RD. WILMINGTON, MA	08/10/11 10:30

Serial_No:09231116:18

Project Name:

LMC WILMINGTON

Project Number:

1121C03346

Lab Number:

L1114942

Report Date:

09/23/11

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

For additional information, please contact Client Services at 800-624-9220.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Michelle M. Morris

Title: Technical Director/Representative

Date: 09/23/11

METALS

Serial_No:09231116:18

Project Name:

LMC WILMINGTON

Lab Number:

L1114942

Project Number:

1121C03346

Report Date:

09/23/11

Lab ID: Client ID:

L1114942-04

LMC-WC-SO-1

Date Collected:

08/10/11 10:30

Sample Location:

Date Received:

08/10/11

50 FORDHAM RD. WILMINGTON, MA

Not Specified

Matrix:

Field Prep:

Soil

SAMPLE RESULTS

TCLP/SPLP Ext. Date: 09/21/11 19:55

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
TCLP pH Extraction	n Data - W	estborough/	Lab								
pH, Extraction Post- Filtration	5.16		SU	-	NA	1		09/22/11 12:05	NA	1,1311	AG
TCLP Metals by EP	A 1311 - \	Vestboroug	h Lab								
Copper, TCLP	ND		mg/l	0.20	-	1	09/22/11 13:1	5 09/22/11 16:27	EPA 3015	1,6010B	Al
Nickel, TCLP	ND		mg/i	0.50		1	09/22/11 13:15	5 09/22/11 16:27	EPA 3015	1,6010B	AI
Zinc, TCLP	ND		mg/l	0.50	**	1	09/22/11 13:15	5 09/22/11 16:27	EPA 3015	1,6010B	ΑI

Serial_No:09231116:18

Project Name:

LMC WILMINGTON

Project Number: 1121C03346

Lab Number:

L1114942

Report Date:

09/23/11

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
TCLP Metals by EPA 1311	- Westborough Lab	for sam	ole(s):	01-04	Batch: W	G491571-1			
Nickel, TCLP	ND	mg/l	0.50		1	09/22/11 13:15	09/22/11 15:45	1,6010B	Al
Zinc, TCLP	ND	mg/l	0.50		1	09/22/11 13:15	09/22/11 15:45	1,6010B	Al
		Pr	ep Info	rmatic	on				
•	Dig	estion M	ethod:	EPA	3015				
	TCLP/SPLP E	Extraction	Date:	09/2	1/11 19:55				

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	
TCLP Metals by EPA 131	1 - Westborough Lab	for sam	ple(s):	01-04	Batch: WO	3491571-1	o Supri, a 1, 1		Santain.
Copper, TCLP	ND	mg/l	0.20		1	09/22/11 13:15	09/22/11 15:45	5 1,6010B	Al

Prep Information

Digestion Method:

EPA 3015

TCLP/SPLP Extraction Date: 09/21/11 19:55

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	l Analyst
TCLP pH Extraction Data	- Westborough Lab	for sample	(s): 0	1-04 E	Batch: WG4	91816-1			
pH, Extraction Post-Filtration	4.97	su	-	NA	1		09/22/11 12:05	5 1,1311	AG
		Pre	p Info	ormatio	n				
	Di	gestion Me	thod:	NA		=== ==			

					j				·							1456		}	 . of 20	UC
7/11/1/dd/Y	Pilling Information	Same as Client info PO#:			CT REASONABLE CONFIDENCE PROTECTION	Are MCP Analytical Methods Required? Is Matrix Spike (MS) Required on this SDG? (If yes see note in Comments) Are CT RCP (Reasonable Confidence Protocole) Exercises		NADLING NADLING	D Lab to do	nments							Place purific eath (both) and com	A STANKING THE STA		on a second seco
	Report Information - Data Deliverables	EMAIL	Regulatory Requirements/Report Limits	State /Fed Program Criteria	MA MCP PRESUMPTIVE CERTAINTY CT RE	□ Yes □ No Are MCP Analytical Methods Required? □ Yes □ No Is Matrix Spike (MS) Required on this SDG? (if yes see not □ Yes □ No Are CT RCP (Reasonable Confidence Protocols) Described to the CT RCP (Reasonable Confidence Protocols) Described to th		TO THE STATE OF TH	770							0	37 37 34 34 34 34 34 34 34 34 34 34 34 34 34	Date/Time	2 8/0/1 PM	
USTODY Mee or	ua	NO.	TOZDÍMON ED MA	2		HSH trait roads	Date Due: 46-3/1/ Time:	Oetection Limits: mples and what tasts MS to be performed. 0 soil samples)	Collection Sample Sampler's Finitials	S 0960	8/10/11/09/80 S	S	lo:30 S		-	Compiner Time	Preservative	Relinquished By: Date/Time	talk 8.101/1655	
CHAIN OF CUSTOD	MANSFIELD, MA TEL: 508-822-8300	FAX: 608-822-9288 ation	Client: TETEA TECH Proje	2 ST	MA 0 1837	Phone: 978-474-8444 (Tur	These samples have been previously analyzed by Alpha	Out let in roject Specific Requirements/Comments/Detection Limits: if MS is required, indicate in Sample Specific Comments which samples and what tests MS to be performed. (Note: All CAM methods for inorganic analyses require MS every 20 soil samples)	Sample ID	UMC-Wa-CONCRETE-C-	UNC-WC-CONCRETE -NC-2	S unc-wa-concrete-st-1	-02-MC-MC-80-			PLEASE ANSWER QUESTIONS ABOVE!		P? NA	FORM NO: 01-01 (row, 18-Jan-2010)	
Z. T.C.		Client Inform			_		These	if MS is re (Note: All								PLEASE /	IS YOU	MA MC	FORM NO: 01-01	

