GSTAR

Anti-Jam GPS -
Electronic Protection

LOCKHEED MARTIN
Assured GPS in the Most Contested Environments (BEAM-STEERING AND NULLING)

Throughout the 20 years of leading the development of Anti-Jam GPS (AJ-GPS) technology, Lockheed Martin has fielded over 4,000 GPS Spatial Temporal Anti-Jam Receiver (GSTAR) systems. GSTAR offers a modular, scalable family of solutions that provides highly effective digital Electronic Protection (EP) for any platform that relies on GPS for navigation. GSTAR is a suite of reliable “building blocks” that can be quickly adapted to meet the specific needs of each platform as required. In addition, Lockheed Martin has all the tools, resources and relationships to quickly and effectively field GSTAR Antenna Electronic Units (AEU) to any platform and for any contested condition, ensuring critical GPS operation.

GSTAR is a fully digital system providing the strongest protection against adversarial jammers and spoofers. The advanced beam-steering capability allows the host platform to survive the harshest of contested environments. GSTAR can be configured as a nulling only solution for compatibility with existing GPS Receivers with the inherent growth to beam-steering without replacement of the GSTAR or the antenna.

When you choose GSTAR, you choose proven performance. Lockheed Martin is a driving force behind Assured Position Navigation and Timing (A-PNT) improvements in the performance, quality and reliability of GPS navigation solutions.
Modular Design Approach

Building Blocks
- High dynamic range RF front-end
- Digital beamformer
- Receiver interface circuitry allowing seamless connection with both legacy RF receivers and multi-beam digital receivers

High Dynamic Range RF Front-End
Today’s digital AJ requirements demand an RF design with a broad sensitivity range. To meet that challenge, GSTAR has the high dynamic range and proven environmental robustness to handle the challenge.

Digital Beamformer
Our digital beamformer is based on spatial temporal adaptive processing technology and a tight coupling with our GPS partner, Trimble, combines multiple digital signal processing techniques to deliver advanced GPS signal protection. GSTAR is capable of rapidly adapting to a dynamically changing GPS interference environment by simultaneously forming multiple beams on the satellites of interest, while nulling the interference.

Key Features and Benefits

Key Features
- High-dynamic range RF front-end
- Scalable, modular design approach
- Digital IF of analog RF output
- Maintains Deep Nulls while Providing Antenna Gain (Beamforming)
- Minimize Pseudo Range and Carrier Phase Distortions
- Multipath Mitigation
- Qualified to 16g RMS, -45C to +75C, MIL-STD-461F

Key Benefits
- High levels of Anti-Jam protection
- Best value cost/performance solution
- Flexible packaging alternatives
- Seamless integration
- High accuracy
- Forward compatibility
- M-code compatible

Simulation and Design
We have developed validated extensive simulation capabilities. Through simulation, we can evaluate the environment of a platform and determine the optimal configuration to meet operational requirements. The GSTAR system is scaled to meet the performance, interface, packaging and cost requirements of the specific customer.

Nulling Only
Nulling with Gain Beam
Steered to SV 24

GPS Receiver integration and Backward Compatibility
The GPS receiver plays a critical role in the effectiveness of any AJ solution. GSTAR provides multiple integration options:
- RF interface compatible with any standard GPS receiver
- Digital multi-beam interface to external digital receivers; for EGI-based platforms
- Failsafe RF output available to provide system resiliency

Designed for Growth
- M-Code and SAASM-based EGI compatible
- Open digital interface for beamforming
- FPGA-based architecture adaptable for future threats

Proven Design
The GSTAR family of products has been successfully tested against a variety of threats scenarios. We have proven our design against threats in numerous simulation arenas including Wright Patterson Air Force Base, the Antenna Wave Front Simulator and in-flight test at Holloman Air Force Base.

nulling with gain beam steered to sv 24

nulling only

nulling with gain beam steered to sv 24