FEATURES:

- Improves effectiveness throughout current battlespace
- Expands missile performance battlespace in altitude and range
- Defender against PATRIOT full regime of system threats
- Minimal launcher modifications required
- Dual pulse technology enables further improvements to overall system performance and lethality

PAC-3 MISSILE SEGMENT ENHANCEMENT (MSE)

Upgraded Interceptor

The PAC-3 Missile Segment Enhancement (MSE) is an evolution of the battle-proven PAC-3 Missile. The hit-to-kill PAC-3 MSE provides performance enhancements that counter evolving threat advancements. The enhancements ensure the PAC-3 Missile Segment of the PATRIOT Air Defense System is capable of engaging new and evolving threats. The hit-to-kill PAC-3 Missile is the world’s most advanced, and capable theater air defense missile and defender against the entire threat to the PATRIOT Air Defense System: Tactical Ballistic Missiles (TBMs) carrying weapons of mass destruction, evolving cruise missiles and aircraft.

The PAC-3 MSE design utilizes the latest technology to significantly increase performance. The PAC-3 MSE incorporates a larger, dual pulse solid rocket motor; larger fins; and upgraded actuators and thermal batteries to accommodate increased performance. The modifications extend the missile’s reach.

The PAC-3 MSE is packaged in a single canister that stacks to provide logistical flexibility. Twelve individual PAC-3 MSE Missiles can be loaded on a PATRIOT Launcher or a combination of six MSEs and eight PAC-3 Missiles (two four packs) can be loaded.

Several successful intercept flight tests of the missiles have been conducted.

PAC-3 MSE has completed operational testing and has received approval for initial production.

Contact Information

Media and Press Inquiries: (972) 603-9466
Business Development: (972) 603-7328 (FAX)

PAC-3 is a registered mark in the U.S. Patent and Trademark Office of Lockheed Martin Corporation in the U.S. and/or other countries. MSE is a trademark of Lockheed Martin Corporation. Cleared for Public Release DAL201406005

© 2015 Lockheed Martin Corporation