ANALYTICAL REPORT

Lab Number:

L1115258

Client:

Tetra Tech Nus, Inc.

55 Jonspin Road

Wilmington, MA 01887-1020

ATTN:

Scott Nesbit

Phone:

(978) 658-7899

Project Name:

LMC WILMINGTON

Project Number:

1121C03346

Report Date:

09/28/11

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY NELAC (11148), CT (PH-0574), NH (2003), NJ (MA935), RI (LAO00065), ME (MA0086), PA (Registration #68-03671), USDA (Permit #S-72578), US Army Corps of Engineers, Naval FESC.

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name:

LMC WILMINGTON

Project Number:

1121C03346

Lab Number:

L1115258

Report Date:

09/28/11

Alpha Sample ID	Client ID	Sample Location	Collection Date/Time	
L1115258-01	LMC-WC-CONCRETE-C-1	50 FORDHAM RD., WILMINGTON, MA	08/10/11 09:00	
L1115258-02	LMC-WC-CONCRETE-C-1	50 FORDHAM RD., WILMINGTON, MA	08/10/11 09:00	
L1115258-03	LMC-WC-CONCRETE-NC-2	50 FORDHAM RD., WILMINGTON, MA	08/10/11 09:30	
L1115258-04	LMC-WC-CONCRETE-NC-2	50 FORDHAM RD., WILMINGTON, MA	08/10/11 09:30	
L1115258-05	LMC-WC-CONCRETE-ST-1	50 FORDHAM RD., WILMINGTON, MA	08/10/11 10:00	
L1115258-06	LMC-WC-CONCRETE-ST-1	50 FORDHAM RD., WILMINGTON, MA	08/10/11 10:00	
L1115258-07	LMC-WC-SO-1	50 FORDHAM RD., WILMINGTON, MA	08/10/11 10:30	
L1115258-08	LMC-WC-SO-1	50 FORDHAM RD., WILMINGTON, MA	08/10/11 10:30	

Serial_No:09281119:28

Project Name:

LMC WILMINGTON

Project Number:

1121C03346

Lab Number:

L1115258

Report Date:

09/28/11

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

For additional information.	please contact Client Services at 800-624-922
ror additional information,	please contact Client Services at 800-624-925

Report Submission

This is a partial report. A final report will be issued as soon as the results of all requested analyses become available.

Oil & Grease, Hem-Grav

Laboratory Duplicates and Matrix Spikes could not be performed due to insufficient sample volume available for analysis.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

600 Stendow Kelly Stenstrom

Authorized Signature:

Title: Technical Director/Representative

Date: 09/28/11

Serial_No:09281119:28

Project Name:

LMC WILMINGTON

Project Number: 1121C03346

Lab Number:

L1115258

Report Date:

09/28/11

SAMPLE RESULTS

Lab ID:

L1115258-08

Client ID:

LMC-WC-SO-1

Sample Location:

50 FORDHAM RD., WILMINGTON, MA

Matrix:

Liquid

Date Collected:

08/10/11 10:30

Date Received:

08/10/11

Field Prep:

Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	tborough Lab					3 , 5		What will	y- realign	
Chemical Oxygen Demand Oil & Grease, Hem-Grav	ND ND		mg/l mg/l	20 4.4		1 1.1		09/28/11 14:33 09/27/11 16:15	30,5220D 74,1664A	DW JO

			12.7					- 1	2	12		*						122	e 22 o
LII15258	Rilling Information			Ortienta	CT REASONABLE CONFIDENCE PROTO	Ara MCP Analytical Mathods Regulred? Is Matrix Spike (MS) Required on this SDG? (If yes see note in Comments) Are CT RCP (Reasonable Confidence Protocols) Remitted?	SAMP TITLE	Filtration Done Done Dot needed Lab to do	Preservation of Lab to do	nments						. Alexandre de la constant de la con	Telebra samples con right barocom	Date/Time start stell according size recolver [1]	Liess Sherievana sing
	Report Information - Data Deliverables		cgulatory Requ		SUMPTIVE CERTAINTY	□ Yes □ No Are MCP Analytical Methods Regulred? □ Yes □ No Is Matrix Spike (MS) Required on this S □ Yes □ No Are CT RCP (Reasonable Confidence P		THE STATE OF THE S	and the state of t				X X X X X X X X X X X X X X X X X X X			& & &	नित पुष्ट पृथ्व पृथ्व पृथ्व पृथ्व	Mana Confer 8.10.11	3/10/1/2
USTODY MOE OF	Project Information	Project Name: CMC WICMINGSTON Project Location: F	Project # 1121Co 33 4C	Project Manager. Store Vetre	ALPHA Quote #:	Turn-Around Time	Date Due: 0127/1/1/1 Time:	etection Limits: mples and what tests MS to be performed. 0 soil samples)	Collection Sample Sampler's Date Time Matrix Initials	S	810/11 09% S	8/10/11/0000 S	es				<u>§</u>	1 8 10 11 C	
CHAIN OF CUSTOD	MANSFIELD, MA. TEL: 508-822-8300	FAX: 608-822-3288 ation		ST	MA 01887		These samples have been previously analyzed by Alpha	Outher Project Specific Requirements/Comments/Detection Limits: If MS is required, indicate in Sample Specific Comments which samples and what tests MS to be performed. (Note: All CAM methods for inorganic analyses require MS every 20 soil samples)	Sample ID	anc-we-congresse-c-	UNC-WC-CONCESSE-NC-2	S LMC-WG-CANCRETE-ST-1	LMC-WC-80-			PLEASE ANSWER QUESTIONS ABOVE!		MA MCP or CT RCP? Matheway	

195 Commerce Way Suite E Portsmouth, New Hampshire 03801 603-436-5111 Fax 603-430-2151 800-929-9906 www.analyticslab.com

CLIENT: Tetra Tech NUS, Inc.

REPORT NUMBER: 70594

REV: Rev. 0

PROJECT: LMC WILMINGTON (Project No: 1121C03346)

<u>Lab Number</u> 70594-1	Sample Date 07/27/11	Station Location LMC-CONCRETE-NC-1	Analysis Comments EPA 8082 (PCBs only)
70594-2	07/27/11 07/27/11 07/27/11 07/27/11 07/27/11	LMC-CONCRETE-NC-1 LMC-CONCRETE-NC-1 LMC-CONCRETE-NC-1 LMC-CONCRETE-NC-1 LMC-CONCRETE-NC-2	EPA 8260 Volatile Organics MADEP EPH Metals Volatile Petroleum Hydrocarbons EPA 8082 (PCBs only)
	07/27/11 07/27/11 07/27/11 07/27/11	LMC-CONCRETE-NC-2 LMC-CONCRETE-NC-2 LMC-CONCRETE-NC-2 LMC-CONCRETE-NC-2	EPA 8260 Volatile Organics MADEP EPH Metals Volatile Petroleum Hydrocarbons
70594-3	07/27/11 07/27/11 07/27/11	LMC-SO-TRENCH-1 LMC-SO-TRENCH-1 LMC-SO-TRENCH-1	EPA 8260 Volatile Organics MADEP EPH Volatile Petroleum Hydrocarbons
70594-4	07/27/11 07/27/11	LMC-TB02 LMC-TB02	EPA 8260 Volatile Organics Volatile Petroleum Hydrocarbons

195 Commerce Way Portsmouth, New Hampshire 03801 603-436-5111 Fax 603-430-2151 800-929-9906

Laboratory Name: Analytics Environmental Laboratory, LLC	_			DEP Analytical		rtifica	ation Form		
This Form provides certifications for the following data set. Laboratory Sample ID Number(s): 70594-1, 70594-2, 70594-3, 70594-4 Matrices:					LLC	Pro	ject #: 70594		23
Matrices: Groundwater/Surface Water Soll/Sediment Drinking Water Air MassDEP APH	—								
Matrices:	1			or the following dat	ta set. Labora	tory S	ample ID Number(s):		
CAM Protocol (check all that apply below): 8260 VOC	-								
MassDEP APH Roam II	_	41.	· · · · · · · · · · · · · · · · · · ·	•	ment Dri	nking V	Vater Air 🛮 Oth	er	
CAM II A	CA	M Protocol	(check all that ap	oply below):					
CAM II B						des			
Affirmative Responses to Questions A through F are required for "Presumptive Certainty" status Were all samples received in a condition conistent with those described on the Chain-of-Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times? B Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed? C Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances? Does the laboratory report comply with all reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data"? E a. VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to individual method(s) for a list of significant modifications). b. APH and TO-15 Methods only: Was the complete analyte list reported for each method? F Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)? Responses to Questions G, H and I below are required for "Presumptive Certainty" status G Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)? Data User Note: Data that achieve "Preseumptive Certainty" status may not necessarily meet the data usability and representativeness requirements described in 310 CMR 40. 1056 (2)(k) and WSC-07-350. H Were ALL QC performance standards specified in the Selected CAM protocol(s)?						des			
Were all samples received in a condition conistent with those described on the Chain-of-Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times? B Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed? C Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances? Does the laboratory report comply with all reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data"? a. VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to individual method(s) for a list of significant modifications). b. APH and TO-15 Methods only: Was the complete analyte list reported for each method? F Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)? Responses to Questions G, H and I below are required for "Presumptive Certainty" status G Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)? Data User Note: Data that achieve "Preseumptive Certainty" status may not necessarily meet the data usability and representativeness requirements described in 310 CMR 40. 1056 (2)(k) and WSC-07-350. H Were ALL QC performance standards specified in the CAM protocol(s) achieved? I Were results reported for the complete analyte list specified in the selected CAM protocol(s)? All negative responses must be addressed in an attached laboratory narrative. i, the undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those esponsible for obtaining the information, the material contained in this analytical report is, to the best o					Cyanide/PAC	· 🗆			
A Custody, properly preserved (including temperature) in the field or laboratory, and prepared/ analyzed within method holding times? B Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed? C Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances? Does the laboratory report comply with all reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data"? a. VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to individual method(s) for a list of significant modifications). b. APH and TO-15 Methods only: Was the complete analyte list reported for each method? F Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)? Responses to Questions G, H and I below are required for "Presumptive Certainty" status G Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)? Pacta User Note: Data that achieve "Preseumptive Certainty" status may not necessarily meet the data usability and representativeness requirements described in 310 CMR 40. 1056 (2)(k) and WSC-07-350. H Were ALL QC performance standards specified in the CAM protocol(s)? All negative responses must be addressed in an attached laboratory narrative. the undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those esponsible for obtaining the information, the material contained in this analytical report is, to the best of my nowledge and belief, accurate and complete.	Affi							<u> </u>	
Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances? Does the laboratory report comply with all reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data"? a. VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to individual method(s) for a list of significant modifications). b. APH and TO-15 Methods only: Was the complete analyte list reported for each method? F Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)? Responses to Questions G, H and I below are required for "Presumptive Certainty" status G Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)? Data User Note: Data that achieve "Preseumptive Certainty" status may not necessarily meet the data usability and representativeness requirements described in 310 CMR 40. 1056 (2)(k) and WSC-07-350. H Were ALL QC performance standards specified in the CAM protocol(s) achieved? I Were results reported for the complete analyte list specified in the selected CAM protocol(s)? Yes No¹ All negative responses must be addressed in an attached laboratory narrative. I, the undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those responsible for obtaining the information, the material contained in this analytical report is, to the best of my throw the definition of the complete. Position: Assistant Laboratory Director	A	Custody, prop analyzed with	erly preserved (incling the interpretation in method holding the interpretation in method holding the interpretation in method	uding temperature) imes?	in the field or	laborat	ory, and prepared/	⊠Yes	□No
Does the laboratory report comply with all reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data"? a. VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to individual method(s) for a list of significant modifications). b. APH and TO-15 Methods only: Was the complete analyte list reported for each method? Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)? Responses to Questions G, H and I below are required for "Presumptive Certainty" status Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)? Data User Note: Data that achieve "Preseumptive Certainty" status may not necessarily meet the data usability and representativeness requirements described in 310 CMR 40. 1056 (2)(k) and WSC-07-350. H Were ALL QC performance standards specified in the CAM protocol(s)? I Were results reported for the complete analyte list specified in the selected CAM protocol(s)? Ves SNo¹ Were results reported for the complete analyte list specified in the selected CAM protocol(s)? All negative responses must be addressed in an attached laboratory narrative. The undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those esponsible for obtaining the information, the material contained in this analytical report is, to the best of my moveledge and belief, accurate and complete.	В	protocol(s) to	llowed?					⊠Yes	■No
Date User Note: Data that achieve "Preseumptive Certainty" status may not necessarily meet the data usability and representativeness requirements described in 310 CMR 40.1056 (2)(k) and WSC-07-350. H Were ALL QC performance standards specified in the Selected CAM protocol(s)? Were results reported for the complete analyte list specified in the selected CAM protocol(s)? Were results reported for the complete analyte list specified in the selected CAM protocol(s)? Position: Assistant Laboratory Director	C	CAM protoco	l(s) implemented for	r all identified perfo	rmance standa	ırd non	-conformances?	⊠Yes	□No
modification(s)? (Refer to individual method(s) for a list of significant modifications). b. APH and TO-15 Methods only: Was the complete analyte list reported for each method? F Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)? Responses to Questions G, H and I below are required for "Presumptive Certainty" status G Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)? Data User Note: Data that achieve "Preseumptive Certainty" status may not necessarily meet the data usability and representativeness requirements described in 310 CMR 40. 1056 (2)(k) and WSC-07-350. H Were ALL QC performance standards specified in the CAM protocol(s) achieved? I Were results reported for the complete analyte list specified in the selected CAM protocol(s)? Yes No¹ All negative responses must be addressed in an attached laboratory narrative. I, the undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those responsible for obtaining the information, the material contained in this analytical report is, to the best of my knowledge and belief, accurate and complete. Position: Assistant Laboratory Director	D	"Quality Assu Analytical Dat	rance and Quality C ta"?	ontrol Guidelines fo	or the Acquisit	ion and	Reporting of	⊠Yes	■No
Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)? Responses to Questions G, H and I below are required for "Presumptive Certainty" status G Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)? Data User Note: Data that achieve "Preseumptive Certainty" status may not necessarily meet the data usability and representativeness requirements described in 310 CMR 40. 1056 (2)(k) and WSC-07-350. H Were ALL QC performance standards specified in the CAM protocol(s) achieved? I Were results reported for the complete analyte list specified in the selected CAM protocol(s)? Yes No¹ All negative responses must be addressed in an attached laboratory narrative. I, the undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those responsible for obtaining the information, the material contained in this analytical report is, to the best of my the convoledge and belief, accurate and complete. Position: Assistant Laboratory Director	E	modification(s)? (Refer to individu	ıal method(s) for a i	ist of significa	ant mod	diffications)		- 1
Were the reporting limits at or below all CAM reporting limits specified in the selected CAM Data User Note: Data that achieve "Preseumptive Certainty" status may not necessarily meet the data usability and representativeness requirements described in 310 CMR 40. 1056 (2)(k) and WSC-07-350. Were ALL QC performance standards specified in the CAM protocol(s) achieved? Yes No¹	F	Were all applie	cable CAM protocol	OC and performan	ce standard no	n-conf	ormances identified		
Protocol(s)? Data User Note: Data that achieve "Preseumptive Certainty" status may not necessarily meet the data usability and representativeness requirements described in 310 CMR 40.1056 (2)(k) and WSC-07-350. H Were ALL QC performance standards specified in the CAM protocol(s) achieved? I Were results reported for the complete analyte list specified in the selected CAM protocol(s)? All negative responses must be addressed in an attached laboratory narrative. The undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those esponsible for obtaining the information, the material contained in this analytical report is, to the best of my mowledge and belief, accurate and complete. Position: Assistant Laboratory Director									
H Were ALL QC performance standards specified in the CAM protocol(s) achieved? I Were results reported for the complete analyte list specified in the selected CAM protocol(s)? All negative responses must be addressed in an attached laboratory narrative. I, the undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those responsible for obtaining the information, the material contained in this analytical report is, to the best of my chowledge and belief, accurate and complete. Position: Assistant Laboratory Director	٦	protocol(s)?			_				
Were results reported for the complete analyte list specified in the selected CAM protocol(s)? All negative responses must be addressed in an attached laboratory narrative. The undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those responsible for obtaining the information, the material contained in this analytical report is, to the best of my thould be and belief, accurate and complete. Position: Assistant Laboratory Director Assistant Laborat	repre	sentativeness r	equirements aescrit	ped in 310 CMR 40	. 1056 (2)(k) d	ınd WS	SC-07-350.	a usability	and
All negative responses must be addressed in an attached laboratory narrative. I, the undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those responsible for obtaining the information, the material contained in this analytical report is, to the best of my knowledge and belief, accurate and complete. Position: Assistant Laboratory Director					-		The state of the s	Yes	⊠No ¹
the undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those responsible for obtaining the information, the material contained in this analytical report is, to the best of my chowledge and belief, accurate and complete. Position: Assistant Laboratory Director								⊠Yes	■ No ¹
responsible for obtaining the information, the material contained in this analytical report is, to the best of my chowledge and belief, accurate and complete. Position: Assistant Laboratory Director									
	espo.	nsivie jor ovtai	ining the injormatio	on, the material con	perjury that, b tained in this	ased u analyi	pon my personal inqui ical report is, to the be	ry of thos st of my	е
Printed Name: Melissa Gulli Date: August 04, 2011	igna	ture: M	abilli		_ Position:	Assis	tant Laboratory Directo	r	1
	rinte	ed Name: <u>Meli</u>	ssa Gulli		Date:	Augus	t 04, 2011		

Mr. Steve Vetere Tetra Tech NUS, Inc. 250 Andover Street Wilmington MA 01887

CLIENT SAMPLE ID

Project Name:

LMC WILMINGTON

Project Number: 1121C03346

, Field Sample ID: LMC-SO-TRENCH-1

August 3, 2011 SAMPLE DATA

Lab Sample ID: 70594-3

Matrix:

Solid

Percent Solid:

98

Dilution Factor:

91

Collection Date: Lab Receipt Date: 07/27/11

07/27/11

Analysis Date:

07/28/11

	N			//28/11	
A		SULTS VOL	ATILE ORGANICS		
COMPOUND	Quantitation Limit µg/kg	Result µg/kg	COMPOUND	Quantitation Limit μg/kg	Result µg/kg
Benzene	91	U	1,3-Dichloropropane	91	U
Bromobenzene	91	U	cis-1,3-Dichloropropene	91	Ŭ
Bromochloromethane	91	U	trans-1,3-Dichloropropene	91	Ŭ
Bromodichloromethane	68	U	2,2-Dichloropropane	91	Ü
Bromoform	68	U	1,1-Dichloropropene	91	Ü
Bromomethane	91	U	Ethylbenzene	91	U
n-butylbenzene	91	U	Hexachlorobutadiene	91	Ü
sec-butylbenzene	91	U	Isopropylbenzene	91	U
tert-butylbenzene	91	U	p-isopropyltoluene	91	U
Carbon Tetrachloride	91	U	Methylene Chloride	457	Ü
Chlorobenzene	91	U	Methyl-tert-butyl ether (MTBE)		U
Chloroethane	91	U	Naphthalene	91	Ü
Chloroform	68	U	n-Propylbenzene	91	_
Chloromethane	91	U	Styrene	91	U
2-Chlorotoluene	91	U	1,1,1,2-Tetrachloroethane	91	U
4-Chlorotoluene	91	Ū	1,1,2,2-Tetrachloroethane	68	U
Dibromochloromethane	68	U	Tetrachloroethene	91	U
1,2-Dibromo-3-chloropropane	91	Ü	Toluene	91	U
1,2-Dibromoethane	68	Ū	1,2,3-Trichlorobenzene	91	U
Dibromomethane	91	Ū	1,2,4-Trichlorobenzene	91	Ü
1,2-Dichtorobenzene	91	Ü	1,1,1-Trichloroethane	91	U
1,3-Dichlorobenzene	91	Ü	1,1,2-Trichloroethane	68	U
1,4-Dichlorobenzene	91	Ū	Trichloroethene	91	U
Dichlorodifluoromethane	91	Ū	Trichlorofluoromethane	91	Ü
1,1-Dichloroethane	91	Ü	1,2,3-Trichloropropane	91	U
1,2-Dichloroethane	68	Ü	1,2,4-Trimethylbenzene	91	U
1,1-Dichloroethene	68	Ü	1,3,5-Trimethylbenzene	19	U
cis-1.2-Dichloroethene	91	Ü	Vinyl Chloride		U
trans-1,2-Dichloroethene	91	Ü	o-Xylene	91	U
1,2-Dichloropropane	68	Ŭ	m,p-Xylene	91	U
Acetone	913	U	Diethyl ether	91	U
Carbon Disulfide	91	Ü	2-Hexanone	91	U
Tetrahydrofuran	457	Ü		913	U
Methyl ethyl ketone	913	บ	Methyl isobutyl ketone	913	U
t-Butyl alcohol (TBA)	1830	Ü	Di-isopropyl ether (DIPE)	91	U
t-Amyl methyl ether (TAME)	91	Ü	Ethyl t-butyl ether (ETBE) 1,4-Dioxane	91 2740	U
		ate Standard Re		4740	U
d4-1,2-Dichloroethane 125		Toluene 114	% Bromofluorob	enzene [2]	%
U=Undetected	J=Estimated	E=Exceeds Cal			70
METHODOL OCV Sample coll				11	

METHODOLOGY:Sample collection in accordance with SW-846 method 5035A. Sample analysis was conducted according to: Test Methods for Evaluating Solid Waste, SW-846 Method 8260B.

COMMENTS: Results are expressed on a dry weight basis.

~8260MCP (3) + Dioxane:Res(72):Rec(3)

Authorized signature Mullill

195 Commerce Way Portsmouth, New Hampshire 03801 603-436-5111 Fax 603-430-2151 800-929-9906

Mr. Steve Vetere Tetra Tech NUS, Inc. 250 Andover Street Wilmington MA 01887

CLIENT SAMPLE ID

Project Name:

LMC WILMINGTON

Project Number:

1121C03346

Client Sample ID: LMC-SO-TRENCH-1

August 1, 2011

SAMPLE DATA

Lab Sample ID:

70594-3

Matrix:

Solid

Percent Solid:

98

Dilution Factor:

50

Collection Date:

07/27/11

Lab Receipt Date:

07/27/11

Analysis Date:

07/28/11

	VPH A	NALYTIC	AL RESULTS		
RANGE/TARGET ANALYTE	Elution Range	RL	Units	Result	
Unadjusted C5-C8 Aliphatics 1	N/A	2496	μg/kg	U	
Unadjusted C9-C12 Aliphatics	N/A	2496	μg/kg	U	
Benzene	C5-C8	99.8	μg/kg	U	
Ethylbenzene	C9-C12	99.8	μg/kg	U	
Methyl-tert-butyl ether	C5-C8	99.8	μg/kg	U	
Naphthalene	N/A	99.8	μg/kg	U	*
Toluene	C5-C8	99,8	μg/kg	U	
m- & p-Xylenes	C9-C12	200	μg/kg	U	
o-Xylene	C9-C12	99.8	μg/kg	U	
C5-C8 Aliphatics Hydrocarbons 1,2	N/A	2496	μg/kg	U	
C9-C12 Aliphatic Hydrocarbons ^{1,3}	N/A	2496	μg/kg	U	
C9-C10 Aromatic Hydrocarbons	N/A	499	μg/kg	U	
Surrogate % Recovery (Trifluoroto	uene) PID			97	
Surrogate % Recovery (Trifluoroto	uene) FID	12		97	
Surrogate Acceptance Range				70-130%	

Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range. ²C5-C8 Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range

RL = Report Limit

U=Undetected J=Estimated E=Exceeds Calibration Range B=Detected in Blank

METHODOLOGY: MADEP Volatile Petroleum Hydrocarbons (VPH), ORS Division of Environmental Analysis, Revision 1.1 May 2004.

COMMENTS: Samples were received in accordance with method criteria unless noted on the sample receipt checklist. Results are expressed on a moisture corrected and dry weight basis.

Authorized signature:

Mand famil

³C9-C12 Aliphatic Hydrocarbons exclude conc. of Target Analytes eluting in that range and conc. of C9-C10 Aromatic Hydrocarbons.

195 Commerce Way Portsmouth, New Hampshire 03801 603-436-5111 Fax 603-430-2151 800-929-9906

August 2, 2011

Mr. Steve Vetere Tetra Tech NUS, Inc. 250 Andover Street Wilmington MA 01887

CLIENT SAMPLE ID

Project Name:

LMC WILMINGTON

Project Number:

1121C03346

Client Sample ID: LMC-SO-TRENCH-1

SAMPLE DATA

Lab Sample ID: 70594-3

Matrix:

Solid

Percent Solid:

98

Dilution Factor:

1.0

Collection Date:

07/27/11

Lab Receipt Date: 07/27/11

Extraction Date:

07/28/11

Analysis Date:

08/01/11

RANGE/TA	RGET ANALYTE	RL	Units	D - 4
	C11-C22 Aromatics	27000	μg/kg	Result U
	Naphthalene	270	μg/kg	IJ
Diesel PAH	2-Methylnaphthalene	270	μg/kg	TJ
Analytes	Phenanthrene	270	μg/kg	II
	Acenaphthene	270	μg/kg	IJ
	Acenaphthylene	270	μg/kg	U
	Fluorene	270	μg/kg	U
	Anthracene	270	μg/kg	II
	Fluoranthene	270	μg/kg	Ū
Other	Pyrene	270	μg/kg	T.I.
Target PAH	Benzo[a]anthracene	270	μg/kg	U
Analytes	Chrysene	270	μg/kg	U
	Benzo[b]fluoranthene	270	μg/kg	U
	Benzo[k]fluoranthene	270	μg/kg	U
	Benzofalpyrene	270	μg/kg	U
	Indeno[1.2.3-cd]pyrene	270	μg/kg	U
	Dibenzofa hlanthracene	270	μg/kg	U
	Benzofg.h.ilpervlene	270	μg/kg	U
29-C18 Aliph	atic Hydrocarbons	27000	μg/kg	U
C19-C36 Alip	hatic Hydrocarbons hatic Hydrocarbons	27000	μg/kg	14300 J
.11-C22 Aror	natic Hydrocarbons	27000	μg/kg	U
	ogate % Recovery (I-Chloro-octadecane)			90
	ogate % Recovery (O-Terphenyl)			86
	rate Acceptance Range			40-140%
1 Fractionation	on Surrogate % Recovery (2-Fluorobiphenyl)			69
2 Fractionation	on Surrogate % Recovery (2-Bromonaphthalene)			56
ractionation S	Surrogate Acceptance Range			40-140%

Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that ²C11-C22 Aromatic Hydrocarbons exclude the concentration of Target PAH Analytes.

RL = Report Limit

U=Undetected J=Estimated E=Exceeds Calibration Range B=Detected in Blank

METHODOLOGY MADEP Extractable Petroleum Hydrocarbons (EPH), ORS Division of Environmental Analysis, May 2004 Revision 1.1. Samples were extracted in accordance with SW-846 Method 3545

COMMENTS: EPH analyses utilized the use of a GC/MS system to detect and quantify ranges and target analytes. Samples were received in accordance with method criteria unless noted on the sample receipt checklist. Results are expressed on a dry weight basis.

SIGNATURE: Mullill

Analytics Report 70594 page 0047 of 73

Chain Of Custody Form

CHICH THE ST	2	aborationy (LC	21			(800) 929-9906	9066					43.5	Samples were	V	0
	Proj. Name	Proj. Name: CAC WILMINGTON	ENIL.	300	H		Circle	Circle and/or W	Write Required	ed Analysis		T	1) Sripped or regor-go	avilla de la companya	1000
1					T		-		Arao				2) Received in mord con	on ('C):	1.6
	7				T		_	Pioc	FOR	No.		_	4) Dif checked for		
WICKINGRON MA	MA	200	8		T		A ¿ tag	78 01	N. I		/ /		5) Labels checked by:	ked by:	MATATI
Phone: 928-474-844	3				T	P29 ;	Sug	DIRCE	LON I	20					V
Quote #:					T	254.2	180	28 O	M des	117	_		C Concrete		In . Grimbester
PO# (if required):			Pres	Preservation	T	(09z)	COL	Pucto	ועכוני	05			WW - Westpounter SW - Sarbace Water	ewater 24 Water	S - Soil / Skudge O - Oil
Station identification	Sample	Sample	9903 Parce System	1084	tonarhanol Tortal	117	Perfection Perfection		Metals	9.			I EATTREET	<u>7</u>	X = Other
	1127	13:00				X-	30	5).	-	-	+	3	61	Analytics Sample
IMC-CONCECTE-NC-2			×	X	1	=	6	80	20		1	+	0	2	70594
(MC-SD-TRONCH-)		14:00	×	X		-	•	10	+	10	I	1	30		
UMC-TBeSI	>	0790	×		×								38 1×		
Email Results to:	Comments	Comments, Additional Analyses, or Special Instructions:	tional Analyses, or S	or Speci	al Instru	HASS L	加金	E C	equested	List requested metals here			Project	Project Requirements: *Fee may apply	, sp
Stephenyckagistnakol, can	5		ASSA	B	CP4	¥ \$1	MASS DEP CP44 4 VP4	1				Report Type.		State:	State Standard:
Tumaround Time (TAT)	\$	の方	300	A STAN		KIDIN	CERTAINTY IS REQUIRED FOR	E	1 Peel	(本)		CTRCP.	Level III		S-1 GW-1
72 Hours* 5 Days* 10 Days *Fee may apply; lab approval reguland	T (A)	# Jen Saed "Luc	· pa	ראכ	1	CONCRETE"	E"ON	apo	108	untabel postino)				EDD Required: Y* Type:
Sampler Name (Print): Michael Alm	4	70							•	C	1				
Retinquished By Sampler: M. 4	梅	-				123 123	11 1744		Received	13	3	1			
The state and the state of the	1					NAME OF THE PERSON OF THE PERS	Dime	ď	Roceived By	1	+		1		1 7
Kokingiashed By:						Date:	Time:	2	Received By:		-		3	5	12011

Analytics Report 70594 page 0072 of 73